
ScaLES: Scalable Latent Exploration Score for

Pre-Trained Generative Networks

Omer Ronen
UC Berkeley

omer_ronen@berkeley.edu

Ahmed Imtiaz Humayun
Rice University

imtiaz@rice.edu

Randall Balestriero
Brown University

rbalestr@brown.edu

Richard G. Baraniuk
Rice University

richb@rice.edu

Bin Yu
UC Berkeley

binyu@berkeley.edu

Abstract

We develop Scalable Latent Exploration Score (ScaLES) to mitigate over-
exploration in Latent Space Optimization (LSO), a popular method for solving
black-box discrete optimization problems. LSO utilizes continuous optimization
within the latent space of a Variational Autoencoder (VAE) and is known to be
susceptible to over-exploration, which manifests in unrealistic solutions that reduce
its practicality. ScaLES is an exact and theoretically motivated method leveraging
the trained decoder’s approximation of the data distribution. ScaLES can be cal-
culated with any existing decoder, e.g. from a VAE, without additional training,
architectural changes, or access to the training data. Our evaluation across five LSO
benchmark tasks and three VAE architectures demonstrates that ScaLES enhances
the quality of the solutions while maintaining high objective values, leading to
improvements over existing solutions. We believe that new avenues to LSO will
be opened by ScaLES’ ability to identify out of distribution areas, differentiabil-
ity, and computational tractability. Open source code for ScaLES is available at
https://github.com/OmerRonen/scales.

1 Introduction

Optimization over discrete structured spaces is an important task with applications in scientific
problems such as small molecule design and protein engineering. To improve the sample efficiency of
discrete optimization algorithms, such as genetic algorithms, Latent Space Optimization (LSO) was
recently developed [Gómez-Bombarelli et al., 2018]. LSO transfers the optimization problem to the
domain of the latent space of a VAE, which can be efficiently explored using continuous optimization
techniques. However, ensuring that LSO solutions respect the structure of the original space remains
a challenge. To illustrate this issue, we first provide some examples of such structures.

Example 1.1 (Arithmetic expressions). An expression built up using numbers, arithmetic operators
and parentheses is called an arithmetic expression. However, not every sequence of the above
elements correspond to a valid expression. For instance the expression "sin(x) + x" is a valid
expression while "sin(xxx" is not.

Example 1.2 (Simplified molecular-input line-entry system (SMILES)). SMILES provides a syntax
to describe molecules using short ASCII strings. Atoms are represented by letters (e.g. water:"O",
methane:"C", ...), bonds are represented by symbols (e.g. triple: "#", double: "=", ...), branches are
represented in parentheses and cyclic structures are represented by inserting numbers at the beginning
and the end. Like the arithmetic expressions case, not every combination of the elements described
above corresponds to a valid molecule. For example while "C1CCCCC1" is valid, both "C1CCCCC2"
and "C1CCCCC)" are not.

a
rX

iv
:2

4
0
6
.0

9
6
5
7
v
1

[c

s.
L

G
]

 1
4
 J

u
n
 2

0
2
4

• We derive ScaLES, a score with higher values in areas closer to the training data. We show
that ScaLES can efficiently identify areas in the latent space that respect the sequence space
structure.

• We develop a numerically stable optimization procedure to incorporate ScaLES as a con-
straint in LSO.

• We evaluate ScaLES-constrained LSO across three VAEs and five benchmark tasks, demon-
strating its robustness in promoting valid solutions as well as its benefits in achieving high
objective values.

Open source code for ScaLES is available at https://github.com/OmerRonen/scales.

2 Background: Latent Space Optimization

LSO is a method for solving black box optimization problems in discrete and structured spaces, such
as the space of valid arithmetic expressions. Formally, let V ⊂ R

L×D be a discrete and structured
space, represented as a sequence of L one-hot vectors of dimension D. We represent sequences of
length L of categorical variables with D categories. L is set as the maximum sequence length that we
are optimizing for, and one of the D categories is used as an "empty" category. For instance, in the
case of valid arithmetic expressions, V would be the set of all sequences that define such expressions.
Let M : V → R be the objective function. LSO aims to solve,

argmax
x∈V

M(x). (1)

In this setting, we assume that evaluations of the objective function (M) are expensive to conduct.
For example, the objective may be the binding affinity for a given protein, measured through a wet
lab experiment. A popular approach to solve Equation (1) is Bayesian Optimization (BO), which
utilizes first order optimization of a surrogate model for M. However, since the space is discrete,
first order optimization cannot be directly applied.

In an attempt to make BO applicable for solving Equation (1), Gómez-Bombarelli et al. [2018]
proposed to transfer the optimization problem into that over a domain of the latent space of a
deep generative model and subsequently perform BO in this space. The main idea is to (1) learn
a continuous representation of the discrete objects (e.g., using a VAE) and (2) perform BO in the
latent space while decoding the solution at each step. Formally, given a pre-trained encoder (Eθ)
and decoder (Gθ) the initial labelled dataset D = {xi, yi}

n
i=1 is first encoded into the latent space

Dz = {zi = Eθ(xi), yi}
n
i=1. Using the encoded dataset, an iterative BO procedure is conducted,

which we describe in Algorithm 1. Most commonly, a Gaussian process is used as the surrogate
model for M , and the acquisition function is the expected improvement, defined as [Frazier, 2018]

Emax(f̂(x)− f⋆, 0), (2)

where f⋆ is the best observed objective value and the expectation is with respect to the posterior of f̂ .

