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Abstract

In the emergency department (ED), patients un-

dergo triage and multiple laboratory tests before

diagnosis. This time-consuming process causes

ED crowding which impacts patient mortality,

medical errors, staff burnout, etc. This work pro-

poses (time) cost-effective diagnostic assistance

that leverages artificial intelligence systems to

help ED clinicians make efficient and accurate

diagnoses. In collaboration with ED clinicians,

we use public patient data to curate MIMIC-ED-

Assist, a benchmark for AI systems to suggest lab-

oratory tests that minimize wait time while accu-

rately predicting critical outcomes such as death.

With MIMIC-ED-Assist, we develop ED-Copilot

which sequentially suggests patient-specific lab-

oratory tests and makes diagnostic predictions.

ED-Copilot employs a pre-trained bio-medical

language model to encode patient information

and uses reinforcement learning to minimize ED

wait time and maximize prediction accuracy. On

MIMIC-ED-Assist, ED-Copilot improves predic-

tion accuracy over baselines while halving av-

erage wait time from four hours to two hours.

ED-Copilot can also effectively personalize treat-

ment recommendations based on patient sever-

ity, further highlighting its potential as a diag-

nostic assistant. Since MIMIC-ED-Assist is a

retrospective benchmark, ED-Copilot is restricted

to recommend only observed tests. We show

ED-Copilot achieves competitive performance

without this restriction as the maximum allowed

time increases. Our code is available at https:

//github.com/cxcscmu/ED-Copilot.
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1. Introduction

Emergency Department (ED) crowding represents a critical

challenge in healthcare, significantly impacting morbidity,

mortality, medical error, staff burnout, and incurring exces-

sive costs (Sartini et al., 2022). Despite the documented

effects of ED crowding, this issue remains inadequately ad-

dressed in healthcare systems. An efficient and effective ED

is vital for providing timely care to severely ill or injured

patients (Savioli et al., 2022).

One key area to address ED crowding, as identified by the

American College of Emergency Physicians, is to enhance

throughput—the efficacy and efficiency of care delivery in

the ED (Jarvis, 2016; DeAnda, 2018). A crucial factor af-

fecting throughput is the laboratory testing process, where

patients often face lengthy waits for tests to be ordered and

completed, delaying diagnoses and treatment decisions (Li

et al., 2015). Studies also show that 40 to 60% of ED labo-

ratory tests are unnecessary (Miyakis et al., 2006), further

exacerbating wait times.

This paper proposes an artificial intelligence “Co-Pilot” sys-

tem intended to offer (time) cost-effective diagnostic as-

sistance in the ED. This system should aid diagnosis and

minimize ED length of stay (LOS), i.e., wait times, by sug-

gesting laboratory tests after patient triage. Further, it should

help with resource management and planning by identifying

severely ill patients who require rapid intervention. That is,

by selecting informative tests, the system streamlines the di-

agnostic process, reducing LOS while improving outcomes,

particularly for high-risk patients.

To support the machine learning (ML) community in de-

veloping a time-cost-effective diagnostic assistant, we col-

laborate with ED clinicians to curate a benchmark, called

MIMIC-ED-Assist, that is derived from MIMIC-IV (John-

son et al., 2023b) and related datasets (Xie et al., 2022).

MIMIC-ED-Assist is designed to test the ability of AI sys-

tems to provide both accurate and time-cost saving labo-

ratory recommendations. Our benchmark consists of two

prediction targets identified by our clinical collaborators to

reflect patient risk: critical outcomes which includes patient

death and ICU transfer (Levin et al., 2018), and lengthened

ED stay, defined as ED LOS exceeding 24 hours. Accu-
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rately identifying patients at high risks of these outcomes

reduces time-cost by allowing clinicians to perform timely

interventions and efficiently allocate resources. MIMIC-

ED-Assist mirrors real-world ED practices by grouping in-

dividual laboratory tests into commonly performed groups,

e.g., complete blood count (CBC). MIMIC-ED-Assist then

tests AI systems on their ability to recommend the most

informative groups to make accurate diagnostic suggestions

while minimizing the total time required to perform these

tests, thereby reducing LOS.

