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Abstract

Transfer learning is a critical part of real-world machine learning deployments and has been extensively

studied in experimental works with overparameterized neural networks. However, even in the simplest

setting of linear regression a notable gap still exists in the theoretical understanding of transfer learning. In-

distribution research on high-dimensional linear regression has led to the identification of a phenomenon

known as benign overfitting, in which linear interpolators overfit to noisy training labels and yet still

generalize well. This behavior occurs under specific conditions on the source covariance matrix and

input data dimension. Therefore, it is natural to wonder how such high-dimensional linear models behave

under transfer learning. We prove the first non-asymptotic excess risk bounds for benignly-overfit linear

interpolators in the transfer learning setting. From our analysis, we propose a taxonomy of beneficial

and malignant covariate shifts based on the degree of overparameterization. We follow our analysis with

empirical studies that show these beneficial and malignant covariate shifts for linear interpolators on real

image data, and for fully-connected neural networks in settings where the input data dimension is larger

than the training sample size.

1 Introduction

Practical deployments of machine learning models are almost always in a transfer learning setting, where

models trained on a source data distribution with noisy labels are expected to perform well on a different

target data distribution, referred to as the “out-of-distribution” (OOD) dataset [Ogl+22; DAm+22]. There

have been many experimental works on transfer learning with complex models and datasets [Rec+19; Koh+21;

Mil+21; Hen+21; Wen+22; Lia+23], but remarkably fewer attempts to study it theoretically, even in the

simplest case of linear models which have been of great interest in recent years [Dwi+20; Bar+20; Has+22;

TB23].

There has been an extensive “in-distribution” (ID) theoretical interest in high-dimensional linear regression

*Equal contribution.
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and specifically interpolation, meaning a model reaches zero training loss. Frameworks such as “benign

overfitting”, or “harmless interpolation” [Bar+20; Mut+20] emerged as an attempt to explain why interpolating

neural networks often do not overfit catastrophically [Zha+17]. They found that, in specific cases, overfitting

can be “benign”, meaning that a model interpolates noisy training labels and yet has vanishing excess risk.

In linear regression, this occurs if and only if the training (source) covariance matrix satisfies very specific

conditions. Under these conditions, the minimum-norm interpolator (MNI) approximately acts like a ridge

regression solution.

This sparked an initial wave of in-distribution theoretical research into benign overfitting in high-dimensional

linear models [CLB22; TB23; CL23], kernel regression [RZ19; Haa+23; BS23], and even some shallow

neural networks [FCB22; Kou+23; KYS23; Xu+24]. Although these works were motivated by a desire to

understand overfitting in modern deep learning, recent works have shown that in many practical settings

of interest, overfitting is not benign [Mal+22; Haa+23; Lai+23]. Thus, deeper investigations into the

generalization behavior of overfit models are warranted.

Given the increasing prevalence of overparameterized models, it is natural to ask how such models perform

in the transfer learning setting. There have been some efforts to answer this in the theoretically tractable

cases of linear regression and random feature and kernel regression [PMW22; Wan23]. However, these works

either provide asymptotic bounds that require the training sample size and data dimension to go to infinity at

the same rate [TAP21], study minimax settings which only considers worst-case risk [LHL21], or focus on

augmented gradient-based training algorithms, like importance weighting [Wan+22].

Summary of contributions. In this paper, we investigate the generalization behavior of the minimum ℓ2-

norm linear interpolator (MNI) under distribution shifts when the source distribution satisfies the conditions

necessary for benign overfitting. We summarize our main contributions as follows.

• We provide the first non-asymptotic, instance-wise risk bounds for covariate shifts in interpolating linear

regression when the source covariance matrix satisfies benign overfitting conditions and commutes

with the target covariance matrix.

• We use our risk bounds to propose a taxonomy of covariate shifts for the MNI. We show how the ratio

of target eigenvalues to source eigenvalues and the degree of overparameterization affect whether a

shift is beneficial or malignant, meaning OOD risk is better or worse than ID risk, respectively.

• We empirically show that our taxonomy of shifts holds: (1) for the MNI on real image data under

natural shifts like blur (a beneficial shift) and noise (a malignant shift), underscoring the significance

of our findings beyond the idealized source and target covariances for which our theory is applicable;

(2) for neural networks in settings where the input data dimension is larger than the training sample

size, showing that our findings for the MNI are also reflective of the behavior of more complex models.

1.1 Prior work and comparisons to this work

Excess risk analysis under distribution shifts: Tripuraneni, Adlam, and Pennington [TAP21] give an

asymptotic analysis of high-dimensional random feature regression in covariate shift. They require the

number of samples, n, data dimension, p, and random feature dimension to go to ∞ at the same rate. In

contrast, our non-asymptotic analysis considers finite sample cases and differing rates. This allows us to

draw new conclusions about how the degree of overparameterization changes the way in which interpolating

linear models exhibit out-of-distribution (OOD) generalization. Additionally, our bounds let us analyze any
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sequence of eigenvalues for the target feature covariance matrix, which is not possible within their framework.

Lei, Hu, and Lee [LHL21] study linear regression under distribution shifts in the minimax setting. Their

minimax bounds consider the worst-case risk over an ℓ2-ball of target models, whereas we compute risk

bounds specific to any model instantiation, with no restriction on the target model class. Furthermore, their

experimental results only consider the underparameterized regime.

Several other works study OOD generalization in more distant settings. Wang et al. [Wan+22] study linear

interpolators for classification, when trained with gradient descent and importance weighting, whereas we

consider the closed-form MNI for linear regression. Simchowitz et al. [Sim+23] study covariate shifts when

the target function class is the sum of two other function classes, and shifts are defined with regard to metric

entropy between classes, whereas we focus on well-specified linear models. Pathak, Ma, and Wainwright

[PMW22], Ma, Pathak, and Wainwright [MPW23], and Feng et al. [Fen+23] consider covariate shift in

kernel regression based on likelihood (“importance”) ratios between source and target distributions while we

consider source and target eigenvalue ratios which offer granular insights into feature scale changes whereas

likelihood ratios capture shifts that affect the global data distribution. Pathak, Ma, and Wainwright [PMW22]

and Ma, Pathak, and Wainwright [MPW23] also analyze worst-case, minimax risk for nonparametric function

classes. Finally, we note that risk bounds in these prior works do not sufficiently account for the behavior of

the high-rank covariance tail that benign overfitting requires.

Experimental work on distribution shifts: Hendrycks and Dietterich [HD19] propose the CIFAR-10C

dataset as an OOD counterpart to CIFAR-10, featuring test set images corrupted by visual filters like blurs

and noises. Koh et al. [Koh+21] present benchmarks on more realistic datasets with modern models that can

be seen “in-the-wild”. Miller et al. [Mil+21] experimentally show a linear relationship between ID accuracy

and OOD accuracy for a wide range of modern neural networks and datasets, though their results show ID

accuracy is almost always better than OOD accuracy. On a subset of CIFAR-10C, we find settings in which

OOD accuracy is better than ID accuracy for linear interpolators.

Benign overfitting “in-distribution”: Bartlett et al. [Bar+20] propose benign overfitting, give a non-

asymptotic analysis of the MNI, and show specific, necessary conditions under which the MNI achieves zero

excess risk in-distribution. Tsigler and Bartlet [TB23] extend this work by considering benign overfitting in

the case of ridge regression. Our proof techniques follow most closely to the ideas presented in these two

papers for the in-distribution setting. Frei, Chatterji, and Bartlett [FCB22] show benign overfitting in shallow

non-linear MLPs trained with gradient descent on the logistic loss if the data dimension grows faster than the

number of training samples. Mallinar et al. [Mal+22] experimentally show that interpolating neural networks

do not benignly overfit due to the low input data dimension. Our experiments build on this by looking at

settings in which p > n and n < p where n is the training sample size and p is the input data dimension.

Other works study benign overfitting under a variety of conditions [Kou+23; CL23; Fre+23].

2 Preliminaries

We extend notations in Bartlett et al. [Bar+20] and Tsigler and Bartlet [TB23] to the transfer learning setting

with OOD generalization risk as our performance metric. Appendix A formalizes our setting of linear

regression under distribution shift, and we provide necessary details here.
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2.1 Covariate assumptions

Consider source and target distributions, Ds and Dt, both over (x, y) ∈ R
p × R. The source design matrix,

X ∈ R
n×p, has rows x

iid∼ Ds such that EDs
[x] = 0. We consider the overparameterized regime with n < p

(see e.g. Bartlett et al. [Bar+20]).

Denote the source and target population covariance matrices by Σs and Σt ∈ R
p×p. We assume that there

exists an orthonormal basis in which both matrices are diagonal, but show in Section 4 with experiments that

our results hold even when this is violated. Formally,

Σs = E
Ds

[xxT ] = diag(λ1, ..., λp),

Σt = E
Dt

[xxT ] = diag(λ̃1, ..., λ̃p),

where λ1 ≥ ... ≥ λp > 0, λ̃i ≥ 0 for all i, and
∑

i λiλ̃i < ∞.

Assume further that the rows of the whitened data matrix Z := XΣ
−1/2
s are mean-zero i.i.d. σ2

x-subgaussian

random vectors with independent components. Subgaussianity is a common assumption in statistical learning

theory that encompasses a wide array of distributions of interest [Ver18].

2.2 Linear regression models for source and target data

Denote the source response vector by ys ∈ R
n. Assume a linear regression model ys = Xθ∗

s
+ εs, where

the noise vector εs has independent components with mean 0 and variance v2
εs

. For an observation pair

(x, y) ∼ Dt, the target responses are defined as y = xT θ∗
t
+ εt, where θ∗

t
∈ R

p and the noise vector εt has

mean 0 and variance v2εt . Note that we use the same (x, y) for source and target data, but will differentiate

between the two by explicitly denoting the distribution from which the pair is drawn.

2.3 Minimum-norm interpolator and target excess risk

Given a source data matrix X , the minimum-norm interpolator (MNI) for any vector ξ ∈ R
n is defined as

θ̂(ξ) := argmin
{
∥θ∥2 : Xθ = ξ

}

= XT (XXT )−1ξ.

If we consider ξ = ys, then we recover the MNI for the labels given by the response model, but our analysis

will also involve implicit MNIs for different label vectors in R
n.

The quantity that we seek to bound is the excess risk on the target distribution, which we define for an

estimator θ ∈ R
p as,

R(θ,Dt) := E
(x,y)∼Dt

[(
y − xT θ

)2 −
(
y − xT θ∗

t

)2]
. (1)

We now derive bounds for the target excess risk and its expectation over the source response noise. The proof

of the following can be found in Appendix C.

Theorem 2.1. (Target excess risk decomposition) The excess risk of the MNI trained on the source data,

when evaluated on the target distribution, satisfies

R(θ̂(ys),Dt) ≤4B1 + 4B2 + 2Vεs
, (2)
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and

E
εs

R(θ̂(ys),Dt) = B1 +B2 + E
εs

Vεs
+ 2(θ∗

t
− θ∗

s
)⊤Σt(θ

∗
s
− θ̂(Xθ∗

s
)),

where we define

B1 := ∥θ∗
s
− θ∗

t
∥2Σt

, (3)

B2 := ∥θ∗
s
− θ̂(Xθ∗

s
)∥2Σt

, (4)

Vεs
:= ∥θ̂(εs)∥2Σt

, (5)

and ∥x∥2M := x⊤Mx.

We observe that B1 is a deterministic model shift term and that no further analysis can improve its dependency

on θ∗
s
, θ∗

t
, or Σt. The cross-term, (θ∗

t
− θ∗

s
)⊤Σt(θ

∗
s
− θ̂(Xθ∗

s
)), is dominated by the bias and variance as

evidenced by the upper bound. Therefore we focus our analysis on B2 and Vεs
. A useful normalized version

of Vεs
is defined by

V = E
εs

[
Vεs

/v2
εs

]
. (6)

Note that B2, V are reminiscent of the ID bias and variance in prior work [Bar+20; TB23].

2.4 Separation of components and effective ranks

For an index k, we define the following quantities related to the effective rank of the tail of Σs [TB23]:

ρk =

∑
i>k λi

nλk+1
, Rk =

(
∑

i>k λi)
2

∑
i>k λ

2
i

.

