
The Impact of Initialization
on LoRA Finetuning Dynamics

Soufiane Hayou

Simons Institute

UC Berkeley

hayou@berkeley.edu

Nikhil Ghosh

Dept of Statistics

UC Berkeley

nikhil_ghosh@berkeley.edu

Bin Yu

Dept of Statistics

UC Berkeley

binyu@berkeley.edu

Abstract

In this paper, we study the role of initialization in Low Rank Adaptation
(LoRA) as originally introduced in Hu et al. [19]. Essentially, to start from
the pretrained model as initialization for finetuning, one can either initial-
ize B to zero and A to random (default initialization in PEFT package), or
vice-versa. In both cases, the product BA is equal to zero at initialization,
which makes finetuning starts from the pretrained model. These two ini-
tialization schemes are seemingly similar. They should in-principle yield
the same performance and share the same optimal learning rate. We
demonstrate that this is an incorrect intuition and that the first scheme
(initializing B to zero and A to random) on average yields better perfor-
mance compared to the other scheme. Our theoretical analysis shows that
the reason behind this might be that the first initialization allows the use
of larger learning rates (without causing output instability) compared to
the second initialization, resulting in more efficient learning of the first
scheme. We validate our results with extensive experiments on LLMs.

1 Introduction

One of the most important paradigm shifts in deep learning has been to embrace the
pretrain-finetune paradigm (e.g., [7, 9]) in order to solve many real world tasks. Previ-
ously, to solve a specific task, typically a custom model would be trained from scratch on
purely task relevant data. Nowadays however, it is standard to instead finetune an already
pretrained based model on the specific task required. The base pretrained model is trained
on a generic unsupervised objective in order to learn powerful and general features which
can be rapidly adapted to the downstream task, greatly accelerating the speed of learning
and reducing the number of training samples needed compared to training from scratch.

In this paradigm, one of the clearest empirical trends has been that the most performant
models are obtained at the largest scales [14, 25] with state-of-the-art models of hundreds
of billions of parameters. Due to the immense cost of training such models, only a few
industry labs can pretrain large models from scratch. Many of these pretrained models
are accessible through open-source platforms (e.g., Llama by Touvron et al. [38]) and prac-
titioners are interested in finetuning such models for specific tasks. However, due to their
size, adapting such models to downstream tasks with full finetuning (updating all model
parameters) is computationally infeasible for most practitioners who lack considerable
computational resources. However, since pretrained models learn already useful repre-
sentations for finetuning, in-principle a significant adaptation of all parameters should
not usually be required. To realize this intuition, researchers have proposed a variety
of parameter-efficient finetuning methods that typically freeze a bulk of the pretrained

a
rX

iv
:2

4
0
6
.0

8
4
4
7
v
1

[c

s.
L

G
]

 1
2
 J

u
n
 2

0
2
4

weights and tune only a small set of (possibly newly initialized) parameters. Such meth-
ods include the adapters method [11] where lightweight “adapter" layers are inserted and
trained, prompt tuning [20] where a “soft prompt" is learned and appended to the input,
and (IA)3 [24] where activation vectors are modified with learned scalings.

One of the most popular and effective such parameter-efficient finetuning methods is
known as Low Rank Adaptation [19] abbreviated as LoRA. In LoRA finetuning, for a given
layer, only a low rank matrix called an adapter which is added to the pretrained weights,
is trainable. The training can be done with any optimizer but the common choice in prac-
tice is Adam [3]. Since the trained adapter is low-rank, LoRA significantly reduces the
number of trainable parameters in the finetuning process compared with full finetuning.
On many tasks such as instruction finetuning, LoRA has been shown to achieve compa-
rable or better performance compared with full-finetuning [35, 39], although there are
cases such as complicated and long form generation tasks where it is not always as per-
formant. The generally high performance level and the computational savings of LoRA
have contributed to it becoming a standard finetuning method.

Just as in all neural network training scenarios, efficient use of LoRA requires a careful
choice of multiple hyperparameters such as the rank, the learning rate, and choice of
initialization. Although there has been prior work investigating the rank [31] and learn-
ing rate [44] hyperparameters, there has been limited investigation into the initialization
scheme used for vanilla LoRA. In this work we focus on the question of initialization.
Through experimental verification and theoretical insights, we justify the use of a partic-
ular initialization choice over the a priori equally natural alternative.

Related Work. In standard LoRA training, one of the two LoRA matrices is initialized
with random values and the other is initialized to zero (see Section 2.1). Recently, in Meng
et al. [48] the authors proposed an alternative initialization scheme to LoRA which uses
the top singular vectors of the pretrained weights as opposed to a random initialization
and showed improved training on several tasks. To further improve LoRA training with
quantization, Li et al. [34] introduced a new method called LoftQ for computing a better
initialization for quantized training [27]. However, to the best of our knowledge, there has
not been any study concerning the random initialization in vanilla LoRA. Specifically, it is
not clear from prior work which of the two LoRA matrices should be initialized to be zero. Em-
pirical results by Zhu et al. [50] suggested that the two initialization schemes mentioned
above yield similar performance, but it is not clear if the learning rate was well-tuned for
each initialization scheme. Our findings suggest that these two initialization schemes lead
to fundamentally different finetuning dynamics, and that one of these schemes generally
yields better result compared to the other.

LoRA Variations. We remark that beyond altering the LoRA initialization scheme there
have been a series of works which try to address limitations of vanilla LoRA using differ-
ent variations. To further reduce the number of trainable parameters LoRA-FA [42] freezes
the A matrix which leads to small performance loss while reducing memory consumption
by up to 1.4×. The performance of this training scheme is also investigated in Zhu et al.
[50]. VeRA [33] freezes random weight tied adapters and learns vector scalings of the
internal adapter activations. LoRA-XS [43] initializes the A and B matrices using the SVD
of the pretrained weights and trains a low-rank update of the form BRA where R is a
trainable r × r matrix and B, A are fixed. NOLA [32] parametrizes the adapter matrices
to be linear combinations of frozen random matrices and optimizes the linear coefficients
of the mixtures. VB-LORA [46] shares adapter parameters using a global vector bank. In
order to improve the learning ability for more challenging finetuning tasks, Kalajdzievski
[31] proposes a scaling rule for the scalar adapter multiplier to unlock increased gains
with higher adapter ranks. MoRA [45] learns high-rank updates while still preserving
parameter efficiency by applying hand-designed compress and decompress operations
before and after a trainable adapter matrix. DoRA [47] decomposes the pretrained weight
into magnitude and direction components to allow for better training dynamics.

