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Abstract

Bayesian Additive Regression Trees (BART) is a popular Bayesian non-parametric regression model that is

commonly used in causal inference and beyond. Its strong predictive performance is supported by theoretical

guarantees that its posterior distribution concentrates around the true regression function at optimal rates under various

data generative settings and for appropriate prior choices. In this paper, we show that the BART sampler often converges

slowly, confirming empirical observations by other researchers. Assuming discrete covariates, we show that, while the

BART posterior concentrates on a set comprising all optimal tree structures (smallest bias and complexity), the Markov

chain’s hitting time for this set increases with n (training sample size), under several common data generative settings.

As n increases, the approximate BART posterior thus becomes increasingly different from the exact posterior (for the

same number of MCMC samples), contrasting with earlier concentration results on the exact posterior. This contrast is

highlighted by our simulations showing worsening frequentist undercoverage for approximate posterior intervals and a

growing ratio between the MSE of the approximate posterior and that obtainable by artificially improving convergence

via averaging multiple sampler chains. Finally, based on our theoretical insights, possibilities are discussed to improve

the BART sampler convergence performance.

1 Introduction

1.1 The Rise of BART

Decision tree models such as CART (Breiman et al., 1984) are piecewise constant regression models obtained by

recursively partitioning the covariate space along coordinate axes. They and their ensembles such as Random Forests

(RFs) (Breiman, 2001) and Gradient Boosted Trees (GBTs) (Friedman, 2001; Chen and Guestrin, 2016) have proved to

be enormously successful because of their strong predictive performance (Caruana and Niculescu-Mizil, 2006; Caruana

et al., 2008; Fernández-Delgado et al., 2014). Indeed, RFs and GBTs regularly outperform even deep learning on

medium-sized tabular datasets (Grinsztajn et al., 2022). Nonetheless, these tree-based methods still suffer from several

notable problems: They are defined via algorithms rather than via statistical models, so it is often difficult to quantify

the uncertainty of their predictions; they use greedy splitting criteria, so there is no guarantee for the optimality of

the fitted model; RFs in particular grow their trees independently of each other, therefore making them statistically

inefficient when fitted to data with additive structure (Tan et al., 2022a).

To address these issues, Chipman et al. (1998) proposed a Bayesian adaptation of CART (BCART) and later an

ensemble of Bayesian CART trees, which they called Bayesian Additive Regression Trees (BART) (Chipman et al.,

*Equal contribution, alphabetical ordering

1

a
rX

iv
:2

4
0
6
.1

9
9
5
8
v
1
  
[s

ta
t.

M
L

] 
 2

8
 J

u
n
 2

0
2
4



2010). These are Bayesian non-parametric regression models, which put a prior on the space of regression functions,

assume a likelihood for the observed data, and combine these to obtain a posterior. In the case of Bayesian CART and

BART, priors and posteriors are supported on the subspace of functions that can be realized by decision trees (or their

ensembles). Similar to Gaussian process (GP) regression, the posterior distribution can be used to provide posterior

predictive credible intervals. On the other hand, unlike GP regression, there is no closed form formula for the BART

posterior and one has to sample from it approximately via a Markov chain Monte Carlo (MCMC) algorithm.

BART has been shown empirically to enjoy strong predictive performance that is sometimes even superior to that of

RFs and GBTs, especially after hyperparameter optimization (Hill et al., 2020). Naturally, it has become increasingly

popular in diverse fields ranging from the social sciences (Green and Kern, 2010; Yeager et al., 2019) to biostatistics

(Wendling et al., 2018; Starling et al., 2020) and has been particularly enthused causal inference researchers (Hill,

2011; Green and Kern, 2012; Kern et al., 2016; Dorie et al., 2019; Hahn et al., 2019). Extending and improving BART

methodology remains a highly active area of research, with many variants of the algorithm proposed over the last few

years (see for instance Linero (2018); Pratola (2016); Pratola et al. (2020); Luo and Pratola (2023), as well as the survey

Hill et al. (2020) and the references therein.)

The strong predictive performance of BART is supported by a burgeoning body of theoretical evidence regarding

the BART posterior. Most significantly, researchers have shown that the BART posterior concentrates around the

true regression function used to generate the response data as n, the number of training samples, increases, with this

concentration happening at optimal rates under various assumptions on the smoothness and sparsity of the regression

function and for appropriate prior choices (Ročková and Saha, 2019; Ročková and van der Pas, 2020; Linero and Yang,

2018; Jeong and Rockova, 2020; Rockova and Rousseau, 2021; Castillo and Ročková, 2021). Achieving these optimal

rates does not require any oracle knowledge or hyperparameter tuning—instead BART automatically adapts to the level

of smoothness and sparsity, with the former even happening at a local level (Rockova and Rousseau, 2021).

1.2 Observed Poor Mixing of BART and its Significance

While there is evidence that the BART posterior enjoys favorable properties under a variety of settings, the fact that

we can only sample approximately from the posterior via MCMC creates a gap in our understanding of how and why

BART works. Specifically, if the sampler chain does not converge efficiently to the posterior distribution, that is, if

it does not mix well, the output of BART algorithm may not enjoy the same desirable inferential properties as the

BART posterior. Most popular BART implementations use remarkably similar samplers based on the original design

of Chipman et al. (2010), which uses a Bayesian backfitting approach to update one tree at a time via proposed local

changes to the tree nodes coupled with a Metropolis-Hastings filter. Unfortunately, as described by Hill et al. (2020),

“while this algorithm is often effective, it does not always mix well.” Indeed, poor mixing for this sampler has been

empirically documented by multiple sources (Chipman et al., 1998; Carnegie, 2019).

The literature contains various suggestions on how to improve the mixing time for the BART sampler. These include

parallelization (Pratola et al., 2014), modifying the MCMC proposal moves (Wu et al., 2007; Pratola, 2016; Kim and

Rockova, 2023), warm starts from greedily constructed tree ensembles (He and Hahn, 2021), or running multiple chains

(Carnegie, 2019). Despite this interest, there has been minimal theoretical work done to quantify the mixing time and to

understand why and under what settings slow mixing occurs.

1.3 Main Contributions

In this paper, we show theoretically, assuming discrete covariates, that the BART sampler often converges slowly to its

posterior, confirming the empirical observations of Hill et al. (2020) and other researchers. In fact, the convergence

unexpectedly becomes worse as n increases, in contrast with the posterior’s concentration to the true regression function

becoming better.

To state our results more formally, note that a regression tree is parameterized via its tree structure (which features

are split on and at which thresholds) and its leaf parameters (the function value on each leaf). BART combines these

parameters over multiple trees to parameterize a tree ensemble (see Section 2.2.). Since the leaf parameters can be

sampled in closed form conditionally on tree structures, the original BART sampler, under a slight modification, can be

thought of as a Markov chain on the space of tree structures.
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Data Generating Process Allowed Moveset Multiple Trees Lower Bound

Additive Full Yes Square root

Additive “Grow” and “Prune” Yes Polynomial

Contains Pure Interaction “Grow” and “Prune” Yes Square root

Root Dependence “Grow” and “Prune” No Exponential

Table 1: A summary of the HPDR hitting time lower bounds provided by our paper and their dependence on the training

sample size n (last column). The first two lower bounds apply to additive generative models. The third applies to a

setting where the generative regression function contains a pure interaction (defined in Section 5.2.) The fourth applies

to the setting where the generative function has “root dependence”, which represents a form of asymmetric dependence

on the features (defined in Section 5.3.) All lower bounds apart from the fourth allow BART to use multiple trees.

We show that the BART posterior concentrates on a set comprising all optimal tree structures (i.e. those with

the smallest bias and complexity), which also forms a highest posterior density region (HPDR). On the other hand,

the BART sampler’s hitting time for this set increases with n under four common data generative settings. In other

words, the sampler requires more and more steps to reach any optimal tree structure. Note that this is a frequentist

analysis and requires the assumption of a generative model for the data that can and will be different from the Bayesian

parameterization. Our hitting time lower bounds are summarized in the Table 1.

We complement our theoretical analysis with a comprehensive simulation study of BART involving a wide range of

data-generating processes with continuous covariates. From now on, we use the term approximate posterior to refer

to the distribution obtained from 1000 MCMC samples after a generous burn-in (5000 iterations as opposed to the

default of 100). To create a proxy for the exact posterior, we combine samples from multiple (5) sampler chains, which

is known to improve mixing (Carnegie, 2019).1 We compare the performance of the approximate and multi-chain

approximate posteriors via two metrics: (i) the RMSE of their posterior mean function from the true regression function

on a held-out test set, (ii) the empirical coverage of their pointwise credible intervals for the true regression function. In

both cases, the relative performance gap between the approximate and multi-chain approximate posteriors (measured as

a ratio) increases as n increases. These two findings provide further evidence that the approximate BART posterior

becomes increasingly and meaningfully different from the exact posterior as n increases. We also perform two other

experiments to validate this claim in the setting of our theoretical lower bounds. Our theory and simulations thus echo

existing advice that BART users should not blindly take its posterior credible intervals at face value and should run

multiple chains whenever feasible.

Lastly, our theoretical results and their proof strategies yield insights on why the BART sampler has trouble

converging, which leads us to suggest possible ways to improve its performance. Most importantly, our proof will

show that a major reason why hitting times grow with training sample size is because the “temperature” of the BART

sampler is inversely proportional to the training sample size. There is no need for temperature and sample size to

be intrinsically tied in this manner, and we conjecture that building in more flexible temperature control, such as via

simulated tempering, may help to accelerate mixing.

1.4 Prior Work on Mixing for BART

Kim and Rockova (2023) and our prior work (Ronen et al., 2022) sought to analyze mixing times for the Bayesian

CART sampler. Both made the surprising discovery that its mixing time can grow exponentially in the training sample

size, when the only allowed moves are growing new leaves and pruning existing ones. Kim and Rockova (2023) studied

this in a one-dimensional setting and further showed that, with a more aggressive move set, Bayesian CART constrained

to dyadic splits has a mixing time upper bound that is linear in the sample size. Ronen et al. (2022)’s proof strategy was

to show that this Markov chain has a bottleneck state—the trivial tree comprising a single node. This bottleneck arises

because when Bayesian CART makes a wrong first split followed by other informative splits, the only way to reverse

the wrong first split involves pruning the informative splits, which becomes increasingly difficult as the training sample

size increases.

1Carnegie (2019) investigated the use of 1, 4, and 10 chains. Taking reference from this, we used 5 chains but did not investigate the effect of

increasing the number of chains beyond this value. We believe that the optimal number could possibly vary with the sample size and DGP.
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Regression trees. A binary axis-aligned regression tree is parameterized by a tuple (T,µ). Here, T refers to the tree

structure, which specifies the topology of the tree as a rooted binary tree planar graph and, given an ordering of the

graph’s vertices (e.g. via breadth-first search), specifies the splitting rule for each internal node j. Note that the splitting

rule comprises a feature vj and a threshold tj . The leaves L1,L2, . . . ,Lb of T thus correspond to rectangular regions

of the covariate space that together form a partition of the space. We let µ ∈ R
b be a vector of leaf parameters, one for

each leaf of T. Together, (T,µ) specify a piecewise constant function g that outputs

g(x;T,µ) = µl(x),

where l(x) is the index of the leaf containing x.

Sum-of-trees model. Given observed data Dn, the BART model posits yi = f(xi) + ei for i = 1, 2 . . . , n, where

e1, e2, . . . , en ∼i.i.d. N (0, σ2), and f is a sum of the outputs of m trees:

f(x) = g(x;T1,µ1) + g(x;T2,µ2) + · · ·+ g(x;Tm,µm).

We denote the ordered tuple (T1,T2, . . . ,Tm) by E and call it a tree structure ensemble (TSE). We shall abuse notation

and use µ to refer to the concatenation of µ1,µ2, . . . ,µm. Note that, when conditioned on E and X, this is just a

Bayesian linear regression model. To see this, let Ψ denote the n× b matrix whose columns are the indicator vectors

over the training set of each leaf in E. We then have

y = Ψµ+ e. (1)

Priors. We assume a fixed prior distribution p on ΩTSE,m, the space of TSEs with m trees.2 Conditioned on a TSE E,

the conditional prior distribution on the leaf parameters is an isotropic Gaussian, i.e. p(µ|E) ∼ N (0, (σ2/λ)Ib), where

b is the total number of leaves in all trees in E. Both σ2 and λ are assumed to be fixed hyperparameters, with σ2 taking

the same value as that used in the variance of the additive noise ei, while λ is a modulation parameter that should be set

to approximately the reciprocal of the signal-to-noise ratio.

Differences with in-practice BART. Chipman et al. (1998) proposed a prior on tree structures defined in terms of a

stochastic process. Starting from a single root node, the process recursively splits each node at depth d with probability

α(1 + d)−β , where α and β are hyperparameters with default values α = 0.95 and β = 2 respectively. Features and

thresholds for splits are selected uniformly at random. Chipman et al. (2010) extended this to a prior on TSEs by

independence, i.e. p(E) =
∏m
j=1 p(Tj). After rescaling the response variable to lie between −0.5 and 0.5, the leaf

parameter standard deviation is set to be σµ = 0.5/k
√
m, where k is a further hyperparameter with default value k = 2.

Finally, an inverse-χ2 hyperprior is placed on the noise variance σ2 and is calibrated to the observed data. This last

assumption is the only way in which the BART model we study in this paper departs from that in Chipman et al. (2010).

We make this change for analytical tractability and believe it to be minor, since simulations show that the posterior on

σ2 quickly converges to a fixed value and our theoretical guarantees hold for any fixed choice of σ2.

3 Sampling from BART via MCMC

3.1 The In-Practice BART Sampler

The sampler proposed by Chipman et al. (2010) can be described as a “Metropolis-within-Gibbs MCMC sampler” (Hill

et al., 2020). More precisely, for each outer loop of the algorithm, it iterates over the tree indices j = 1, 2, . . . ,m and

updates the j-th pair (Tj ,µj) using an approximate draw from the conditional distribution p(Tj ,µj |E−j ,µ−j ,y, σ
2),

where E−j and µ−j refer to the concantenation of current tree structures and leaf parameter vectors respectively, each

2Because the emphasis in our theory is on the dependence of hitting times on training sample size in large samples, the specific form of the prior

holds no bearing on our results.
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with the j-th index omitted.3 As a final step in the loop, it updates σ2 using a draw from its full conditional distribution

p(σ2|E,µ,y).
To describe how to sample (approximately) from p(Tj ,µj |E−j ,µ−j ,y, σ

2), we first describe Chipman et al.