Algorithm 1 Latent Space Optimization

for t = 1 to T do

1. Fit a surrogate model f̂ to the encoded dataset, Dz

2. Generate a new batch of query point by optimizing a chosen acquisition function (A)

z(new) = argmax
z

A(f̂(z)) (3)

3. Decode x(new) = Gθ(z
(new)), evaluate the corresponding true objective values (ynew =

M(x(new))) and update Dz with (z(new), ynew).

Over-exploration in LSO Multiple studies [Notin et al., 2021, Kusner et al., 2017] have found that
unconstrained LSO often produces solutions that ignore the above mentioned structures. For example,

3

in searching arithmetic expressions, invalid equations like "ssin(xxx" are common. Similarly, many
solutions in molecule searches fail the rd_filters filters, making them of limited practical use.

To mitigate over-exploration, we propose adding a penalty to Equation (3). The penalty uses a new
score, giving higher values over the latent space valid set, defined as:

Definition 2.1 (Latent space valid set). Let Gθ : Z → R
L×D be a decoder network, and let

V ⊂ R
L×D be the set of valid sequences, the latent space valid set is defined as

{z;Gθ(z) ∈ V}. (4)

The derivation of our score leverages the Continuous Piecewise Affine (CPA) representation of neural
networks, which we briefly review below.

Deep generative networks as CPA Following Humayun et al. [2022, 2021], Balestriero and
Baraniuk [2018], we consider the representation of Deep Generative Networks (DGNs) as Continues
Piecewise Affine (CPA) Splines operators. Let fθ be any neural network with affine layers and
piecewise affine activations then it holds that

fθ(z) =
∑

ω∈Ω

(Aωz + bω) 1{z∈ω}, (5)

where Ω is the input space partition induced by fθ, ω is a particular region and the parameters Aω

and bω defines the affine transformation depending on ω.

In the cases where fθ is not comprised of only piecewise affine layers and activations, we leverage the
result from Daubechies et al. [2022] to assert that Equation (5) is either an exact representation of fθ
or is a sufficiently accurate approximation of fθ for our practical purposes Humayun et al. [2022].

3 A Scalable Latent Exploration Score to Reduce Over-Exploration in LSO

In this section, we introduce Scalable Latent Exploration Score (ScaLES), our new score to reduce
over-exploration in LSO. First, we motivate our score in Section 3.1. Next, we formally derive
ScaLES in Section 3.2. In Section 3.3, we provide evidence that ScaLES gives higher values in the
latent space valid set. The use of ScaLES to regularize or contrain LSO is left for Section 4.

3.1 Motivation

Our goal is to develop a meaningful constraint for optimizing the acquisition function. We seek a
constraint that is a continuous function of z, achieving higher values in valid regions of the latent
space (Definition 2.1). Assuming most of VAE training data is valid, the score should be higher in
regions near training data points. To achieve this, we treat the latent space of the VAE as a probability
space, i.e. z ∼ pz , for some prior distribution p (most commonly standard Gaussian). The prior
should reflect our best guess for the distribution of the observed data in the latent space. Solutions are
mapped back to the sequences by the decoder through a deterministic transformation of the latent
solution vectors. Therefore, any distribution on the latent space defines a distribution over the space
of sequences. Our score uses the density function of the push-forward measure of x = Gθ(z), which
we call the sequence density. Our score considers only the decoder network, not the encoder, and can
potentially be applied to other generative models like GANs or diffusion models.

Why use the sequence density function? We argue that, for a well-trained decoder network, the
density should be higher in areas of the sequence space close to the training data. To see why, consider
a decoding model Gθ trained on a dataset {(zi,xi)}

n
i=1. The average loss at z is

ℓ(Gθ(z)) = E
x|Eθ(x)=z

L(Gθ(z),x). (6)

As the training process is designed to minimize the population loss: Eℓ(Gθ(z)), if successful, we
hypothesize that the distribution of Gθ(z) puts higher weight in the areas where ℓ(Gθ(z)) is low.
Since we expect most of the training data to be valid and to achieve low expected loss, the sequence
density should put higher weight on the latent space valid set. Section 3.3 provides an empirical
validation for this hypothesis, for Examples 1.1 to 1.3. We highlight that this relationship between
the valid set and the sequence density depends on how well the decoder fits the data.

4

3.2 Derivation of ScaLES

Analytical formula for ScaLES DGNs for discrete sequences typically output a matrix of logits,
transformed into normalized scores by the softmax function:

Gθ(z) = Softmax(Lθ(z)). (7)

Lθ(z) is a D × L logits matrix and Softmax is the softmax operation applied to every column of
Lθ(z). Our derivation requires Gθ to be bijective, and we therefore extend the output of the function
to include the normalizing constant for each column. With this form, we can now derive the sequence
density function.