Contributions. In this paper, we study the impact of different random initialization
schemes for LoRA adapters through a theory of large width for neural networks. There

2

2 Setup and Definitions

We consider a general neural network model of the form






Yin(x) = Winx,

Yl(x) = Fl(Wl, Yl−1(x)), l ∈ [L],

Yout(x) = WoutYL(x),

(1)

where x ∈ R
d is the input, L ≥ 1 is the network depth, (Fl)l∈[L] are mappings that

define the layers, and Wl ∈ R
n×n are the hidden weights, where n is the network width,

and Win,Wout are input and output embedding weights.1 This model will represent the
pretrained model that will later be finetuned on some new task.

To finetune a (large) pretrained model with a limited amount of computational resources,
a popular resource efficient approach is to use the LoRA finetuning method defined below.

Definition 1 (Low Rank Adapters (LoRA) from [19]). To apply LoRA to a weight matrix
W ∈ R

n1×n2 in the model, we constrain its update in the fine-tuning process by representing
the latter with a low-rank decomposition W = W ∗ + α

rBA. Here, only the weight matrices
B ∈ R

n1×r, A ∈ R
r×n2 are trainable and the original pretrained weights W ∗ remain frozen. The

rank r ≪ min(n1, n2) and α ∈ R are tunable constants.

As the width n grows,2 the network initialization scheme and the learning rate should be
adapted to avoid numerical instabilities and ensure efficient learning. For instance, the
variance of the initialization weights (in hidden layers) should scale like 1/n to prevent
the pre-activations from blowing up as we increase model width n (e.g., He initialization
[4]). To derive proper scaling rules, a principled approach consist of analyzing the statis-
tical properties of key quantities in the model (e.g. second moment of the pre-activations)
as n grows and then adjust the initialization variance, the learning rate, and the archi-
tecture to achieve desirable properties in the limit n → ∞ [5, 10, 13, 40]. We use this
approach to study the effect of initialization on the feature learning dynamics of LoRA in
the infinite-width limit. For more details about the theory of scaling of neural networks,
see Appendix A.2.

Throughout the paper, we will be using asymptotic notation to describe the behaviour of
several quantities as the width n grows. Note that the width n will be the only scaling
dimension of neural network training which grows and all other scaling dimensions such
as the LoRA rank r, number of layers L, sequence length, number of training steps, etc.,
will be considered as fixed. We use the following notation for the asymptotic analysis.

Notation. Given sequences cn ∈ R and dn ∈ R
+, we write cn = O(dn), resp. cn = Ω(dn),

to refer to cn < κdn, resp. cn > κdn, for some constant κ > 0. We write cn = Θ(dn) if both
cn = O(dn) and cn = Ω(dn) are satisfied. For vector sequences cn = (cin)1≤i≤k ∈ R

k (for
some k > 0), we write cn = O(dn) when cin = O(din) for all i ∈ [k], and same holds for
other asymptotic notations. Finally, when the sequence cn is a vector of random variables,
convergence is understood to be convergence in second moment (L2 norm).

2.1 Initialization of LoRA Adapters

The standard way to initialize trainable weights is to take an iid initialization of the entries
Aij ∼ N (0, σ2

A), Bij ∼ N (0, σ2
B) for some σA, σB ≥ 0 (this includes initialization with

zeros if σB or σA are set to 0).3. Due to the additive update structure of LoRA, we want
to initialize the product BA to be 0 so that finetuning starts from the pretrained model

1We use the same notation from Hayou et al. [44].
2The width in SOTA models is typically large, i.e. of width n > 103.
3Gaussianity is not important and can be replaced by any zero-mean distribution with finite-

variance for our purposes.

4

[19]. This can be achieved by initializing one of the weights A and B to 0. If both
are initialized to 0, no learning occurs in this case since this is a saddle point and the
parameter gradients will remain zero. Thus, we should initialize one of the parameters
A and B to be non-zero and the other to be zero. If we choose a non-zero initialization
for A, then following standard initialization schemes (e.g., He Init [4], LeCun Init [1]), one
should set σ2

A = Θ(n−1) to ensure Ax does not explode for large n. This is justified by the
Central Limit Theorem (CLT). On the other hand, if we choose a non-zero initialization
for B, one should make sure that σ2

b = Θ(r−1) = Θ(1). This leaves us with two possible
initialization schemes:

• Init[A]: σ2
B = 0, σ2

A = Θ(n−1) (default initialization in LoRA [19]).

• Init[B]: σ2
B = Θ(r−1) = Θ(1), σ2

A = 0.4

These two initialization achieve the goal of starting finetuning from the pretrained model.
A priori, it is unclear if there is a material difference between the two initialization
schemes. Surprisingly, as we will show later in this paper, these two initialization schemes
lead to fundamentally different training dynamics when model width is large.

2.2 LoRA Features

Notation. For a given LoRA layer in the network, we use Z to denote the input to that
layer and Z̄ for the output after adding the pretrained weights. More precisely, we can
write the layer operation as Z̄ = W ∗Z + α

rBAZ.

Our main analysis relies on a careful estimation of the magnitude of several quantities
involving LoRA features. Let us first give a formal definition.
Definition 2 (LoRA Features). Given a general neural architecture and a LoRA layer (Defini-
tion 1), we define LoRA features (ZA, ZB) as







ZA = AZ

ZB = BZA = BAZ,

At fine-tuning step t, we use the superscript t to denote the value of LoRA features Zt
A, Z

t
B , and

the subscript t to denote the weights At, Bt.

3 LoRA Finetuning Dynamics in the Large Width Limit

We fix the LoRA rank r throughout the analysis and examine the finetuning dynamics in
the limit of large width. This setup aligns well with practical scenarios where the rank
is much smaller than the width (i.e., r ≪ n). Typically, for Llama models the rank r is
generally of order 2k for k ∈ {2, . . . , 6}, and model width n is generally larger than 212.
We will refer to a layer of the network to which LoRA is applied (see Definition 1) as a
LoRA layer. For the theoretical analysis, we adopt a simplified setting that facilitates a
rigorous yet intuitive derivations of the results.

3.1 Simplified Setting

The following simplified setup was considered in Hayou et al. [44] to derive asymptotic
results concerning the learning rates in LoRA. We use the same setup in our analysis to
investigate the impact of initialization.