ρk measures the ratio of the energy of the source covariance tail to the number of training data observations,

after normalizing the tail eigenvalues. Rk measures the quantity of noisy features and how evenly distributed

their eigenvalues are. It is minimized when there is only one nonzero eigenvalue and maximized when there

are many equal eigenvalues.

Benign overfitting occurs if the MNI is overfit to noisy training labels and yet ID excess risk decays to

zero. The central finding of Bartlett et al. [Bar+20] is that the only way benign overfitting happens for

the MNI is if the following occurs: (1) there exists a k∗ = min{k : ρk ≥ b} for a universal constant

b > 1, meaning that the last p− k∗ components of Σs have a high effective rank relative to the number of

training samples, n; (2) the magnitudes of the bottom p − k∗ eigenvalues are small relative to the top k∗;

and (3) k∗ ≪ n. More formally, consider quantities p = p(n), a sequence of source covariance matrices

Σn = diag(λ1, · · · , λp), k
∗ = k∗(n) as defined above, Rk∗ = Rk∗(Σn), and ρk = ρk(Σn). A sufficient

condition for benign overfitting is,

lim
n→∞

ρ0 = lim
n→∞

k∗

n
= lim

n→∞
n

Rk∗
= 0. (7)

If this occurs, then the MNI behaves similarly to an estimator with two components. One component has

variance similar to the ordinary least squares (OLS) estimator in k∗ dimensions and bias similar to the ridge
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regression solution with ridge parameter proportional to
∑

i>k λi, a sort of data-induced regularization. The

other component is a high-dimensional component, which has vanishing variance when the data is sufficiently

high-dimensional and a bias which is proportional to
∑

i>k λi(θ
∗
s
)2i [TB23]. From these conditions, we see

that the top k∗ components are like “signal” components of the data and the bottom p− k∗ components are

“noise” components.

2.5 Spiked covariance models

We will consider a special case of the (k, ϵ)-spike model, a canonical covariance structure that exhibits benign

overfitting for the MNI [CLB22; CL23], to experimentally show properties of interest.

Definition 1 ((k, δ, ϵ)-spike model). For a source distribution Ds, δ > 0 and ϵ > 0 such that δ ≫ ϵ, let

E
x∼Ds

[xxT ] = diag(λ1, · · · , λk︸ ︷︷ ︸
=δ

, λk+1, · · · , λp︸ ︷︷ ︸
=ϵ

).

In this simplified setting, there are k high-energy “signal” directions and p−k low-energy “noise” directions.

For a target distribution Dt, we use different hyperparameters k̃, δ̃, ϵ̃ to similarly characterize a shifted

covariance matrix.

3 Main Theorems

This section provides upper and lower bounds for the variance and bias terms in Equation 6 and Equation

4, respectively. We start with the bounds for the variance term. Appendix D gives a high-level overview of

our proof techniques. Subsequent appendices provide complete proofs. Appendix E contains a proof of the

following theorem.

Theorem 3.1. (Upper and lower bounds for the variance term) There exist universal constants b, c1 > 1
given in Lemma B.1, a universal constant c2 given in Lemma B.4 and a constant c > 1 that only depends on

σx, c1, c2, such that for k ∈ (0, n/c), with probability at least 1− 10e−n/c,

V ≥ 1

cn

p∑

i=1

λ̃i

λi
min

(
1,

λ2
i

λ2
k+1(ρk + 1)2

)
:= V . (8)

If in addition ρk ≥ b, with probability 1− 7e−n/c,

V/c ≤ 1

n

k∑

i=1

λ̃i

λi
+ n

∑
i>k λ̃iλi

(
∑

i>k λi)2
:= V . (9)

We first note that the variance lower bound does not depend on ρk ≥ b and so it holds for any interpolating

linear model, even when benign source conditions are not satisfied. However, we will see that if ρk ≥ b for

some k, then the upper and lower bounds are tight. In the case where Σt = Σs, these bounds reduce to their

in-distribution counterparts [Bar+20]. Our variance bounds show that the excess risk contribution of each

feature is scaled by the ratio of the target and source eigenvalues, λ̃i/λi. We immediately see that scaling

down the target eigenvalues will lessen the overall contribution to variance and that scaling up the target

eigenvalues will increase the contribution. We investigate these scaling factors and the separation of the first

k components and last p− k components in Section 3.1.
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We now state upper and lower bounds for the bias term, B2, given in Equation 4. The proof of the following

theorem can be found in Appendix F.

Theorem 3.2. (Upper and lower bounds for the bias term) For the lower bound only, assume that random

models θ are obtained from the underlying θ∗
s

as (θ)i = γi(θ
∗
s
)i, where each γi is an independent Rademacher

random variable. There exists a universal constant b > 1, constants c, C that depend only on b and σx, and

k < n/C such that if ρk ≥ b, then with probability at least 1− 10e−n/c,

E
θ̄
[B2] ≥

1

c

(
k∑

i=1

λ̃i

λi

λi(θ
∗
s
)2i

(1 + λi

λk+1ρk
)2

+
∑

i>k

λ̃i(θ
∗
s
)2i

)
:= B2.

If we assume that p is at most exponential in n, then with probability 1− 5e−n/c,

B2/c ≤ ∥θ∗
s
∥2

p∑

i=1

λ̃i

λi

λi(
1 + λi

λk+1ρk

) := B2.

Note that while the lower bound is in expectation over the random models θ̄, the resulting expression only

depends on the ground-truth θ∗
s
. This Bayesian approach also appears in prior work, i.e. Tsigler and Bartlet

[TB23]. In studying the bias lower bound, we observe a similar separation of signal and noise components

and depence on eigenvalue ratios as in the variance bounds.

To show tightness of our bounds, we assume there exists a k such that ρk ≥ b for some universal constant

b > 1. When this condition is satisfied, the variance bounds are tight up to constant factors. The bias bounds

leave a model-dependent and source covariance-dependent gap, which we discuss in the proof overview in

Appendix D and in the complete proof found in Appendix G.

Theorem 3.3. (Tightness of variance and bias bounds) Let the lower bound and upper bound of V be given

by V and V , respectively. There exists a universal constant b ≥ 1, and constant c as defined in Theorem 3.1,

and k ∈ (0, n/c) such that if ρk ≥ b, then

V /V ∈
[
b−2(1 + b)−2/c2, 1

]
.

Let the lower bound and upper bound of B2 be given by B2 and B2, respectively, and the assumptions of

Theorem 3.2 be satisfied. Then

B2/B2 ∈


mini

{
(θ∗

s
)2i : (θ∗

s
)i ̸= 0

}

∥θ∗
s
∥2
(
1 + b−1 λ1

λk+1

) , 1


 .

Note that the gap between our bias upper and lower bounds is independent of the target distribution.

3.1 A Taxonomy of Shifts

We now present a taxonomy of covariate shifts on the target distribution inspired by our prior analysis. We

first consider OOD generalization and formally categorize shifts as beneficial or malignant.
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Definition 2 (Beneficial and Malignant shifts). For a source distribution, Ds, a target distribution, Dt, excess

risk, R, and MNI, θ̂, we say that a shift is

1. beneficial if R(θ̂,Ds) > R(θ̂,Dt),

2. malignant if R(θ̂,Ds) < R(θ̂,Dt).

We define these shifts for excess risk and note in Appendix J.1 that, empirically, the variance is the primary

contributor to excess risk and the bias contributions are negligible when Σs satisfies benign overfitting

conditions. This is in keeping with prior literature that focuses on studying variance in interpolating methods

[Bar+20]. We will thus focus on variance in the following discussion.

Prior work shows that if n, p → ∞ at the same rate, tr(Σs) < tr(Σt) results in malignant shifts on excess

risk and tr(Σs) > tr(Σt) results in beneficial shifts on excess risk [TAP21]. In this section we generalize

these conditions by considering differing rates of n, p → ∞ and measuring overparameterization by the

modified “effective rank” measure Rk/n rather than p. This leads us to a novel characterization of the role of

overparameterization in covariate shifts. For completeness, we describe their trace conditions in terms of our

shifts in Appendix H.1.

We first consider separate multiplicative shifts on the signal components and noise components. Let Σs be a

covariance matrix that satisfes benign source conditions. Define Σt by, λ̃i = αλi for i ≤ k, and λ̃i = βλi

for i > k with α, β ≥ 0. While these are simple multiplicative shifts, they are instructive with regard to

understanding the dynamics of overparameterization and covariate shift. In Appendix H.3 we generalize this

analysis to allow for arbitrary multiplicative shifts in every direction.

By Theorem 3.1, up to constants,

Vood ≈ α
k

n
+ β

n

Rk
(10)

where Rk = (
∑

i>k λi)
2/(
∑

i>k λ
2
i ).

It is clear that if Vood − Vid > 0 then we have a malignant shift on the variance, and if Vood − Vid < 0 then

we have a beneficial shift on the variance. Observe that,

Vood − Vid ≈ (α− 1)
k

n
+ (β − 1)

n

Rk
. (11)

In this expression, we see that the scales of signal and noise shifts, α and β, are important, as is the

relationship between k/n (the “classical” rate) and n/Rk (the “high-dimensional” rate). The quantity

n/Rk can be interpreted as an inverse measure of overparameterization, where smaller values correspond

to higher levels of overparameterization. The rate of overparameterization relative to the classical rate of

k/n determines whether the shift on the first k components (α) or the shift on the last p− k components (β)

contributes more to the difference in excess risk.

Based on this intuition, we define two regimes of overparameterization: mild and severe.

Definition 3 (Mild and severe overparameterization for multiplicative shifts). Let Σs be a source covariance

that satisfies benign source conditions and let k ≤ n. Define Σt as, λ̃i = αλi for i ≤ k and λ̃i = βλi for

i > k, with α, β ≥ 0. Let Cαβ :=
∣∣∣α−1
1−β

∣∣∣.

8







• α > 1 and β < 1 leads to malignant shifts;

• α < 1 and β > 1 leads to beneficial shifts.

Figs. 1 and 5 demonstrate the relationship between the n/Rk and k/n rates in the case of Cαβ = 1.11, Cαβ =
1, respectively, for spiked covariance models. In both, we clearly see a cross-over from beneficial to malignant

shifts when we transition from mild to severely overparameterized.

Overparameterization improves OOD robustness Focusing on just the target excess risk, let α = α(n)
and β = β(n, p). We say that the benignly-overfit MNI is robust if its excess risk decays to zero despite the

presence of multiplicative covariate shifts. In order for the variance upper bound to decay to 0, it is sufficient

to have the shifts in the signal and noise components satisfy, α = o(n/k), β = o(Rk/n). The condition

β = o(Rk/n) allows the shift strength to increase at a rate determined by the level of overparameterization,

so we conclude that increasing the amount of overparameterization improves robustness to multiplicative

distribution shifts. Note that α has no dependence on Rk and so robustness to shifts on the signal components

is independent of the degree of overparameterization.

4 Experiments

Our theoretical results have provided insight into distribution shifts in high-dimensional linear regression. We

now present experiments with linear models and neural networks, relaxing many of the assumptions used for

theoretical results. Specifically, we empirically: (1) observe beneficial and malignant shifts on synthetic and

real data for linear models (benignly overfit and otherwise) and even high-dimensional dense neural networks;

(2) show the benefit of overparameterization in covariate shift for interpolating linear estimators; (3) validate

that our findings hold when the source and target covariance matrices are not simultaneously diagonalizable,

as well as under model misspecification; (4) provide experimental insight that high-dimensional neural

networks, i.e. when the input data dimension is large relative to the training sample size, act similarly to

the MNI whereas low-dimensional neural networks do not, regardless of the level of overparameterization.

Details of experimental setup, data, and models are given in Appendix I. We now discuss key observations

and takeaways from the experiments.

4.1 Synthetic Data Experiments

Fig. 1 shows excess risk vs. input dimension for data sampled from the (k, δ, ϵ)-spike covariance model with

k = 10, δ = 1.0, and ϵ = 1e−6. Beneficial and malignant shifts are seen in the setting of Theorem 3.4 with

α = 2.0, β = 0.1. That is, we see two cross-over points: one in the underparameterized regime and one in

the overparameterized regime (going from mild to severe). This suggests that non-negligible covariance tail

effects are a property of shifting when a model is in a region around the double descent peak. The further we

are from the double descent peak, the more “classical” our behavior is, in that the top k components are the

only ones that influence shift and the bottom p− k components either don’t exist or have negligible effects.