Theorem 3.1 (DGN sequence density). Let

Gθ(z) =
(

p(1)
z

, c(1)
z

, . . . ,p(L)
z

, c(L)
z

)

(8)

= xz (9)

where p
(i)
z = Softmax(Lθ(z)).i and c

(i)
z =

∑D
j=1 e

Lθ(z)ji . Assume that Lθ is bijective and can be

expressed as a CPA (Equation (5)), and that z ∼ pz , then the density function of Gθ(z) is given by:

fz(z)

√

√

√

√det

(

L
∑

i=1

(A†
i)

T (Bi)TBiA
†
i

)

(10)

for

Bi =

(

diag

(

1

(p
(i)
z)1

, . . . ,
1

(p
(i)
z)D

)

,1
1

c
(i)
z

)T

(11)

A
†
i =

(

A(1)
ω , . . . ,A(L)

ω

)†

(i·D):(i+1·D).
, (12)

where
(

A
(1)
ω , . . . ,A

(L)
ω

)†

is the Moore–Penrose inverse of
(

A
(1)
ω , . . . ,A

(L)
ω

)

.

We provide the proof in Appendix A. In practice, we define ScaLES to be the log sequence density
with an additional weight parameter ρ,

Sρ(z) = log(fz(z)) + ρ log





√

√

√

√det

(

L
∑

i=1

(A†
i)

T (Bi)TBiA
†
i

)



 . (13)

The parameter ρ should be lower in the cases where the prior we put on the latent space is accurate,
and can be calibrated using a small labelled dataset.

Remark 3.2. In our experiments we do not verify that the conditions of Theorem 3.1 hold, rather we
naively calculate S as defined in Equation (13).

3.3 Validating the relationship between ScaLES and valid generation

To assess ScaLES’s ability to identify validity as defined in Examples 1.1 to 1.3, we sample data
points in the latent space for each dataset using the VAEs studied in Section 4. Specifically, we
sample 500 data points, from four distributions: train, test, prior (N (0, I)), and out-of-distribution
(N (0, I · 20)). We decode each data point and determine if the decoded sequence is valid.

We treat identifying if a point in the latent space decodes into a valid sequence as a classification
problem. We measure performance using the AUROC metric. For ScaLES, we tune ρ to achieve
high AUROC. Besides ScaLES and the Bayesian uncertainty score, we add two baseline scores
for comparison. The first is the density of a standard Gaussian (Prior), a naive OOD score not
based on the decoder network. This helps us understand the log determinant term of ScaLES. The
second is the polarity score [Humayun et al., 2022], showing the gains due to accounting for the

5

softmax non-linearity Theorem 3.1. The results are shown in Table 1. ScaLES improves on the
polarity and prior scores in all cases. While the uncertainty score does better on the SMILES and
expressions datasets, ScaLES is much better in the SELFIES dataset, showing its robustness. Unlike
the expressions and SMILES datasets, many points in the SELFIES training set fail to pass quality
filters. However, an analysis using the first 20k training points from Maus et al. [2022] shows lower
ELBO and reconstruction losses for molecules that pass the filters (ELBO: 0.2 vs. 0.3, reconstruction:
0.163 vs. 0.26). This supports our belief that ScaLES values are higher where the decoder fits the
data well.

Table 1: AUROC for identifying valid data points. ScaLES outperforms both the polarity score and
Prior across all three datasets and significantly improves upon UC for the SELFIES dataset.

ScaLES (ρ) UC Prior Polarity

Expressions 0.94 (1) 0.96 0.64 0.92
SMILES 0.88 (.01) 0.96 0.52 0.85
SELFIES 0.78 (.003) 0.39 0.76 0.76

4 ScaLES-constrained LSO

Our investigation in Section 3.3 shows that ScaLES is a robust score that obtains higher values in
the latent space valid set (Definition 2.1). Furthermore, ScaLES is differentiable which means it can
easily be used to constrain any optimization problem.

Specifically, we propose adding an explicit constraint to Equation (3), encouraging the solution to
achieve a high ScaLES value. We modify Algorithm 1 by penalizing step (2) as follows:

znew = argmax
z

A(f̂(z)) + λS(z). (14)

Computing ScaLES S(z) is a function of the prior of z and the matrices Bi and A
†
i .

The prior of z is typically a Gaussian distribution and can be easily computed. The matrices Bi are

function of the logits and can be calculated using a single forward run of Gθ. The matrices A
†
i are

a function of Aω, which is equal to the derivative of Lθ at z. Therefore Aω can be obtained using
automatic differentiation, which can be efficiently done using PyTorch [Paszke et al., 2017].
S(z) is computed by performing all of the above calculations in parallel using a single forward
call to the Gθ network. In addition, we need to compute the pseudo-inverse of Aω, which has a
computational complexity of O(L2D + D3). To accelerate ScaLES computation, we approximate
Aω using discrete derivatives with ϵ = 1×10−4. In addition, for the SMILES and SELFIES datasets,
we limit the output sequence to the first 30 and 60 elements, respectively. Appendix C provides a
detailed description of the wall clock times.

4.1 Experimental setup

LSO setup Throughout our experiments, following Notin et al. [2021], we consider the batched BO
setting in which we generate a batch of 5 query points at each iteration of Algorithm 1. A Gaussian
process is used as our surrogate model for the true objective M, where in the case of SELFIES-VAE
[Maus et al., 2022], we deploy a deep-kernel since the latent space is high-dimensional (256), with
the same specification as in Maus et al. [2022]. We use the log expected improvement [Ament et al.,
2024] as our acquisition function, to avoid vanishing gradients, which we sequentially maximize.

LSO benchmarks We study the LSO tasks previously studied in Notin et al. [2021], Maus et al.
[2022]. Appendix B.1 provides the specifications of the LSO problems studied in this section.