Finetuning Dataset. We assume that the dataset used for finetuning consists of
a single datapoint (x, y),5 and the goal is to minimize the loss calculated with

4Here, we assumed that r = Θ(1) (in width), i.e. it doesn’t grow with width. In general, the
right scaling for Init[B] is σ2

B = Θ(r−1).
5Although this a simplifying assumption for our analysis, the results can be extended to mini-

batched gradients without affecting the conclusions. Such results will require additional assump-
tions to be fully rigorous.

5

the model with adjusted weights W ∗ + BA for all LoRA layers (here θ =

{A,B, for all LoRA layers in the model}). Zt is the input to the LoRA layer, computed
with data input x. Similarly, we write dZ̄t to denote the gradient of the loss function with
respect to the layer output features Z̄ evaluated at data point (x, y).

Single LoRA Module. Given a LoRA layer, LoRA feature updates are not only driven
by the change in the A,B weights, but also the changes in Z, dZ̄ which are updated as we
finetune the model (assuming there are multiple LoRA layers). To isolate the contribution
of individual LoRA layers to feature learning, we assume that only a single LoRA layer
is trainable and all other LoRA layers are frozen.6 For this LoRA layer the layer input
Z is fixed and does not change with t, whereas dZ̄ changes with step t (because Z̄t =
(W ∗ + α

rBtAt)Z). After step t, ZB is updated as follows

∆Zt
B = Bt−1∆Zt

A
︸ ︷︷ ︸

δ1
t

+∆BtZ
t−1
A

︸ ︷︷ ︸

δ2
t

+∆Bt∆Zt
A

︸ ︷︷ ︸

δ3
t

. (2)

As discussed in Hayou et al. [44], the terms δ1t , δ
2
t represent ‘linear’ feature updates that we

obtain if we fix one weight matrix and only train the other. The third term δ3t represents the
‘multiplicative’ feature update which captures the compounded update due to updating
both A and B.

3.2 Stability and Feature Learning

Hayou et al. [44] introduced the notion of stability of LoRA features as width grows. We
introduce here a slightly more relaxed notion of stability.

Definition 3 (Feature Stability). We say that LoRA finetuning is stable if for all LoRA layers in
the model, and all training steps t, we have Z, ZB = O(1), as the width n goes to infinity.

Here, feature stability implies that LoRA output ZB remains bounded (in L2 norm) as
width grows. To achieve such stability, hyperparameters (initialization, learning rate)
should be scaled as n grows. We will show that the dependence of the optimal learning
rate on n is highly sensitive to the choice of initialization (Init[A] or Init[B]).

Note that feature stability also requires that Z = O(1) which is directly related to pre-
training dynamics since it depends on some pretrained weights W ∗. We assume that
pretraining parameterization (how initialization and learning rate are parametrized w.r.t
width) ensures this kind of stability (see Appendix A for more details).7

As discussed above, feature updates are driven by the terms (δit)i∈{1,2,3,}. As n grows,
these feature updates might become trivial (i.e. vanish as n → ∞) or unstable (i.e.
grows unbounded). To avoid such scenarios, we want to ensure that ∆ZB = Θ(1).
Such conditions are the main ideas behind µP [26] and Depth-µP [41], which are net-
work parametrizations that ensure stability and feature learning in the large width and
depth limits for pretraining. We recall this definition from [44].

Definition 4 (Feature Learning). We say that LoRA finetuning induces stable feature learning
in the limit of large width if the dynamics are stable (Definition 3), and for all finetuning steps t,

we have ∆Zt
B

def
= Zt+1

B − Zt
B = Θ(1).

∆ZB is the sum of the terms δit’s (Equation (2)). To achieve optimal feature learning, we
want to ensure that δ1t = Θ(1) and δ2t = Θ(1) which means that both weight matrices A
and B are efficiently updated and contribute to the update in ZB . An intuitive explanation

6This is equivalent to having only a single LoRA layer in the model since LoRA layers are initial-
ized to zero.

7When taking the infinite width limit, we can for instance assume that pretraining parameteriza-
tion is µP [26]. This is a technicality for the infinite-width limit and does not have any implications
on practical scenarios where the width is finite. The most important implications of this assumption
is that in the pretrained network (before introducing LoRA layers), we have Z = Θ(1), Z̄ = Θ(1),
which holds for a general input-output pair (x, y).

6

is provided in Appendix A.1. This leads us to the following definition of efficient learning
with LoRA.

Definition 5 (Efficient Learning with LoRA). We say that LoRA fine-tuning is efficient if it is
stable (Definition 3), and for all LoRA layers in the model, and all fine-tuning steps t > 1, we have

δit = Θ(1), i ∈ {1, 2}.

Next, we introduce the γ-operator, an essential tool in our analysis of the large width
dynamics of LoRA.

3.3 Introduction to the γ-operator

In the theory of scaling, one usually tracks the asymptotic behaviour of key quantities as
we scale some model ingredient. For instance, if we scale the width n of a neural network,
we are interested in quantifying how certain quantities in the network behave as n grows.
This is a standard approach for (principled) model scaling and it has so far been used to
derive scaling rules for initialization [5], activation function [10], network parametrization
[41], amongst other things.

With Init[A] and Init[B], initialization weights are of order Θ(n−β) for some β ≥ 0.
Assuming that the learning rate also scales polynomialy with n, it is straightforward that
preactivations, gradients, and weight updates are all asymptotically polynomial in n. Note
that this is only possible because all neural computations consists of sums of Θ(nα) terms,
where typically α ∈ {0, 1}. For instance, when calculating the features AZ, each entry is
a sum of n terms, while when calculating BZA, each entry is a sum of r terms (r fixed as
n goes to infinity). This is true for general neural computation that can be expressed as
Tensor Programs [15].

Consequently, for some quantity v in the computation graph, it is natural to track the
exponent that determines the asymptotic behaviour of v with respect to n. We write
v = Θ(γ[v]) to capture this polynomial dependence. Elementary operations with the
γ-operator include:8

Zero. When v = 0, we write γ[v] = −∞ (as a limit of γ[n−β] when β → ∞).

Multiplication. Given two real-valued variables v, v′, we have γ[v × v′] = γ[v] + γ[v′].

Addition. Given two real-valued variables v, v′, we generally have γ[v + v′] =
max(γ[v], γ[v′]). The only case where this is violated is when v′ = −v. This is generally a
zero probability event if v and v′ are random variables that are not perfectly (negatively)
correlated, which is the case in most situations where we make use of this formula.