(1998)’s algorithm for Bayesian CART, i.e. when the ensemble comprises a single tree. In this case, we first factorize

the posterior into a conditional posterior on leaf parameters and a marginal posterior on tree structures:4

p(T,µ|y, σ2) = p(µ|T,y, σ2)p(T|y, σ2). (2)

The first multiplicand on the right, p(µ|T,y, σ2), is a multivariate Gaussian (with diagonal covariance) and can be

sampled from directly. The second multiplicand is proportional to p(y|T, σ2)p(T), which is the product between a

marginal likelihood of a Bayesian linear regression model and the prior. The marginal likelihood can be computed using

standard techniques, but the posterior cannot be sampled directly. As such, a Metropolis-Hastings sampler is used with

the following types of proposed moves:

1. Pick a leaf in the tree and split it (grow);

2. Pick two adjacent leaves and collapse them back into a single leaf (prune);

3. Pick an interior node and change the splitting rule (change);

4. Pick a pair of parent-child nodes that are both internal and swap their splitting rules, unless both children of the

parent have the same splitting rules, in which case, swap the splitting rule of the parent with that of both children

(swap).

Note that all selections in these proposed moves (of nodes, splitting rules, etc.) are made uniformly at random from all

available choices.5 The proposed move types are chosen with probabilities πg , πp, πc, and πs respectively. Let Q(−,−)
denote the transition kernel of the proposal, i.e. Q(T,T∗) is the probability of tree structure T∗ being proposed given

current tree structure T. With T and T∗ thus defined, the Metropolis-Hastings algorithm accepts the proposal with

probability

α(T,T∗) := min

{
Q(T∗,T)p(T∗|y, σ2)

Q(T,T∗)p(T|y, σ2)
, 1

}
.

A simple reparameterization trick is used to adapt this sampler to the case when the ensemble has multiple trees.

Because of the independence of the priors on different trees and the Gaussian likelihood, the conditional posterior

p(Tj ,µj |E−j ,µ−j , σ
2,y) can be rewritten in terms of the residual vector

r−j := y −
∑

k ̸=j

g(X;Tk,µk).

Specifically, we have

p(Tj ,µj |E−j ,µ−j , σ
2,y) = p(Tj ,µj |r−j , σ2),

where the right-hand side is the single-tree posterior. A single Metropolis-Hastings update step as described above is

performed to draw an approximate sample (Tj ,µj) from the conditional posterior.

3.2 The Analyzed BART Sampler

The BART sampler described above is difficult to analyze because the deterministic Gibbs outer loop makes it a time-

varying Markov chain. More significantly, it is convenient in analyzing Bayesian CART to collapse the Markov chain

state space by marginalizing out the leaf parameters. The collapsed state space is simply the space of tree structures,

which is discrete and finite. However, we are unable to do this for BART in general because of the conditioning on the

3Note that the conditional distribution is of course also conditional on the observed covariate data X. However, since this is always conditioned

upon, we omit it from our notation to avoid clutter.
4Chipman et al. (1998)’s formulation of the Bayesian CART sampler marginalizes out σ2 instead of conditioning on it. As this is no longer done

for BART, we omit discussing it to avoid confusing readers.
5Splits that result in empty leaves are not allowed.
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residuals from other trees in the inner loop. Both of these difficulties make it impossible to apply standard techniques in

Markov chain theory.

To overcome this, we propose an adaptation of the sampler that brings it closer to Bayesian CART. First, we imitate

(2) and factorize the posterior into a conditional posterior on leaf parameters and a marginal posterior on tree ensemble

structures:

p(E,µ|y) = p(µ|E,y)p(E|y).
The conditional posterior on leaf parameters is still a multivariate Gaussian and can be sampled from directly, while

the marginal posterior on tree ensemble structures remains proportional to the product of the marginal likelihood of a

Bayesian linear regression model and the prior: p(E|y) ∝ p(y|E)p(E) (see (1).) To sample from this marginal posterior,

we run Metropolis-Hastings MCMC similarly to before. However, instead of cycling deterministically through the

trees in an inner loop as before, we pick a tree index uniformly at random. We propose an updated tree using the

same transition kernel Q(−,−), but write the acceptance probability in terms of the full marginal posterior instead

of conditioning on the residuals from other trees. For further clarity, the algorithm is summarized in pseudocode as

Algorithm 1.

We denote the transition kernel of the sampler using P (−,−), and, to avoid confusion with randomness arising from

sampling the training set, we will denote all probabilities and expectations with respect to the algorithmic randomness

using P and E respectively.

Algorithm 1 BART sampler.

1: BART(Dn: data, m: no. of trees, σ2: guess for noise variance, λ: guess for reciprocal SNR, π: proposal probabilities, pTSE :

TSE prior, tmax: no. of sampler iterations)

2: Initialize T1,T2, . . . ,Tm as trivial trees.

3: for t = 1, 2, . . . , tmax

4: Sample k ∼ Unif({1, 2, . . . ,m}).
5: Propose T

∗ ∼ Q(Tk,T
∗).

6: Set α(Tk,T
∗) = min

{

Q(T∗,Tk)p(T1,...,Tk−1,T
∗,Tk+1,...,Tm|y)

Q(Tk,T
∗)p(T1,...,Tk−1,Tk,Tk+1,...,Tm|y)

, 1
}

.

7: Set Tk = T
∗ with probability α(T,T∗).

4 BIC for BART and Posterior Concentration on Optimal TSEs

The goal of this section is to first show how to quantify the bias and complexity of a TSE separately and then jointly

via BIC. We will then show that, as a function of TSEs, the posterior probability p(E|y) concentrates on the set of

TSEs with zero bias and the lowest possible complexity, and are therefore minimizers of BIC. As such, as argued in

the introduction, the highest posterior density region contains all of the most desirable TSEs. This implies that lower

bounds on the hitting times of this region reflect computational drawbacks of practical consequence.

4.1 Measuring Bias and Complexity for TSEs

We first discuss how to quantify the bias and complexity of a TSE.

Partitions. A cell C is a rectangular region of X , i.e.

C = {x ∈ X : ai < xi ≤ bi for i = 1, . . . , d},

with lower and upper limits ai and bi respectively in coordinate i for i = 1, 2, . . . , d. A partition is a collection of

disjoint cells C1, . . . , Cb whose union is the whole space X . Every tree structure T induces a partition P via its leaves.

Not only is P a sufficient statistic for T, it also completely characterizes the bias and complexity of the resulting data

model conditioned on T. Indeed, this data model is just Bayesian linear regression on the indicator functions on the

leaves of T. Since the functions are orthogonal, the degrees of freedom of the regression is equal to the size of the

partition.

7



Partition ensemble models (PEMs). A TSE E induces an ensemble of partitions P1,P2, . . . ,Pm. Indeed the data

model conditioned on E is still a Bayesian linear regression on the indicator functions of all leaves in E. However, these

indicators are no longer orthogonal, which means that different ensembles, with possibly different numbers of leaves,

can give rise to the same subspace of regressors, making E not identifiable from data. To avoid this issue, we directly

consider the subspace of the regression function. Formally, let V ⊂ L2(X d, ν) be the subspace spanned by indicators

of the cells in Pj for j = 1, 2, . . . ,m. We call this the partition ensemble model (PEM) associated to the TSE E and

indicate this association via the mapping V = F(E).

Measuring bias. Let ΠE denote orthogonal projection onto F(E) in L2(ν). We define the squared (mangitude of the)

bias of E with respect to a regression function f as

Bias2(E; f) :=

∫
(f −ΠE[f ])

2dν. (3)

This is precisely the squared bias of Bayesian linear regression on E if we ignore the regularization effect from the leaf

parameter priors, which is inconsequential in large sample sizes.

Measuring complexity. When conditioned on a TSE E and ignoring regularization from leaf parameter priors, the

degrees of freedom of the resulting Bayesian linear regression model is just the dimension of F(E). We denote this by

df(E) and use it as a measure of complexity of E. Note that this definition does not depend on the covariate distribution

ν (see Lemma J.2 in the appendix.)

Function dimension and optimal sets. Excessive complexity leads to overfitting and is hence undesirable. To

quantify the excess, we first define the m-ensemble dimension of a regression function f as

dimm(f) := min{df(E) : f ∈ F(E) and E ∈ ΩTSE,m}. (4)

In large sample sizes n, which is the setting we are concerned with, the TSEs that result in the smallest MSE must be

bias-free. We hence define the set of optimal TSEs in ΩTSE,m to be the minimizers of (4). More generally, we define a

series of nested sets with increasing levels of suboptimality tolerance via:

OPTm(f, k) := {E ∈ ΩTSE,m : f ∈ F(E) and df(E) ≤ dimm(f) + k}.

4.2 BIC and BART Posterior Concentration

The Bayesian information criterion (BIC) (Schwarz, 1978) of a TSE E is given by

BIC(E) =
yT (I−PE)y

σ2
+ df(E) log n+ log

(
2πσ2

)
n.

Here, PE refers to projection onto F(E) with respect to the empirical norm ∥·∥n (realized as a matrix.) Ignoring the

effect of the noise vector for now, we see that the first term, divided by the sample size n, is an estimate for the squared

bias. Meanwhile, the second term directly measures the model complexity. Hence, BIC quantifies the quality of a

TSE by accounting for both bias and complexity. Indeed, under our data generative model (Section 2.1) we have the

following concentration lemma:

Proposition 4.1 (Concentration of BIC differences). Consider two TSEs E and E′ and denote the difference in their

BIC values as ∆BIC(E,E′) = BIC(E)−BIC(E′). Then for any 0 < δ < 1, with probability at least 1− δ with respect

to Pn, we have

∆BIC(E,E′) =
n

σ2

(
Bias2(E; f∗)− Bias2(E′; f∗)

)
+O

(√
n log(1/δ) + log(1/δ)

)
. (5)

If furthermore, both TSEs have the same bias, i.e. ΠE[f
∗] = ΠE′ [f∗], then we have

∆BIC(E,E′) = log n(df(E)− df(E′)) +O(log(1/δ)). (6)

8



From this proposition, we also see that OPTm(f∗, k) for k = 0, 1, 2, . . . are just sublevel sets of BIC when n is

large enough. We next show that BIC is closely connected to the log marginal likelihood for TSEs as follows:

Proposition 4.2 (Log marginal likelihood and BIC). Consider a TSE E. Then for any 0 < δ < 1, there is a minimal

sample size N so that for all n ≥ N , with probability at least 1 − δ with respect to Pn, the log marginal likelihood

satisfies

log p(y|E) = −BIC(E)

2
+O(1).

Consequently, the log marginal posterior also satisfies

log p(E|y) = −BIC(E)

2
− log p(y) +O(1).

This almost linear relationship implies that OPTm(f, k) for k = 0, 1, 2, . . . are also superlevel sets of the marginal

posterior. In other words, they form highest posterior density regions (HPDR). As advertised, these will be the target

sets of our hitting time analysis. Finally, combining the previous two propositions gives the following result on posterior

concentration.

Proposition 4.3 (BART posterior concentration). For any 0 < δ, ϵ < 1, there is a minimal sample size N so that for all

n ≥ N , with probability at least 1− δ with respect to Pn, the marginal posterior measure on ΩTSE,m satisfies

p(OPTm(f∗, 0)) | y) > 1− ϵ.

5 Hitting Time Lower Bounds for BART MCMC

Our primary findings consist of lower bounds on HPDR hitting times for BART, explored across four distinct settings

for BART and the data generating process (DGP). As discussed in the previous section, these regions also comprise

sublevel sets of BIC. We first define hitting times in a general setting.

Hitting times. Let (Xt) be a discrete time Markov chain on a finite state space Ω. Let A ⊂ Ω be a subset. The hitting

time of A is defined as:

τA := min{t ≥ 0: Xt ∈ A}.
Note that this is a random variable and that it, in principle, depends on the initial state X0. In our analysis, the initial

state is always chosen to be an ensemble of trivial trees and so will not be referenced in the notation to avoid clutter.

5.1 Square Root and Polynomial Lower Bounds for Additive Models

Our first two lower bounds are for the setting where the DGP is an additive model.

Theorem 5.1 (Lower bound for additive model). Let f∗ be an additive function, i.e.

f∗(x) = f1(x1) + f2(x2) + · · ·+ fm′(xm′)

with m′ ≥ 2. Suppose x1, x2, . . . , xm′ are independent. Suppose m ≤ m′, and we make arbitrary choices for the other

BART hyperparameters σ2, λ, π, pTSE . Then for any 0 < δ < 1, there is a minimal sample size N so that for all

n ≥ N , with probability at least 1− δ with respect to Pn, the Markov chain induced by BART(Dn,m, σ2, λ,π, pE,−)
satisfies

E
{
τOPTm(f∗,(qmax−2)(qmin−2)−2)

}
= Ω

(
n1/2

)
,

where qmax = max1≤i≤m′ dim1(fi), qmin = min1≤i≤m′ dim1(fi).
If furthermore, m < m′ and we disallow “change” and “swap” moves, i.e. πc = πs = 0, then we have6

E
{
τOPTm(f∗,qmax−qmin−1)

}
= Ω

(
nqmin/2−1

)
.

6Recall that OPTm(f∗, 0) ⊂ OPTm(f∗, k) for k ≥ 0. Since OPTm(f∗, k) = ∅ for negative k, these statements can be interpreted as being

meaningless unless qmax and qmin satisfy the relevant constraints.
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Additive models are natural generalizations of linear models that have been widely studied in statistics and machine

learning (Hastie and Tibshirani, 1986; Hastie et al., 2009). When fitted to real world datasets, they often enjoy good

prediction accuracy. Hence, we view an additive generative model to be a natural class of functions for our study.