With MIMIC-ED-Assist, we propose ED-Copilot which

suggests a series of laboratory groups to flag patients at

high risks on our prediction targets while minimizing total

time-cost. ED-Copilot first linearizes (i.e., converts to text)

patient information, including demographic, triage, and lab-

oratory test results into a text sequence. It then fine-tunes a

bio-medical pre-trained language model BioGPT (Luo et al.,

2022) to suggest future groups and predict our two defined

targets. Next, we use a reinforcement learning (RL) frame-

work (Yu et al., 2023) to teach BioGPT to dynamically rec-

ommend the subsequent, most informative laboratory group

based on prior laboratory and triage information. Unlike

baselines, ED-Copilot serves as a personalized diagnostic

assistant since it uses past patient information to recommend

future medically relevant laboratory groups.

Experiments on MIMIC-ED-Assist show that ED-Copilot

outperforms state-of-the-art tree models while halving time-

costs of laboratory testing from four hours to two hours.

Reducing the number of laboratory tests also has the ben-

efit of reducing financial cost. We also perform ablation

studies to confirm the benefits of our feature linearization

technique and the bio-medical pre-trained language model

backbone. Our ablation studies also investigate the effect of

size of the language model backbone on prediction accuracy

which indicates larger models can lead to further gain in

performance.

Our analyses also confirm the benefit of ED-Copilot’s per-

sonalized modeling approach. We show ED-Copilot can

adapt its recommendations based on patient severity, thereby

providing more accurate diagnostic suggestions for severely

ill patients as compared to non-personalized baselines. Fur-

ther, ED-Copilot achieves consistent performance across

various subgroups such as age and sex. Lastly, since MIMIC-

ED-Assist is a retrospective offline benchmark, we restrict

ED-Copilot to only select laboratory tests a patient actually

receives. We perform simulations without this restriction to

approximate online performance, and show ED-Copilot is

still able to make medically appropriate recommendations.

The rest of this paper is organized as follows. In Section 2,

we review related work. We discuss MIMIC-ED-Assist and

ED-Copilot in Sections 3 and 4 respectively. Sections 5 and

6 discuss our experimental set-up and results.

2. Related Work

Healthcare Benchmarks. Researchers have spent consid-

erable effort in converting raw electronic health records

(EHRs) into large-scale open-source datasets to ensure easy

access to high-quality medical data. A notable example is

the Medical Information Mart for Intensive Care (MIMIC)

database (Johnson et al., 2023b) which provides patient in-

formation such as measurements, laboratory orders, and

treatments, ranging from the ED to inpatient care, including

the intensive care unit (ICU). MIMIC has led to the devel-

opment of a range of related prediction benchmarks and

models (Purushotham et al., 2018; Harutyunyan et al., 2019;

Wang et al., 2020) focused on the ICU. Xie et al. (2022)

took a step towards filling this gap by using the MIMIC-IV-

ED (Johnson et al., 2023a) database to build a ED-focused

benchmark. Their dataset includes ED triage information,

and various clinical outcomes such as hospitalization that

interest clinicians, and impact ED LOS.

AI Models for Healthcare. There has been significant ef-

fort to apply ML to accurately predict clinical outcomes.

Traditional methods (e.g., random forests, gradient boost-

ing, and their variants (Breiman, 2001; Chen & Guestrin,

2016; Agarwal et al., 2022; 2023)), along with deep learn-

ing (DL) have been used to predict pneumonia (Kang et al.,

2020), and septic shock in the ICU (Wardi et al., 2021).

Other works use interpretable models to provide diagnostic

assistance in the ED such as identifying traumatic brain

injury (Kornblith et al., 2022; Tan et al., 2022). Another

closely related line of work is AI for cost-effective medicine.

For instance, Bejnordi et al. (2017) showed DL led to faster

analysis of pathology laboratory results; Komorowski et al.