When does γ-Operator fail to capture asymptotic behaviour? When non-polynomial
dependencies (in terms of n) appear in neural computations, then γ function cannot cap-
ture asymptotic behaviour of the learning dynamics. For instance, if one of the layers has
embedding dimension en or n × log(n), polynomial exponents are no longer sufficient to
capture the asymptotic dynamics. Fortunately, such cases are generally not considered in
practice.

We have now introduced all required notions for the subsequent analysis. For better
readability, we defer all the proofs to the appendix.

8The γ-operator is a mapping from the set {v, s.t.v = Θ(nβ) for β ∈ R ∪ {−∞}} to the set
R ∪ {−∞}.

7

3.4 Recursive formulas

Using the γ-operator, we can track the asymptotic behaviour of the finetuning dynamics
as model width n grows. At finetuning step t, the gradients are given

∂Lt

∂B
=

α

r
dZ̄t−1 ⊗At−1Z

∂Lt

∂A
= dZt−1

A ⊗ Z =
α

r
B⊤

t−1dZ̄
t−1 ⊗ Z,

where Lt is the loss at step t. The weights are updated as follows

At = At−1 − ηgt−1
A , Bt = Bt−1 − ηgt−1

B ,

where gA, gB are processed gradients (e.g. normalized gradients with momentum as in
AdamW). We assume that the gradients are processed in a way that makes their entries
Θ(1). This is generally satisfied in practice (with Adam for instance) and has been con-
sidered in [40] to derive the µ-parametrization for general gradient processing functions.
From this, we obtain the following recursive formulas for γ[Zt

A] and γ[Bt], which charac-
terizes their behaviour in the large width limit.
Lemma 1 (Informal). For t fixed, the asymptotic dynamics of Zt

A and Bt follow the recursive
formula

γ[Zt
A] = max(γ[Zt−1

A], γ[η] + 1)

γ[Bt] = max(γ[Bt−1]], γ[η]).
(3)

The formal proof of Lemma 1 is provided in Appendix A and relies on Assumption 1
which fairly represents practical scenarios (see Appendix A for a detailed discussion).
Lemma 1 captures the change in asymptotic behaviour of quantities Zt

A and Bt as width
grows. Naturally, the dynamics depend on the the initialization scheme which lead to
completely different behaviours as we show in the next two results.

3.5 Init[A] leads to more efficient feature learning but suffers “internal” instability

In the next result, we provide a precise characterization of stability and feature learning
when using Init[A].
Theorem 1 (Informal). For t fixed, with Init[A] and learning rate η, we have

• Stability: Zt
B = O(1) if and only if γ[η] ≤ −1/2.

• Feature Learning: ∆Zt
B = Θ(1) if and only if γ[η] = −1/2. In this case, we also have

δ1t , δ
2
t = Θ(1) (efficient feature learning, Definition 5).

Moreover, “internal” instability (Zt
A = Ω(1)) occurs when γ[η] ∈ (−1, 1/2].

With Init[A], the maximal learning rate9 that does not lead to instability in ZB scales as
Θ(n−1/2). This can be seen as an asymptotic form of the edge of stability phenomenon
[17] where if we increase the learning rate beyond some level, instability occurs. Inter-
estingly, in this case (i.e. with Θ(n−1/2) learning rate) the features are efficiently updated
(Definition 5). However, this comes with caveat: the features Zt

A grow as Θ(n1/2) which
can potentially cause numerical instabilities. We call this phenomenon internal instability:
only the features ZA (internal LoRA features) grows, LoRA output ZB remains Θ(1) in
this case.

The fact that Θ(n−1/2) is the maximal learning rate that does not cause instability in ZB

does not mean it is the optimal learning rate. As the width n grows, this internal instability
in ZA will become more and more problematic. Intuitively, we expect that a trade-off
appears in this case: the optimal learning rate (found by grid search) to be larger than
Θ(n−1) but smaller than Θ(n−1/2), i.e. the network will try to achieve a balance between
optimal feature learning (γ[η] = −1/2) and internal stability Zt

A = Θ(1) (γ[η] = −1). We
verify this empirically in the next section.

9Maximal γ[η] that does not cause instability in ZB

8

6 Acknowledgement

We thank Gradient AI for cloud credits under the Gradient AI fellowship awarded to SH
and thank AWS for cloud credits under an Amazon Research Grant awarded to the Yu
Group. We also gratefully acknowledge partial support from NSF grants DMS-2209975,
2015341, 20241842, NSF grant 2023505 on Collaborative Research: Foundations of Data
Science Institute (FODSI), the NSF and the Simons Foundation for the Collaboration on
the Theoretical Foundations of Deep Learning through awards DMS-2031883 and 814639,
and NSF grant MC2378 to the Institute for Artificial CyberThreat Intelligence and Opera-
tioN (ACTION).

13

References

[1] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. “Efficient backprop”. In: Neural
networks: Tricks of the trade. Springer, 2002, pp. 9–50.

[2] L. Yang, S. Hanneke, and J. Carbonell. “A theory of transfer learning with applica-
tions to active learning”. In: Machine learning 90 (2013), pp. 161–189.

[3] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”. In: arXiv
preprint arXiv:1412.6980 (2014).

[4] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recognition”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016,
pp. 770–778.

[5] S. Schoenholz, J. Gilmer, S. Ganguli, and J. Sohl-Dickstein. “Deep Information Prop-
agation”. In: International Conference on Learning Representations. 2017.

[6] S. S. Schoenholz, J. Gilmer, S. Ganguli, and J. Sohl-Dickstein. Deep Information Prop-
agation. 2017. arXiv: 1611.01232 [stat.ML].

[7] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. “Improving language
understanding by generative pre-training”. In: (2018).

[8] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. GLUE: A Multi-
Task Benchmark and Analysis Platform for Natural Language Understanding. 2018. arXiv:
1804.07461 [cs.CL].

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding”. In: arXiv preprint
arXiv:1810.04805 (2019).

[10] S. Hayou, A. Doucet, and J. Rousseau. “On the Impact of the Activation function on
Deep Neural Networks Training”. In: Proceedings of the 36th International Conference
on Machine Learning. Ed. by K. Chaudhuri and R. Salakhutdinov. Vol. 97. Proceed-
ings of Machine Learning Research. PMLR, Sept. 2019, pp. 2672–2680.

[11] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Ges-
mundo, M. Attariyan, and S. Gelly. “Parameter-efficient transfer learning for NLP”.
In: International Conference on Machine Learning. PMLR. 2019, pp. 2790–2799.