Appendix J.1 explores this setup for different values of α, β and interpolating linear models for eigendecay

rates that lead to harmful interpolation, i.e. tempered or catastrophic overfitting [Mal+22].

Figs. 2 and 8 show similar results for 3-layer dense ReLU neural networks trained until near-interpolation

(train MSE < 5e−6) on synthetic data with benign overfitting eigendecay rates [Bar+20]. For the neural

network, we consider p to be the dimension of the input data, rather than the number of network parameters.

From Fig. 2 we observe similar trends predicted by our theory for beneficial and malignant shifts when

p > n, indicating that while our theory is developed for linear models we are able to extrapolate to more
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5 Conclusion and future work

Our work provides the first finite-sample, instance-wise analysis of the MNI under transfer learning with

high-dimensional linear models. We show a taxonomy of beneficial and malignant covariate shifts depending

on whether we are in a mild or severely overparameterized regime. In the mildly overparameterized regime,

variance contributions on the top k components interact with that of the bottom p− k components in non-

negligible ways, leading to non-standard shifts. In the severely overparameterized regime, the high-rank

covariance tail suppresses variance contributions in the bottom p− k components and so OOD generalization

acts more “classical”, akin to underparameterized linear regression where k = p < n.

Benign overfitting literature commonly claims to be motivated by “overparameterized” neural networks,

referring to the number of parameters in the network rather than the dimension of the data. However recent

works have challenged this, suggesting the role of the ambient dimension and source covariance is more

important than parameter count in determining whether overfitting is benign or catastrophic in neural networks

[FCB23; KYS23]. Prior work has also shown that gradient descent on 2-layer neural networks has an implicit

bias towards linear decision boundaries when p ≫ n, independent of the degree of overparameterization

[Fre+22].

Our experiments further support the view that high-dimensional neural networks behave similarly to high-

dimensional linear models, whereas low-dimensional neural networks do not. They provide a new and

important perspective on the difference between high-dimensionality and overparameterization in neural net-

works in the case of distribution shift, which has yet to be appreciated in the literature. While dimensionality

and degree of overparameterization are inextricably linked in linear regression, practical deep learning tends

to operate in the overparameterized setting, not the high-dimensional one.

An important future direction is to investigate the extent to which our results hold for distribution shifts

on more complex high-dimensional datasets. It is also of interest to extend our finite-sample theoretical

analysis to shallow ReLU neural networks, other nonlinear models, and learning algorithms that overfit in a

tempered manner [Mal+22]. Finally, future work might seek to extend our understanding of neural networks

by carefully studying the interplay between the data dimension, number of network parameters, number of

training samples, and the optimization algorithm and loss function, and how this interplay can affect ID &

OOD generalization.
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A Formal assumptions

Definition 4 (Linear regression under distribution shift). We consider a training dataset comprised of n i.i.d.

pairs (xi, yi)ni=1 ∼ Dn
s

concatenated into a data matrix X ∈ R
n×p and a response vector ys ∈ R

n. In the

overparameterized setting, p > n meaning we have more input features than training samples.

We define

1. the covariance matrix Σs = EDs
[xx⊤],

2. the optimal parameter vector θ∗src ∈ R
p, satisfying

E
Ds

[
(y − x⊤θ∗src)

2
]
= minθ EDs

[
(y − x⊤θ)2

]
.

We test on the distribution Dt with Σt and θ∗
t

defined in the same way. We assume

1. (centered rows) EDs
[x] = 0;

2. (well-specified - source) For (X,y) ⊆ Ds, y = Xθ∗
s
+ εs. We assume that the components of

the source noise vector εs are i.i.d. centered random variables with positive variance vε2s and that

EDs
[y|x] = xT θ∗

s
;

3. (well-specified - target) For (X,y) ⊆ Dt, y = Xθ∗
t
+ εt. We assume that the components of

the target noise vector εt are i.i.d. centered random variables with noise variance, vε2t , and that

EDt
[y|x] = xT θ∗

t
;

4. (simultaneously diagonalizability) Σs and Σt commute; that is, there exists an orthogonal matrix

V ∈ R
p such that V ⊤ΣsV and V ⊤ΣtV are both diagonal. This allows us to fix an orthonormal basis

in which we can express the covariance matrices as

Σs = E
x∼Ds

[xxT ] = diag(λ1, λ2, ..., λp),

Σt = E
x∼Dt

[xxT ] = diag(λ̃1, λ̃2, ..., λ̃p),

where the source eigenvalues are a non-increasing sequence, λ1 ≥ λ2 · · · ≥ λp. Note that we do not

require the target eigenvalues to be a non-increasing sequence, however we require that λ̃iλi ≥ 0 for

all i;

5. (subgaussianity) the whitened data matrix, denoted Z = XΣ
−1/2
s , has centered i.i.d. row vectors with

independent coordinates. We assume that the rows are subgaussian with subgaussian norm σx; that is,

for all γ ∈ R
p,

E[exp(γ⊤z)] ≤ exp(σ2
x||γ||2/2).

B Key results from prior work and technical lemmas

For ease on the reader, we replicate some key lemma statements from Bartlett et al. [Bar+20] and Tsigler and

Bartlet [TB23] and provide new lemmas and corollaries that we use in our work.

17



Recall that ρk = 1
nλk+1

∑
i>k λi, X ∈ R

n×p, and Σs ∈ R
p×p = diag(λ1, · · · , λp). Let X0:k ∈ R

n×k denote

the matrix comprised of the first k feature columns. Similarly, Xk:p ∈ R
n×(p−k) denote the matrix of the last

p− k feature columns. The Gram matrix of the data, denoted here by

A = XXT ,

plays a central role in the investigation of high-dimensional linear regression. Analogous to the above, we

express A0:k = X0:kX
T
0:k ∈ R

n×n and similarly for Ak:p ∈ R
n×n.

Letting Z = XΣ
−1/2
s ∈ R

n×p and denoting the independent column vectors of Z by zi ∈ R
n, we have the

following expressions:

A =
∑

i

λiziz
T
i , A−i =

∑

j ̸=i

λjzjz
T
j , Ak =

∑

i>k

λiziz
T
i .

The following lemma from Bartlett et al. [Bar+20] is key in controlling the largest and smallest eigenvalues

of the data Gram matrix and its variants A−i and Ak. Importantly, it also shows that if the energy in the

bottom p− k components of the covariance matrix is sufficiently large (ρk is lower bounded by a constant),

then the largest and smallest eigenvalues of Ak are equal up to constants.

Lemma B.1 (Lemma 5 from Bartlett et al. [Bar+20]). There are constants b, c ≥ 1 such that for any k ≥ 0,

with probability at least 1− 2e−n/c,

1. for all i ≥ 1,

µk+1(A−i) ≤ µk+1(A) ≤ µ1(Ak) ≤ c

(
∑

j>k

λj + λk+1n

)
,

2. for all 1 ≤ i ≤ k,

µn(A) ≥ µn(A−i) ≥ µn(Ak) ≥
1

c

∑

j>k

λj − cλk+1n,

3. if ρk ≥ b, then
1

c
λk+1ρkn ≤ µn(Ak) ≤ µ1(Ak) ≤ cλk+1ρkn.

A consequence of the prior eigenvalue bounds is that when ρk is lower bounded by a constant, the condition

number of Ak is upper bounded by a constant. Therefore even as problem parameters such as training sample

size and input dimension grow to ∞, Ak is still well-conditioned. This is important as non-benign overfitting

occurs when the condition number bound on Ak grows with problem parameters. This would happen if the

lower bound on the smallest eigenvalue of Ak decays to zero too quickly which would cause the condition

number of Ak to diverge. If this occurs then the excess risk of the MNI would be lower bounded. This is

shown for the in-distribution case in Bartlett et al. [Bar+20].

Corollary B.2. Following from Lemma B.1, there are constants b, c ≥ 1 such that for any k ≥ 0, with

probability at least 1− 2e−n/c, if ρk ≥ b then

µ1(Ak)

µn(Ak)
≤ c2 (14)
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which is the equivalent of the assumption CondNum(k, 2e−n/c, c2) as defined in Tsigler and Bartlet [TB23].

The following definition and lemma omit all references to NonCritReg and the ridge parameter in Tsigler and

Bartlet [TB23].

Definition 5 (StableLowerEig(k, δ, L) from Tsigler and Bartlet [TB23]). Assume that for any j ∈
{1, 2, · · · , p} with probability (separate for every j) at least 1− δ,

µn(A−j) ≥ µn(EAk)/L = (
∑

i>k

λi)/L. (15)

We now state key assumptions that are necessary in order to obtain an explicit bias lower bound. Exchangeable

coordinates (ExchCoord) is a weaker assumption than independent components of the data vector. It is used

in Tsigler and Bartlet [TB23] instead of independent components. We assume that components of Z are

independent and so we immediately satisfy the ExchCoord, which we define here.

Definition 6 (ExchCoord). Assume the sequence of coordinates of Σ
−1/2
s x, for any x ∈ X , is exchangable

(any deterministic permutation of the coordinates of whitened data vectors doesn’t change their distribution).

The PriorSigns assumption is necessary to obtain lower bounds on the bias term. It allows us to use bounds

on the expectation of a quadratic form, Ev[v
TMv], in order to separately analyze the contributions of v and

M . As the bias takes the form θ∗
s

T (I −XTA−1X)Σt(I −XTA−1X)θ∗
s

we see that such a bound would

separate the contributions of the model from that of data-dependent matrix expressions.

Definition 7 (PriorSigns). Assume that θ∗ is sampled from a prior distribution in the following way: one

starts with vector θ and flips signs of all its coordinates with probability 0.5 independently.

Under PriorSigns, the random model vector is obtained by flipping signs on the components of the ground-

truth model vector. This does not affect our bounds as we see in Theorem 3.2 that our bias lower bound only

relies on squared components of the random model vector which are equivalent to the squared components of

the ground truth model.

An important consequence of having a bounded condition number and independent coordinates is that with

high probability the smallest eigenvalue of A−i for all i ≥ 1 is lower bounded by nλk+1ρk up to constants.

These assumptions allow Bartlett et al. [Bar+20] to prove Lemma B.1, which in turn allows us to derive the

StableLowerEig condition. This is a simple consequence of B.1 and we provide details here for completeness.

Corollary B.3 (Our variant of StableLowerEig from Tsigler and Bartlet [TB23]). For all i ≥ 1, with

probability at least 1− 2e−n/c2

µn(A−i) ≥
1

c2
µn(EAk) =

1

c2

∑

j>k

λj .

Proof. By Lemma B.1, for some absolute constant c1 ≥ 1 with probability at least 1− 2e−n/c1

µn(Ak) ≥
1

c1

∑

i>k

λi − c1λk+1n.
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The assumption ρk ≥ b for some b ≥ 1 gives us

1

c1

∑

i>k

λi − c1λk+1n =
1

c1
λk+1nρk − c1λk+1n

≥
(

1

c1
− c1

b

)
λk+1nρk

=

(
1

c1
− c1

b

)∑

i>k

λi.

Choosing b > c21 and c2 = max{c1, (1/c1 − c1/b)
−1}, we get that with probability at least 1− 2e−n/c2

µn(Ak) ≥
1

c2

∑

i>k

λi.

The next step is to extend this result to A−i for all i.

For i ≤ k, observe that A−i ⪰ Ak gives us µn(A−i) ≥ µn(Ak). For the case of i > k, we have

A−i =
∑

j ̸=i

λjzjz
⊤
j

=
∑

j≤k

λjzjz
⊤
j +

∑

j>k,j ̸=i

λjzjz
⊤
j

⪰ λ1z1z
⊤
1 +

∑

j>k,j ̸=i

λjzjz
⊤
j

⪰ λiz1z
⊤
1 +

∑

j>k,j ̸=i

λjzjz
⊤
j .

We assume that the features are independent and zi is centered and whitened, so λiz1z
⊤
1 +

∑
j>k,j ̸=i λjzjz

⊤
j

has the same distribution as Ak =
∑

j>k λjzjz
⊤
j . Therefore,

P

(
µn(A−i) ≥

1

c2

∑

i>k

λi

)

≥P

(
µn

(
λiz1z

⊤
1 +

∑

j>k,j ̸=i

λjzjz
⊤
j

)
≥ 1

c2

∑

i>k

λi

)

=P

(
µn(Ak) ≥

1

c2

∑

i>k

λi

)

≥1− 2e−n/c.