Acquisition function optimization For ease of implementation, we focus on a simple optimization
procedure in which the acquisition function (Equation (3)) is optimized with 10 steps of normalized
gradient ascent, to ensure numeric stability. To make sure this procedure is not overly simplistic, we

6

also compare with the default optimization method implemented in the BoTorch [Balandat et al.,
2020] package (optimize_acqf function, which implements the L-BFGS quasi-newton algorithm
Liu and Nocedal [1989]).

Numeric stability In our experiments we find that the norm of the derivative of the constraint (i.e.,
S(z)) if typically much larger than the norm of the derivative of the acquisition function. As a result,

using the gradient ascent update rule z(i+1) = ∂A(f̂(z(i))) + λ∂S(z(i)) results in a numerically
unstable optimization procedure. To overcome this challenge, we propose the update rule:

z(i+1) =
∂A(f̂(z(i)))

∥∂A(f̂(z(i)))∥2
+ λ

∂Sρ(z
(i))

∥∂Sρ(z(i))∥2
. (15)

We find that selecting λ = 0.5 improves over vanilla methods and is recommended as a default value,
and we leave data-driven, adaptive selection of λ for future work.

Methods We consider the following optimization methods, all use the optimization technique above
except L-BFGS:

• ScaLES - ScaLES-constrained LSO, we use λ = 0.2, 0.5, 0.8 to ensure the constraint does
not dominate the objective.

• LSO (GA) - gradient ascent with no regularization.

• Prior - the prior distribution over the latent space is a standard Gaussian. We use the prior
density as a constraint similar to Equation (14). We consider λ = 0.2, 0.5, 0.8.

• UC2 - the Uncertainty Constrained gradient ascent method by Notin et al. [2021]. The
Bayesian uncertainty score serves as an early stopping criterion: if the updated point’s score
exceeds a set threshold, we reject the update. The threshold is based on the 75th, 95th, and
100th percentiles of the training data, as in Notin et al. [2021]. To avoid long run times, we
sample 10 times from the model parameters and the importance distribution. Indeed, with
this choice our results are qualitatively similar to Notin et al. [2021].

• LSO (L-BFGS) - L-BFGS in a hyper-cubic search region, the L-BFGS algorithm returns
solutions within a hypercube centered at zero. We normalize latent space vectors to between
zero and one, considering facet lengths of 1, 5, and 10. The first explores within the data
manifold, while the last two also explore outside it.

Hyperparameters We calibrate the step size such that our gradient ascent procedure successfully
and consistently improve the values of the acquisition function, across different initializations. Indeed,
our final optimization results match those of earlier studies [Kusner et al., 2017, Notin et al., 2021].
We adopt the values of ρ used in Section 3.

4.2 Results

4.2.1 Expressions and logP

We start by evaluating ScaLES on two of the most extensively studied LSO tasks: approximating
arithmetic expressions and optimizing the penalized water-octanol partition coefficient (logP) over
the SMILES representation of molecules.

Arithmetic expression approximation The arithmetic expressions we consider are functions
of a single variable (e.g., sin(x), 1 + x ∗ x). Our goal is to find an expression approximating
1/3 + x + sin(x * x) Kusner et al. [2017]. We train a Character VAE (CVAE) using the same
procedure as Notin et al. [2021]. We start BO with 500 randomly selected data points from the
training set, encoded into the latent space with their objective values. We perform 100 BO steps with
a learning rate of 0.5, using the validity notion from Example 1.1.

2We note that while this method was not used for BO in Notin et al. [2021], we select it as a benchmark, as
the scope of this work is to study the optimization procedure.

7

5 Discussion

We proposed ScaLES, an exact and theoretically motivated method to mitigate over-exploration
in LSO. ScaLES is differentiable, fully parallelizable, and scales to large VAEs. Our extensive
evaluation shows that penalizing with ScaLES in LSO consistently improves solution quality and
objective values. Additionally, ScaLES compares favorably to alternative regularization methods,
proving to be the most robust across datasets and various validity notions.

Derived from the density function of a random variable under the decoder transformation, ScaLES
serves as a natural out-of-distribution score. A promising future direction is to leverage ScaLES for
identifying out-of-distribution data points in deep generative models.

While ScaLES is fully parallelizable, it requires calculating the pseudo-inverse of the Jacobian matrix.
This step can become a computational bottleneck when generating long sequences with a large
vocabulary. It is left for future work to develop a fast approximation for this operation in order to
enable the use of ScaLES in applications involving large language models.

Acknowledgements

Ronen and Yu gratefully acknowledge partial support from NSF grants DMS-2209975, 2015341, NSF
grant 2023505 on Collaborative Research: Foundations of Data Science Institute (FODSI), the NSF
and the Simons Foundation for the Collaboration on the Theoretical Foundations of Deep Learning
through awards DMS-2031883 and 814639, and NSF grant MC2378 to the Institute for Artificial
CyberThreat Intelligence and OperatioN (ACTION). Humayun and Baraniuk gratefully acknowledge
the support from NSF grants CCF1911094, IIS-1838177, and IIS-1730574; ONR grants N00014-18-
12571, N00014-20-1-2534, and MURI N00014-20-1-2787; AFOSR grant FA9550-22-1-0060; and a
Vannevar Bush Faculty Fellowship, ONR grant N00014-18-1-2047.

References

Sebastian Ament, Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bakshy. Unex-
pected improvements to expected improvement for bayesian optimization. Advances in Neural
Information Processing Systems, 36, 2024.