(2018) proposed an “AI clinician” to learn optimal dosing

strategies for treating sepsis; Yu et al. (2023) focused on

minimizing financial costs associated with laboratory testing

while maximizing prediction accuracy. Specifically, Yu et al.

(2023) used RL to sequentially select laboratory groups

based on a patient’s observed test results to optimize this

(financial) cost-accuracy trade-off. They validated the ac-

curacy and cost-effectiveness of their approach on multiple

clinical tasks such as diagnosing kidney injury. Researchers

have also begun to explore the use of large language models

(LLMs) in medical applications. LLMs have been used to

extract clinical concepts (Yang et al., 2021; Luo et al., 2022;

Yang et al., 2022), and facilitate medical question answering

(Singhal et al., 2023; Yagnik et al., 2024).

3. MIMIC-ED-Assist Benchmark

In this section, we discuss the curation of MIMIC-ED-Assist

in collaboration with ED clinicians.

Task Description. We consider the following two tasks rel-

evant to reducing ED LOS. 1) Flagging patients at high risks

2



ED-Copilot: Reduce Emergency Department Wait Time with Language Model Diagnostic Assistance

of critical outcome (i.e., death and ICU transfer), and ED

LOS exceeding 24 hours. 2) Providing time-cost-effective

diagnostic assistance by recommending the next most med-

ically informative laboratory group while simultaneously

minimizing the time-cost of these groups.

Data Pre-processing. Since laboratory results are only

available for admitted patients, we filter out non-hospitalized

ED patients from MIMIC-IV-ED. We only focus on adults

and remove patients younger than 18 years old. We also

exclude patients that miss triage information. This step is

necessary since clinicians order laboratory groups depend-

ing on triage information. To simplify the task, we remove

patients who receive the same test multiple times, approxi-

mately 1.5% of all patients.

Clinically Relevant Outcomes. In collaboration with ED

clinicians, we chose the two following prediction targets.

(1) Critical outcome, which refers to death during hospital-

ization or transfer to an ICU within 12 hours. Identifying

patients at high risks of critical outcome allows clinicians

to prioritize treatment and resources for them. (2) Length-

ened ED stay, indicating if ED LOS exceeding 24 hours.

Lengthened ED stay is typically correlated with the com-

plexity of a patient’s case. Flagging patients at high risks

of lengthened ED stay can enable timely intervention, and

reduce ED LOS. The proportion of patients with these out-

comes is described in Table 1. While these two outcomes

are correlated, they also cover different aspects of patient

care. For example, patients at high risks of critical outcomes

often should be hospitalized quickly, while patients with

complications do not necessarily have severe cases. As such,

healthcare providers often require different diagnostics and

resource managements for these two tasks.

Triage Feature Selection. Triage features are measure-

ments that are available for every patient before laboratory

tests are ordered. We select a number of triage features in

collaboration with ED clinicians. Specifically, we chose 9
triage variables available at the beginning of patient encoun-

ters, which include patient demographics, medical history,

vital signs, and chief complaints (i.e., natural language de-

scription of symptoms).

Laboratory Test Selection. We only include laboratory

tests performed in the ED. For simplicity, we exclude tests

received by less than 5% of patients and leave examination

of rare tests to future research. This process results in a

total of 68 available laboratory tests. While there are 68
tests, ED clinicians rarely order individual tests for a patient.

Typically, they order groups of tests (e.g., complete blood

count) based on a patient’s signs, symptoms, and risk factors.

To reflect this clinical practice, our clinical collaborators

categorized these 68 tests into 12 distinct groups. See Ap-

pendix A for all 68 tests, and their assigned groupings. On

average each patient receives 4.7 laboratory groups. Con-

Table 1. Statistics of MIMIC-ED-Assist. It includes information

from patient triage and laboratory tests. Laboratory tests are

grouped into 12 groups by ED clinicians based on how they are

commonly ordered. An ED visit has a critical outcome if the pa-

tient is transferred to ICU or there is an inpatient mortality. ED

stay is lengthened if the length of stay (LOS) exceeds 24 hours.

The positive rate is shown in parentheses.