The following corollaries provide high-probability bounds on random subgaussian vectors with independent

coordinates.
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Corollary B.4 (Corollary 1 from Bartlett et al. [Bar+20]). There is a universal constant c such that for

any centered random vector z ∈ R
n with independent σ2-subgaussian coordinates with unit variances, any

random subspace L of Rn of codimension k that is independent of z, and any t > 0, with probability at least

1− 3e−t,

∥z∥2 ≤ n+ cσ2(t+
√
nt),

∥ΠL z∥2 ≥ n− cσ2(k + t+
√
nt),

where ΠL is the orthogonal projection on L .

In our proofs, we will need to control the norm of zi for all i ≤ p on the same high-probability event. In these

cases we need to apply a union bound over the events in the summation. The following corollary shows how

to invoke a union bound over ℓ of these events in such a way that the probability over the union of all such

events holds with high probability that depends n.

Corollary B.5. There is a universal constant c as defined in Corollary B.4. Let z ∈ R
n be a centered

random vector with σ2-subgaussian coordinates and unit variances. Let L be a random subspace of Rn of

codimension k that is independent of z.

For 0 < t < n/c0 and k ∈ (0, n/c1) for c1 > c0 with c0 sufficiently large, with probability 1− 3e−t,

∥z∥2 ≤ c2n

∥ΠL z∥2 ≥ n/c3

where c2, c3 only depends on c, c0, σ.

We obtain a union bound over the intersection of ℓ of these events so long as ln(ℓ) ≤ n/c0 ⇒ ℓ ≤ en/c0 . Then

for k ∈ (0, n/c1) for c1 > c0 with c0 sufficiently large, if ℓ ≤ en/c0 , with probability at least 1− 3e−n/c0 , ℓ
of the above events independently hold.

Proof. Let Corollary B.4 hold with universal constant c. Then, with probability 1− 3e−t for t > 0,

∥z∥2 ≤ n+ cσ2(t+
√
nt)

∥ΠL z∥2 ≥ n− cσ2(k + t+
√
nt).

Let t ≤ n
c0

. Then we have that,

− n

c0
≤ −t − n√

c0
≤ −

√
nt.

Plugging in for ∥z∥2,

∥z∥2 ≤ n+ cσ2(t+
√
nt)

≤ n+ cσ2(
n

c0
+

n√
c0
)

= n(1 + cσ2(c−1
0 + c

−1/2
0 ))

= c1n
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for c1 only dependent on c, c0, σ. Now, plugging in for ∥ΠL z∥2,

∥ΠL z∥2 ≥ n− cσ2(k + t+
√
nt)

≥ n− cσ2(k +
n

c0
+

n√
c0
)

= n(1− cσ2(
k

n
+ c−1

0 + c
−1/2
0 )).

Let k < n
c2

for c2 > c0. Then it is clear that − k
n > − 1

c2
and,

n(1− cσ2(
k

n
+ c−1

0 + c
−1/2
0 )) ≥ n(1− cσ2(c−1

2 + c−1
0 + c

−1/2
0 ))

= n/c3

for constant c3 that only depends on c, σ2, c0. We finally require that 1− cσ2(c−1
1 + c−1

0 + c
−1/2
0 ) > 0 which

we can achieve by taking c0 sufficiently large.

We now proceed to bound the union of ℓ of the complement events, in order to obtain a bound over the

intersection of ℓ of these events.

For multiple zi’s, define by Ai the events shown above, that ∥zi∥2 ≤ c2n and ∥ΠLi
zi∥2 ≥ n/c3 where zi

and Li are defined analogous to z,L above. Then

P (∪ℓ
i=1(Ai)

c) ≤
ℓ∑

i=1

P ((Ai)
c)

≤
ℓ∑

i=1

3e−t

= 3ℓe−t.

Then P (∩ℓ
i=1Ai) ≥ 1− 3ℓe−t. Observing that 3ℓe−t = 3eln(ℓ)e−t = 3e−t+ln(ℓ) = 3e−(t−ln(ℓ)) we can set

the per-event t accordingly and obtain the necessary bound. We want 0 < t− ln(ℓ) ≤ n/c0 to complete the

bound. Therefore, we need that, per-event, ln(ℓ) < t ≤ n/c0 + ln(ℓ). If ln(ℓ) ≤ n/c0 then this reduces to

needing ln(ℓ) < t ≤ 2n/c0. Since each event is defined for t ∈ (0, n/c0] the union bound proof is complete

by taking t = n/c0 and requiring that ln(ℓ) ≤ n/c0.

The following lemma is necessary in order to extend a summation over random variables, each lower bounded

by a real number with equal probability, to a unified lower bound over the entire summation.

Lemma B.6 (Lemma 9 from Bartlett et al. [Bar+20]). Suppose n ≤ ∞ and {ηi}ni=1 is a sequence of

non-negative random variables, {ti}ni=1 is a sequence of non-negative real numbers (at least one of which is

strictly positive) such that for some δ ∈ (0, 1) and any i ≤ n, P (ηi > ti) ≥ 1− δ. Then,

P

(
n∑

i=1

ηi ≥
1

2

n∑

i=1

ti

)
≥ 1− 2δ.
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We now provide a minor generalization of Corollary S.6 in Bartlett et al. [Bar+20] that comes from replacing

a1 in a non-increasing sequence of non-negative numbers {ai}pi=1 with maxi ai and only requiring that

{ai}pi=1 is a sequence of non-negative numbers.

Corollary B.7. There is a universal constant c such that for any sequence {ai}pi=1 of non-negative numbers

such that
∑p

i=1 ai < ∞, and any independent, centered, σ-subexponential random variables {ξi}pi=1, and

any x > 0, with probability at least 1− 2e−cx,

|
∑

i

aiξi| ≤ σmax


xmax

i
ai,

√√√√x

p∑

i=1

a2i


 .

Lastly, the following identity will allow us to use the PriorSigns assumption to derive a new form for the bias

term, which will be used for the proof of the lower bound.

Lemma B.8 (Identity for expectation of a quadratic form). Assume M ∈ R
p×p is a symmetric matrix. For a

random vector x ∈ R
p with mean E[x] and covariance Cov(x),

E
x
[xTMx] = E[x]TM E[x] + tr(MCov(x)).

Proof.

E
x
[xTMx] = E[tr(xTMx)]

= E[tr(MxxT )]

= tr(M E[xxT ])

= tr(MCov(x) +M E[x]E[x]T )

= tr(MCov(x)) + tr(E[x]M E[x]T )

= tr(MCov(x)) + E[x]M E[x]T .

C Proof of excess risk bound

We start by restating Theorem 2.1.

Theorem 2.1. (Target excess risk decomposition) The excess risk of the MNI trained on the source data,

when evaluated on the target distribution, satisfies

R(θ̂(ys),Dt) ≤4B1 + 4B2 + 2Vεs
, (2)

and

E
εs

R(θ̂(ys),Dt) = B1 +B2 + E
εs

Vεs
+ 2(θ∗

t
− θ∗

s
)⊤Σt(θ

∗
s
− θ̂(Xθ∗

s
)),
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where we define

B1 := ∥θ∗
s
− θ∗

t
∥2Σt

, (3)

B2 := ∥θ∗
s
− θ̂(Xθ∗

s
)∥2Σt

, (4)

Vεs
:= ∥θ̂(εs)∥2Σt

, (5)

and ∥x∥2M := x⊤Mx.

Proof. Let us begin by noting that the excess risk of any θ is given by,

R(θ) = E
(x,y)∼Dt

[(
y − x⊤θ

)2]
− E

(x,y)∼Dt

[(
y − x⊤θ∗

t

)2]

= E
(x,y)∼Dt

[(
y − x⊤θ∗

t
+ x⊤θ∗

t
− x⊤θ

)2]
− E

(x,y)∼Dt

[(
y − x⊤θ∗

t

)2]

= E
(x,y)∼Dt

[(
x⊤θ∗

t
− x⊤θ

)2]
+ 2 E

(x,y)∼Dt

[(
y − x⊤θ∗

t

)(
x⊤θ∗

t
− x⊤θ

)]

(i)
= E

x∼Dt

[(
x⊤θ∗

t
− x⊤θ

)2]
. (16)

Equality (i) uses that, conditional on x, y − x⊤θ∗
t
|x is mean-zero, which is given in Assumption 3 (well-

specified - target). So that

E
(x,y)∼Dt

[(
y − x⊤θ∗

t

)(
x⊤θ∗

t
− x⊤θ

)]
= E

[(
x⊤θ∗

t
− x⊤θ

)
E

[(
y − x⊤θ∗

t

) ∣∣x
]]

= 0.

We now note that the source-data MNI can be decomposed as follows,

θ̂(ys) = X⊤(XsX
⊤
s
)−1

ys

= X⊤(XsX
⊤
s
)−1(Xθ∗

s
+ εs)

= θ̂(Xθ∗
s
) + θ̂(εs)

We can thus continue from (16) to characterize the excess risk of the source-data MNI as

R(θ̂(ys)) = E
x∼Dt

[(
x⊤θ∗

t
− x⊤θ̂(ys)

)2]

= E
x∼Dt

[(
x⊤θ∗

t
− x⊤(θ̂(Xθ∗

s
) + θ̂(εs))

)2]

= E
x∼Dt

[(
x⊤(θ∗

t
− θ̂(Xθ∗

s
))− x⊤θ̂(εs)

)2]

(i)

≤ E
x∼Dt

[
2
(
x⊤(θ∗

t
− θ̂(Xθ∗

s
))
)2

+ 2
(
x⊤θ̂(εs)

)2]

= E
x∼Dt

[
2
(
x⊤(θ∗

t
− θ∗

s
+ θ∗

s
− θ̂(Xθ∗

s
))
)2

+ 2
(
x⊤θ̂(εs)

)2]

(ii)

≤ E
x∼Dt

[
4
(
x⊤(θ∗

t
− θ∗

s
)
)2

+ 4
(
x⊤(θ∗

s
− θ̂(Xθ∗

s
))
)2

+ 2
(
x⊤θ̂(εs)

)2]
. (17)
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In inequalities (i) and (ii), we have used Young’s inequality, which implies (a− b)2 ≤ 2(a− c)2+2(b− c)2

for any a, b, c ∈ R. Recalling that

∥x∥2M := x⊤Mx,

it is apparent that the first term is just the weighted distance between the source and target vectors,

E
x∼Dt

[(
x⊤(θ∗

t
− θ∗

s
)
)2]

= (θ∗
t
− θ∗

s
)⊤ E

x∼Dt

[
xx⊤

]
(θ∗

t
− θ∗

s
) = ∥θ∗

s
− θ∗

t
∥2Σt

. (18)

The second term looks quite similar to the bias term, B, in Bartlett et al. [Bar+20] and Tsigler and Bartlet

[TB23].

E
x∼Dt

[(
x⊤(θ∗

s
− θ̂(Xθ∗

s
))
)2]

=
(
θ∗
s
− θ̂ (Xθ∗

s
)
)

E
x∼Dt

[xx⊤]
(
θ∗
s
− θ̂ (Xθ∗

s
)
)

= ∥θ∗
s
− θ̂ (Xθ∗

s
) ∥2Σt

. (19)

The key difference with the standard supervised setting is that now the quantitiy in the middle is Σt, not Σs.

Equivalently, the norm on θ∗
s
− θ̂(Xθ∗

s
) is induced by Σt rather than Σs.

And finally, the third term is similar to the variance term, C, in Bartlett et al. [Bar+20]:

E
x∼Dt

[(
x⊤θ̂(εs)

)2]
= θ̂(εs)

⊤
E

x∼Dt

[xx⊤]θ̂(εs)

= θ̂(εs)
⊤Σtθ̂(εs)

= ∥θ̂(εs)∥2Σt
. (20)

As in the bias term, the only difference is that the middle term is Σt rather than Σs. Equivalently, the norm on

θ̂(εs) is induced by Σt rather than Σs.