Jonathan B Baell and Georgina A Holloway. New substructure filters for removal of pan assay
interference compounds (pains) from screening libraries and for their exclusion in bioassays.
Journal of medicinal chemistry, 53(7):2719–2740, 2010.

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, An-
drew Gordon Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-Carlo
Bayesian Optimization. In Advances in Neural Information Processing Systems 33, 2020. URL
http://arxiv.org/abs/1910.06403.

Randall Balestriero and Richard Baraniuk. Mad max: Affine spline insights into deep learning. arXiv
preprint arXiv:1805.06576, 2018.

Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. Guacamol: benchmarking
models for de novo molecular design. Journal of chemical information and modeling, 59(3):
1096–1108, 2019.

Ingrid Daubechies, Ronald DeVore, Nadav Dym, Shira Faigenbaum-Golovin, Shahar Z Kovalsky,
Kung-Chin Lin, Josiah Park, Guergana Petrova, and Barak Sober. Neural network approximation
of refinable functions. IEEE Transactions on Information Theory, 69(1):482–495, 2022.

Peter I Frazier. Bayesian optimization. In Recent advances in optimization and modeling of
contemporary problems, pages 255–278. Informs, 2018.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous
representation of molecules. ACS central science, 4(2):268–276, 2018.

10

Ryan-Rhys Griffiths and José Miguel Hernández-Lobato. Constrained bayesian optimization for
automatic chemical design using variational autoencoders. Chemical science, 11(2):577–586,
2020.

Ahmed Imtiaz Humayun, Randall Balestriero, and Richard Baraniuk. Magnet: Uniform sampling
from deep generative network manifolds without retraining. In International Conference on
Learning Representations, 2021.

Ahmed Imtiaz Humayun, Randall Balestriero, and Richard Baraniuk. Polarity sampling: Quality
and diversity control of pre-trained generative networks via singular values. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10641–10650, 2022.

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc: a
free tool to discover chemistry for biology. Journal of chemical information and modeling, 52(7):
1757–1768, 2012.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pages 2323–2332.
PMLR, 2018.

Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and Alan Aspuru-Guzik. Self-
referencing embedded strings (selfies): A 100% robust molecular string representation. Machine
Learning: Science and Technology, 1(4):045024, 2020.

Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational autoencoder.
In International conference on machine learning, pages 1945–1954. PMLR, 2017.

Christopher A Lipinski, Franco Lombardo, Beryl W Dominy, and Paul J Feeney. Experimental
and computational approaches to estimate solubility and permeability in drug discovery and
development settings. Advanced drug delivery reviews, 23(1-3):3–25, 1997.

Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1):503–528, 1989.

Natalie Maus, Haydn Jones, Juston Moore, Matt J Kusner, John Bradshaw, and Jacob Gardner.
Local latent space bayesian optimization over structured inputs. Advances in neural information
processing systems, 35:34505–34518, 2022.

Pascal Notin, José Miguel Hernández-Lobato, and Yarin Gal. Improving black-box optimization in
vae latent space using decoder uncertainty. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34,
pages 802–814. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/
paper/2021/file/06fe1c234519f6812fc4c1baae25d6af-Paper.pdf.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Austin Tripp, Erik Daxberger, and José Miguel Hernández-Lobato. Sample-efficient optimization in
the latent space of deep generative models via weighted retraining. Advances in Neural Information
Processing Systems, 33:11259–11272, 2020.

P. Walters. rd filters, 2019. URL https://github.com/PatWalters/rd_filters. Accessed:
January 14, 2019.

Scott A Wildman and Gordon M Crippen. Prediction of physicochemical parameters by atomic
contributions. Journal of chemical information and computer sciences, 39(5):868–873, 1999.

11

A Proofs

Lemma A.1. Let fθ be a DGN as defined in Equation (8) and assume that fθ can be expressed as a
CPA (Equation (5)) and is inevitable, then

Jf−1
θ (x) =













B1 · · · 0

...
. . .

...
0 · · · BL






A†

ω







T

, (16)

where A†
ω is the Moore–Penrose inverse of the slope matrix, at the knot whose image constrains x,

and

Bi =

(

diag

(

1

(p
(i)
z)1

, . . . ,
1

(p
(i)
z)D

)

,1
1

c
(i)
z

)T

. (17)

Proof. First we write

fθ(z) = Softmax+(ℓθ(z)), (18)

Where Softmax+ is the extension of the column wise Softmax function to include the normalizing
constants. Specifically, for L by D ℓθ(z) matrix, we have

Softmax+(ℓθ(z)) =
(

p(1)
z

, c(1)
z

, . . . ,p(L)
z

, c(L)
z

)

= x, (19)

with p
(i)
z = (e

ℓθ(z)1i

c
(i)
z

), and c
(i)
z =

∑D

j=1 e
ℓθ(z)ji .

Next,

f
(−1)
θ (x) = ℓ−1

θ (Softmax−1
+ (x)) (20)

A direct calculation yields,

Softmax−1
+ (x) =

(

log(p(1)
z

) + log(c(1)
z

), . . . , log(p(L)
z

) + log(c(L)
z

)
)

. (21)

As we assume ℓθ is bijective and can be written as

ℓθ(z) =
∑

ω∈Ω

(Aωz + bω) 1z∈ω, (22)

we have that

ℓ−1
θ (Softmax−1

+ (x)) = (Softmax−1
+ (x)− bω)A

†
ω. (23)

Lastly, as

∂Softmax−1
+ (x)

∂x
=







B1 · · · 0

...
. . .