Furthermore, several works deriving consistency guarantees for frequentist greedy decision trees and random forests

have used additive models as a generative function class, as the assumption of additivity helps to circumvent some

of the practical and theoretical difficulties arising from greedy splitting (Scornet et al., 2015; Klusowski, 2021). On

the other hand, Tan et al. (2022a) showed generalization lower bounds for decision trees in this setting, with the

recommendation that models with multiple trees fit additive models better than those comprising a single tree (see also

Tan et al. (2022b).) Indeed, given the assumptions of Theorem 5.1, we have diml(f
∗) > dimm(f∗) for any l < m,

while diml(f
∗) = dimm(f∗) for any l ≥ m (see Proposition F.7.) In other words, a minimum BIC value is achievable

if and only if the number of trees in the BART model is larger than or equal to the number of components in the additive

model.

However, Theorem 5.1 tells us that even when the BART model is correctly specified and contains an efficient

representation of f∗, i.e. when m′ = m, the BART sampler may fail to reach a TSE implementing such a representation

within a reasonable time. This adds another perspective to recent arguments that there may be value in overparameteri-

zation (see for instance Bartlett et al. (2020).) Allowing for more trees than the number of additive components may

empower the sampler with more freedom of navigation to avoid potential computational bottlenecks. We confirm this

conjecture empirically in our simulations section.

5.2 Square Root Lower Bound for Pure Interactions

Our next lower bound is for the setting when the data generating process has a pure interaction, which we define as

follows. Let xi and xj be two features, i.e. components of x ∼ ν. We say that they form a pure interaction with

respect to a regression function f∗ if they are jointly dependent with the response y, but are separately conditionally

independent of y for any conditioning set of indices I unless it includes the other’s index. Mathematically, we can write

this as follows:

• (xi, xj) ̸⊥⊥ y;

• xi ⊥⊥ y | xI and xj ⊥⊥ y | xI for any I ⊂ {1, 2, . . . , d} such that i, j /∈ I .

A canonical example of a pure interaction is the exclusive-or (XOR) function over binary features with a uniform

distribution, i.e. f(x) = x1x2 for X = {−1, 1}d. This function is well-known to be difficult to learn using either

CART (Syrgkanis and Zampetakis, 2020; Mazumder and Wang, 2024) or neural networks (Abbe et al., 2022). As such,

it is perhaps unsurprising that the BART sampler also experiences difficulties in this setting.

Theorem 5.2 (Lower bound for pure interaction). Let f∗ contain a pure interaction. Suppose we disallow “change”

moves, i.e. πc = 0, and we make arbitrary choices for all other BART hyperparameters m, σ2, λ, πg, πp, πs, pTSE .

Then for any 0 < δ < 1, there is a minimal sample size N so that for all n ≥ N , with probability at least 1− δ with

respect to Pn, the Markov chain induced by BART(Dn,m, σ2, λ,π, pE,−) satisfies

E
{
τOPTm(f∗,∞)

}
= Ω

(
n1/2

)
,

where OPTm(f∗,∞) := ∪∞
k=0OPTm(f∗, k).

Note that the suboptimality gap for Theorem 5.2 is much wider than that for Theorem 5.1. Indeed, it implies that

the only TSEs that are reachable within o
(
n1/2

)
iterations of the sampler have nonzero bias. As such, the MSE of

the BART sampler output does not even converge to zero with the training sample size, unless we allow for Ω(n1/2)
iterations of the sampler.

5.3 Exponential Lower Bound for Bayesian CART

Our final hitting time lower bound shows that the HPDR hitting time for Bayesian CART can be exponential in the

training sample size. This complements and improves our results in Ronen et al. (2022), which provided an exponential
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lower bound for mixing time for Bayesian CART. While the previous result relied on extremely weak assumptions, the

improved version requires a new assumption on the asymmetry of the regression function f∗ in terms of its dependence

on different features. Specifically, we say that a regression function f∗ has root dependence if there exists a feature xi
and threshold t such that:

• Corr2(y,1{xi ≤ t}) > 0;

• (i, t) does not occur as a root split on any tree structure T ∈ OPT1(f, 0).

An example of such a function is the “staircase” function f∗(x) =
∑s
j=1

∏j
k=1 1{xk > 1}. Any feature xi for

2 ≤ i ≤ s satisfies the above two properties. On the other hand, additive functions on independent features do not

satisfy these properties.

Theorem 5.3 (Lower bound for Bayesian CART with root dependence). Suppose f∗ has root dependence. Suppose

m = 1 and that we disallow “change” and “swap” moves, i.e. πc = πs = 0. Suppose we make arbitrary choices for all

other BART hyperparameters σ2, λ, πg, πp, pTSE . Then the Markov chain induced by BART(Dn, 1, σ2, λ,π, pE,−)
satisfies

lim inf
n→∞

En

{
logE

{
τOPT1(f∗,0)

}

n

}
≥ 1

2σ2

(∫
(f∗)2dν −

(∫
f∗dν

)2
)
.

Remark 5.4. Our hitting time lower bounds directly imply mixing time lower bounds in the space of PEMs, which,

as argued in Section 4, are identifiable from data. Since the bias and degrees of freedom of a TSE E is defined in

terms of its associated PEM F(E), OPTm(f∗, k) is the preimage under F of a set ÕPTm(f∗, k) in the space of PEMs.

Hence, a hitting time lower bound for OPTm(f∗, k) is simultaneously a hitting time lower bound for ÕPTm(f∗, k)
when considering the induced Markov chain on the space of PEMs. It is easy to see that this is a lower bound for the

mixing time.

Remark 5.5. For the sake of narrative clarity, we have not tried to optimize the suboptimality gaps (i.e. k in

OPTm(f∗, k)) in our lower bounds. Note also that we have not attempted to investigate the dependence of our lower

bounds on other data or algorithmic hyperparameters. These of course influence the minimum sample size N as well as

the hidden constant factor in the Big-Omega notation of our lower bounds.

6 Hitting Time Lower Bounds via Barrier Sets

In this section, we briefly outline the proof strategy we use to derive our hitting time lower bounds. Our first move is to

make use of the standard interpretation of a symmetric Markov chain as a random walk on a network, whose vertices

comprise the states of the Markov chain and whose edges comprise pairs of states with positive transition probability.

We next notice that hitting times are closely related to escape probabilities, which can be interpreted as voltages on the

network. Voltages can then be calculated using standard network simplification techniques. Putting these ingredients

together creates the following recipe for deriving hitting time lower bounds:

Proposition 6.1 (Recipe for hitting time lower bounds). Let E0,E1,E2, . . . denote the Markov chain induced by a run

of BART(Dn,m, σ2, λ,π, pE,−) for any fixed dataset Dn and any choice of hyperparameters. Let Ebad ∈ ΩTSE,m be

a TSE such that, for some 0 < δ < 1, with probability at least 1− δ with respect to Pn,

P
{
τEbad

< τOPTm(f∗,k)

}
= Ω(1).

Let B ⊂ ΩTSE,m be a subset such that every path from Ebad to OPTm(f∗, k) intersects B. Then with probability at least

1− 2δ with respect to Pn, the hitting time of OPTm(f∗, k) satisfies

E
{
τOPTm(f∗,k)

}
= Ω

(
exp

(
1

2
min
E∈B

∆BIC(E,Ebad)

))
.
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From these constructions, we also see that the reason why hitting times grow with training sample size is because

the barrier sets become increasingly difficult to pass through. Heuristically, we can say that this is because the intrinsic

“temperature” of the BART sampler is inversely proportional to the training sample size.

7 Theoretical Limitations and Future Work

In this section, we detail the limitations of our theoretical results, which naturally suggest directions for future work.

Difference from in-practice BART. The three differences between the version of BART we analyzed and BART as

used in practice are that:

• We assume a fixed noise parameter σ2 instead of putting a prior on it;

• At each iteration, we pick a random tree to update instead of cycling deterministically through the trees;

• We change the rejection probability in the Metropolis filter to be in terms of the marginal posteriors on TSEs

instead of being conditional posteriors on the updated tree.

We believe that these differences to be relatively minor and that they may even improve the mixing properties of BART,

albeit at the cost of higher computational complexity per iteration.8

Failure to address MSE and coverage directly. Let E0,E1,E2, . . . denote the Markov chain induced by a run of

BART. For j = 0, 1, 2, . . ., let hj be a draw from the conditional posterior on regression functions, p(f |Ej ,y). The

BART algorithm returns the collection

{htburn-in+1, htburn-in+2, . . . htmax
}, (7)

where tburn-in is the number of burn-in iterations to be discarded. The final fitted function is the mean of this collection,

while approximate credible prediction intervals are derived from quantiles. While our hitting time lower bounds imply

that the Markov chain on TSEs fails to converge and hence that the p(f |Ej ,y)’s are separately suboptimal, this does

not preclude the mean of (7) having good MSE performance. It also does not address coverage of the approximate

credible intervals.

Restriction to discrete covariates. We assumed that our covariate distribution was discrete, i.e. X = {1, 2, . . . , b}d.

Many real datasets, of course, contain continuous features. In this case, in-practice BART computes a grid of quantile

values for each continuous feature, and selects a split threshold only from among these values. Although this effectively

makes the covariate space discrete, it also means that the space varies with the training sample size n. Our proof

relies heavily on the uniform concentration of all node and split-based quantities across a finite set and so does not

automatically generalize to this setting.

Failure to address dependence on other DGP parameters. We did not analyze the dependence of our hitting time

lower bounds on d, the dimension of the feature space, b, the number of categories for each discrete feature, s, the

sparsity of the true regression function, and ν, the covariate distribution.

Failure to address dependence on other algorithmic parameters. We did not analyze the dependence of our hitting

time lower bounds on pE, the prior on ΩTSE,m, the move probabilities πg, πp, πc, πs, and the variance parameters σ2

and λ.

8Computing the marginal posterior involves solving a d-dimensional linear regression whereas computing the conditional posterior involves

solving a univariate linear regression.
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Asymptotic nature of results. The hitting time lower bounds hold only when the training sample size is larger

than a minimum number N . This number depends on the DGP and algorithmic parameters, and if tracked, can be

exponentially large in some of them.

8 Simulations

In this section, we describe the results of a simulation study designed to bridge some of the theoretical limitations

raised in the previous section. Specifically, we directly study the RMSE of the posterior mean, with respect to the true

regression function, and the empirical coverage of pointwise posterior credible intervals for the true regression function.

We do this for the output of the original BART algorithm, investigating how they vary according to various DGP and

algorithmic parameters. Our experiments show the folowing:

• When the data is generated from an additive model, RMSE and coverage for BART improve with the number of

trees, even when the number of trees is larger than the number of additive components;

• When using Bayesian CART, the root split is often chosen suboptimally and yet is rarely reversed. The probability

that this root split is reversed decreases as the training sample size increases;

• Across a wide variety of real and synthetic DGPs, RMSE and coverage improve when averaging the results of

multiple BART sampler chains. The relative improvement gap becomes increasingly pronounced as the training

sample size increases.

The first and second results validate our hitting time lower bounds (Theorem 5.1 and 5.3 respectively) and suggest

that they hold for the original BART algorithm and for reasonable training sample sizes. Since averaging results from

multiple chains should not make a difference if each chain is well-mixed, the third result suggests that the tendency of

mixing and hitting times to increase with the number of training samples is a fairly general phenomenon that holds

across a wide variety of DGPs.

Code availability. All the code necessary to reproduce the experiments in this section is publicly available at

� github.com/theo-s/bart-hitting-time-sims The computing infrastructure used was a Linux cluster managed by Depart-

ment of Statistics at UC Berkeley. Most runs of the simulation used a single 24-core node with 128 GB of RAM, while

the larger datasets required a large-memory node with 792 GB RAM and 96 cores.

Algorithm settings and hyperparameters. We use the dbarts R package (Dorie, 2022) with almost all hyperpa-

rameters kept at their default values. In particular, πg = πp = 0.25, πc = 0.1, πs = 0.4, and the number of posterior

samples is ndpost=1000. The only exception is that we increase the number of burn-in iterations from 100 to 5000

(nskip=5000), in order to highlight that mixing does not occur within a reasonable number of iterations. The responses

are centered and scaled to have variance one. The prior for the noise variance is calibrated using the residuals of a linear

model fit on all of the predictors.9 Unless otherwise noted in the experiment description, the number of trees was kept

equal to 200.

Data. For each experiment, we generate a training dataset Dn comprising n i.i.d. tuples (xi, yi), where yi =
f∗(xi) + ϵi, ϵ ∼ N (0, η2). f∗, η2, and the covariate distribution will be varied from experiment to experiment.

Evaluation. Both RMSE and empirical coverage are calculated over an independent test set consisting of 1000

points drawn from the same distribution. The results are averaged over 100 experimental replicates, with error bars

representing ±1.96SE. To compute empirical coverage, we count the proportion of the test set points whose credible

interval for the function value contains the ground truth.

9This is standard for most software implementations of the algorithm.
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8.1 Experiment 1: Under an Additive Model, More Trees Improves Performance

Our first experiment studies how RMSE and empirical coverage depends on the interaction of the number of trees

specified in the BART model and the number of components in an additive DGP. We chose the regression function to be

one of the two forms described below. We varied the number of trees in the grid {1, 2, . . . , 10} and the training sample

size in the grid {10K, 20K, 50K, 100K}.

DGP. We let xi ∈ R
10, xi ∼ N (0,Σ), where we set Σii = 1, Σij = 0.01 for i ̸= j. We let η2 = 2, and take f∗ to

be an additive function with 5 components taking one the following two functional forms:

1. Linear: f∗(x) = 0.2x1 − x2 + 0.6x3 − 0.9x4 + 0.85x5;

2. Smooth: f∗(x) = 0.2x21 − x2 + 0.6 cos(x3)− 0.9|x4|1/2 + 0.85 sin(x5).

Results: The results are displayed in Figure 4 and show that the RMSE for BART decreases while the empirical

coverage increases as the number of trees increases, even when the number of trees is larger than the number of additive

components. This trend holds over both functional forms and is consistent across different choices of training sample

sizes. As discussed in previous sections, the BART posterior already achieves the maximum goodness of fit (i.e. BIC is

minimized) when the number of trees is equal to the number of additive components, implying that further improvement

in RMSE and empirical coverage as we increase the number of trees arises purely from better mixing. This thus

corroborates Theorem 5.1. Furthermore, the decrease in RMSE (and increase in empirical coverage) has a larger slope

for larger training sample sizes, indicating that the improvement in mixing is more pronounced in these settings.
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Figure 4: When fitted to an additive model, RMSE for BART decreases and coverage increases as the number of trees

increases, even when the number of trees is larger than the number of additive components (i.e. m > 5.) This suggests

that more trees leads to better mixing and thereby corroborates Theorem 5.1. This trend holds over different functional

forms and several choices of training sample sizes. Both RMSE and coverage are calculated on an independent test set

and are averaged over 100 experimental replicates, with error bars representing ±1.96SE.
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We let xi ∈ R
20, xi ∼ N (0,Σ), where we set Σii = 1, Σij = 0.01 for i ̸= j.