Putting it all together, we get the following upper bound for the excess risk of the minimum-norm interpolator

on the training data,

R(θ̂(ys)) ≤ 4∥θ∗
s
− θ∗

t
∥2Σt

+ 4∥θ∗
s
− θ̂(Xθ∗

s
)∥2Σt

+ 2∥θ̂(εs)∥2Σt
.

This completes the upper bound for the risk.

For the lower bound, we have

E
εs

R(θ̂(ys)) = E
εs,x∼Dt

[(
x⊤θ∗

t
− x⊤θ̂(ys)

)2]

= E
εs,x∼Dt

[(
x⊤(θ∗

t
− θ̂(Xθ∗

s
))− x⊤θ̂(εs)

)2]

= E
εs,x∼Dt

[(
x⊤(θ∗

t
− θ̂(Xθ∗

s
))
)2

− 2 · x⊤(θ∗
t
− θ̂(Xθ∗

s
)) · x⊤θ̂(εs)

+
(
x⊤θ̂(εs)

)2 ]

(i)
= E

x∼Dt

[(
x⊤(θ∗

t
− θ̂(Xθ∗

s
))
)2]

+ E
εs,x∼Dt

[(
x⊤θ̂(εs)

)2]
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The equality (i) uses that, conditional on X , εs is zero-mean. Note that the second term above is just

Eεs
∥θ̂(εs)∥2Σt

, so we need only deal with the first term. Adding and subtracting θ∗
s

inside the square and

expanding, we have

E
x∼Dt

[(
x⊤(θ∗

t
− θ̂(Xθ∗

s
))
)2]

= E
x∼Dt

[(
x⊤(θ∗

t
− θ∗

s
)
)2]

+ E
x∼Dt

[(
x⊤(θ∗

s
− θ̂(Xθ∗

s
))
)2]

+ 2 E
x∼Dt

[
(θ∗

t
− θ∗

s
)⊤xx⊤(θ∗

s
− θ̂(Xθ∗

s
))
]

= ∥θ∗
t
− θ∗

s
∥2Σt

+ ∥θ∗
s
− θ̂(Xθ∗

s
)∥2Σt

+ 2(θ∗
t
− θ∗

s
)⊤Σt(θ

∗
s
− θ̂(Xθ∗

s
)).

D Overview of variance and bias proof techniques

The central pillar of both proofs is controlling the eigenvalues of Ak, which in turn provides certain bounds

on the eigenvalues of A and A−i. A key finding of Bartlett et al. [Bar+20] is that once ρk is large enough, all

eigenvalues of Ak are identical up to a constant factor. Specifically,

zTAz ≈ n2λk+1ρk, zTA−1z ≈ n(nλk+1ρk)
−1.

D.1 Variance

Due to independence between the components of εs, the variance term from Eqn. 6 can be expressed as

V = E
εs
[Vεs/v

2
ε ]

= tr(A−1XΣ̃X⊤A−1)

=

p∑

i=1

λ̃iλiz
T
i A

−2zi.

Now that we are dealing with a sum of quadratic forms, we consider the first k∗ signal and last p− k∗ noise

components separately. Using the Sherman-Morrison formula the former can be written as

∑

i≤k∗

λ̃iλiz
T
i A

−2zi =
∑

i≤k∗

λ̃i

λi

λ2
i z

T
i A

−2
−i zi

(1 + λizTi A
−1
−i zi)

2

≈
∑

i≤k∗

λ̃i

λi

λ2
in(nλk+1ρk)

−2

λ2
in

2(nλk+1ρk)−2

=
∑

i≤k∗

λ̃i

λi

1

n
,

where λiz
T
i A

−1
−i zi dominates 1 for i ≤ k∗. For the sum over the noise components the 1 in the denominator

dominates the other term and so we directly analyze the tail contributions as,

∑

i>k∗

λ̃i

λi
λ2
i z

T
i A

−2zi ≈
∑

i>k∗

λ̃i

λi
λ2
in(nλk+1ρk)

−2.
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The result is that the variance term is upper and lower bounded by

1

n

k∑

i=1

λ̃i

λi
+
∑

i>k

λ̃i

λi

(
λ2
i

nλ2
k+1ρ

2
k

)

times constant factors.

D.2 Bias

As in Eqn. 4, the bias term is given by

B2 = ∥θ∗
s
−XTA−1Xθ∗

s
∥2Σt

= tr(θ∗
s

T (I −XTA−1X)Σt(I −XTA−1X)θ∗
s
)

≤ tr(θ∗
s
θ∗
s

T ) · tr((I −XTA−1X)Σt(I −XTA−1X))

= ∥θ∗
s
∥2

p∑

i=1

λ̃i

λi

p∑

j=1

(
ei[j]−

√
λiλjz

⊤
i A

−1zj

)2
,

where we use the Cauchy-Scharwz inequality to separate the parameter vector from the quadratic form. A

quick application of the Sherman-Morrison formula allows us to write

B2 ≤ ∥θ∗
s
∥2

p∑

i=1

λ̃i
1

1 + λizTi A
−1
−i zi

.

From here, we once again exert control over the eigenvalues of A−i to get

1

1 + λizTi A
−1
−i zi

≈ 1

1 + λi

λk+1ρk

,

which completes the upper bound proof sketch.

Note that the looseness of the bias bounds largely stems from the application of the Cauchy-Schwarz

inequality. The only situations in which the bound becomes an equality are when

cθ∗
s
= (I −XTA−1X)Σ

1/2
t

for some scalar c ∈ R or when θ∗
s

is the zero vector.

Between the upper and lower bounds, the latter is likely tighter due to the use of the PriorSigns assumption.

As detailed in Appendix F.2, it allows us to write

B ≥ θ∗
s

T (I − diag(XTA−1X))Σt(I − diag(XTA−1X))θ∗
s
,

where for a matrix Q ∈ R
m×m, we use diag(Q) ∈ R

m×m to denote zeroed off-diagonal entries. The

contribution of the off-diagonal entries is non-negative and dominated by the diagonals, so they can be

dropped in the lower bound while preserving tightness under the PriorSigns assumption. In general, non-

negative terms cannot be discarded in the proof of an upper bound, so we resort to the Cauchy-Schwarz

inequality in order to avoid addressing the off-diagonals directly. However, decoupling the model vector

θ∗
s

from the matrix (I − XTA−1X)Σ
1/2
t

introduces another degree of looseness, contributing to the gap

between our bounds. Improving our upper bound will require controlling the off-diagonals of this matrix

product with a technique more appropriate than Cauchy-Schwarz.
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E Proof of variance bounds

Theorem 3.1. (Upper and lower bounds for the variance term) There exist universal constants b, c1 > 1
given in Lemma B.1, a universal constant c2 given in Lemma B.4 and a constant c > 1 that only depends on

σx, c1, c2, such that for k ∈ (0, n/c), with probability at least 1− 10e−n/c,

V ≥ 1

cn

p∑

i=1

λ̃i

λi
min

(
1,

λ2
i

λ2
k+1(ρk + 1)2

)
:= V . (8)

If in addition ρk ≥ b, with probability 1− 7e−n/c,

V/c ≤ 1

n

k∑

i=1

λ̃i

λi
+ n

∑
i>k λ̃iλi

(
∑

i>k λi)2
:= V . (9)

Proof. We derive the variance terms necessary here and finish the proof of the upper bound in Appendix E.1

and the lower bound in Appendix E.2.

We follow the proof techniques in Bartlett et al. [Bar+20] and Tsigler and Bartlet [TB23]. Observe that we

can express the variance term as follows,

V = E
εs
[Vεs/v

2
ε ]

= E
εs
[∥X⊤(XX⊤)−1εs∥2Σt

/v2ε ].

Defining A = XX⊤,

V = E
εs
[∥X⊤A−1εs∥2Σt

/v2ε ]

= E
εs
[(ε⊤

s
A−1XΣtX

⊤A−1εs)/v
2
ε ]

= E
εs
[tr(ε⊤

s
A−1XΣtX

⊤A−1εs)/v
2
ε ].

Using the trace trick,

V = tr(A−1XΣtX
⊤A−1

E
εs
[εsε

⊤
s
])/v2ϵ

= tr(A−1XΣtX
⊤A−1v2ϵ In)/v

2
ϵ

= tr(A−1XΣtX
⊤A−1)

= tr(XΣtX
⊤A−2)

= tr((

p∑

i=1

λ̃ix
i(xi)⊤)A−2)

= tr((

p∑

i=1

λ̃iλiziz
⊤
i )A

−2)
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where xi ∈ R
n and xi

√
λi

= zi ∈ R
n are columns of X ∈ R

n×p and XΣ
−1/2
s ∈ R

n×p, respectively.

Continuing the calculation, we have that

V =

p∑

i=1

λ̃iλitr(z
T
i A

−2zi)

=

p∑

i=1

λ̃iλitr(z
T
i (A−i + ziz

T
i λi)

−2zi)

=

p∑

i=1

λ̃iλi

zTi A
−2
−i zi

(1 + λizTi A
−1
−i zi)

2

where A−i = XXT − λiziz
T
i =

∑
j ̸=i λjzjz

T
j . This expression will serve as the starting point for the

variance term, which we will now proceed to upper and lower bound.

E.1 Upper bound

After isolating the contribution of λ̃i

λi
, most of the components of this proof are as given in the proof of

Lemma 6 in Bartlett et al. [Bar+20]. For completeness, we replicate them here and refer the reader to their

paper for further details and intuitions.

We start by separating the variance term into the top k components and the bottom p − k components as

follows,

V =
k∑

i=1

λ̃i

λi

λ2
i z

T
i A

−2
−i zi

(1 + λizTi A
−1
−i zi)

2
+
∑

i>k

λ̃i

λi
(λ2

i z
T
i A

−2zi).

Fix constants b, c1 ≥ 1 as defined in Lemma B.1. Then, with probability 1− 2e−n/c1 , if ρk ≥ b then for all

z ∈ R
n and i ∈ [1, k],

zTi A
−2
−i zi ≤ µ1(A

−2
−i )∥zi∥2

≤ µn(A−i)
−2∥zi∥2

≤ c21∥zi∥2
(nλk+1ρk)2

and on the same event,

zTi A
−1
−i zi ≥ (ΠLi

zi)
TA−1

−i (ΠLi
zi)

≥ µn(A
−1
−i )∥ΠLi

zi∥2

≥ µk+1(A−i)
−1∥ΠLi

zi∥2

≥ ∥ΠLi
zi∥2

nc1λk+1ρk
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where ΠLi
is the orthogonal projection onto the span of the bottom n− k eigenvectors of A−i. It is important

to use the projection onto the bottom eigenvectors of A−i in lower bounding the denominator term because

we have to use the fact that µn(A
−1
−i ) ≥ µ1(A−i)

−1. When we don’t do the projection, then zi is affected

by all of A−i and so the largest eigenvalue that affects this expression is µ1(A−i) = λ1. After doing this

projection, we no longer have contributions from the top k eigenvectors / eigenvalues in the summation of

zTi A
−1
−i zi. Therefore, the largest eigenvalue that affects this summation is now λk+1 instead of λ1, and so we

can use this in our lower bound instead, as desired.

Putting it together, for i ≤ k,

λ2
i z

T
i A

−2
−i zi

(1 + λizTi A
−1
−i zi)

2
≤ zTi A

−2
−i zi

(zTi A
−1
−i zi)

2

≤ c41
∥zi∥2

∥ΠLi
zi∥4

.

We now invoke Corollary B.5 with a union bound over k events. Let t < n/c0 and k ∈ (0, n/c) for c > c0
and c0 sufficiently large. Since k < n/c we also satisfy the union bound condition that ln(k) < n/c. Then,

with probability at least 1− 3e−t,

∥zi∥2 ≤ c2n

∥ΠLi
zi∥2 ≥ n/c3

for constants c2, c3 that only depend on σx, c0, and a universal constant c as defined in Corollary B.4.

Altogether, with probability 1− 5e−n/c0 for c0 sufficiently large,

k∑

i=1

λ̃i

λi

(
λ2
i z

T
i A

−2
−i zi

(1 + λizTi A
−1
−i zi)

2

)
≤

k∑

i=1

λ̃i

λi
c41

∥zi∥2
∥ΠLi

zi∥4

≤
k∑

i=1

λ̃i

λi
c41
c2c

2
3

n

= c4

k∑

i=1

λ̃i

λi

1

n
.