Variable/Label Count

# of ED visits 32356
# of patients 25714
# of triage variables 9
# of laboratory variables 67
# of laboratory groups 12
Avg. # of laboratory groups per patient 4.7

# of Inpatient mortality 467 (1.44%)
# of ICU transfer in 12h 2894 (8.94%)
# of Critical outcome 3129 (9.67%)

# of ED LOS > 24h 2232 (6.90%)

sequently, MIMIC-ED-Assist contains numerous missing

values, each representing a laboratory test not administered

to a specific patient.

ED LOS. Our benchmark records when each group is

ordered, and assigns its average completion time as its

’time-cost’. ED LOS depends on the time-costs of the ad-

ministered groups and can be modeled in different ways.

For example, sequential tests result in ED LOS being the

sum of time-costs, whereas parallel tests imply ED LOS

is equal to the group with the largest time-cost. MIMIC-

ED-Assist does not specify how to approximate ED LOS

from these time-costs, and instead provides this flexibility

to researchers and practitioners.

Data Availability. Our pipeline to create MIMIC-ED-

Assist from the MIMIC-IV dataset can be found at https:

//github.com/cxcscmu/ED-Copilot. After com-

pleting a training course and signing a data use agreement

regarding patient information privacy, individuals will gain

access to MIMIC-IV and can utilize our pipeline to create

MIMIC-ED-Assist.

Limitations. Since MIMIC-ED-Assist is derived from pub-

lic patient data, it suffers from some downsides due to a lack

of data availability. (1) MIMIC-ED-Assist is derived from

MIMIC-IV which only has laboratory results for hospital-

ized ED patients. Thus, our dataset is not reflective of the

entire population that visits the ED, but instead is biased

towards those with more severe issues (hospitalized). (2) As

an offline benchmark derived from past patient records, all

data is retrospective. As a result when developing diagnostic

assistant, one can only use laboratory tests patients actually

received, otherwise no testing results are available. This

leads to common challenges of offline benchmarks and may
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corresponds to a patient’s observed triage information, and

laboratory group results. Specifically, for a patient with

observed information [x0, r0, x1, r1, x2, r2, ...., xn, rn], let

s≤i = [x0, r0, x1, r1, x2, r2, ...., xi, ri] for 0 ≤ i ≤ n.

Action Space. Denote the action space as A =
{x1, x2, ...., xK}∪{y

+, y−}. Action a ∈ {x1, x2, ...., xK}
corresponding to ordering a group of laboratory tests with

associated time-cost c(a). Action a ∈ {y+, y−} refers to

predicting an outcome and terminating the MDP.

Policy. The policy πη : S → A maps from states to actions,

and is parameterized by η. Specifically, πη(a|h<i) outputs

probability of an action a using the hidden representation

h<i corresponding to [EOS] token for state si.

RL Training. We train the policy πη to follow two ob-

jectives: maximize F1-score and minimize time-cost. We

measure the time-cost of policy πη , as follows:

Cost(πη) = Eπη
[
∑

t≥0

∑

j∈[K]

c(j) · 1{at = xj}], (7)

where Eπη
is the expectation under policy πη. Using (7),

let π∗
η(α, β) represent the policy that maximizes F1-score

while minimizing time-cost for hyper-parameters α, β to

be defined. Then, π∗
α,β is equivalent to the solution of the

following program:

π∗
η(α, β) = argmaxπη

{TN(πη) + αTP(πη)

+ βCost(πη)}.
(8)

TN(πη) and TP(πη) are the numbers of true negatives and

true positives under policy πη . Hyper-parameters α, β con-

trol the trade-off between F1-score and time-cost. We train

the MLP via proximal policy optimization (Schulman et al.,

2017).

Measuring Time-cost. We measure time-cost via the total

time taken to run all laboratory groups. In the ED, laboratory

groups are often ordered both in parallel, and sequentially

since the decision on new tests to order depends on previous

tests. Additionally, the number of tests an ED clinician or-

ders depends on other factors outside of the patient’s health

record, such as insurance policy. As the first step towards

reducing ED LOS with AI, we use the sum of laboratory

group time-costs as the total cost, which serves as an ap-

proximation to the effect of testing on ED LOS. Better ways

to model ED LOS are future research for both the AI and

healthcare communities.