...
0 · · · BL






, (24)

for

Bi =

(

diag

(

1

(p
(i)
z)1

, . . . ,
1

(p
(i)
z)D

)

,1
1

c
(i)
z

)T

. (25)

we obtain the final result.

12

Proof of Theorem 3.1. First, we note that by our invertability assumption we have that P(x ∈ W) =

P(z ∈ f
(−1)
θ (W)). We then proceed with a direct calculation

P(x ∈ W) = P(z ∈ f
(−1)
θ (W)) (26)

=
∑

ω∈Ω

P(z ∈ (f
(−1)
θ (W) ∩ ω)) (27)

=
∑

ω∈Ω

∫

f
(−1)
θ

(W)∩ω

fz(z)dz (28)

=
∑

ω∈Ω

∫

W∩fθ(ω)

fz(f
(−1)
θ (x))

√

det
(

Jf
(−1)
θ (x)Jf

(−1)
θ (x)T

)

dx (29)

=

∫

W

∑

ω∈Ω

fz(f
(−1)
θ (x))

√

det
(

Jf
(−1)
θ (x)Jf

(−1)
θ (x)T

)

1{x∈fθ(ω)}dx. (30)

Using Lemma A.1, we get that the volume element is

Jf
(−1)
θ (x)Jf

(−1)
θ (x)T =













B1 · · · 0

...
. . .

...
0 · · · BL






A†

ω







T 











B1 · · · 0

...
. . .

...
0 · · · BL






A†

ω






(31)






(A†

ω)
T







BT
1 · · · 0

...
. . .

...

0 · · · BT
L ,

























B1 · · · 0

...
. . .

...
0 · · · BL






A†

ω






(32)

=

L
∑

i=1

(A†
i)

T (Bi)
TBiA

†
i , (33)

where A
†
i =

(

A
(1)
ω , . . . ,A

(L)
ω

)†

(i·D):(i+1·D).
.

B Additional experimental details

B.1 Datasets characteristics

Table 4 provides the details of the LSO tasks studies in this paper. For the expression taks we optimize
for the negative RMSE for any given expression to 1/3 + x + sin(x * x) measured using 1000
equality spaced points between -10 and 10 Kusner et al. [2017]. The logP values are calculated
using the model developed by Wildman and Crippen [1999] and last three tasks use oracle function
provided by the GuacaMol Brown et al. [2019] package.

Table 4: Characteristics of the LSO problems provided in this study. We train VAEs following the
exact specification in Notin et al. [2021] for the first two tasks. For the remaining tasks, we use the
pre-trained VAE provided by Maus et al. [2022]. L and D refer the maximal sequence length and the
dimension of the one-hot vectors respectively.

Pre-training Dataset Black-Box Objective DGN (latent dimension) L/ D Architecture

Expressions 15 1/3 + x + sin(x * x) CVAE (25) 15 19/15 GRU (RNN)
ZINC 12 penalized logP CVAE (56) 15 120/35 GRU (RNN)
Guacamol 5 Perindopril MPO SELFIES-VAE (256) 18 70/97 Transformer
Guacamol 5 Ranolazine MPO SELFIES-VAE (256) 18 70/97 Transformer
Guacamol 5 Zaleplon MPO SELFIES-VAE (256) 18 70/97 Transformer

13

B.2 Full experimental results

We provide the full experimental results for the experiments carried out in Section 4. For each task
we report the best and the average of the top 10 solutions found throughout the entire optimization
procedure. In addition we report the proportion of valid solutions and the average ScaLES value
across the entire optimization procedure.

B.3 Expressions

Reg Method Reg Param Validity ScaLES Top 1 (Valid) Top 10 (Valid)

LSO (GA) N/A 0.70 (0.01) 384.48 (0.74) -0.36 (0.04) -0.53 (0.02)
LSO (L-BFGS) facet length = 1.0 0.88 (0.02) 385.54 (1.32) -0.38 (0.05) -0.64 (0.09)
LSO (L-BFGS) facet length = 5.0 0.86 (0.02) 381.70 (1.54) -0.32 (0.03) -0.56 (0.06)
LSO (L-BFGS) facet length = 25.0 0.90 (0.00) 381.97 (2.01) -0.39 (0.00) -0.54 (0.03)

Prior λ = 0.2 0.66 (0.01) 382.16 (0.97) -0.38 (0.02) -0.63 (0.03)
Prior λ = 0.5 0.56 (0.02) 376.05 (1.18) -0.45 (0.04) -0.95 (0.08)
Prior λ = 0.8 0.47 (0.02) 372.04 (0.64) -0.67 (0.11) -1.32 (0.17)
UC 75th quantile 1.00 (0.00) 391.59 (3.89) -0.34 (0.03) -0.56 (0.02)
UC 95th quantile 0.98 (0.00) 383.36 (3.89) -0.36 (0.02) -0.53 (0.01)
UC 100th quantile 0.76 (0.01) 364.63 (3.95) -0.36 (0.03) -0.54 (0.02)