5. Sum: f∗(x) =
∑10
j=1 xj . We let xi ∈ R

20, xi ∼ N (0,Σ), where we set Σij =





1 if i = j

0.01 if i = j + 10

0 otherwise

.

6. Tree: f∗(x) = T(x), where T is a decision tree function fitted to a standard Gaussian response vector, using the

CART algorithm with maximal depth of 7. We let xi ∈ R
10, xi ∼ N (0,Σ), where we set Σii = 1, Σij = 0.01

for i ̸= j

We set η such that Tree and Piecewise have signal to noise ratios of 1, High and Low have signal to noise ratios of .5,

and Local Sparse Spiky and Sum have signal to noise ratios of .75.

Results. The results are displayed in Figure 7. Note that instead of plotting RMSE, we have chosen to plot relative

RMSE, which measures the ratio between the RMSE obtained from multiple chains and that obtained for a single chain

for a given data setting. The results show that both RMSE and empirical coverage improves, often quite significantly,

as we add multiple chains. This means that different chains give rise to significantly different distributions, implying

that the BART sampler has not mixed even after the large number of burn-in iterations. Furthermore, as the number

of training samples increases, the relative performance gap between a single chain and multiple chains increases.

Our results therefore provide evidence that the tendency of HPDR hitting times to grow with training sample size is

consistent across a wider range of DGPs than was studied theoretically.

Real data simulations. We also performed a similar experiment with a number of benchmark datasets. Results and

further description for this experiment are provided in Appendix K.
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Figure 7: The RMSE (top panel) and empirical coverage (bottom panel) of BART improve if we average posterior

samples from multiple sampler chains, given a fixed total budget of posterior samples. This improvement means that the

BART sampler has not mixed ever after 5000 burn-in iterations. Furthermore, the relative performance gaps increases

with the number of training samples, providing evidence that the tendency of HPDR hitting time to grow with training

sample size is consistent across a wide range of DGPs. Both RMSE and coverage are calculated on an independent test

set and are averaged over 100 experimental replicates, with error bars representing ±1.96SE.
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9 Discussion

It is widely accepted that Chipman et al. (2010)’s BART sampler often has issues with mixing and that there is much

room for computational improvement. In this paper, we vastly improve upon our earlier work (Ronen et al., 2022) to

provide theoretical computational lower bounds for a slightly modified version of the BART sampler. Ours is the first

work to analyze BART rather than Bayesian CART. Furthermore, we create a new framework for analysis by studying

hitting times of HPDRs instead of mixing times, which resolves issues of identifiability and leads to more meaningful

computational lower bounds. We derive these lower bounds under four different, fairly realistic algorithmic and data

generative settings and show in all cases that they grow with the training sample size. We complement our theoretical

results with a simulation study that validates our results and also suggests that our central thesis, that BART mixing and

hitting times increase with the number of training samples, is a fairly general phenomenon that holds across a wide

variety of DGPs. We also argue that this is due to the unnecessarily coarse way in which the BART sampler relates

temperature and training sample size.

Our results give theoretical and empirical support to some of the choices that BART practitioners often already

make. Specifically, they support the use of more trees in the BART ensemble, and they support the use of multiple

BART sampler chains. How to select the optimal number of trees and chains is an intriguing and important question and

will be left to future work. In addition, our results advocate for the design of better BART samplers and suggest possible

approaches for improvement. First, we believe that there is great potential in exploring various forms of temperature

control. This could take the form of simulated annealing (Van Laarhoven et al., 1987), or simulated tempering (Marinari

and Parisi, 1992), which has previously been explored for Bayesian CART (Angelopoulos and Cussens, 2005), but

has yet to be adapted to BART. Second, we believe that the proposal distribution should favor more promising split

directions, instead of being uniform at random. There is now a vast literature on how using gradient and even Hessian

information can help to accelerate MCMC in continuous state spaces (see for instance Neal et al. (2011)), and there is

recent work in extending this to discrete spaces (Zanella, 2020). Third, we believe instead of constraining the proposal

distribution to “local” moves, it could benefit from incorporating moves that alter tree structures more drastically. This

has been explored somewhat by Kim and Rockova (2023).
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A Literature summary for BART posterior concentration results

We list here all results on posterior concentration that we are aware of:

• Posterior concentration at the optimal n−α/(2α+p) rate for BCART and BART when the regression function is

Hölder α-smooth, 0 < α ≤ 1 (Ročková and Saha, 2019).

• Posterior concentration at the optimal n−α/(2α+s) rate for BCART and BART when the regression function is

Hölder α-smooth, 0 < α ≤ 1, and s-sparse (Ročková and van der Pas, 2020).

• Posterior concentration at the almost optimal n−α/(2α+1) log n rate for BART when the regression function is an

additive sum of univariate components, each of which is Hölder α-smooth, 0 < α ≤ 1 (Ročková and van der Pas,

2020).

• Extensions of the above results to α > 1, provided BART is modified to allow for “soft” splits (Linero and Yang,

2018).

• Posterior concentration at the optimal rate (up to log factors) for BART when the regression function is piecewise

heterogeneous anisotropic Hölder smooth (Jeong and Rockova, 2020; Rockova and Rousseau, 2021).

B Proofs for Section 4.2

We first introduce some additional notation that will be used throughout the rest of the appendix. We denote Df =
∥f∗∥∞ and let Dϵ denote the sub-Gaussian parameter of the noise random variable ϵ (Wainwright, 2019). C will be

used to denote a universal constant (i.e. not depending on any parameters) that may change from line to line. For

simplicity, many of our results are written using big-O notation, which will indicate leading order dependence on the

sample size n as well as the error probability δ.

B.1 Main Proofs

Lemma B.1 (Concentration of empirical risk difference). Let E and E′ be two partition ensemble models. Then for any

0 < δ < 1, with probability at least 1− δ, the risk difference between them satisfies

∣∣∣∣y
T (PE −PE′)y − n

∫
(ΠEf

∗)
2 − (ΠE′f∗)

2
dν

∣∣∣∣ = O
(√

n log(1/δ)
)
. (8)

If furthermore, ΠEf
∗ = ΠE′f∗, then the above bound can be improved to

∣∣yT (PE −PE′)y
∣∣ = O(log(1/δ)). (9)

Proof of Proposition 4.1 Since

∆BIC(E,E′) =
yT (PE −PE′)y

σ2
+ (df(E)− df(E′)) log n,

the desired concentration follows immediately from Lemma B.1.

Lemma B.2 (Log marginal likelihood formula). Let E be a tree ensemble structure (TSE), and let Ψ be an n× b matrix

whose columns comprise the indicators of the leaves in E. The log marginal likelihood satisfies

−2 log p(y|X,E) = n log
(
2πσ2

)
+ log det

(
λ−1ΨTΨ+ I

)

+
1

σ2

(
∥Ψµ̂LS − y∥22 + µ̂

T
LSΨ

T

(
I−Ψ

(
ΨTΨ+ λI

)−1

ΨT

)
Ψµ̂LS

)
, (10)
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where

µ̂LS := argmin
µ

∥Ψµ− y∥22

is the solution to the least squares problem.

Lemma B.3 (Concentration of log-determinent). With the notation of Lemma B.2, denote Σ̂ := 1
nΨ

TΨ and Σ :=

E

{
Σ̂
}

. Then for any 0 < δ < 1, for n ≥ max
{
64m3/2s−2

min log(2df(E)/δ), 4λs−1
min

}
, with probability at least 1− δ,

we have ∣∣∣∣∣∣
log det

(
λ−1ΨTΨ+ I

)
− df(E) log(n)−

df(E)∑

i=1

log(si/λ)

∣∣∣∣∣∣
= O

(√
log(1/δ)

n

)
, (11)

where s1, s2, . . . , sdf(E) denote the values of the nonzero eigenvalues of Σ.

Lemma B.4 (Concentration of error term). With the notation of Lemma B.3, for any 0 < δ < 1, when n ≥
16m3/2s−2

min log(2df(E)/δ), where smin is the minimum nonzero eigenvalue of Σ, with probability at least 1− δ, we

have

µ̂
T
LSΨ

T

(
I−Ψ

(
ΨTΨ+ λI

)−1

ΨT

)
Ψµ̂LS = O(1). (12)

Proof of Proposition 4.2. Starting with equation (10) from Lemma B.2, plug in equations (11) and (12) from Lemma

B.2 and Lemma B.3 respectively. Notice that Ψµ̂LS = PEy, so that

∥Ψµ̂LS − y∥22 = ∥(I−PE)y∥22 = yT (I−PE)y.

This completes the proof.

Proof of Proposition 4.3. Let E∗ ∈ OPTm(f∗, 0). We will show that for any E ̸∈ OPTm(f∗, 0), there is some NE

such that

p(E|y) ≤ ϵp(E∗|y)
|ΩTSE,m| (13)

with probability at least 1− δ/|ΩTSE,m| for all n ≥ NE. If this is true, set N = maxE/∈OPTm(f∗,0)NE and take n ≥ N .

On the intersection of all these events, we have

p(OPTm(f∗, 0)c |y) =
∑

E/∈OPTm(f∗,0)

p(E|y) ≤
∑

E/∈OPTm(f∗,0)

ϵp(E∗|y)
|ΩTSE,m| ≤ ϵ.

To prove (13), fix E. Using Proposition 4.2 and Proposition 4.1, we get a probability 1− δ/|ΩTSE,m| event on which

log p(E∗|y)− log p(E|y)

=

{
n

2σ2

(
Bias2(E; f∗)

)
+O

(√
n log(1/δ) + log(1/δ)

)
if Bias2(E; f∗) ̸= 0

logn
2 (df(E)− df(E∗)) +O(log(1/δ)) otherwise.

In either case, we get
p(E|y)
p(E∗|y) → 0 as n→ ∞.

B.2 Further Details

Proof of Lemma B.1. Recall that ΠE refers to orthogonal projection onto F(E) in L2(ν), while PE refers to

orthogonal projection onto F(E) with respect to the empirical norm ∥·∥n. With this in mind, decompose y =
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ϵ+ (f∗(x)− ΠEf
∗(x)) + ΠEf

∗(x) and write this in vector form as y = ϵ+ (f∗ − f∗
E
) + f∗

E
. Since ΠEf

∗ ∈ F(E),
we have PEf

∗
E
= f∗

E
. We can then therefore expand the quadratic form yTPEy as follows:

yTPEy = ϵ
TPEϵ+ (f∗ − f∗E)

TPE(f
∗ − f∗E) + 2ϵTPE(f

∗ − f∗E) + (f∗E)
TPEf

∗
E + 2ϵTPEf

∗
E + 2(f∗ − f∗E)

TPEf
∗
E

= ϵ
TPEϵ+ (f∗ − f∗E)

TPE(f
∗ − f∗E) + 2ϵTPE(f

∗ − f∗E) + (f∗E)
T f∗E + 2ϵT f∗E + 2(f∗ − f∗E)

T f∗E. (14)

Note that ϵ, (f∗(x)−ΠEf
∗(x)), and ΠEf

∗(x) are uncorrelated random variables, with ϵ being also independent of the

other two variables. This implies that the third, fifth and sixth terms in (14) have zero mean. On the other hand, because

of finite sample fluctuations, (f∗ − f∗
E
) and f∗

E
, are not necessarily orthogonal as vectors.

To bound the expectation of (14), first observe that f∗ −ΠEf
∗ and ΠEf

∗ are bounded random variables and thus

have both standard deviation and sub-Gaussian norm bounded by Df (Wainwright, 2019). We then compute

E
{
ϵ
TPEϵ+ (f∗ − f∗E)

TPE(f
∗ − f∗E) + 2ϵTPE(f

∗ − f∗E) + (f∗E)
T f∗E + 2ϵT f∗E + 2(f∗ − f∗E)

T f∗E
}

= E
{
ϵ
TPEϵ

}
+ E

{
(f∗ − f∗E)

TPE(f
∗ − f∗E)

}
+ E

{
(f∗E)

T f∗E
}

= tr{PE}(Var{ϵ}+ Var{f∗ − f∗E}) + n

∫
(ΠEf

∗)
2
dν

≤ C(Dϵ +Df )df(E) + n

∫
(ΠEf

∗)
2
dν. (15)

Next, we bound the fluctuations of each term in (14) separately. Using the Hanson-Wright inequality (Wainwright,

2019; Vershynin, 2018), we get 1− δ probability events over which

∣∣ϵTPEϵ− E
{
ϵ
TPEϵ

}∣∣ ≤ CDϵmax
{
log(1/δ),

√
df(E) log(1/δ)

}
, (16)

and
∣∣(f∗ − f∗E)

TPE(f
∗ − f∗E)− E

{
(f∗ − f∗E)

TPE(f
∗ − f∗E)

}∣∣ ≤ CDf max
{
log(1/δ),

√
df(E) log(1/δ)

}
. (17)

Using Hoeffding’s inequality (Wainwright, 2019), we have further 1− δ probability events over which
∣∣∣∣(f

∗
E)
T f∗E − n

∫
(ΠEf

∗)
2
dν

∣∣∣∣ ≤ CD2
f

√
n log(1/δ), (18)

∣∣ϵT f∗E
∣∣ ≤ CDfDϵ

√
n log(1/δ), (19)

∣∣∣(f∗ − f∗E)
T
f∗E

∣∣∣ ≤ CD2
f

√
n log(1/δ). (20)

For the third term in (14), we use Cauchy-Schwarz followed by Young’s inequality to get

2
∣∣ϵTPE(f

∗ − f∗E)
∣∣ ≤ 2

(
ϵ
TPEϵ

)1/2(
(f∗ − f∗E)

TPE(f
∗ − f∗E)

)1/2

≤ ϵ
TPEϵ+ (f∗ − f∗E)

TPE(f
∗ − f∗E). (21)

Conditioning on all the events guaranteeing (16) to (20) and plugging in these bounds together with (15) into (14),

we get
∣∣∣∣y
TPEy − n

∫
(ΠEf

∗)
2
dν

∣∣∣∣

≤ C
(
(Dϵ +Df )df(E) + (Df +Dϵ) log(1/δ) +Df (Df +Dϵ)

√
n log(1/δ) + (Df +Dϵ)

√
df(E) log(1/δ)

)

= O
(√

n log(1/δ) + log(1/δ)
)
.