4.4. Inference

During inference, ED-Copilot assists clinicians to optimize

their workflow by suggesting the next most informative lab-

oratory group, and also by flagging patients at high risks of

critical outcome and lengthened ED stay. Specifically, given

triage information and previous test results, ED-Copilot rec-

ommends additional tests. The results of these tests are

fed back to ED-Copilot to suggest additional laboratory

groups or to flag one of two possible outcomes. Further,

ED-Copilot can be used in more others ways depending on

clinical needs. For example, multiple tests can be ordered

using multiple suggestions from ED-Copilot.

5. Experimental Set-up

Dataset Split. We randomly split the dataset using 80%
for training, 10% for validation, and 10% for testing, while

ensuring each split has the same class distribution. The

validation set is used to tune hyper-parameters. During

inference, the initial state of a patient is set to their triage

information.

Evaluation Metrics. We use four evaluation metrics:

F1-score, area under the receiver operating characteristic

(AUC), sensitivity (true positive rate), and specificity (true

negative rate) which are all standard in healthcare tasks

prediction tasks (Harutyunyan et al., 2019; Xie et al., 2022).

Baselines. For prediction tasks only, ED-Copilot is com-

pared to three tree-based methods: random forests (Breiman,

2001), XGBoost (Chen & Guestrin, 2016) and LightGBM

(Ke et al., 2017), all of which are known to achieve strong

performance on tabular data. We also compare ED-Copilot

to a 3-layer dense deep neural network (DNN).

Since each patient is not observed under all laboratory

groups, there are many missing values in MIMIC-ED-Assist.

Since baselines cannot naturally handle missing values, we

consider a variety of imputation methods: (1) mean imputa-

tion, (2) median imputation, and (3) zero-imputation (i.e.,

replacing missing values by 0), (4) using a dummy indicator

to encode missing values. Results for the best imputation

method are presented in the main manuscript. The rest are

in Appendix C.

We compare ED-Copilot to another cost-effective base-

line, SM-DDPO (Yu et al., 2023), which selects laboratory

groups to minimize time-cost while maximizing F1-score.

SM-DDPO is a non-personalized method, i.e., it selects the

same laboratory groups for all patients.

Time-cost. As discussed, each group of tests is assigned

a time-cost by observing time-stamps in the MIMIC-IV

database. For all methods, we measure the amount of time

taken by averaging the time required for an algorithm to

make a prediction across patients.

Implementation Details. BioGPT (Luo et al., 2022) is

used as our backbone language model, which is a genera-

tive pre-trained transformer (347 million parameters) for

biomedical text generation and representation. In the RL

phase of training ED-Copilot, for a given patient, our ac-
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Table 6. Sub-group Analysis for Critical Outcome and Lengthened ED Stay.

Model
Critical Outcome Lengthened ED Stay

F1 AUC Sensitivity Specificity Avg. Time-cost F1 AUC Sensitivity Specificity Avg. Time-cost

Group: Male, Positive/Negative (Ratio): 155/1329 (10.44%) on critical outcome, 104/1380 (7.01%) on lengthened ED stay

Random Forest 0.387 0.793 0.785 0.692 265 0.207 0.723 0.644 0.704 265
XGBoost 0.379 0.804 0.726 0.732 265 0.258 0.722 0.692 0.659 265
LightGBM 0.391 0.807 0.762 0.742 265 0.223 0.724 0.769 0.597 265
ED-Copilot 0.377 0.780 0.671 0.775 121 0.242 0.670 0.574 0.702 151

Group: Female, Positive/Negative (Ratio): 143/1608 (8.17%) on critical outcome, 127/1624 (7.25%) on lengthened ED stay