[12] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov. RoBERTa: A Robustly Optimized BERT Pretraining Approach. 2019.
arXiv: 1907.11692 [cs.CL].

[13] G. Yang. “Scaling limits of wide neural networks with weight sharing: Gaussian
process behavior, gradient independence, and neural tangent kernel derivation”. In:
arXiv preprint arXiv:1902.04760 (2019).

[14] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray,
A. Radford, J. Wu, and D. Amodei. “Scaling laws for neural language models”. In:
arXiv preprint arXiv:2001.08361 (2020).

[15] G. Yang. “Tensor programs iii: Neural matrix laws”. In: arXiv preprint
arXiv:2009.10685 (2020).

[16] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J.
Tworek, J. Hilton, R. Nakano, et al. “Training verifiers to solve math word prob-
lems”. In: arXiv preprint arXiv:2110.14168 (2021).

[17] J. Cohen, S. Kaur, Y. Li, J. Z. Kolter, and A. Talwalkar. “Gradient Descent on Neural
Networks Typically Occurs at the Edge of Stability”. In: International Conference on
Learning Representations. 2021.

[18] S. Hayou, E. Clerico, B. He, G. Deligiannidis, A. Doucet, and J. Rousseau. “Stable
ResNet”. In: Proceedings of The 24th International Conference on Artificial Intelligence
and Statistics. Ed. by A. Banerjee and K. Fukumizu. Vol. 130. Proceedings of Machine
Learning Research. PMLR, 13–15 Apr 2021, pp. 1324–1332.

[19] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W.
Chen. “LoRA: Low-Rank Adaptation of Large Language Models”. In: arXiv preprint
arXiv:2106.09685 (2021).

[20] B. Lester, R. Al-Rfou, and N. Constant. “The power of scale for parameter-efficient
prompt tuning”. In: arXiv preprint arXiv:2104.08691 (2021).

14

[21] G. Yang and E. J. Hu. “Tensor programs iv: Feature learning in infinite-width neural
networks”. In: International Conference on Machine Learning. PMLR. 2021, pp. 11727–
11737.

[22] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. de
Las Casas, L. A. Hendricks, J. Welbl, A. Clark, T. Hennigan, E. Noland, K. Millican,
G. van den Driessche, B. Damoc, A. Guy, S. Osindero, K. Simonyan, E. Elsen, J. W.
Rae, O. Vinyals, and L. Sifre. Training Compute-Optimal Large Language Models. 2022.
arXiv: 2203.15556 [cs.CL].

[23] M. Li, M. Nica, and D. Roy. “The Neural Covariance SDE: Shaped Infinite Depth-
and-Width Networks at Initialization”. In: Advances in Neural Information Processing
Systems. Ed. by S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh.
Vol. 35. Curran Associates, Inc., 2022, pp. 10795–10808.

[24] H. Liu, D. Tam, M. Muqeeth, J. Mohta, T. Huang, M. Bansal, and C. A. Raffel. “Few-
shot parameter-efficient fine-tuning is better and cheaper than in-context learning”.
In: Advances in Neural Information Processing Systems 35 (2022), pp. 1950–1965.

[25] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M.
Bosma, D. Zhou, D. Metzler, et al. “Emergent abilities of large language models”.
In: arXiv preprint arXiv:2206.07682 (2022).

[26] G. Yang, E. J. Hu, I. Babuschkin, S. Sidor, X. Liu, D. Farhi, N. Ryder, J. Pachocki, W.
Chen, and J. Gao. “Tensor programs v: Tuning large neural networks via zero-shot
hyperparameter transfer”. In: arXiv preprint arXiv:2203.03466 (2022).

[27] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer. “QLoRA: Efficient Fine-
tuning of Quantized LLMs”. In: arXiv preprint arXiv:2305.14314 (2023).

[28] S. Hayou. “On the infinite-depth limit of finite-width neural networks”. In: Transac-
tions on Machine Learning Research (2023). issn: 2835-8856.

[29] S. Hayou and G. Yang. “Width and Depth Limits Commute in Residual Networks”.
In: Proceedings of the 40th International Conference on Machine Learning. Ed. by A.
Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett. Vol. 202. Pro-
ceedings of Machine Learning Research. PMLR, 23–29 Jul 2023, pp. 12700–12723.

[30] B. He, J. Martens, G. Zhang, A. Botev, A. Brock, S. L. Smith, and Y. W. Teh. Deep
Transformers without Shortcuts: Modifying Self-attention for Faithful Signal Propagation.
2023. arXiv: 2302.10322 [cs.LG].

[31] D. Kalajdzievski. “A Rank Stabilization Scaling Factor for Fine-Tuning with LoRA”.
In: arXiv preprint arXiv:2312.03732 (2023).

[32] S. A. Koohpayegani, K. Navaneet, P. Nooralinejad, S. Kolouri, and H. Pirsiavash.
“NOLA: Networks as linear combination of low rank random basis”. In: arXiv
preprint arXiv:2310.02556 (2023).

[33] D. J. Kopiczko, T. Blankevoort, and Y. M. Asano. “VeRA: Vector-based Random
Matrix Adaptation”. In: arXiv preprint arXiv:2310.11454 (2023).

[34] Y. Li, Y. Yu, C. Liang, P. He, N. Karampatziakis, W. Chen, and T. Zhao. “Loftq:
Lora-fine-tuning-aware quantization for large language models”. In: arXiv preprint
arXiv:2310.08659 (2023).

[35] H. Liu, C. Li, Y. Li, and Y. J. Lee. “Improved baselines with visual instruction tun-
ing”. In: arXiv preprint arXiv:2310.03744 (2023).

[36] S. Longpre, L. Hou, T. Vu, A. Webson, H. W. Chung, Y. Tay, D. Zhou, Q. V. Le, B.
Zoph, J. Wei, et al. “The flan collection: Designing data and methods for effective
instruction tuning”. In: arXiv preprint arXiv:2301.13688 (2023).

[37] L. Noci, C. Li, M. B. Li, B. He, T. Hofmann, C. Maddison, and D. M. Roy. The
Shaped Transformer: Attention Models in the Infinite Depth-and-Width Limit. 2023. arXiv:
2306.17759 [stat.ML].

[38] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov,
S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G.
Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N.
Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa,
I. Kloumann, A. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee, D. Liskovich,
Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton, J.

15

Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian,
X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y.
Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic, S. Edunov, and
T. Scialom. “Llama 2: Open Foundation and Fine-Tuned Chat Models”. In: arXiv
preprint arXiv:2307.09288 (2023).