Repeating the same argument for E′ and adjusting δ so that the intersection of all events conditioned on has probability

at least 1− δ completes the proof of (8).

To prove (9), observe that under the additional assumption, we can cancel terms in (14) to get

yT (PE −PE′)y = ϵ
T (PE −PE′)ϵ+ (f∗ − f∗E)

T (PE −PE′)(f∗ − f∗E) + 2ϵT (PE −PE′)(f∗ − f∗E).

Applying (21) followed by (16) and (17) completes the proof.
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Proof of Lemma B.2. Recall that the full log likelihood satisfies

p(y|X,E,µ) =
(
2πσ2

)−n/2
exp

(
−∥Ψµ− y∥22

2σ2

)
,

while conditioned on E, the prior on µ satisfies

p(µ|E) =
(
2πσ2λ−1

)−b/2
exp

(
−λ∥µ∥

2
2

2σ2

)
,

where b is the number of columns in Ψ. Hence

p(y|X,E,µ)p(µ|E) =
(
2πσ2

)−n/2(
2πσ2λ−1

)−b/2
exp

(
− 1

2σ2

(
∥Ψµ− y∥22 + λ∥µ∥22

))
. (22)

Consider the orthogonal decomposition

∥Ψµ− y∥22 = ∥Ψµ̂LS − y∥22 + ∥Ψ(µ− µ̂LS)∥22.

We next add the second term on the right to the exponent in the prior and complete the square:

∥Ψ(µ− µ̂LS)∥22 + λ∥µ∥22
= µ

T
(
ΨTΨ+ λI

)
µ− 2(Ψµ̂LS)

T
µ+ µ̂

T
LSΨ

TΨµ̂LS

= (µ− µ0)
T
(
ΨTΨ+ λI

)
(µ− µ0)− µ̂

T
LSΨ

TΨ
(
ΨTΨ+ λI

)−1

ΨTΨµ̂LS + µ̂
T
LSΨ

TΨµ̂LS . (23)

where

µ0 =
(
ΨTΨ+ λI

)−1

ΨTΨµ̂LS .

The constant term in (23) is

− µ̂
T
LSΨ

TΨ
(
ΨTΨ+ λI

)−1

ΨTΨµ̂LS + µ̂
T
LSΨ

TΨµ̂LS

= µ̂
T
LSΨ

T

(
I−Ψ

(
ΨTΨ+ λI

)−1

ΨT

)
Ψµ̂LS . (24)

Plugging (24) back into (22) and integrating, we get

p(y|X,E) =
∫
p(y|X,E,µ)p(µ|E)dµ

=
(
2πσ2

)−n/2
exp


−

∥Ψµ̂LS − y∥22 + µ̂
T
LSΨ

T

(
I−Ψ

(
ΨTΨ+ λI

)−1

ΨT

)
Ψµ̂LS

2σ2




·
∫ (

2πσ2λ−1
)−b/2

exp


−

(
µ
T − µ0

)T(
ΨTΨ+ λI

)(
µ
T − µ0

)

2σ2


dµ. (25)

By a change of variables, the integral can be computed as

∫ (
2πσ2λ−1

)−b/2
exp


−

(
µ
T − µ0

)T(
λ−1ΨTΨ+ I

)(
µ
T − µ0

)

2σ2λ−1


dµ = det

(
λ−1ΨTΨ+ I

)−1/2

.

Plugging this back into (25) and taking logarithms yields (10).

29



Proof of Lemma B.3. Let ŝ1, ŝ2, . . . , ŝb be the eigenvalues of Σ̂. Using Lemma B.5, we have ŝi = 0 for any

i > df(E). We may therefore compute

log det
(
λ−1ΨTΨ+ I

)
=

df(E)∑

i=1

log(nλ−1ŝi + 1)

=

df(E)∑

i=1

log

(
ŝi + λ/n

si

)
+ df(E) log n+

df(E)∑

i=1

log(si/λ).

It remains to bound the first term. To this end, we first condition on the 1 − δ probability event guaranteed by

Lemma B.6. Then, we observe that

∣∣∣∣
ŝi + λ/n

si
− 1

∣∣∣∣ ≤
1

si

(
|ŝi − si|+

λ

n

)

≤ 1

smin

(∥∥∥Σ̂−Σ

∥∥∥+ λ

n

)

≤ 1

smin

(
max

{√
4m3/2 log(2df(E)/δ)

n
,
4
√
m log(2df(E)/δ)

n

}
+
λ

n

)
. (26)

Here, the second inequality makes use of Weyl’s inequality.

Recall the elementary inequality

|log x| ≤ 2|x− 1|
for 0 < x < 1/2. Using this together with (26), we get

df(E)∑

i=1

log

(
ŝi + λ/n

si

)
= O

(√
log(1/δ)

n

)

when n ≥ max
{
64m3/2s−2

min log(2df(E)/δ), 4λs−1
min

}
.

Proof of Lemma B.4. Recall that Ψµ̂LS = PEy. We thus rewrite and bound the error term as

µ̂
T
LSΨ

T

(
I−Ψ

(
ΨTΨ+ λI

)−1

ΨT

)
Ψµ̂LS = yTPEMPEy

≤ ∥PEy∥22∥M∥, (27)

where

M = PE −Ψ
(
ΨTΨ+ λI

)−1

ΨT .

Using similar arguments as in the proof of Lemma B.1, we bound

∥PEy∥22 = (f∗E)
T f∗E + ϵ

TPEϵ

≤ D2
f

(
n+

√
n log(1/δ)

)
+D2

ϵ

(
n+

√
df(E) log(1/δ)

)
. (28)

Meanwhile, the nonzero eigenvalues of M are of the form

1− ŝi
ŝi + λ/n

=
λ

nŝi + λ
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for i = 1, 2, . . . , df(E). These can be further bounded as

λ

nŝi + λ
≤ λ

n(si − |ŝi − si|)

≤ λ

n
(
smin −

∥∥∥Σ̂−Σ

∥∥∥
) . (29)

Taking n ≥ 16m3/2s−2
min log(2df(E)/δ) and conditioning on the 1− δ probability event guaranteed by Lemma B.6, we

can further bound (29) by λ/2nsmin, which gives ∥M∥ = O
(
n−1

)
. Combining this with (28) and plugging them back

into (27) finishes the proof.

Lemma B.5 (Rank of empirical covariance matrix). With the notation of Lemma B.3, we have rank(Σ̂) ≤ rank(Σ).

Proof. Let l1, l2, . . . , ln denote the rows of Ψ, noting that they are i.i.d. random vectors. Note that if Σv = 0 for some

v, this implies that Cov
{
vT l
}
= vTΣv = 0, and so vT l ≡ 0 as a random variable. In particular, we have vT li = 0

for i = 1, 2 . . . , n, and we also get Σ̂v = 0. As such, the nullspace for Σ is contained within the nullspace for Σ̂. The

conclusion follows.

Lemma B.6 (Concentration of empirical covariance matrix). With the notation of Lemma B.3, for any 0 < δ < 1, with

probability at least 1− δ, we have

∥∥∥∥
1

n
ΨTΨ−Σ

∥∥∥∥ ≤ max

{√
4m3/2 log(2df(E)/δ)

n
,
4
√
m log(2df(E)/δ)

n

}
.

Proof. Let l1, l2, . . . , ln denote the rows of Ψ as before. Since each point can only be contained in a single leaf on

each tree, we have ∥lj∥2 =
√
m, while Σ also satisfies ∥Σ∥ ≤ m. Using Corollary 6.2011 in Wainwright (2019), we

therefore have ∥∥∥∥
1

n
ΨTΨ−Σ

∥∥∥∥ ≤ 2df(E) exp

(
− nt2

2
√
m(m+ t)

)

for any t > 0. Rearranging this equation completes the proof.

C Background on Markov Chains

For the whole of this section, let X0, X1, . . . be an irreducible and aperiodic discrete time Markov chain on a finite state

space Ω, with stationary distribution π.

C.1 Networks and Voltages

Harmonic functions. Let P be the transition kernel of (Xt). We call a function h : Ω → R harmonic for P at a state

x if

h(x) =
∑

y∈Ω

P (x, y)h(y). (30)

Lemma C.1 (Uniqueness of harmonic extensions, Proposition 9.1. in Levin et al. (2006)). Let A ⊂ Ω be a subset

of the state space. Let hA : A → R be a function defined on A. The function h : Ω → R defined by h(x) :=
E{hA(XτA)|X0 = x} is the unique extension of hA such that h(x) = hA(x) for all x ∈ A and h is harmonic for P at

all x ∈ Ω\A.

11While Corollary 6.20 is stated with the assumption that the rows have mean zero, the proof in Wainwright (2019) illustrates that this is

unnecessary.
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The values of a harmonic function can be computed by solving the system of linear equations given by (30) for each

x ∈ Ω\A. This is hard to do directly by hand for complicated state spaces, but when the Markov chain is symmetric, i.e.

the stationary distribution satisfies π(x)P (x, y) = π(y)P (y, x) for any x, y, we can use several operations to simplify

the state space while preserving the values of the harmonic function on the remaining state space. Indeed, harmonic

functions are equivalent to voltages on electrical circuits, and it is well-known how to simplify circuits in order to

calculate voltages:

1. (Gluing) Points on the circuit with the same voltage can be joined.

2. (Series law) Two resistors in series with resistances r1 and r2 can be merged with the new resistor having

resistance r1 + r2.

3. (Parallel law) Two resistors in parallel with resistances r1 and r2 can be merged with the new resistor having

resistance 1/(1/r1 + 1/r2).

We make this connection rigorous by introducing the following definitions and via the subsequent lemmas.

Networks, conductance, resistance. A network (Ω, c) is a tuple comprising a finite state space Ω and a symmetric

function c : Ω× Ω → R+ called the conductance. The resistance function is defined as r(x, y) = 1
c(x,y) , and can take

the value of positive infinity. We say that {x, y} is an edge in the network if c(x, y) > 0. Any network (Ω, c) has an

associated Markov chain whose transition probabilities are defined by P (x, y) = c(x,y)∑
z∈Ω c(x,z)

.

Voltage and current flow. We say that a function is harmonic on the network if it is harmonic with respect to P . Given

a, z ∈ Ω, a voltage W between a and z is a function that is harmonic on Ω\{a, z}. The current flow I : Ω× Ω → R

associated with W is defined as I(x, y) = c(x, y)(W (x)−W (y)). The strength of the current flow is defined as

∥I∥ :=
∑

y∈Ω

c(a, y)(W (a)−W (y)).

Effective resistance and effective conductance. The effective resistance between a and z is defined as

R(a↔ z) :=
W (a)−W (z)

∥I∥ ,

noting that this is independent of the choice of W by the uniqueness property in Lemma C.1. The effective conductance

between a and z is defined as C(a↔ z) := 1/R(a↔ z).

Lemma C.2 (Network simplification rules). Consider a network (Ω, c). Define the following operations that each

produces a modified network (Ω′, c′).

1. (Gluing) Given u, v ∈ Ω, define Ω′ := Ω\{v} and

c′(x, y) =





c(x, y) x, y ̸= u,

c(x, u) + c(x, v) x ̸= u, y = u,

c(u, y) + c(v, y) x = u, y ̸= u

c(u, v) + c(u, y) + c(u, x) x = y = u.

2. (Parallel and series laws) Given u, v, w ∈ Ω with c(v, x) = 0 for all x /∈ {u,w}, define Ω′ := Ω\{v} and

c′(x, y) =

{
c(u,w) + c(u,v)c(v,w)

c(u,v)+c(v,w) (x, y) = (u,w) or (w, u),

c(x, y) otherwise.

Consider a function h that is harmonic on Ω\A. The following hold:
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1. If we glue states u, v ∈ Ω such that h(u) = h(v), then h remains harmonic on Ω′\A with respect to the modified

transition matrix P ′.

2. If we apply the parallel and series laws to u, v, w ∈ Ω with v /∈ A, then h remains harmonic on Ω′\A with

respect to the modified transition matrix P ′.

Furthermore, if h is a voltage between two states a, z ∈ Ω, then applying the operations does not change the effective

conductance and resistance between them.

Proof. The first statement is obvious as the mean value equation for harmonic functions can be repeated almost verbatim.

For the second statement, we just have to check the mean value equation for h at u. This is equivalent to the equation

∑

x∈Ω′

c′(u, x)(h(x)− h(u)) = 0. (31)

First note that under the original network, our assumption on c(v, x) and the mean value property at v gives

c(v, w)(h(w)− h(v)) = c(u, v)(h(v)− h(u)). (32)

Next, we compute

c′(u,w)(h(w)− h(u)) =

(
c(u,w) +

c(u, v)c(v, w)

c(u, v) + c(v, w)

)
(h(w)− h(u))

= c(u,w)(h(w)− h(u)) +
c(u, v)c(v, w)

c(u, v) + c(v, w)
((h(w)− h(v)) + (h(v)− h(u))

= c(u,w)(h(w)− h(u)) +
c(u, v)2 + c(u, v)c(v, w)

c(u, v) + c(v, w)
(h(v)− h(u))

= c(u,w)(h(w)− h(u)) + c(v, w)(h(v)− h(u)), (33)

where the third equality follows from (32). We therefore have

∑

x∈Ω′

c′(u, x)(h(x)− h(u)) =
∑

x∈Ω

c(u, x)(h(x)− h(u)),

and the mean value equation at u for the original network implies (31).