On the same event we use to bound µk+1(A−i) via Lemma B.1, we also have that µ1(A
−2) ≤ µn(A)−2. As

such,

∑

i>k

λ̃i

λi
(λ2

i z
T
i A

−2zi) ≤
c21
∑

i>k
λ̃i

λi
λ2
i ∥zi∥2

(nλk+1ρk)2
.

Then by Corollary B.7, there is a universal constant a such that with probability at least 1−2e−t for t < n/c0
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and c0 > a−1,

∑

i>k

λ̃i

λi
λ2
i ∥zi∥2 ≤ σ2

xmax(tmax
i>k

(λ̃iλi),

√
t
∑

i>k

(λ̃iλi)2)

≤ n
∑

i>k

λ̃iλi + σ2
xmax(tmax

i>k
(λ̃iλi),

√
tn
∑

i>k

(λ̃iλi)2)

≤ n
∑

i>k

λ̃iλi + σ2
xmax(t

∑

i>k

λ̃iλi,
√
tn
∑

i>k

λ̃iλi)

≤ c5n
∑

i>k

λ̃iλi

= c5n
∑

i>k

λ̃i

λi
λ2
i .

Altogether,

∑

i>k

λ̃i

λi
(λ2

i z
T
i A

−2zi) ≤
c21
∑

i>k
λ̃i

λi
λ2
i ∥zi∥2

(nλk+1ρk)2

≤ c21c5n

(nλk+1ρk)2

∑

i>k

λ̃i

λi
λ2
i

= c6
∑

i>k

λ̃i

λi

(
λ2
i

nλ2
k+1ρ

2
k

)
.

By taking c > max(c0, c4, c6) we have that with probability 1− 7e−n/c,

V ≤ c

(
k∑

i=1

λ̃i

λi

1

n
+
∑

i>k

λ̃i

λi

(
λ2
i

nλ2
k+1ρ

2
k

))

=
1

n

k∑

i=1

λ̃i

λi
+ n

∑
i>k λ̃iλi

(
∑

i>k λi)2
.

E.2 Lower bound

Recall that the variance takes the form,

V =

p∑

i=1

λ̃iλi

zTi A
−2
−i zi

(1 + λizTi A
−1
−i zi)

2
.

By Cauchy-Schwartz,

(zTi A
−1
−i zi)

2 = |⟨zi, A−1
−i zi⟩|2 ≤ ∥zi∥2 · (zTi A−2

−i zi).
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We plug this identity into our lower bound, and further multiply by λi

λi
, resulting in

V =

p∑

i=1

λ̃iλi

zTi A
−2
−i zi

(1 + λizTi A
−1
−i zi)

2

=

p∑

i=1

(
λ̃i

λi
)

λ2
i z

T
i A

−2
−i zi

(1 + λizTi A
−1
−i zi)

2

≥
p∑

i=1

(
λ̃i

λi
)

λ2
i (z

T
i A

−1
−i zi)

2

||zi||2(1 + λizTi A
−1
−i zi)

2

=

p∑

i=1

(
λ̃i

λi
)

1

||zi||2(1 + λizTi A
−1
−i zi)

2(λizTi A
−1
−i zi)

−2

=

p∑

i=1

(
λ̃i

λi
)

1

||zi||2(1 + (λizTi A
−1
−i zi)

−1)2
.

Then, let k ∈ (0, n) and Li be the span of the bottom n− k eigenvectors of A−i and ΠLi
be the projection

onto the orthogonal complement of Li. We have that

zTi A
−1
−i zi ≥ (ΠLi

zi)
TA−1

−i (ΠLi
zi)

≥ ∥ΠLi
zi∥2µk+1(A−i)

−1.

From Lemma B.1, there is a constant c1 ≥ 1, such that for any k ≥ 0, with probability 1 − 2e−n/c1 ,

µk+1(A−i) ≤ c1(
∑

j>k λj + λk+1n). Additionally, by Corollary B.5, let t < n/c3 and k ∈ (0, n/c) for

c > c3 and c3 sufficiently large. Then, with probability at least 1− 3e−t

∥ΠLi
zi∥2 ≥ n/c4

where c4 only depends on c3, σx and the universal constant given in Corollary B.4.

Then, for c ≥ max{c1, c3}, with probability 1− 5e−n/c,

zTi A
−1
−i zi ≥ ∥ΠLi

zi∥2µk+1(A−i)
−1

≥ n

c4(
∑

j>k λj + λk+1n)
.

By again applying Corollary B.5 on the same event we have

∥zi∥2 ≤ c5n.

where c5 has the same dependencies as c4.
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Altogether, we have for each i, with probability 1− 5e−n/c,

1

||zi||2(1 + (λizTi A
−1
−i zi)

−1)2
≥ 1

c5n(1 + (
c4(

∑
j>k λj+λk+1n)

λin
))2

=
1

c5n(1 +
c4λk+1

λi
(
∑

j>k λj

λk+1n
+ 1))2

=
1

c5c24n(1/c4 +
λk+1

λi
(ρk + 1))2

≥ 1

c6n(1 +
λk+1

λi
(ρk + 1))2

where c6 = c5c
2
4 and c > max{c1, c3} as defined above.

Finally, we invoke Lemma B.6 and that 1/(a + b)2 ≥ min(a−2, b−2)/4 to get that, with probability

1− 10e−n/c,

V ≥ 1

8c6n

p∑

i=1

λ̃i

λi
min(1,

λ2
i

λ2
k+1(ρk + 1)2

).

For c7 ≥ max{8c6, c} we have that with probability 1− 10e−n/c7 ,

V ≥ 1

c7n

p∑

i=1

λ̃i

λi
min(1,

λ2
i

λ2
k+1(ρk + 1)2

).

F Proof of bias bounds

Theorem 3.2. (Upper and lower bounds for the bias term) For the lower bound only, assume that random

models θ are obtained from the underlying θ∗
s

as (θ)i = γi(θ
∗
s
)i, where each γi is an independent Rademacher

random variable. There exists a universal constant b > 1, constants c, C that depend only on b and σx, and

k < n/C such that if ρk ≥ b, then with probability at least 1− 10e−n/c,

E
θ̄
[B2] ≥

1

c

(
k∑

i=1

λ̃i

λi

λi(θ
∗
s
)2i

(1 + λi

λk+1ρk
)2

+
∑

i>k

λ̃i(θ
∗
s
)2i

)
:= B2.

If we assume that p is at most exponential in n, then with probability 1− 5e−n/c,

B2/c ≤ ∥θ∗
s
∥2

p∑

i=1

λ̃i

λi

λi(
1 + λi

λk+1ρk

) := B2.

F.1 Upper bound

Proof. As defined in Eqn. 4,

B2 = ∥θ∗
s
− θ̂(Xθ∗

s
)∥2Σt

= ∥θ∗
s
−XTA−1Xθ∗

s
∥2Σt

= θ∗
s

T (I −XTA−1X)Σt(I −XTA−1X)θ∗
s
. (21)
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The ith row of Ip −XTA−1X is given by ei −
√
λiz

T
i A

−1X . It follows that

(θ∗)TMθ∗ =




...∑p
j=1 θj(ei[j]−

√
λiλjz

⊤
i A

−1zj)
...




⊤

Σt




...∑p
j=1 θj(ei[j]−

√
λiλjz

⊤
i A

−1zj)
...


 ith row shown

=

p∑

i=1

λ̃i

( p∑

j=1

θj(ei[j]−
√
λiλjz

⊤
i A

−1zj)
)2

≤
p∑

i=1

λ̃i

( p∑

j=1

θ2j

) p∑

j=1

(
ei[j]−

√
λiλjz

⊤
i A

−1zj

)2

= ∥θ∗∥2
p∑

i=1

λ̃i

p∑

j=1

(
ei[j]−

√
λiλjz

⊤
i A

−1zj

)2
.

Next we look at ith term in the outer sum.

λ̃i

p∑

j=1

(ei[j]−
√
λiλjz

⊤
i A

−1zj)
2 = λ̃i(1− λiz

⊤
i A

−1zi)
2 + λ̃i

∑

j ̸=i

λiλj(z
⊤
i A

−1zj)
2

= λ̃i(1− 2λiz
T
i A

−1zi + λ2
i (z

T
i A

−1zi)
2 +

∑

j ̸=i

λiλj(z
⊤
i A

−1zj)
2)

= λ̃i(1− 2λiz
T
i A

−1zi +

p∑

i=1

λiλj(z
⊤
i A

−1zj)
2)

= λ̃i(1− 2λiz
T
i A

−1zi + λiz
⊤
i A

−1
( p∑

i=1

λjzjz
T
j

)
A−1zi)

= λ̃i

(
1− 2λiz

T
i A

−1zi + λiz
⊤
i A

−1AA−1zi

)

= λ̃i

(
1− 2λiz

T
i A

−1zi + λiz
⊤
i A

−1zi

)

= λ̃i

(
1− λiz

T
i A

−1zi
)
.

Using the Sherman-Morrison formula, we get that

1− λiz
T
i A

−1zi = 1− λiz
T
i

(
A−i + λiziz

T
i

)−1
zi

= 1− λiz
T
i

(
A−1

−i − λiA
−1
−i zi(1 + λiz

T
i A

−1
−i zi)

−1zTi A
−1
−i

)
zi

= 1− λiz
T
i A

−1
−i zi +

(λiz
T
i A

−1
−i zi)

2

1 + λizTi A
−1
−i zi

=
1

1 + λizTi A
−1
−i zi

.

We now provide an upper bound for the remaining term. Let ΠLi
be the orthogonal projection onto the

bottom n− k eigenvectors of A−i. By Lemma B.1, there exist constants b, c0 ≥ 1 such that if ρk ≥ b, then
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with probability at least 1− 2e−n/c0 ,

µk+1(A−i) ≤ c0λk+1ρkn,

so we get

1 + λiz
T
i A

−1
−i zi ≥ 1 + λi(ΠLi

zi)
TA−1

−i (ΠLi
zi)

≥ 1 +
λi ∥ΠLi

zi∥2
c0λk+1nρk

.

By Corollary B.5, there exist constants c1 and c2 with c2 > c1 and c1 sufficiently large such that for

0 < k < n/c2, we have with probability at least 1− 3e−n/c1 ,

∥ΠLi
zi∥2 ≥ n/c3,

where c3 depends only on c1 and σ.

Plugging these in gives us with probability at least 1− 5e−n/c4 ,

λ̃i

(
1− λiz

T
i A

−1zi
)
≤ λ̃i
(
1 +

c2
5
λi

λk+1ρk

)

=
λ̃i

λi

λi
(
1 +

c2
5
λi

λk+1ρk

) ,

where c4 = max(c0, c1) and c5 = min(c0, c3).

Therefore by union bound over the application of Corollary B.5,

B ≤ ∥θ∗∥2
p∑

i=1

λ̃i

λi

λi
(
1 +

c2
5
λi

λk+1ρk

)

≤ 1

c6
∥θ∗∥2

p∑

i=1

λ̃i

λi

λi(
1 + λi

λk+1ρk

) ,

where c6 = min(c25, 1). Taking c = max(c−1
6 , c4) gives us the result.

F.2 Lower bound

After isolating the contribution of λ̃i

λi
, many of the components of this proof are as given in Tsigler and Bartlet

[TB23]. For completeness, we replicate them here.

Proof. Assume that the vector θ∗
s

is randomly distributed according to the PriorSigns(θs) assumption. Using
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Lemma B.8, the bias term can be rewritten as

B = E
θ∗
s

[Bθ∗
s
]

= E
θ∗
s

[∥θ∗
s
− θ̂(Xθ∗

s
)∥2Σt

]

= E
θ∗
s

[(θ∗
s
)T (Ip −XT (XXT )−1X)Σt(Ip −XT (XXT )−1X)θ∗

s
]

= E
θ∗
s

[(θ∗
s
)TMθ∗

s
]

= E
θ∗
s

[θ∗
s
]TM E

θ∗
s

[θ∗
s
] + tr(MCov(θ∗

s
))

= tr(MCov(θ∗
s
)).

where M = (Ip−XT (XXT )−1X)Σt(Ip−XT (XXT )−1X). The last equality follows from the assumption

Eθ∗
s
[(θ∗

s
)] = 0. The diagonal elements of Cov(θ∗

s
) are the component-wise variances of θ∗

s
, which are given

by (θ∗
s
)2i = (θs)

2
i . The off-diagonal elements are 0 since the components of θ∗

s
are independent. As such, we

need only consider the diagonal elements of M .