[39] Y. Wang, H. Ivison, P. Dasigi, J. Hessel, T. Khot, K. R. Chandu, D. Wadden, K.
MacMillan, N. A. Smith, I. Beltagy, et al. “How Far Can Camels Go? Exploring the
State of Instruction Tuning on Open Resources”. In: arXiv preprint arXiv:2306.04751
(2023).

[40] G. Yang and E. Littwin. “Tensor programs ivb: Adaptive optimization in the infinite-
width limit”. In: arXiv preprint arXiv:2308.01814 (2023).

[41] G. Yang, D. Yu, C. Zhu, and S. Hayou. “Tensor Programs VI: Feature Learning in
Infinite-Depth Neural Networks”. In: arXiv preprint arXiv:2310.02244 (2023).

[42] L. Zhang, L. Zhang, S. Shi, X. Chu, and B. Li. “Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-tuning”. In: arXiv preprint
arXiv:2308.03303 (2023).

[43] K. Bałazy, M. Banaei, K. Aberer, and J. Tabor. “LoRA-XS: Low-Rank Adaptation
with Extremely Small Number of Parameters”. In: arXiv preprint arXiv:2405.17604
(2024).

[44] S. Hayou, N. Ghosh, and B. Yu. LoRA+: Efficient Low Rank Adaptation of Large Models.
2024. arXiv: 2402.12354 [cs.LG].

[45] T. Jiang, S. Huang, S. Luo, Z. Zhang, H. Huang, F. Wei, W. Deng, F. Sun, Q. Zhang,
D. Wang, et al. “MoRA: High-Rank Updating for Parameter-Efficient Fine-Tuning”.
In: arXiv preprint arXiv:2405.12130 (2024).

[46] Y. Li, S. Han, and S. Ji. “VB-LoRA: Extreme Parameter Efficient Fine-Tuning with
Vector Banks”. In: arXiv preprint arXiv:2405.15179 (2024).

[47] S.-Y. Liu, C.-Y. Wang, H. Yin, P. Molchanov, Y.-C. F. Wang, K.-T. Cheng, and
M.-H. Chen. “DoRA: Weight-Decomposed Low-Rank Adaptation”. In: arXiv preprint
arXiv:2402.09353 (2024).

[48] F. Meng, Z. Wang, and M. Zhang. “PiSSA: Principal Singular Values and Singular
Vectors Adaptation of Large Language Models”. In: arXiv preprint arXiv:2404.02948
(2024).

[49] P. Zhang, G. Zeng, T. Wang, and W. Lu. “Tinyllama: An open-source small language
model”. In: arXiv preprint arXiv:2401.02385 (2024).

[50] J. Zhu, K. Greenewald, K. Nadjahi, H. S. de OcÃ¡riz Borde, R. B. Gabrielsson, L.
Choshen, M. Ghassemi, M. Yurochkin, and J. Solomon. Asymmetry in Low-Rank
Adapters of Foundation Models. 2024. arXiv: 2402.16842 [cs.LG].

16

A Theory and Proofs

A.1 Role of A and B weight matrices

Recall the feature update decomposition

∆Zt
B = Bt−1∆Zt

A
︸ ︷︷ ︸

δ1
t

+∆BtZ
t−1
A

︸ ︷︷ ︸

δ2
t

+∆Bt∆Zt
A

︸ ︷︷ ︸

δ3
t

. (5)

To achieve optimal feature learning, we want to ensure that δ1t = Θ(1) and δ2t = Θ(1)
which means that both weight matrices A and B are efficiently updated and contribute to
the update in ZB . To justify why this is a desirable property, let us analyze how changes
in matrices A and B affect LoRA feature ZB = BAZ.

Let (B:,i)1≤i≤r denote the columns of B. We have the following decomposition of ZB :

ZB =

r∑

i=1

(AZ)iB:,i,

where (AZ)i is the ith coordinate of AZ. This decomposition suggests that the direction of
ZB is a weighted sum of the columns of B, and A modulates the weights. With this, we
can also write 





δ1t =
∑r

i=1(∆AtZ)i(B:,i)t−1

δ2t =
∑r

i=1(At−1Z)i(∆B:,i)t−1,

where (B:,i)t refers to the columns of B at time step t. Having both δ1t and δ2t of order Θ(1)
means that both A and B are ‘sufficiently’ updated to induce a change in weights (AZ)i
and directions B:,i. If one of the matrices A,B is not efficiently updated, we might end
up with suboptimal finetuning, leading to either non updated directions B or direction
weights (At−1Z). For instance, assuming that the model is initialized with Init[B], and
that B is not efficiently updated, the direction of ZB will be mostly determined by the
vector (sub)space of dimension r generated by the columns of B at initialization.

This intuition was discussed in details in [44].

A.2 Scaling of Neural Networks

Scaling refers to the process of increasing the size of one of the ingredients in the model to
improve performance (see e.g. [22]). This includes model capacity which can be increased
via width (embedding dimension) or depth (number of layers) or both, compute (training
data), number of training steps etc. In this paper, we are interested in scaling model
capacity via the width n. This is motivated by the fact that most state-of-the-art language
and vision models have large width.

It is well known that as the width n grows, the network initialization scheme and the
learning should be adapted to avoid numerical instabilities and ensure efficient learning.
For instance, the initialization variance should scale 1/n to prevent arbitrarily large pre-
activations as we increase model width n (e.g. He init [4]). To derive such scaling rules,
a principled approach consist of analyzing statistical properties of key quantities in the
model (e.g. pre-activations) as n grows and then adjust the initialization, the learning rate,
and the architecture itself to achieve desirable properties in the limit n → ∞ [5, 10, 13].

In this context, Yang et al. [26] introduces the Maximal Update Parameterization (or µP),
a set of scaling rules for the initialization scheme, the learning rate, and the network ar-
chitecture that ensure stability and maximal feature learning in the infinite width limit.
Stability is defined by Y i

l = Θ(1) for all l and i where the asymptotic notation ‘Θ(.)’ is
with respect to width n (see next paragraph for a formal definition), and feature learning
is defined by ∆Yl = Θ(1), where ∆ refers to the feature update after taking a gradient
step. µP guarantees that these two conditions are satisfied at any training step t. Roughly
speaking, µP specifies that hidden weights should be initialized with Θ(n−1/2) random

17

weights, and weight updates should be of order Θ(n−1). Input weights should be ini-
tialized Θ(1) and the weights update should be Θ(1) as well. While the output weights
should be initialized Θ(n−1) and updated with Θ(n−1). These rules ensure both stability
and feature learning in the infinite-width limit, in contrast to standard parameterization
(exploding features if the learning rate is well tuned), and kernel parameterizations (e.g.
Neural Tangent Kernel parameterization where ∆Yl = Θ(n−1/2), i.e. no feature learning
in the limit).