Random Forest 0.385 0.819 0.730 0.794 265 0.193 0.677 0.646 0.616 265
XGBoost 0.368 0.826 0.766 0.740 265 0.171 0.645 0.661 0.576 265
LightGBM 0.394 0.813 0.766 0.730 265 0.198 0.683 0.669 0.636 265
ED-Copilot 0.413 0.823 0.727 0.819 129 0.215 0.694 0.713 0.621 160

Group: Age 18-30, Positive/Negative (Ratio): 22/341 (6.06%) on critical outcome, 23/340 (6.34%) on lengthened ED stay

Random Forest 0.277 0.871 0.889 0.838 265 0.197 0.742 0.739 0.738 265
XGBoost 0.413 0.908 0.833 0.884 265 0.306 0.764 0.652 0.824 265
LightGBM 0.390 0.895 0.889 0.913 265 0.259 0.767 0.783 0.629 265
ED-Copilot 0.208 0.849 0.864 0.708 106 0.304 0.823 0.956 0.705 159

Group: Age 31-60, Positive/Negative (Ratio): 97/1169 (7.66%) on critical outcome, 92/1174 (7.27%) on lengthened ED stay

Random Forest 0.367 0.824 0.739 0.794 265 0.196 0.675 0.620 0.670 265
XGBoost 0.367 0.835 0.750 0.775 265 0.228 0.685 0.674 0.658 265
LightGBM 0.400 0.835 0.802 0.756 265 0.213 0.692 0.739 0.611 265
ED-Copilot 0.409 0.800 0.711 0.823 124 0.209 0.697 0.612 0.664 153

Group: Age 61-90, Positive/Negative (Ratio): 189/1261 (13.03%) on critical outcome, 108/1342 (7.45%) on lengthened ED stay

Random Forest 0.411 0.780 0.710 0.753 265 0.208 0.707 0.685 0.621 265
XGBoost 0.383 0.785 0.659 0.789 265 0.188 0.655 0.704 0.552 265
LightGBM 0.405 0.779 0.688 0.757 265 0.192 0.698 0.667 0.622 265
ED-Copilot 0.400 0.749 0.667 0.694 129 0.222 0.695 0.731 0.671 156

stricted) matches the performance of ED-Copilot. Restric-

tion to observed laboratory groups is necessary for offline

evaluation. In real-world settings, ED-Copilot should serve

as a “Co-Pilot” and suggest laboratory groups from the

entire set without restriction, and assist ED clinicians in

optimizing their workflows.

We also evaluate ED-Copilot on new patients only using

triage data, and without any laboratory results which are

the information available on patient arrival. We use ED-

Copilot only with supervised fine-tuning (SFT), and without

RL. Results are displayed in Table 5. Without laboratory

results, all models suffer, but ED-Copilot (SFT) outperforms

baselines, showing its utility at an early treatment stage.

7. Conclusion

In this paper, we aim at reducing emergency department

wait time through time-cost-effective diagnostic assistance.

In collaboration with ED clinicians, we curate MIMIC-ED-

Assist, a benchmark that contains comprehensive laboratory

information annotated with medically relevant groupings

alongside key clinical outcomes that serve as useful ap-

proximations to ED wait-time. Using MIMIC-ED-Assist,

we propose ED-Copilot, an AI system that provides time-

cost-effective diagnostic assistance for ED clinicians, rec-

ommending informative laboratory groups and flagging pa-

tients at high risks of critical outcome and lengthened ED

stay. ED-Copilot outperforms baselines by significantly

improved prediction accuracy and reduced laboratory time-

costs. Its language model backbone allows for personalized

diagnostic assistance to better address the needs of severe pa-

tients. We believe this work takes a step towards AI-driven

assistance in the ED and hope that MIMIC-ED-Assist spurs

interest in applying advancements in AI to tackle this critical

healthcare challenge.
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Impact Statement

The development of ED-Copilot marks an advancement in

medical technology, offering an AI-driven diagnostic tool

to improve patient care in ED. By expediting diagnoses,

ED-Copilot has the potential to increase efficiency of ED

operations and enhance patient care.