ScaLES λ = 0.2 0.87 (0.01) 384.11 (4.65) -0.27 (0.06) -0.49 (0.02)
ScaLES λ = 0.5 0.92 (0.01) 401.00 (5.17) -0.32 (0.05) -0.52 (0.02)
ScaLES λ = 0.8 0.93 (0.00) 406.68 (5.33) -0.32 (0.05) -0.56 (0.02)
ScaLES λ = 2 0.95 (0.00) 444.72 (0.27) -0.44 (0.01) -0.83 (0.02)

ScaLES (ES) 25th quantile 0.92 (0.00) 409.79 (0.27) -0.34 (0.02) -0.51 (0.01)
ScaLES (ES) 50th quantile 0.94 (0.00) 412.93 (0.44) -0.31 (0.03) -0.53 (0.01)
ScaLES (ES) 75th quantile 0.95 (0.00) 416.98 (0.32) -0.38 (0.01) -0.57 (0.01)

B.4 logP

Reg Method Reg Param Validity ScaLES Top 1 (Valid) Top 10 (Valid)

LSO (GA) N/A 0.19 (0.01) 1.69 (0.003) 3.01 (0.14) 2.15 (0.09)
LSO (L-BFGS) facet length = 1.0 0.1 (0.01) 0.8 (0.16) 2.63 (0.19) 1.06 (0.19)
LSO (L-BFGS) facet length = 5.0 0.11 (0.01) -4.476 (1.717) 2.54 (0.18) 1.26 (0.12)
LSO (L-BFGS) facet length = 25.0 0.13 (0.007) -7.583 (2.01) 2.94 (0.24) 1.64 (0.16)

Prior λ = 0.2 0.19 (0.01) 1.70 (0.003) 2.95 (0.19) 2.09 (0.10)
Prior λ = 0.5 0.18 (0.01) 1.69 (0.003) 2.82 (0.18) 2.04 (0.11)
Prior λ = 0.8 0.15 (0.01) 1.69 (0.003) 2.79 (0.11) 1.99 (0.10)
UC 75th quantile 0.70 (0.01) 1.76 (0.004) 3.20 (0.15) 2.53 (0.05)
UC 95th quantile 0.70 (0.01) 1.76 (0.004) 3.20 (0.15) 2.53 (0.05)
UC 100th quantile 0.70 (0.01) 1.76 (0.004) 3.20 (0.15) 2.53 (0.05)

ScaLES λ = 0.2 0.23 (0.01) 1.72 (0.004) 3.03 (0.23) 2.12 (0.10)
ScaLES λ = 0.5 0.28 (0.01) 1.76 (0.004) 3.16 (0.13) 2.38 (0.09)
ScaLES λ = 0.8 0.35 (0.01) 1.79 (0.004) 3.38 (0.15) 2.60 (0.09)
ScaLES λ = 2 0.47 (0.01) 1.84 (0.004) 3.08 (0.1) 2.53 (0.05)

ScaLES (ES) 25th quantile 0.37 (0.01) 1.71 (0.003) 3.24 (0.11) 2.56 (0.07)
ScaLES (ES) 50th quantile 0.53 (0.01) 1.74 (0.002) 3.17 (0.11) 2.53 (0.04)
ScaLES (ES) 75th quantile 0.62 (0.01) 1.75 (0.002) 3.21 (0.11) 2.62 (0.04)

14

B.5 Ranolazine MPO

Reg Method Reg Param Validity ScaLES Top 1 (Valid) Top 10 (Valid)

LSO (GA) N/A 0.26 (0.01) -15.52 (0.36) 0.39 (0.00) 0.36 (0.00)
LSO (L-BFGS) facet length = 1.0 0.16 (0.01) -927.47 (25.3) 0.34 (0.01) 0.29 (0.01)
LSO (L-BFGS) facet length = 5.0 0.26 (0.01) -11847.16 (940.92) 0.34 (0.01) 0.29 (0.01)
LSO (L-BFGS) facet length = 10.0 0.31 (0.01) -27674.82 (2916.84) 0.35 (0.01) 0.30 (0.01)

Prior λ = 0.2 0.27 (0.01) 0.43 (0.28) 0.39 (0.01) 0.36 (0.00)
Prior λ = 0.5 0.39 (0.02) 10.38 (2.19) 0.39 (0.01) 0.37 (0.00)
Prior λ = 0.8 0.55 (0.01) 21.18 (0.21) 0.38 (0.01) 0.37 (0.00)
UC 75th quantile 0.22 (0.01) -14.51 (1.19) 0.38 (0.01) 0.36 (0.01)
UC 95th quantile 0.22 (0.01) -14.66 (0.28) 0.38 (0.01) 0.36 (0.00)
UC 100th quantile 0.21 (0.01) -13.67 (2.27) 0.39 (0.01) 0.35 (0.01)

ScaLES λ = 0.2 0.28 (0.01) 0.25 (0.68) 0.38 (0.01) 0.34 (0.00)
ScaLES λ = 0.5 0.47 (0.01) 16.38 (0.25) 0.39 (0.00) 0.37 (0.00)
ScaLES λ = 0.8 0.58 (0.01) 23.85 (0.08) 0.37 (0.01) 0.35 (0.00)

B.6 Zaleplon MPO

Reg Method Reg Param Validity ScaLES Top 1 (Valid) Top 10 (Valid)