A.3 Proof of Lemma 1

In this section, we provide the formal proof of Lemma 1. The proof relies on the following
assumption on the processed gradient gA. This assumption was used in [44] to derive
scaling rules for the optimal learning rates for A and B weight matrices. Here, we use
it to study the sensitivity of LoRA dynamics to initialization. We provide an intuitive
discussion that shows why this assumption is realistic.

Assumption 1. With the same setup of Section 3, at training step t, we have Z, dZ̄ = Θ(1) and
gtAZ = Θ(n).

Assumption 1 consists of two parts: that 1) Z, dZ̄ = Θ(1) and 2) gtAZ = Θ(n). The
first condition is mainly related to pretraining paramterization which we assume satisfied
such conditions.13 The second condition is less intuitive, so let us provide an argument
to justify why it is sound in practice. Let us study the product gtAZ in the simple case of
Adam with no momentum, a.k.a SignSGD which is given by

gA = sign
(
∂L

∂A

)

,

where the sign function is applied element-wise. At training step t, we have

∂Lt

∂A
=

α

r
B⊤

t−1dZ̄
t−1 ⊗ Z,

Let St = α
rB

⊤
t−1dZ̄

t−1. Therefore we have

gA = sign(St ⊗ Z) = (sign(St
iZj))1≤i,j≤n.

However, note that we also have

sign(St
iZj) = sign(St

i)sign(Zj),

and as a result
gtA = sign(St)⊗ sign(Z).

Hence, we obtain
gtAZ = (sign(Z)⊤Z)sign(St) = Θ(n),

where we used the fact that sign(Z)⊤Z = Θ(n).

This intuition should in-principle hold for the general variant of Adam with momentum
as long as the gradient processing function (a notion introduced in [2]) roughly preserves
the sign(Z) direction. This reasoning can be made rigorous for general gradient pro-
cessing function using the Tensor Program framework and taking the infinite-width limit
where the components of gA,Z, dZ̄ all become iid. However this necessitates an intri-
cate treatment of several quantities in the process, which we believe is an unnecessary
complication and does not serve the main purpose of this paper.

13There is a technical intricacy on this point. While Z depends only on pretraining, the Jacobian
dZ̄ depends on finetuning. However, under the stability conditions mentioned in Definition 3, if
dZ̄ = Θ(1), it should remain so during finetuning as well.

18

Lemma 1. Under Assumption 1, the asymptotic behaviour of Zt
A and Bt follow the recursive

formula
γ[Zt

A] = max(γ[Zt−1
A], γ[η] + 1)

γ[Bt] = max(γ[Bt−1]], γ[η]).

Proof. At finetuning step t, the weights are updated as follows

At = At−1 − ηgt−1
A , Bt = Bt−1 − ηgt−1

B .

Using the elementary operations with the γ-operator, we obtain

γ[Zt
A] = max(γ[Zt−1

A], γ[ηgt−1
A Z]) = max(γ[Zt−1

A], γ[η] + γ[gt−1
A Z]).

We conclude for Zt
A using Assumption 1. The formula for γ[Bt] follows using the same

techniques.

A.4 Proof of Theorem 1

Theorem 1. Under Assumption 1, For t fixed, with Init[A] and learning rate η, we have

• Stability: Zt
B = O(1) if and only if γ[η] ≤ −1/2.

• Feature Learning: ∆Zt
B = Θ(1) if and only if γ[η] = −1/2. In this case, we also have

δ1t , δ
2
t = Θ(1) (efficient feature learning, Definition 5).

Moreover, “internal” instability (Zt
A = Ω(1)) occurs when γ[η] ∈ (−1, 1/2].

Proof. With Init[A], we have γ[B0] = −∞ and γ[A0Z] = 0. As a result, we have for all t

γ[AtZ] = max(0, γ[η] + 1)

γ[Bt] = γ[η]

To achieve ZB = O(1), we should therefore have

γ[η] + max(0, γ[η] + 1) ≤ 0,

which is equivalent to γ[η] ≤ −1/2.

This implies that the maximum learning rate that does not cause instability is Θ(n−1/2).
Such learning rate causes internal instability, i.e. the feature ZA explodes with width.
Why? Because, with this learning rate, we have γ[AtZ] = 1/2, i.e. AtZ = Θ(n1/2)
which diverges as n grows. However, this growth is compensated with the fact that
γ[Bt] = −1/2, i.e. Bt = Θ(n−1/2). This analysis is valid for any γ[η] ∈ (−1, 1/2].

In this case, feature learning is efficient in the sense of Definition 5: δ1t = Θ(1) and
δ2t = Θ(1). To see this, recall that δ1t = Bt−1∆Z1

A which yields γ[δ1t] = γ[Bt−1] + γ[∆Zt
A] =

γ[η] + γ[η] + 1 = 0 and γ[δ2t] = γ[∆Bt] + γ[Zt−1
A] = γ[η] + max(γ[η] + 1, 0) = 0. So both

weights contribute significantly to feature updates at the expense of benign exploding in
Zt
A = AtZ.

A.5 Proof of Theorem 2

Theorem 2. Under Assumption 1, for t fixed, with Init[B] and learning rate η, we have

• Stability: Zt
B = O(1) if and only if γ[η] ≤ −1.

19

• Feature Learning: ∆Zt
B = Θ(1) if and only if γ[η] = −1.

Moreover, efficient feature learning cannot be achieved with Init[B] for any choice of learning rate
scaling γ[η] (that does not violate the stability condition). More precisely, with Θ(n−1) learning
rate, the limiting dynamics (when n → ∞) are the same if B was not trained and A is trained.

Proof. Here, we show that maximal learning rate that does not cause instability in LoRA
output features ZB is Θ(n−1) and no internal instability occurs in this scenario.

With Init[B], we have that γ[B0] = 0 and γ[A0Z] = −∞. From Equation (3), we obtain
that

γ[AtZ] = γ[η] + 1

γ[Bt] = max(0, γ[η]).

As a result, LoRA output stability is achieved if and only if

γ[η] + 1 + max(0, γ[η]) ≤ 0,

which is equivalent to having γ[η] ≤ −1.