From an ethical perspective, the deployment of ED-Copilot

carries a significant responsibility on the privacy and se-

curity of patient data. As the system will handle sensitive

health information, strict measures, for example, internal-

accessible only systems and compliant data protection pro-

cedures, must be in place to protect against breaches and

misuse, ensuring patient confidentiality.

In the broader societal context, the implementation of ED-

Copilot aims to address the issue of ED congestion. It is

vital to ensure that the benefits of such technology are acces-

sible to all segments of society, regardless of socioeconomic

status. Equity in healthcare technology means that all pa-

tients, irrespective of their background, should have the

opportunity to benefit from advancements like ED-Copilot.

Moreover, the development of ED-Copilot should support

healthcare professionals, not replace them, and should be

viewed as a tool to assist medical staff, allowing them to

focus on the more nuanced aspects of patient care.
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A. Triage and Laboratory Test Group

In Table 7, we include triage assessments and 12 laboratory groups with 68 tests and their estimated time-costs.

Table 7. Triage and Lab Test Group

Triage

Age Diastolic blood pressure

Gender Self-reported pain

Heart rate Emergency severity index acuity

Respiratory rate Chief complaint

Systolic blood pressure Oxygen saturation

Temperature Past commodities

Past ICU/ED/hospital visiting frequency

Complete Blood Count (CBC) (30 min)

Hematocrit Neutrophils

White Blood Cells Red Cell Distribution Width (Standard Deviation)

Hemoglobin Absolute Lymphocyte Count

Red Blood Cells Absolute Basophil Count

Mean Corpuscular Volume Absolute Eosinophil Count

Mean Corpuscular Hemoglobin Absolute Monocyte Count

Mean Corpuscular Hemoglobin Concentration Absolute Neutrophil Count

Red Blood Cell Distribution Width Bands

Platelet Count Atypical Lymphocytes

Basophils Nucleated Red Cells

Eosinophils Monocytes

Lymphocytes

Chemistry (CHEM) (60 min)

Urea Nitrogen Glucose (Chemistry)

Creatinine Potassium

Sodium Anion Gap

Chloride Calcium, Total

Bicarbonate

Coagulation (COAG)(48 min)
Prothrombin Time Partial thromboplastin time

International Normalised Ratio

Urinalysis (UA) (40 min)

PH (Urine) Protein

Specific Gravity Hyaline Casts

Red Blood Count (Urine) Ketone

White Blood Count (Urine) Urobilinogen

Epithelial Cells Glucose (Urine)

Lactate (4 min) Lactate

Liver Function (LFTs)(104 min)

Alkaline Phosphatase Bilirubin, Total

Asparate Aminotransferase (AST) Albumin

Alanine Aminotransferase (ALT)

Lipase (100 min) Lipase

Electrolyte (LYTES)(89 min) Magnesium Phosphate

Cardiovascular (CARDIO) (122 min) NT-proBNP Troponin T

Blood Gas (12 min)

Potassium, Whole Blood PO2

PH (Blood Gas) PCO2

Calculated Total CO2 Glucose (Blood Gas)

Base Excess Sodium, Whole Blood

Toxicology (TOX) (70 min) Ethanol

Inflammation (INFLAM) (178 min) Creatine Kinase (CK) C-Reactive Protein

B. Training Details

We use a 3-layer neural network for all MLPs in ED-Copilot. Due to large class imbalance, we use class weights when

training the diagnostic predictor pψ . All experiments, training and hyper-parameter tuning are conducted on one NVIDIA

RTX A6000 GPU. During the RL phase of training ED-Copilot, we restrict the action space to be on laboratory groups

that were administered to patients. That is, we do not select laboratory groups that patients have not received. To ensure

sufficient policy sampling on experience replay buffer and obtain a large batch size, we freeze the weights of our PLM. To

train the policy πη , we use the PPO algorithm (Schulman et al., 2017). The loss function employed is as the following for
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Algorithm 1 Proximal Policy Optimization (PPO)

for iteration = 0, 1, . . . do

for actor = 1, 2, . . . , Nactor do

Run policy πηold
in environment for T timesteps and save all observations in experience buffer