Note that the ith row of Ip −XT (XXT )−1X is equal to ei −
√
λiz

T
i (XXT )−1X , where ei is the ith vector

of the standard orthonormal basis. It follows that the ith diagonal element of M is given by

Mii =

p∑

j=1

λ̃j(ei[j]−
√
λiλjz

T
i A

−1zj)
2

= λ̃i(1− λiz
T
i A

−1zi)
2 +

∑

j ̸=i

λ̃jλiλj(z
T
i A

−1zj)
2.

Hence, we can express the bias term as

B =

p∑

i=1

(θs)
2
i

[
λ̃i(1− λiz

T
i A

−1zi)
2 +

∑

j ̸=i

λ̃jλiλj(z
T
i A

−1zj)
2
]

≥
p∑

i=1

λ̃i

λi
λi(θs)

2
i (1− λiz

T
i A

−1zi)
2.

We are able to eliminate the second term because it is non-negative. Substituting A = A−i + λiziz
T
i and

using the Sherman-Morrison identity, we have that 1− λiz
T
i A

−1zi =
1

1+λizTi A−1

−i zi
(see proof of bias upper

bound in Appendix F.1). Then,

B ≥
p∑

i=1

λ̃i

λi

λi(θs)
2
i

(1 + λizTi A
−1
−i zi)

2

Let’s bound each term in that sum from below with high probability. By Corollary B.3, there exist constants

b, c0 ≥ 1 such that for any i ≥ 0 with probability at least 1− 2e−n/c0 , if ρk ≥ b, then

µn(A−i) ≥
1

c0
nλk+1ρk.
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Next,

λi

(1 + λizTi A
−1
−i zi)

2
≥ λi

(1 + λiµn(A−i)−1 ∥zi∥2)2
.

By Corollary B.5, for constants c1, c2 such that k < n/c2 with c2 > c1 for sufficiently large c1 with

probability at least 1− 3e−n/c1 we have ∥zi∥2 ≤ c3n, where c3 depends only on c1 and σ.

We obtain that w.p. at least 1− 5e−n/c4 ,

λiθ̄
2
i

(1 + λizTi A
−1
−i zi)

2
≥ λiθ̄

2
i(

1 +
c2
4
λi

λk+1ρk

)2 ,

where c4 = max(c0, c1, c3). All the terms are non-negative so Lemma B.6 provides a lower bound on their

sum. With probability at least 1− 10e−n/c4 ,

B ≥ 1

2

p∑

i=1

λ̃i

λi

λiθ̄
2
i

(1 +
c2
4
λi

λk+1ρk
)2

≥ 1

c5

p∑

i=1

λ̃i

λi

λiθ̄
2
i

(1 + λi

λk+1ρk
)2
,

where c5 = 2max(c24, 1).

Finally, we notice that on i > k we have ρk ≥ b > 1 and λi ≤ λk+1 giving us,

∑

i>k

λ̃i

λi

λiθ̄
2
i

(1 + λi

λk+1ρk
)2

≥
∑

i>k

λ̃i

λi

λiθ̄
2
i

(1 + λi

λk+1)
2

≥
∑

i>k

λ̃i

λi

λiθ̄
2
i

4

=
1

4

∑

i>k

λ̃iθ̄
2
i .

Letting c = 4max(c4, c5) gives us the result.

G Proof of tightness of bounds

Theorem 3.3. (Tightness of variance and bias bounds) Let the lower bound and upper bound of V be given

by V and V , respectively. There exists a universal constant b ≥ 1, and constant c as defined in Theorem 3.1,

and k ∈ (0, n/c) such that if ρk ≥ b, then

V /V ∈
[
b−2(1 + b)−2/c2, 1

]
.
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Let the lower bound and upper bound of B2 be given by B2 and B2, respectively, and the assumptions of

Theorem 3.2 be satisfied. Then

B2/B2 ∈


mini

{
(θ∗

s
)2i : (θ∗

s
)i ̸= 0

}

∥θ∗
s
∥2
(
1 + b−1 λ1

λk+1

) , 1


 .

Proof. We split the proof into the variance proof in Appendix G.1 and the bias proof in Appendix G.2.

G.1 Variance Proof

Proof. Recall that

V =
1

8c6n

p∑

i=1

λ̃i

λi
min

(
1,

λ2
i

λ2
k+1(ρk + 1)2

)

V = c

(
k∑

i=1

λ̃i

λi

1

n
+
∑

i>k

λ̃i

λi

(
λ2
i

nλ2
k+1ρ

2
k

))
.

Since k is the smallest ℓ such that ρℓ ≥ b, it is clear by definition that ρk−1 < b. Then we observe that

ρk−1 =
1

nλk

∑

j>k−1

λj =
λk +

∑
j>k λj

nλk
=

λk + nλk+1ρk
nλk

< b

∴ λk + nλk+1ρk < nbλk ⇒ λk >
λk + nλk+1ρk

nb
>

nλk+1ρk
nb

=
λk+1ρk

b
.

On i ≤ k,

V : V =
1

8c6n

k∑

i=1

λ̃i

λi
min

(
1,

λ2
i

λ2
k+1(ρk + 1)2

)
:
λ̃i

λi

c

n

≥ 1

8c6c

k∑

i=1

min

(
1,

λ2
i

λ2
k+1(ρk + 1)2

)
: 1.

If the min is 1 then we are okay otherwise, using the identity above and that fact that λi ≥ λk, we have that

λ2
i

λ2
k+1(ρk + 1)2

>
(λk+1ρk)

2

b2λ2
k+1(ρk + 1)2

=
ρ2k

b2(ρk + 1)2
.

Examining the ρk terms:

ρ2k
(ρk + 1)2

=
1

ρ−2
k (ρk + 1)2

=
1

(1 + ρ−1
k )2

.
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As ρk ≥ b we have that ρ−1
k ≤ b ⇒ 1 + ρ−1

k ≤ 1 + b ⇒ (1 + ρ−1
k )−2 ≥ (1 + b)−2.

Putting it together we get that

1

8c6c

k∑

i=1

λ2
i

λ2
k+1(ρk + 1)2

≥ 1

8c6c

k∑

i=1

1

b2(1 + b)2

=
k

8c6c · b2(1 + b)2

≥ 1

8c6c · b2(1 + b)2
.

On i > k, it is clear that the min is always given by the second term, as λi ≤ λk+1, so we get

V : V =
1

8c6n

∑

i>k

λ̃i

λi
min

(
1,

λ2
i

λ2
k+1(ρk + 1)2

)
: c

λ̃i

λi

λ2
i

nλ2
k+1ρ

2
k

=
1

8c6c

∑

i>k

ρ2k
(ρk + 1)2

≥ 1

8c6c

∑

i>k

1

(1 + b)2
=

1

8c6c

p− k

(1 + b)2
>

1

8c6c(1 + b)2
.

Finally we note that for b ≥ 1 it is clear that min(b−2(1 + b)−2, (1 + b)−2) = b−2(1 + b)−2. Therefore,

V : V ≥ 1

8c6c
b−2(1 + b)−2.

By setting c in the upper bound such that c > 8c6, we get

V : V ≥ 1

c2
b−2(1 + b)−2.

G.2 Bias proof

Proof. We will bound the ratio of the lower and upper bounds by bounding the ratios of the corresponding

terms in each sum. Observe that for all i, the ratio of the terms is equal to

(θ∗i )
2

∥θ∗∥2 · 1(
1 + λi

λk+1ρk

) .

On i ≤ k,

(θ∗i )
2

∥θ∗∥2 · 1(
1 + λi

λk+1ρk

)

≥ min
i

(θ∗i )
2

∥θ∗∥2 · 1(
1 + λ1

λk+1
b−1
) .
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On i > k, we have λi/λk+1 ≤ 1, so

(θ∗i )
2

∥θ∗∥2 · 1(
1 + λi

λk+1ρk

)

≥ min
i

(θ∗i )
2

∥θ∗∥2 · 1

(1 + b−1)
.

Unfortunately, the looseness in the top k components coming from the gap λ1/λk+1 dominates the tighter

ratios in the bottom p− k components which only contain a model-dependent gap, mini θ
2
i /∥θ∥2. Future

work would seek to resolve this and provide tight upper and lower bounds for the bias terms.

H Proof of beneficial and malignant shifts

H.1 Trace conditions for simple shifts

Let Σs be any source covariance and define Σt as λ̃i = αλi for i ≤ k and λ̃i = βλi for i > k with α, β ≥ 0.

Then tr(Σs) =
∑k

i=1 λi +
∑

i>k λi and tr(Σt) = α(
∑k

i=1 λ̃i) + β(
∑

i>k λ̃i).

For α > 1, β < 1, if

∑
i>k λi∑k
i=1 λi

<
α− 1

1− β

then we have that tr(Σs) < tr(Σt) and if the inequality is flipped then we obtain tr(Σs) > tr(Σt).

For α < 1, β > 1, if

∑k
i=1 λi∑
i>k λi

<
β − 1

1− α

then we have that tr(Σs) < tr(Σt) and if the inequality is flipped then we obtain tr(Σs) > tr(Σt).

H.2 Proof of beneficial and malignant shifts for simple shifts

We restate the theorem for ease.

Theorem 3.4. (Beneficial and Malignant Multiplicative Shifts on Variance) Let Σs be a source covariance

that satisfies benign source conditions. That is, ∃ k such that ρk ≥ b for a universal constant b > 1. Define

Σt as λ̃i = αλi for i ≤ k and λ̃i = βλi for i > k, with α, β ≥ 0.

1. If α < 1, β ≤ 1 or α ≤ 1, β < 1 then we obtain a beneficial shift in variance.

2. If α > 1, β ≥ 1 or α ≥ 1, β > 1 then we obtain a malignant shift in variance.

3. If we are in the mildly overparameterized regime:
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• α > 1 and β < 1 leads to beneficial shifts;

• α < 1 and β > 1 leads to malignant shifts.

4. If we are in the severely overparameterized regime:

• α > 1 and β < 1 leads to malignant shifts;

• α < 1 and β > 1 leads to beneficial shifts.

Proof. From Theorem 3.1 and Theorem 3.3, we have that for a universal constant b > 1 if ρk ≥ b we get the

following upper and lower bounds on the out-of-distribution variance for some constants c1, c2,

Vood ≤ c1

(
1

n

k∑

i=1

λ̃i

λi
+ n

∑
i>k λ̃iλi

(
∑

i>k λi)2

)

Vood ≥ c2

(
1

n

k∑

i=1

λ̃i

λi
+ n

∑
i>k λ̃iλi

(
∑

i>k λi)2

)
.

Analogously, the in-distribution variance is upper and lower bounded by,

Vid ≤ c1

(
k

n
+

n

Rk

)

Vid ≥ c2

(
k

n
+

n

Rk

)

where Rk = (
∑

i>k λi)
2/
∑

i>k λ
2
i .

Let Σs be any source covariance model that satisfies benign source conditions. Define Σt by,

λ̃i =

{
αλi, i ≤ k

βλi, i > k

for α, β ≥ 0.

Beneficial shifts. We use the upper bound to specify requirements for the beneficial shifts.

Vood ≤ c1

(
α
k

n
+ β

n

Rk

)

= Vid + c1

(
k

n
(α− 1) +

n

Rk
(β − 1)

)
.

Let α > 1, β < 1. To obtain a beneficial shift in this setting we need,

n

Rk
(1− β) >

k

n
(α− 1)

⇒ n

Rk
>

k

n

(
α− 1

1− β

)
.
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In the case α < 1, β > 1, to obtain a beneficial shift we need,

n

Rk
(β − 1) <

k

n
(1− α)

⇒ n

Rk
<

k

n

(
1− α

β − 1

)
.

In the case where α = 1 then any β < 1 leads to beneficial shifts. Similarly when β = 1, any α < 1 leads to

beneficial shifts.

Malignant shifts. We use the lower bound to specify requirements for the malignant shift.

Vood ≥ c2

(
α
k

n
+ β

n

Rk

)

= Vid + c2

(
k

n
(α− 1) +

n

Rk
(β − 1)

)
.