LSO (GA) N/A 0.54 (0.01) -14.20 (0.58) 0.46 (0.02) 0.38 (0.01)
LSO (L-BFGS) facet length = 1.0 0.40 (0.01) -467.28 (25.62) 0.46 (0.02) 0.35 (0.01)
LSO (L-BFGS) facet length = 5.0 0.40 (0.01) -5160.41 (962.80) 0.45 (0.02) 0.32 (0.01)
LSO (L-BFGS) facet length = 10.0 0.40 (0.01) -9808.73 (1536.68) 0.43 (0.02) 0.32 (0.01)

Prior λ = 0.2 0.58 (0.01) 1.23 (0.66) 0.48 (0.02) 0.42 (0.01)
Prior λ = 0.5 0.64 (0.01) 15.67 (0.27) 0.46 (0.01) 0.41 (0.00)
Prior λ = 0.8 0.73 (0.01) 22.56 (0.11) 0.46 (0.01) 0.40 (0.01)
UC 75th quantile 0.55 (0.01) -12.85 (0.72) 0.44 (0.01) 0.38 (0.01)
UC 95th quantile 0.56 (0.01) -11.95 (0.73) 0.48 (0.03) 0.39 (0.02)
UC 100th quantile 0.54 (0.01) -10.03 (0.56) 0.48 (0.04) 0.39 (0.01)

ScaLES λ = 0.2 0.62 (0.01) 2.40 (0.62) 0.48 (0.01) 0.41 (0.00)
ScaLES λ = 0.5 0.69 (0.01) 13.78 (1.66) 0.45 (0.02) 0.40 (0.01)
ScaLES λ = 0.8 0.76 (0.02) 24.73 (0.16) 0.41 (0.01) 0.35 (0.01)

B.7 Perindopril MPO

Reg Method Reg Param Validity ScaLES Top 1 (Valid) Top 10 (Valid)

LSO (GA) N/A 0.47 (0.01) -13.6 (0.12) 0.51 (0.01) 0.48 (0.01)
LSO (L-BFGS) facet length = 1.0 0.23 (0.01) -1491 (96) 0.48 (0.01) 0.42 (0.01)
LSO (L-BFGS) facet length = 5.0 0.33 (0.02) -12304 (1553) 0.51 (0.01) 0.42 (0.00)
LSO (L-BFGS) facet length = 10.0 0.34 (0.01) -26359 (3484) 0.50 (0.01) 0.42 (0.00)

Prior λ = 0.2 0.54 (0.01) 2.1 (0.15) 0.56 (0.02) 0.52 (0.01)
Prior λ = 0.5 0.67 (0.01) 16.56 (0.13) 0.56 (0.01) 0.54 (0.00)
Prior λ = 0.8 0.76 (0.01) 22.86 (0.06) 0.57 (0.01) 0.54 (0.00)
UC 75th quantile 0.46 (0.01) -11.96 (0.26) 0.55 (0.02) 0.49 (0.01)
UC 95th quantile 0.46 (0.01) -12.01 (0.32) 0.53 (0.02) 0.48 (0.01)
UC 100th quantile 0.47 (0.01) -11.8 (0.45) 0.52 (0.02) 0.48 (0.01)

ScaLES λ = 0.2 0.56 (0.01) 1.4 (0.56) 0.59 (0.02) 0.52 (0.01)
ScaLES λ = 0.5 0.70 (0.00) 16.88 (0.19) 0.59 (0.01) 0.55 (0.00)
ScaLES λ = 0.8 0.78 (0.01) 24.03 (0.12) 0.60 (0.01) 0.56 (0.01)

15

C Computational times and resources

Resources and wall clock times All the experiments in this works were carried out using a single
GPU (NVIDIA A100). Table 5 shows the wall clock running time of calculating ScaLES and its
derivative for each one of the datasets studied in this paper.

Table 5: Wall clock times in seconds for different z batch sizes and datasets (latent dim in parentheses).
The methods evaluated include ScaLES, ScaLES Derivative, and UC. For UC, the number of weights
and importance samples are in parentheses.

Expressions (25) Smiles (56) Selfies (256)
Batch 10 Batch 5 Batch 10 Batch 5 Batch 10 Batch 5

ScaLES 0.133 0.04 0.277 0.219 8.687 4.491
ScaLES Derivative 0.18 0.085 0.417 0.369 8.026 5.4
UC (10, 10) 0.162 0.106 1.041 0.841 13.177 12.649
UC (2, 2) 0.021 0.021 0.169 0.159 2.549 2.469

Software packages used In this work we used the following software packages:

• https://github.com/pascalnotin/uncertainty_guided_optimization Notin et al. [2021]

• https://github.com/nataliemaus/lolbo Maus et al. [2022]

• BoTorch Balandat et al. [2020]

• PyTorch Paszke et al. [2017]

D Broader impact

This work seeks to improve the practicality of latent space optimization, a method first used in drug
discovery. It brings no new societal implications beyond those already associated with LSO.

16

	Introduction
	Background: Latent Space Optimization
	A Scalable Latent Exploration Score to Reduce Over-Exploration in LSO
	Motivation
	Derivation of ScaLES
	Validating the relationship between ScaLES and valid generation

	ScaLES-constrained LSO
	Experimental setup
	Results
	Expressions and logP
	Guacamol benchmarks with SELFIES VAE

	Discussion
	Proofs
	Additional experimental details
	Datasets characteristics
	Full experimental results
	Expressions
	logP
	Ranolazine MPO
	Zaleplon MPO
	Perindopril MPO

	Computational times and resources
	Broader impact