Compute estimated advantage Â1, . . . , Âi
end for

Optimize surrogate Lrl w.r.t η, with D epochs and minibatch size M ≤ NactorT

ηold ← η

end for

Table 8. Hyperparameters Configurations for ED-Copilot

Hyperparameter Supervised Fine-tuning Reinforcement Learning

Learning Rate 1e-5

DNN Hidden size (3-layer) 1024

Optimizer AdamW

Adam ϵ 1e-8

Adam Betas (β1, β2) (0.9, 0.999)

Weight decay 0.01

Batch Size 32 128

Epochs 15 10

Max sequence length 656 656

Class Weight 10 -

Warmup percentage 0.1 -

Buffer Steps - 2048

Timesteps PPO trained per epoch - 20000

The penalty ratio between false positive and false negative α - 15

The penalty ratio between false positive and laboratory cost β - 1
100

hyper-parameters c1 and c2:

Lrl(η; η
old) = Lclip(η; η

old)− c1Lvalue(η) + c2Entropy[πη],

Lclip(η; η
old) = Êi

[

min

(

πη(ai|h<i)

πηold(ai|h<i)
Âi, clip

(

πη(ai|h<i)

πηold(ai|h<i)
, 1− ϵ, 1 + ϵ

)

Âi

)]

,

Lvalue(η) = Êi

[

(Vη(h<i)− Vi)
2
]

.

Here h<i is the hidden representation from PLM of [EOS]<i in this patient’s linearized sequence in state si. Lclip is

clipped surrogate loss and Âi is estimated advantages which are regularized by value function Lvalue. Entropy[πη] denotes

an entropy term over the states, and Êi is the empirical average over the collected dataset. We used a masked actor-critic

network with package stable-baseline3 (Raffin et al., 2021). See algorithm 1 for a high-level description of this method.

We list the hyper-parameters in Table 8, including the supervised fine-tuning and reinforcement learning stage. In the

RL stage, we use grid-search to tune α and β to balance the trade-off between accuracy and cost. The search scope for

α ∈ { 18 ,
1
4 ,

1
2 , 1, 2, 4, 8, 15, 16, 32, 64, 256} and β ∈ { 1

100 ,
1
50 ,

1
20 ,

1
10 , 1, 10, 100, 1000}. The parameters in PPO that are not

specified are assigned the default values found in the Python package (Schulman et al., 2017).
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C. More Baseline Results

In Table 9, we present tree models’ results with different imputation methods: (1) Mean imputation. (i.e. replacing missing

values with the mean value of the non-missing data for the particular feature). (2) Median imputation. (i.e. replacing missing

values with the median value of the non-missing data for the particular feature) (3) Zero imputation. (i.e. replacing missing

values by 0). (4) A dummy indicator to encode missing values, which is used in XGBoost and LightGBM.

Table 9. Results with Different Imputation Methods

Model Method
Critical Outcome Lengthened ED Stay

F1 AUC Sensitivity Specificity F1 AUC Sensitivity Specificity

Random Forest

Mean 0.377 0.807 0.754 0.748 0.198 0.701 0.736 0.578

Median 0.355 0.807 0.793 0.709 0.206 0.698 0.693 0.616

Zero 0.367 0.808 0.738 0.748 0.194 0.702 0.628 0.674

XGBoost

Mean 0.328 0.768 0.715 0.697 0.212 0.678 0.593 0.683

Median 0.358 0.783 0.731 0.708 0.197 0.674 0.658 0.601

Zero 0.374 0.818 0.735 0.754 0.212 0.680 0.619 0.662

Dummy 0.379 0.807 0.731 0.744 0.190 0.656 0.680 0.557

LightGBM

Mean 0.390 0.812 0.764 0.732 0.217 0.705 0.707 0.606

Median 0.394 0.813 0.725 0.769 0.190 0.681 0.688 0.599

Zero 0.393 0.814 0.735 0.774 0.209 0.702 0.697 0.623

Dummy 0.379 0.807 0.731 0.744 0.192 0.671 0.654 0.629
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