Let α < 1 and β > 1. To obtain a malignant shift in this setting we need,

n

Rk
>

k

n

(
1− α

β − 1

)
.

In the case of α > 1, β < 1, to obtain a malignant shift we need,

n

Rk
<

k

n

(
α− 1

1− β

)
.

In the case where α = 1 then any β > 1 leads to malignant shifts. Similarly when β = 1, any α > 1 leads to

malignant shifts.

Mild and severe overparameterization. We see that the four cases separate into settings in which we are

mildly overparameterized, meaning

n

Rk
>

k

n

∣∣∣∣
α− 1

1− β

∣∣∣∣ ,

and settings in which we are severely overparamterized, meaning

n

Rk
<

k

n

∣∣∣∣
α− 1

1− β

∣∣∣∣ .

In each of these regimes of overparameterization, the above proof has delineated whether we achieve

beneficial or malignant shifts in all settings of α, β.
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H.3 Generalized (necessary) conditions for beneficial and malignant shifts

Let Σs be any source covariance matrix that satisfies benign source conditions and define Σt as

λ̃i =

{
αiλi i ≤ k,

βiλi i > k

with αi, βi ≥ 0 for all i.

Then the OOD variance upper bound is given by,

Vood ≤ c1

(
1

n

k∑

i=1

αi + n

∑
i>k βiλ

2
i

(
∑

i>k λi)2

)

= Vid + c1

(
(
∑k

i=1 αi)− k

n
+ n

∑
i>k λ

2
i (βi − 1)

(
∑

i>k λi)2

)

= Vid + c1

(
k

n

(∑k
i=1 αi

k
− 1

)
+

n

Rk

(∑
i>k βiλ

2
i∑

i>k λ
2
i

− 1

))
,

and the OOD variance lower bound is given by,

Vood ≥ c2

(
1

n

k∑

i=1

αi + n

∑
i>k βiλ

2
i

(
∑

i>k λi)2

)

= Vid + c2

(
(
∑k

i=1 αi)− k

n
+ n

∑
i>k λ

2
i (βi − 1)

(
∑

i>k λi)2

)

= Vid + c2

(
k

n

(∑k
i=1 αi

k
− 1

)
+

n

Rk

(∑
i>k βiλ

2
i∑

i>k λ
2
i

− 1

))
,

where Vid is the ID variance bound.

Again, we use the upper bounds to prove conditions for beneficial shifts and the lower bounds to prove

conditions for malignant shifts.

Beneficial shifts. From the upper bound we consider two separate cases for non-trivial beneficial shifts:

1.
∑k

i=1 αi < k and
∑

i>k βiλ
2
i >

∑
i>k λ

2
i ,

2.
∑k

i=1 αi > k and
∑

i>k βiλ
2
i <

∑
i>k λ

2
i .

We start with the case of
∑k

i=1 αi < k and
∑

i>k βiλ
2
i >

∑
i>k λ

2
i . If this is satisfied, the only way to

achieve a beneficial shift is if

n

Rk

(∑
i>k βiλ

2
i∑

i>k λ
2
i

− 1

)
<

k

n

(
1−

∑k
i=1 αi

k

)
. (22)

We also have in this setting that,

0 < 1−
∑k

i=1 αi

k
≤ 1.
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In Equation 22 we see a notion of severe overparameterization that leads to beneficial shifts. For instance as

Rk → ∞ we see the left-hand-side (LHS) of Equation 22 → 0. So as Rk → ∞ we have that finite n always

leads to a beneficial shift in this setting. We note that equivalently if βi = 1 for all i then we also have the

LHS → 0, just as in the case of severe overparameterization. We will return to the definitions of mild and

severe overparameterization for arbitrary shifts after showing the remaining conditions for beneficial and

malignant shifts.

Now consider the case of
∑k

i=1 αi > k and
∑

i>k βiλ
2
i <

∑
i>k λ

2
i . If this is satisfied, the only way to

achieve a beneficial shift is if

n

Rk

(
1−

∑
i>k βiλ

2
i∑

i>k λ
2
i

)
>

k

n

(∑k
i=1 αi

k
− 1

)
. (23)

In this setting it is clear that

0 < 1−
∑

i>k βiλ
2
i∑

i>k λ
2
i

≤ 1.

In Equation 23, it is clear that we have a notion of mild overparameterization that leads to beneficial shifts.

As above if αi = 1 for all i then we always obtain a beneficial shift in this setting. Otherwise if Rk does not

grow too quickly (as in the case with mild overparameterization) then this is a necessary condition to achieve

beneficial shifts when
∑

i>k βiλ
2
i <

∑
i>k λ

2
i .

Malignant shifts. From the lower bound we once again consider two separate cases for non-trivial malignant

shifts:

1.
∑k

i=1 αi > k and
∑

i>k βiλ
2
i <

∑
i>k λ

2
i ,

2.
∑k

i=1 αi < k and
∑

i>k βiλ
2
i >

∑
i>k λ

2
i .

We start with the case of
∑k

i=1 αi > k and
∑

i>k βiλ
2
i <

∑
i>k λ

2
i . If this is satisfied then the only way to

achieve a malignant shift is if,

n

Rk

(
1−

∑
i>k βiλ

2
i∑

i>k λ
2
i

)
<

k

n

(∑k
i=1 αi

k
− 1

)
. (24)

In the case of
∑k

i=1 αi < k and
∑

i>k βiλ
2
i >

∑
i>k λ

2
i the only way to achieve a malignant shift is if,

n

Rk

(∑
i>k βiλ

2
i∑

i>k λ
2
i

− 1

)
>

k

n

(
1−

∑k
i=1 αi

k

)
. (25)

We now are ready to define mild and severe overparameterization for arbitrary multiplicative shifts.

Theorem H.1. (Mild and severe overparameterization for arbitrary multiplicative shifts) Let Σs be any

source covariance matrix that satisfies benign source conditions, meaning ∃ k such that ρk ≥ b for a universal

constant b > 1. Furthermore, let Σt be defined by λ̃i = αiλi for i ≤ k and λ̃i = βiλi for i > k.
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We will define

C :=

∣∣∣∣∣

(∑k
i=1 αi

k
− 1

)(
1−

∑
i>k βiλ

2
i∑

i>k λ
2
i

)−1
∣∣∣∣∣ .

Then we are mildly overparameterized if

n

Rk
= ω

(
C
k

n

)

and we are severely overparameterized if

n

Rk
= o

(
C
k

n

)
.

We now state our taxonomy of covariate shifts for arbitrary multiplicative shifts.

Theorem H.2. (Beneficial and Malignant (Arbitrary) Multiplicative Shifts on Variance) Let Σs be any source

covariance matrix that satisfies benign source conditions, meaning ∃ k such that ρk ≥ b for a universal

constant b > 1. Furthermore, let Σt be defined by λ̃i = αiλi for i ≤ k and λ̃i = βiλi for i > k.

1. If
∑k

i=1 αi ≤ k and
∑

i>k βiλ
2
i <

∑
i>k λ

2
i then we obtain a beneficial shift.

2. If
∑k

i=1 αi < k and
∑

i>k βiλ
2
i ≤

∑
i>k λ

2
i then we obtain a beneficial shift.

3. If
∑k

i=1 αi ≥ k and
∑

i>k βiλ
2
i >

∑
i>k λ

2
i then we obtain a malignant shift.

4. If
∑k

i=1 αi > k and
∑

i>k βiλ
2
i ≥

∑
i>k λ

2
i then we obtain a malignant shift.

5. If we are in the mildly overparameterized regime:

•
∑k

i=1 αi > k and
∑

i>k βiλ
2
i <

∑
i>k λ

2
i leads to beneficial shifts,

•
∑k

i=1 αi < k and
∑

i>k βiλ
2
i >

∑
i>k λ

2
i leads to malignant shifts.

6. If we are in the severely overparameterized regime:

•
∑k

i=1 αi < k and
∑

i>k βiλ
2
i >

∑
i>k λ

2
i leads to beneficial shifts,

•
∑k

i=1 αi > k and
∑

i>k βiλ
2
i <

∑
i>k λ

2
i leads to malignant shifts.

I Experiment details

I.1 Synthetic data experiments

Our synthetic data experiments use source data generated from random Gaussians with covariance structures

that are known to exhibit benign overfitting. These structures include the (k, δ, ϵ) spiked covariance models

and eigendecay rates given by Bartlett et al. [Bar+20] such as λi = i−α ln−β(i+ 1) for α = 1, β > 1. Target
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data is generated from random Gaussians with covariances that lead to beneficial and malignant shifts based

on our theories and modifications of the aforementioned source covariance structures.

All ground truth models are sampled uniformly on the p-dimensional hypersphere, as θ∗
s
∼ Sp−1. Label

noise is sampled as ε ∼ N (0, 1), unless otherwise specified. For a data matrix X ∈ R
n×p, training labels are

obtained as y = Xθ∗
s
+ε. Excess risk is computed for unseen testing data from source and target distributions

of interest using clean labels.

In Figure 4 we take the source to be the (k, δ, ϵ) spiked model with parameters given by k = 70, δ = 1, and

ϵ = 0.005. The beneficial shift scales the first k eigenvalues by α = 1.125 and the last p− k eigenvalues by

β = 0.65. For the malignant shift we use α = 0.875 and β = 1.35. The minimum-norm linear interpolator

is fit to 500 data points sampled from a centered multivariate Gaussian with unit variance and dimension

p = 4900. The model vector is sampled from a centered Gaussian and scaled to unit norm. The x-axis

represents the amount of additive label noise in training. All evaluation is done on clean data. Each point is

the average of 40 runs.

In Figure 5, we take the source to be the (k, δ, ϵ) spiked model with source parameters as k = 10, δ =
1.0, ϵ = 1e−6 and target parameters k̃ = 10, δ̃ = 1.35, ϵ̃ = 6.5e−7. We use n = 50 training data points, 10k
held-out testing data points in each OOD test set, and vary p from 75 to 1000 dimensions. We solve OLS

using the closed-form MNI solution on the source data. Each experiment is averaged over 100 independent

runs.

In Figure 2 we train fully-connected neural networks with ReLU activation functions. Data is sampled as

above from the covariance structures given by λi = i−α ln−β(i+ 1) with varying β to obtain beneficial and

malignant shifts. The network architecture is 3 hidden layers, with hidden widths 512 and 2048. Networks

are trained with stochastic gradient descent with momentum 0.9 until the training MSE has reached < 5e−6.

We start with a learning rate of 0.01 and decay by a stepped cosine schedule for 1,500 epochs. We take batch

size of 64 and train without weight decay. Each experiment is averaged over 20 independent runs. We train in

PyTorch with a single A100 NVIDIA GPU. In these experiments we take n = 200 and compare p = 20 with

p = 2000. Label noise is sampled as N (0, σ2) and we vary σ2 to show the behaviors at varying train label

noise.

In Figure 8 we train full-connected neural networks with ReLU activation functions. Source data is sampled

from a mean-centered Gaussian with diagonal covariance matrix with eigenvalues λi = i−1 ln−1.5(i+ 1).
Target covariate shifts are implemented in the style of Theorem 3.4 where the top k source eigenvalues are

multiplied by α and the bottom p− k source eigenvalues are multiplied by β. In this experiment, we take

k = 10, α = 2, β = 0.1 and experiment with n = 400 source data samples for p = 200 and p = 4, 000. The

network architecture is 3 hidden layers with hidden width 2, 048. Our training setup is the same as given

above for prior MLP experiments.

I.2 CIFAR-10 and CIFAR-10C experiments

In Figures 3 and 9 we use a binary variant of CIFAR-10 and CIFAR-10C. For details on the CIFAR-10C

dataset, see Hendrycks and Dietterich [HD19]. The binary problem is constructed by selecting only the dog

and truck classes. To stay overparameterized, we subsample n = 500, 1000, 2000 points in a class-balanced

manner. Images are flattened into p = 3072 dimensional vectors. We fit our model using the OLS solution

for the MNI against {0, 1} class labels. We test on the same two classes from CIFAR-10 and CIFAR-10C
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90% label noise it takes a lot of compute to interpolate the entire CIFAR-10 dataset, especially if using

data augmentations, weight decay, or other regularizations. As such, we turn off weight decay and data

augmentations for these models to be able to tractably interpolate CIFAR-10 at high noise levels.
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