Finally, to conclude invariance of effective conductance, we observe that it is is defined in terms of voltages and

current flows. We have already shown that voltages are unchanged, so we just need to argue that the strength of the

current flow is similarly unchanged. This is immediate whenever a /∈ {u,w}. When a = u, this follows from (33).

Lemma C.3 (Rayleigh’s Monotonicity Law, Theorem 9.12 in Levin et al. (2006)). Given a network with two resistance

functions r, r′ : Ω× Ω → R+ ∪ {∞}, suppose that r ≤ r′ pointwise. Then we have

R(a↔ z; r) ≤ R(a↔ z; r′).

C.2 Hitting Precedence Probabilities

Hitting precedence probabilities. Let A,B ⊂ Ω be disjoint subsets. The hitting precedence probability of A relative

to B is defined as the following function on Ω:

HPP(x;A,B) := P{τA < τB | X0 = x}.

Lemma C.4. HPP(−;A,B) is a harmonic function on Ω\(A ∪ B).
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Proof. Write hA∪B(z) = 1{z ∈ A}. It is easy to see that

hA∪B(XτA∪B
) =

{
1 τA < τB

0 τA > τB.

Hence,

E{hA∪B(XτA∪B
)|X0 = x} = P{τA < τB | X0 = x} = HPP(x;A,B).

By Lemma C.1, the left hand side is a harmonic function on Ω\(A ∪ B).

Lemma C.5 (HPP from a bottleneck state). Given a network (Ω, c) with states a, x, z and such that c(u, z) = 0
for all u /∈ {x, z}. Let x = x0, x1, . . . , xk = a be any sequence of states such that there is some ρ > 0 for which

c(xi−1, xi) ≥ ρ−1c(x, z) for i = 1, . . . , k. Then

P{τa < τz|X0 = x} ≥ 1

kρ+ 1
.

Proof. Let (Ω, c′) be the modified network in which we set

c′(u, v) =

{
c(u, v) {u, v} ∈ {{xi−1, xi} : i = 1, . . . , k} ∪ {{x, z}}
0 otherwise.

Then we have

P{τa < τz|X0 = x} =
r(x, z)

R(a↔ x; r) + r(x, z)

≥ r(x, z)

R(a↔ x; r′) + r(x, z)
, (34)

where the equality uses Lemma C.6 and the inequality uses Lemma C.3. Next, using the series law from Lemma C.2,

we have

R(a↔ x; r′) =

k∑

i=1

r(xi−1, xi)

≤ kρr(x, z).

Plugging this into (34) and cancelling r(x, z) in the numerator and denominator completes the proof.

Lemma C.6. Given a network (Ω, c) with states a, x, z and such that c(u, z) = 0 for all u /∈ {x, z}. Then we have

P{τa < τz | X0 = x} =
C(a↔ x)

C(a↔ x) + c(x, z)
.

Proof. Let h(y) := P{τa < τz|X0 = y}, and note that h is a voltage between a and z. As such, we have

R(a↔ z) =
h(a)− h(z)

∥I∥ =
1

∥I∥ .

On the other hand, h is also a voltage between a and x on the reduced state space Ω\{z}, which gives

R(a↔ x) =
h(a)− h(x)

∥I∥ .

Finally, by the series law, we have

R(a↔ z) = R(a↔ x) + r(x, z).
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Putting everything together, we get

P{τa < τz|X0 = x} = 1− (h(a)− h(x))

= 1−R(a↔ x)∥I∥

= 1− R(a↔ x)

R(a↔ z)

=
r(x, z)

R(a↔ x) + r(x, z)

=
C(a↔ x)

C(a↔ x) + c(x, z)
,

as we wanted.

D Proof of Theorem 5.2

We will first present the proofs for Theorem 5.2 and Theorem 5.3 because they are relatively simple compared to that of

Theorem 5.1. For convenience, we repeat the relevant constructions and definitions here.

Reachability. Given E,E′ ∈ ΩTSE,m, we say that E ≿ E′ if E and E′ are connected by an edge, and if either

Bias2(E; f∗) > Bias2(E′; f∗) or Bias2(E; f∗) = Bias2(E′; f∗) and df(E) ≥ df(E′). Note that, because we allow only

“grow” and “prune” moves, for adjacent E and E′, F(E) and F(E′) are nested subspaces, so that Bias2(E; f∗) =
Bias2(E′; f∗) if and only if ΠF(E)[f

∗] = ΠF(E′)[f
∗]. We say that E is reachable from E′, denoted E ⪰ E′, if there is a

sequence of TSEs E = E0,E1, . . . ,Ek = E′ such that Ei ≿ Ei+1 for i = 0, 1, . . . , k − 1.

Set-up. Without loss of generality, let (x1, x2) be a pure interaction for f∗. Let Ebad be any TSE such that

• Ebad is reachable from E∅;

• There does not exist E ∈ ΩTSE,m such that E is reachable from Ebad but Ebad is not reachable from E.

Note that such a TSE exists because ΩTSE,m is finite and ⪰ is a partial ordering on this space. By definition, there exists

a sequence of TSEs E∅ = E0,E1, . . . ,Ek = Ebad such that Ei ⪰ Ei+1 for i = 0, 1, . . . , k − 1. We set A to be the

equivalence class of Ebad under ⪰ and set B to be the outer boundary of A. For n large enough, using Proposition 4.2

and Proposition 4.1, there is a 1− δ/2 event over which, for i = 1, 2, . . . , k,

log p(Ei|y)− log p(Ei−1|y)

=

{
n

2σ2

(
Bias2(Ei−1; f∗)− Bias2(Ei; f∗)

)
+O

(√
n log(k/δ)

)
if Bias2(Ei−1; f∗) > Bias2(Ei; f∗)

logn
2

(
df(Ei−1)− df(Ei)

)
+O(log)(k/δ) otherwise.

In either case, we get

p(Ei|y)
p(Ei−1|y) = Ω(1). (35)

Using Proposition 4.1 again, there is a further 1− δ/2 probability event over which ∆BIC(E,Ebad) satisfies either (5)

or (6) simultaneously for all E ∈ B (after dividing the δ that appears in the formulas by |B|). Condition on these two

events.
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Hitting precedence probability lower bound. Using Lemma D.1 and Lemma D.2, we see that Ei /∈ OPTm(f∗,∞)
for i = 0, 1, . . . , k. We therefore have

P
{
τEbad

< τOPTm(f∗,∞)

}
≥ P

{
Ei = E

i for i = 1, 2, . . . , k
}

=

k∏

i=1

P (Ei−1,Ei). (36)

It suffices to show that P (Ei−1,Ei) is bounded from below by a constant. To see this, we note that

P (Ei−1,Ei) = Q(Ei−1,Ei)min

{
Q(Ei,Ei−1)p(Ei|y)
Q(Ei−1,Ei)p(Ei−1|y) , 1

}

= Ω

(
min

{
p(Ei|y)
p(Ei−1|y)

}
, 1

)

= Ω(1), (37)

where the first two inequalities follow because the proposal distributions do not depend on the training sample size n,

while the last equality follows from equation (35).

BIC lower bound. Consider E′ ∈ B. By definition of B, there exists E ∈ A such that E and E′ are connected

by an edge, but E ̸≿ E′. This implies that either Bias2(E; f∗) < Bias2(E′; f∗) or Bias2(E; f∗) = Bias2(E′; f∗)
and df(E; f∗) < df(E′; f∗). Since E and Ebad are mutually reachable, we have Bias2(E; f∗) = Bias2(Ebad; f

∗) and

df(E) = df(Ebad). We therefore conclude that E′ either has a larger squared bias or larger degrees of freedom compared

to Ebad. Applying equations (5) and (6) and taking the minimum sample size N large enough gives

∆BIC(E,Ebad) ≥ log n+O(log(|B|/δ)). (38)

Conclusion. Applying Proposition 6.1 with equations (37) and (38), we get a 1− 2δ probability event over which

E
{
τOPTm(f∗,∞)

}
= Ω

(
n1/2

)
. (39)

Lemma D.1. For i = 0, 1 . . . , k, no tree in Ei contains a split on either x1 or x2.

Proof. Suppose otherwise. By changing the labeling of x1 and x2 if necessary, there exists

i := min{1 ≤ j ≤ l : Ej contains split on x1}. (40)

Since only “grow” and “prune” moves are allowed, Ei is obtained from Ei−1 via a “grow” move that splits a leaf node

L into:

LL := {x ∈ L : xi ≤ t}, LR := {x ∈ L : xi > t}.
Define the function ψ := 1LL

− 1LR
. Then the span of {1LL

,1LR
} is the same as that of {1L, ψ}, which implies that

F(Ei) = span{F(Ei−1), ψ}. (41)

Furthermore, we have ψ /∈ F(Ei−1) since all functions in F(Ei−1) do not depend on x1. This implies that df(Ei) =
df(Ei−1) + 1. On the other hand, since xi ⊥⊥ y | x ∈ L, we have ψ ⊥ y, which means that Bias2(Ei; f

∗) =
Bias2(Ei−1; f

∗). As such, we have Ei−1 ̸≿ Ei, which gives a contradiction.

Lemma D.2. For any E ∈ ΩTSE,m, if E does not contain splits on both x1 and x2, then Bias2(E; f∗) > 0.

Proof. Since (x1, x2) ̸⊥⊥ y, there exist values (a1, a2), (b1, b2) and (c3, c4, . . . , cd) such that f∗(a1, a2, c3, . . . , cd) ̸=
f∗(b1, b2, c3, . . . , cd). On the other hand, all functions in F(E) are constant with respect to x1 and x2, so that

f∗ /∈ F(E).

36



E Proof of Theorem 5.3

Set-up. For convenience, we repeat the relevant construction here. Without loss of generality, let x1 be the feature

that gives f∗ root dependence. By assumption, there is a threshold t such that splitting the trivial tree on x1 at t gives a

decrease in squared bias. We set

A = {T ∈ ΩTSE,1 : T has root split on x1 at t},

and

Tbad = argmin{BIC(E) : E ∈ A}.
Note that the outer boundary of A is a singleton set comprising the trivial tree T∅. By assumption, we have A ∩
OPT1(f

∗, 0) = ∅.

We continue this construction by denoting T0 = T∅ and letting T1 be a tree structure comprising a single root

split at (x1, t). By adding the splits in Tbad iteratively, we get a sequence T1,T2, . . . ,Tk of nested tree structures with

Tk = Tbad. By Proposition 4.1 and Proposition 4.2, for any training sample size n large enough, there is a 1 − δ
probability event with respect to Pn such that

log p(Tj |y)− log p(T0|y) =
n

2σ2

(
Bias2(T0; f

∗)− Bias2(Tj ; f
∗)
)
+O

(√
n log(2k/δ)

)
(42)

for j = 1, 2, . . . , k. Condition on this event.

We note the following:

Bias2(T0; f
∗) =

∫
(f∗)2dν −

(∫
f∗dν

)2

(43)

Bias2(Tk; f
∗) = 0 (44)

Bias2(Tj ; f
∗) ≤ Bias2(T1; f

∗) < Bias2(T0; f
∗) for j = 1, 2, . . . , k. (45)

Here, the last statement follows from the fact that

Bias2(T0; f
∗)− Bias2(T1; f

∗)

Bias2(T0; f∗)
= Corr2(f∗(x),1{x1 ≤ t}) > 0,

and because Tj is a refinement of T1 for each j = 1, 2, . . . , k.

Hitting precedence probability lower bound. We define a conductance function on ΩTSE,1 via

c(T,T′) = p(T|y)P (T,T′),

where P is the transition kernel of the BART sampler. It is clear that the Markov chain for Bayesian CART is equivalent

to the Markov chain associated with the network (ΩTSE,1, c). By ignoring quantities that do not depend on the training

sample size n, we get

c(T,T′) = min{p(T|y)Q(T,T′), p(T′|y)Q(T′,T)}
≍ min{p(T|y), p(T′|y)}.

Consider the set C := Ω\(A ∪ {T∅}). Then OPT1(f
∗, 0) ⊂ C by assumption, and we have τC ≤ τOPT1(f∗,0). This

means that it suffices to consider

P{τTbad
< τC} = HPP(T∅; C,Tbad)

and to bound it from below. To calculate values for the harmonic function HPP(−; C,Tbad), we use Lemma C.2 to glue

all states in C together without changing the values the function values. We will abuse notation and denote the new

glued state using C while continuing to use c to denote the conductance function on the new state space.
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Notice that the only edge from C connects to T∅. As such, we can compute

c(T∅, C) ≤
∑

T∼T∅

min{p(T∅|y)Q(T∅,T), p(T|y)Q(T,T∅)}

≤ p(T∅|y)
∑

T∼T∅

Q(T∅,T)

≤ p(T∅|y).

This implies, using equations (42) and (45), that we can bound the ratios of conductances for j = 1, 2 . . . , k as:

log
c(Tj ,Tj−1)

c(T0, C)
≳ min{log p(Tj |y)− log p(T0|y), log p(Tj−1|y)− log p(T0|y)}

≥
{

n
2σ2

(
Bias2(T0; f

∗)− Bias2(Tj−1; f
∗)
)
+O

(√
n log(2k/δ)

)
j ≥ 2

0 j = 1.
(46)

By (45), there is some minimum training sample size N so that for all n ≥ N , the right hand side side of (46) is

nonnegative. In this case, the assumptions of Lemma C.5 hold, and we get

P{τTbad
< τC} = Ω(1) (47)

as desired.

BIC lower bound. From equations (43) and (44), we have

∆BIC(T∅,Tbad) =
n

σ2

(
Bias2(T∅; f

∗)− Bias2(Tbad; f
∗)
)
+O

(√
n log(2k/δ)

)

=
n

σ2

(∫
(f∗)2dν −

(∫
f∗dν

)2
)

+O
(√

n log(2k/δ)
)
. (48)

Conclusion. Applying Proposition 6.1 with equations (47) and (48), we get a 1− 2δ probability event over which

E
{
τOPT1(f∗,0)

}
= Ω

(
exp

(
n

2σ2

(∫
(f∗)2dν −

(∫
f∗dν

)2
)

+O
(√

n log(2k/δ)
)))

.