Moreover, with η = Θ(n−1) we have that γ[δ1t] = γ[Bt−1] + γ[∆Zt
A] = 0 + γ[η] + 1 = 0 and

γ[δ2t] = γ[∆Bt] + γ[Zt−1
A] = γ[η] + 0 = −1. As a result, feature learning is not efficient in

this case, and the learning dynamics are asymptotically equivalent to not training matrix
B (because δ2t → 0).

B Additional Experiments

This section complements the empirical results reported in the main text. We provide the
details of our experimental setup, and show the acc/loss heatmaps for several configura-
tions.

B.1 Empirical Details

B.1.1 Toy Example

In Figure 2, we trained a simple model with LoRA layers to verify the results of the
analysis in ??. Here we provide the empirical details for these experiments.

Model. We consider a simple model given by

f(x) = Woutφ(Winx+ (Wh +BA)φ(Winx)),

where Win ∈ R
n×d,Wout ∈ R

1×n, A ∈ R
r×n, B ∈ R

n×r are the weights, and φ is the ReLU
activation function.

Dataset. Here, we used d = 5, n = 1000, and r = 20 to simulate synthetic data (the
teacher model). Synthetic dataset generated by X ∼ N (0, Id), Y = f(X). The number
of training examples is Ntrain = 1000, and the number of test examples is Ntest = 100.
the weights Win,Wh,Wout, B,A are randomly sampled from a Gaussian distribution with
normalized variance (1/fan-in).

Training. We train the model with AdamW with β1 = 0.9 and β2 = 0.99 for a
range for values of η. The weights are initialized as follows: Win ∼ N (0, 1/d),Wh ∼
N (0, 1/n),Wout ∼ N (0, 1/n) and fixed. Only the weight matrices A,B are trainable.

20

B.1.2 GLUE tasks with RoBERTa

For our experiments with RoBERTa models, finetuned on GLUE tasks, we use the follow-
ing setup:

Training Alg Details

Model Roberta-Large

Learning Rates {2k × 10−5, for k = 0, 1, 2, . . . , 10}

β1 0.9

β2 0.999

ε 1× 10−8

LR Schedule Linear with Warmup Ratio 0.06

Weight Decay 0.0

Train Batch Size 4

Number of
Epochs

10

LoRA Hyperparameters

LoRA Rank 8

LoRA α 16

LoRA Dropout 0.1

Target Modules ‘query, value’

Other Hyperparameters

Sequence Length Ttarget = 128

Random Seeds 3

Precision FP16

GPUs. Nvidia A10 with 24GB VRAM.

21

B.1.3 TinyLlama WikiText-2

For our experiments using the TinyLlama model finetuned on Wikitext-2, we use the
following setup training with AdamW.

Training Algorithm Details

Learning Rates 1× 10−5, 5× 10−5, 1× 10−4, 2× 10−4, 4× 10−4, 7× 10−4, 1× 10−3, 2× 10−3

β1 0.9

β2 0.999

ε 1× 10−6

LR Schedule Linear with Warmup Ratio 0.03

Weight Decay 0.0

Train Batch Size 8

Number of
Epochs

1

LoRA Hyperparameters

LoRA Rank 64

LoRA α 16

LoRA Dropout 0.0

Target Modules ‘q_proj, k_proj, v_proj, o_proj, up_proj, down_proj, gate_proj’

Other Hyperparameters

Sequence Length 1024

Random Seeds 2

Precision BF16

GPUs. Nvidia A10 with 24GB VRAM.

22

B.1.4 Llama-7b Flan-v2

For our experiments using the Llama-7b model finetuned on a size 100k random subset
of flan-v2, we use following setup training with AdamW

Training Algorithm Details

Learning Rates 1× 10−5, 5× 10−5, 1× 10−4, 2× 10−4, 4× 10−4, 7× 10−4, 1× 10−3

β1 0.9

β2 0.999

ε 1× 10−6

LR Schedule Linear with Warmup Ratio 0.03

Weight Decay 0.0

Train Batch Size 16

Number of
Epochs

1

LoRA Hyperparameters

LoRA Rank 64

LoRA α 16

LoRA Dropout 0.0

Target Modules ‘q_proj, k_proj, v_proj, o_proj, up_proj, down_proj, gate_proj’

Other Hyperparameters

Sequence Length Tsource = 1536, Ttarget = 512

Random Seeds 2

Precision BF16

MMLU Evaluation: We evaluate average accuracy on MMLU using 5-shot prompting.

GPUs: Nvidia A10 with 24GB VRAM.

23

B.1.5 Llama-7b GSM8k

For our experiments using the Llama-7b model finetuned on the GSM8k training dataset,
we use following setup training with AdamW

Training Algorithm Details

Learning Rates 1× 10−5, 5× 10−5, 1× 10−4, 2× 10−4, 4× 10−4, 7× 10−4, 1× 10−3

β1 0.9

β2 0.999

ε 1× 10−6

LR Schedule Linear with Warmup Ratio 0.03

Weight Decay 0.0

Train Batch Size 16

Number of
Epochs

1

LoRA Hyperparameters

LoRA Rank 64

LoRA α 16

LoRA Dropout 0.0

Target Modules ‘q_proj, k_proj, v_proj, o_proj, up_proj, down_proj, gate_proj’

Other Hyperparameters

Sequence Length Tsource = 1536, Ttarget = 512

Random Seeds 2

Precision BF16

GPUs: Nvidia A10 with 24GB VRAM.

B.2 Additional Exps

24

	Introduction
	Setup and Definitions
	Initialization of LoRA Adapters
	LoRA Features

	LoRA Finetuning Dynamics in the Large Width Limit
	Simplified Setting
	Stability and Feature Learning
	Introduction to the -operator
	Recursive formulas
	Init[A] leads to more efficient feature learning but suffers ``internal'' instability
	Init[B] leads to suboptimal feature learning with internal stability
	Experiments with a Teacher-Student Model

	Experiments with Language Models
	GLUE tasks with RoBERTa
	Llama

	Conclusion and Limitations
	Acknowledgement
	Theory and Proofs
	Role of A and B weight matrices
	Scaling of Neural Networks
	Proof of lemma:recursiveforms
	Proof of thm:initA
	Proof of thm:initB

	Additional Experiments
	Empirical Details
	Toy Example
	GLUE tasks with RoBERTa
	TinyLlama WikiText-2
	Llama-7b Flan-v2
	Llama-7b GSM8k

	Additional Exps