Taking logarithms, dividing by n and applying Markov’s inequality gives

En

{
logE

{
τOPT1(f∗,0)

}

n

}
≥ (1− δ)(1−O(n−1/2)

2σ2

(∫
(f∗)2dν −

(∫
f∗dν

)2
)
.

Letting δ → 0 and taking n→ ∞ finishes the proof.

F Splitting Rules, Local Decision Stumps and Coverage

Before proving Theorem 5.1, we first introduce some required machinery.

Local decision stump basis. Let T be a tree structure. Let (vj , τj), j = 1, . . . , l denote the splits (or splitting rules)

on T (the labels of its internal nodes). Every node on the tree corresponds to rectangular region t ⊂ X that is obtained

by recursively partitioning the covariate space using the splits further up the tree. If t is an internal node, it has two

children nodes denoted tL and tR defined by

tL := {x ∈ t : xv ≤ τ}
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tR := {x ∈ t : xv > τ}
where (v, τ) is the split on t. For each internal node (tj , vj , τ), define a local decision stump function

ψj(x) :=
ν(tR)1{x ∈ tL} − ν(tL)1{x ∈ tR}√

ν(tL)ν(tR)
, (49)

where tL and tR denote the children of t. It is easy to check (see for instance Agarwal et al. (2022)) that ψ1, ψ2, . . . , ψl
are orthogonal, and that, together with the constant function ψ0 ≡ 1, form a basis for F(T). Using this basis

makes it more convenient to analyze the difference between F(T) and F(T′) when T′ is obtained from T via a

“grow” move. Indeed, let ψl+1 denote the local decision stump corresponding to the new split. We then have

F(T′) = F(T)⊕ span(ψl+1).
Now consider a TSE E = (T1,T2, . . . ,Tm). We may also write a basis for F(E) by concatenating the bases

{ψi,1, ψi,2, . . . , ψi,li} for each tree Ti, together with the constant function. If E′ is obtained from TSE via a “grow”

move, we likewise have the property F(E′) = F(E)⊕ span(ψ′), where ψ′ is the local decision stump corresponding to

the new split. On the other hand, the basis functions from different trees need not be orthogonal to each other. To regain

orthogonality, we use the following lemma:

Lemma F.1 (Conditions for orthogonality). Suppose ν = ν1 × ν2 × · · · × νd is a product measure on X . Let T1 and

T2 be two trees, and let I1, I2 ⊂ {1, 2, . . . , d} be two disjoint subsets of indices such that T1 and T2 contain splits

only on features in I1 and I2 respectively. Then the local decision stumps for both trees, {ψ1,1, ψ1,2, . . . , ψ1,l1} and

{ψ2,1, ψ2,2, . . . , ψ2,l2}, are orthogonal to each other.

Proof. Consider two stumps from different trees: ψ1,k1 and ψ2,k2 . Under the assumption of a product measure,

{xi : i ∈ I1} is independent of {xi : i ∈ I2}. Since ψ1,k1 is a function of the first set of variables and ψ2,k2 is a function

of the second set, they are thus independent of each other. We therefore have
∫
ψ1,k1ψ2,k2dν =

∫
ψ1,k1dνI1

∫
ψ2,k2dνI2 = 0,

where the second equality follows from the fact that all local decision stumps have mean zero.

Lemma F.2 (Existence of informative split). For any finite contiguous subset of integers I , let g : I → R be non-

constant. Let ν be any measure on I . Then there exists a split at a threshold t with associated decision stump ψ such

that t is a knot for g and (∫
ϕgdν

)2

> 0.

As such, there is a sequence of recursive splits with associated local decision stumps ψ1, ψ2, . . . , ψq, where q is the

number of knots of g, such that

• g ∈ span(ψ1, ψ2, . . . , ψq);

•
(∫
ψigdν

)2
> 0 for i = 1, 2, . . . , q;

• ψi splits on a knot of g for i = 1, 2, . . . , q.

Proof. Let i1, i2, . . . , ik denote the knots of g, and let ψ̃j denote the decision stump functions corresponding to a split

at threshold x = ij for j = 1, 2, . . . , k, using the formula (49). Let ψ̃0 ≡ 1 denote the constant function as usual. Then

it is easy to see that g ∈ span
(
ψ̃0, ψ̃1, . . . , ψ̃k

)
. As such, if g ⊥ ψ̃k for k > 1, then g ∈ span(ψ̃0), i.e. g is a constant

function. To conclude the second statement, we apply the first part recursively to leaves obtained by making each

split.

Lemma F.3 (Formula for decrease in bias). Suppose E′ is obtained from E via a “grow” move. Let ψ be the local

decision stump associated with the new split. Let ϕ :=
ψ−ΠF(E)[ψ]

∥ψ−ΠF(E)[ψ]∥
L2(ν)

. Then for any regression function f , we have

Bias2(E′; f) = Bias2(E; f)−
(∫

ϕfdν

)2

.
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Proof. We have

F(E′) = F(E)⊕ span(ψ′) = F(E)⊕ span(ϕ),

with the last expression comprising an orthogonal decomposition. As such, we have

Bias2(E; f)− Bias2(E′; f) =
∥∥f −ΠF(E)[f ]

∥∥2
L2(ν)

−
∥∥f −ΠF(E)[f ]−Πspan(ϕ)[f ]

∥∥2
L2(ν)

=
∥∥Πspan(ϕ)[f ]

∥∥2
L2(ν)

=

(∫
ϕfdν

)2

as we wanted.

Coverage. We first introduce some useful notation. Given a coordinate index i, let x−i ∈ {1, 2, . . . , b}d−1
, xi ∈

{1, 2, . . . , b}. Combining these, we let (x−i, xi) ∈ {1, 2, . . . , b}d have i-th coordinate equal to xi and all other

coordinates given by x−i. Also use ei ∈ R
d to denote the i-th coordinate vector. Given a real-valued function f defined

on {1, 2, . . . , b}d, we say that x ∈ {1, 2, . . . , b}d is a jump location for f with respect to feature i if f(x) ̸= f(x+ ei).
Let V be a PEM. For each feature i = 1, 2, . . . , d and t = 1, 2, . . . , b, the coverage of V of the split (i, t) is defined as

coverage(i, t;V) :=
{
x−i ∈ {1, 2, . . . , b}d−1

: ∃f ∈ V, (x−i, t) is a jump location for f with respect to feature i
}
.

(50)

If coverage(i, t;V) = {1, 2, . . . , b}d−1
, we say that V has full coverage of the split (i, t). Note that given a collection

of PEMs V1,V2, . . . ,Vm, we have

coverage(i, t;V1 + V2, . . . ,Vm) =

m⋃

j=1

coverage(i, t;Vj).

Lemma F.4 (Zero bias requires full coverage of all knots). Suppose f∗ ∈ V, where f∗(x) = f1(x1) + f2(x2) + · · ·+
fm′(xm′) for some univariate functions f1, f2, . . . , fm′ . Then for any feature 1 ≤ i ≤ m′ and any knot t of fi, i.e. a

value for which fi(t) ̸= fi(t+ 1), V has full coverage of the split (i, t).

Proof. For any x−i ∈ {1, 2, . . . , b}d−1
, we have

f∗((x−i, t+ 1))− f∗((x−i, t) = fi(t+ 1)− fi(t) ̸= 0,

so that (x−i, t) is a jump location for f∗ with respect to feature i. Hence, if f∗ ∈ V, it provides the desired function in

the definition (50).

Lemma F.5 (Full coverage implies inclusion of grid cells). Suppose V = F(T) for a single tree T. Suppose V has

full coverage of split (i, ξi,1), (i, ξi,2, . . . , (i, ξi,qi) for i = 1, 2, . . . , k. For any choice of 1 ≤ ji ≤ qi, i = 1, 2, . . . , k,

denote the cell

C :=
{
x : ξi,ji−1

< xi ≤ ξi,ji for i = 1, 2, . . . , k
}
.

We then have 1C ∈ V.

Proof. Let x ∈ C be any point, and let L(x) be the leaf of T containing x. We claim that L(x) ⊂ C. Suppose not, then

there exists a coordinate direction i in which L(x) exceeds C. By reordering if necessary, we may thus assume that

(x−i, ξi,ji + 1) ∈ L(x). For any f ∈ V, we may write f = a01L(x) +
∑L
l=1 al1Ll

, where L1,L2, . . . ,LL are leaves

in T. We then have

f(x−i, ξi,ji + 1) = a0 = f(x−i, ξi,ji),

which contradicts our assumption that V has full coverage of the split at (i, ξi,ji). We thus have

C =
⋃

x∈C

L(x) =
⋃

Ll⊂C

Ll.

Since the right hand side is union over a collection of disjoint sets, we have 1C =
∑

Ll⊂C 1Ll
∈ V.
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Lemma F.6 (Sufficient condition for lack of coverage). Let T be a tree structure. Consider a split (i, t), and let t be

any node in T. Suppose the following hold:

• (x−i, t) ∈ t for some x−i ∈ {1, 2 . . . , b}d−1;

• No ancestor or descendant of t, including t itself, uses the splitting rule (i, t);

Then if we let t−i denote the projection of t onto all but the i-th coordinate, we have

coverage(i, t;F(T)) ∩ t
−i = ∅.

Proof. Let z−i ∈ t−i be any point. By the first assumption, t is within the bounds of t along direction i, so

(z−i, t) ∈ t. Let L0 be the leaf node containing (z−i, t). By the second assumption, (z−i, t + 1) ∈ L0, otherwise

some parent of L would have made the split (i, t). To show that z−i /∈ coverage(i, t;F(T)), it suffices to show that

f(z−i, t+ 1) = f(z−i, t) for all f ∈ F(T). We may write f =
∑k
j=0 aj1Lj

where L1,L2, . . . ,Lj are other leaves in

T. We then have f(z−i, t+ 1) = a0 = f(z−1, t) as we wanted.

Proposition F.7 (Dimension of additive functions). Suppose f∗ ∈ V, where f∗(x) = f1(x1)+ f2(x2)+ · · ·+ fm(xm)
for some univariate functions f1, f2, . . . , fm′ . Then for any l < m we have diml(f

∗) > dimm(f∗), while for any

l ≥ m, we have diml(f
∗) = dimm(f∗).

Proof. Let V = F(E) for some E with l trees, and suppose f∗ ∈ V. For i = 1, 2, . . . ,m, let (i, ξi,1), (i, ξi,2), . . . ,
(i, ξi,qi−1) denote the knots of fi, where qi = dim1(fi) We claim that E must contain a node with splitting rule (i, ξi,j)
for every choice of i and j. If not, then V does not cover (i, ξi,j), contradicting Lemma F.4.

Construct E via a sequence of grow moves in arbitrary order, thereby deriving a sequence E∅ = E0,E1, . . . ,Ek.

Consider the first time ti,j for which a split using rule (i, ξi,j) is added to the TSE. Let ψi,j denote the local decision

stump associated with the split. Since F(Eti,j−1) has zero coverage of (i, ξi,j), we have df(Ei,j) = df(Ei,j) + 1.

Adding this up over all splits gives the lower bound df(V) ≥∑m
i=1 qi −m. By putting all splits on feature i on the i-th

tree for i = 1, 2, . . . ,m, we see that this lower bound is achievable whenever l ≥ m, thereby giving

diml(f
∗) =

m∑

i=1

qi −m = dimm(f∗).

When l < m, then by the pigeonhole principle, there exists splits on different features (i, s) and (j, t) that occur on

the same tree. We claim that this implies that either there exists two linearly independent local decision stumps ϕ and ψ
splitting on (i, s) or the same applies to (j, t). Suppose not, then the unique local decision stump splitting on (i, s) must

not depend on any other feature, while the same applies to that splitting on (j, t). However, because nodes depend on

the feature used in the root split, this cannot be simultaneously true if they both correspond to splits on the same tree.

By repeating the argument above, we therefore get df(E) ≥∑m
i=1 qi −m+ 1. Since this holds for any E, we have

diml(f
∗) ≥

m∑

i=1

qi −m+ 1 > dimm(f∗)

as we wanted.

G Proof of Theorem 5.1 Part 1

Set-up. For i = 1, 2, . . . ,m′, denote qi = dim1(fi), and let 0 = ξi,0 < ξi,1 < · · · < ξi,qi = b denote the knots of fj ,
i.e. the values for which fi(ξi,j) ̸= fi(ξi,j + 1), together with the endpoints.12 Without loss of generality, assume that

f1, . . . , fm′ are ordered in descending order of their 1-ensemble dimension, i.e. q1 ≥ q2 ≥ · · · ≥ qm′ .

We now define Ebad and a “bad set” A. To this end, we define a collection of partition models V1,V2, . . . ,Vm
(spans of indicators in a single partition) as follows. First, for i = 3, 4, . . . ,m − 1, j = 1, 2, . . . , qi, define the cells

12dim1(fi) is simply the number of constant pieces of fi or alternatively, one larger than the number of knots of fi.
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Li,j := {x : ξi,j−1 < xi ≤ ξi,j}, and set Vi = span
({

1Li,j
: j = 1, 2, . . . , qi

})
, i.e. for each i, Vi contains splits only

on feature i, and only at the knots of fi. This also implies that fi ∈ Vi. Next, for the remaining component functions,

i = m,m+ 1, . . . ,m′, ji = 1, 2, . . . , qi, define the cells

Lm,jm,jm+1,...,jm′
:=
{
x : ξi,ji−1 < xi ≤ ξi,ji for i = m,m+ 1, . . . ,m′

}
, (51)

and set Vm to be the span of their indicators. Observe that Vm comprises a grid contains splits only on features

m,m+ 1, . . . ,m′, and only at the knots of fm, fm+1, . . . , fm′ respectively. This also implies fm, fm+1, . . . , fm′ ∈
Vm.

Finally, to introduce inefficiency, we define each of V1 and V2 to have splits on both features 1 and 2. This

construction is fairly involved and will be detailed in full in the next section. For now, it suffices to assume that

f1 + f2 ∈ V1 + V2, which implies that f∗ ∈ V1 + V2 + · · ·+ Vm. Define A via

A := {(T1,T2, . . . ,Tm) : F(Ti) = Vi for i = 1, 2, . . . ,m}.

It is clear that for any E ∈ A, we have F(E) = V1 + V2 + · · ·+ Vm, so that A comprises a collection of TSEs with

zero bias. We will set Ebad to be a particular element of A. We set B to be the outer boundary of A.

Hitting precedence probability lower bound. Step 1: Construction of path. We construct a path in ΩTSE,m

comprising E∅ = E0,E1, . . . ,Es = Ebad such that Ei+1 is obtained from Ei via a “grow” move for i = 0, 1, . . . , s− 1.

To do this, we first apply Lemma F.2 to obtain, for each feature j = 1, 2, . . . ,m′, a sequence of recursive splits

ψj,1, ψj,2, . . . , ψj,qj−1 such that

• fj ∈ span(ψj,1, ψj,2, . . . , ψj,qj−1);

•
(∫
fjψj,ldνj

)2
> 0 for l = 1, 2, . . . , qj − 1;

• ψj,l splits on a knot of fj for l = 1, 2, . . . , qj − 1.

Note that for convenience, we have identified the splits with their associated local decision stumps. We break up the

path into m segments, 0 = s0 < s1 < · · · < sm = k, with the j-th segment comprising Esj−1+1,Esj−1+2, . . . ,Esj ,

possessing the following desired properties:

• During this segment, the j-th tree is grown from the empty tree T∅ to its final state T∗
j , while no other trees are

modified;

• F(T∗
j ) = Vj ;

• Bias2(Ei−1; f∗) > Bias2(Ei; f∗) for i = sj−1 + 1, sj−1 + 2, . . . , sj .

For j = 3, 4, . . . ,m−1, the splitsψj,1, ψj,2, . . . , ψj,qj−1 immediately yield a sequence of trees T∅ = T0
j ,T

1
j , . . . ,T

qj−1
j =

T∗
j such that each Tlj is obtained from Tl−1 via adding the split ψj,l. Next, assuming correctness of the construction

up to Esj−1 , ψj,l is orthogonal to F(Esj−1) and also to the previous splits ψj,1, ψj,2, . . . , ψj,l−1, by Lemma F.1. This

allows us to apply Lemma F.3 to get

Bias2(Esj−1+i; f) = Bias2(Esj−1+i−1; f)−
(∫

ψif
∗dν

)2

.

We then notice that by the independence of different features,

(∫
ψif

∗dν

)2

=

(∫
ψifjdν

)2

> 0.

To construct T∗
m, fix 0 ≤ p < m′ −m, and assume that we have constructed a tree T∗

m,p such that the leaves of

Tm,p comprise the collection (see equation (51)):

{
Lm,jm,jm+1,...,jm+p

: 1 ≤ jm+i ≤ qm+i, i = 0, 1, 2, . . . , p
}
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We now construct a sequence T∗
m,p = T0

m,p,T
1
m,p, . . . ,T

r
m,p = T∗

m,p+1 by looping over the leaves, and for each leaf

L = Lm,jm,jm+1,...,jm+p
, iteratively adding the splits ψ̃1, ψ̃2, . . . , ψ̃qm+p+1−1, where ψ̃l = ν(L)−1/2ψm+p+1,l1L for

l = 1, 2, . . . , qm+p+1 − 1. Note that these are orthonormal. When adding the split ψ̃l, the decrease in squared bias can

thus be computed as

Bias2(Ti−1
m,p)− Bias2(Tim,p) =

(∫
ψ̃lf

∗dν

)2

= ν(L)
(∫

ψm+p+1,lfjdν

)2

> 0. (52)

We lift the sequence of tree structures to a sequence of TSEs, using Lemma F.1 and Lemma F.3 as before to translate

(52) to be in terms of the sequence of TSEs.

It remains to define V1 and V2 and construct T∗
1 and T∗

2. Let ai be the index of the knot ξi,ai forming the threshold

for ψi,qi for i = 1, 2. For k = 0, 1, . . . , q1 − 1, define bk = k for k < ai and bk = k + 1 for k ≥ ai. Similarly, for

l = 0, 1, . . . , q2 − 1,define cl = l for l < a2 and cl = l + 1 for k ≥ a2. Set V1 to be the span of indicators of the cells

L1,k,l :=
{
x : ξ1,bk−1

< x1 ≤ ξ1,bk and ξ2,cl−1
< x2 ≤ ξ2,cl

}

for k = 1, 2, . . . , q1 − 1 and l = 1, 2. Next, define d0 = 0, d1 = a1, d2 = q1, e1 = 0, e1 = a2, e2 = q2. We set V2 to

be the span of indicators of the cells

L2,k,l :=
{
x : ξ1,dk−1

< x1 ≤ ξ1,dk and ξ2,el−1
< x2 ≤ ξ2,el

}

for k, l = 1, 2. We construct T∗
1 similarly to T∗

m, through recursive partitioning on x1 and x2, but without making the

final split on both features. Using the same argument as before, we obtain the desired sequence of trees. Finally, to

construct T∗
2, we simply make the omitted splits on the new tree. More precisely, we define the splits

ψ1 =
ν{x1 > ξ1,a1}1{x1 ≤ ξ1,a1} − ν{x1 ≤ ξ1,a1}1{x1 > ξ1,a1}√

ν{x1 ≤ ξ1,a1}ν{x1 > ξ1,a1}

and ψ2 = ν{x1 ≤ ξ1,a1}1/2ϕ1{x ≤ ξ1,a1}, ψ3 = ν{x1 > ξ1,a1}1/2ϕ1{x > ξ1,a1}, where

ϕ =
ν{x2 > ξ2,a2}1{x2 ≤ ξ2,a2} − ν{x2 ≤ ξ2,a2}1{x2 > ξ2,a2}√

ν{x2 ≤ ξ2,a2}ν{x2 > ξ2,a2}
.

It is clear that these, together with the constant function, span V2. Furthermore, it is easy to see that we have

ψ1 −ΠV1
[ψ1]

∥ψ1 −ΠV1 [ψ1]∥L2(ν)
= ψ1,q1 ,

ψ2 −ΠV1⊕span(ψ1)[ψ2]

∥ψ2 −ΠV1⊕span(ψ1)[ψ2]∥L2(ν)
= ν{x1 ≤ ξ1,a1}−1/2

ψ2,q21{x ≤ ξ1,a1},

ψ3 −ΠV1⊕span(ψ1,ψ2)[ψ3]

∥ψ3 −ΠV1⊕span(ψ1,ψ2)[ψ3]∥L2(ν)
= ν{x1 > ξ1,a1}−1/2

ψ2,q21{x > ξ1,a1}.

By construction, we have (∫
ψ1,q1f1dν1

)2

,

(∫
ψ2,q2f2dν2

)2

> 0.

Applying Lemma F.3 then shows that the desired property for the 2nd segment of TSEs is satisfied. It is clear from the

construction that ψj1, ψj2, . . . , ψjqj−1
∈ V1 and that ψjqj ∈ V2 for j = 1, 2. This implies that f1 + f2 ∈ V1 + V2 as

desired.

Step 2: Disjointness from optimal set. We have already proved, in this construction, that every “grow” move adds a

split that decreases bias, and therefore must be linearly independent from the existing PEM. In other words, we have

df(Ei+1) = df(Ei) for i = 0, 1, . . . , k − 1. Expanding this gives df(Ebad) = k + 1 =
∑m
j=1(sj − sj−1) + 1. Since

each split increments the number of leaf nodes by one, each sj − sj−1 + 1 is equal to the number of cells in Vj , which
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we now compute as follows. For j = 3, 4, . . . ,m− 1, we have sj − sj−1 = dim1(fj)− 1, while for j = m, we have

sm − sm−1 =
∏m′

l=m dim1(fl) − 1. Likewise, we have s1 = (dim1(f1)− 1)(dim1(f2)− 1) − 1 and s2 − s1 = 3.

Putting these together gives

df(Ebad) =

m−1∑

j=3

dim1(fj) +

m′∏

l=m

dim1(fl) + (dim1(f1)− 1)(dim1(f2)− 1) + 2−m.

Let us now show that this is suboptimal, by constructing a TSE Egood with zero bias but fewer degrees of freedom.

To do so, we simply set Egood = (T′
1T

′
2,T

∗
3, . . . ,T

∗
m), where T∗

j has the same structure as in Tbad for j = 3, 4, . . . ,m.

On the other hand, we define T′
1 using ψ1,1, ψ1,2, . . . , ψ1,q1 and T′

2 using ψ2,1, ψ2,2, . . . , ψ2,q2 . By assumption, we

have fj ∈ F(T′
j) for j = 1, 2, which yields unbiasedness. The degrees of freedom is given by

df(Egood) =

m−1∑

j=1

dim1(fj) +

m′∏

l=m

dim1(fl)−m. (53)

Taking the difference gives

df(Ebad)− df(Egood) = (dim1(f1)− 1)(dim1(f2)− 1) + 2− dim1(f1)− dim1(f2)

= (dim1(f1)− 2)(dim1(f2)− 2)− 1,

which is strictly larger than 0 if dim1(f1), dim1(f2) > 3. Combining this with the fact that Bias2(Ei) > 0 for all i < s,
we therefore have Ei /∈ OPTm(f∗, k) for all i = 0, 1, . . . , s, with k = (dim1(f1)− 2)(dim1(f2)− 2)− 2.

Step 3: Conclusion. Using Proposition 4.1 and Proposition 4.2, for n large enough, there is a 1− δ/2 event over

which

log p(Ei|y)− log p(Ei−1|y) = n

2σ2

(
Bias2(Ei−1; f∗)− Bias2(Ei; f∗)

)
+O

(√
n log(s/δ)

)
. (54)

Conditioning on this set, we get
p(Ei|y)
p(Ei−1|y) = Ω(1) for i = 1, 2, . . . , s for all n large enough. We may then repeat the

calculations in the proof of Theorem 5.2, specifically equations (36) and (37), to get

P
{
τEbad

< τOPTm(f∗,k)

}
≥ P

{
Ei = E

i for i = 1, 2, . . . , s
}
= Ω(1).

BIC lower bound. Consider E′ = (T′
1,T

′
2, . . . ,T

′
m) ∈ B. By definition of B, there exists E = (T1,T2, . . . ,Tm) ∈

A such that E′ is obtained from E via a “grow”, “prune”, “change”, or “swap” move. We now consider each type of

move and show that either Bias2(E′; f∗) > 0 or df(E′) > df(E) = df(Ebad). To prove this, we make use of a few key

observations.

• Since a move only affects one tree with index i0, we have T′
i = Ti and F(T′

i) = Vi for all i ̸= i0;

• Every split (i, ξi,j) necessary for F(E′) to be unbiased (see Lemma F.4) has full coverage in a single tree and has

zero coverage in all other trees;

• Since no move is allowed to result in an empty leaf node, if t is an internal node in Ti0 or T′
i0

with a split (i, ξ),
no ancenstor or descendent of t makes the same split (i, ξ).

For convenience, we denote V−i0 = V1 + · · ·Vi0−1 + Vi0+1 + · · ·+ Vm.

Case 1: “grow” move. Let ψ denote the local decision stump associated with the new split, and let L denote the

leaf that is split. As shown earlier, we have ψ ⊥ Vi0 . Next, for any boundary point (x−j , ξ) of L in direction j (that

is not an a boundary point of the entire space X ), ψ has a jump location at (x−j , ξ) with respect to feature j. On the

other hand, by our construction, this means that (j, ξ) is a split fully covered by Vi0 and has zero coverage in V−i0 . By

Lemma F.4, this means ψ /∈ V−i0 . Together, this implies that ψ /∈ F(E) and df(E′) = df(E) + 1 as desired.

Case 2: “prune” move. Suppose the pruned split is (k, t) and occurs on a leaf L. Let L−k denote the projection of

the leaf onto all but the k-th coordinate. Applying the third observation above together with Lemma F.6 gives

coverage(k, t;F(E′)) ∩ L−k = coverage(k, t;F(T′
i0)) ∩ L−k = ∅.
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Lemma F.4 then implies that Bias2(E′; f∗) > 0.

Case 3: “change” move. Suppose the “changed” split occurs on a node t and is with respect to a feature k at

threshold ξk,j . Then since no descendant of t makes the same split, if we let t−k denote the projection of t onto all but

the k-th coordinate, then as before, we have

coverage(k, t;F(E′)) ∩ t
−k = coverage(k, t;F(T′

i0)) ∩ t
−k = ∅,

and Bias2(E′; f∗) > 0.

Case 4: “swap” move. The swap move can either be performed on a pair of parent-child nodes, or on a parent

with both of its children, if both children have the same splitting rule. In the latter case, F(T′) = F(T), contradicting

our assumption that E′ /∈ A. In the former case, let t denote the parent, and let tL and tR denote its two children.

Suppose without loss of generality that the splitting rules (j, s) and (k, t), of t and tL respectively, are to be swapped.

Then by construction of Ti0 , t must be a knot for fk. By the third observation, no ancestor of tL uses the splitting rule

(k, t), which implies that a descendent of tR must split on (k, t). However, this would mean that this swap move is not

allowed, giving a contradiction.

Finally, using Proposition 4.1 and Proposition 4.2, for n large enough, there is a 1− δ/2 event over which

∆BIC(E′,E)

=

{
n
σ2 Bias2(E′; f∗) +O

(√
n log(|B|/δ)

)
if Bias2(E′; f∗) > 0

log n(df(E′)− df(Ebad)) +O(log(|B|/δ)) otherwise.
(55)

Condition further on this event.

Conclusion. Applying Proposition 6.1 together with equations (54) and (55), while taking n large enough, we get a

1− 2δ probability event over which

E
{
τOPTm(f∗,k

}
= Ω

(
n1/2

)
,

where k = (dim1(f1)− 2)(dim1(f2)− 2)− 1.

H Proof of Theorem 5.1 Part 2

Set-up. We first use the same definition of Egood = (T1,T2, . . . ,Tm) as in the previous section (see the paragraph

immediately preceding equation (53)). To define Ebad = (T∗
1,T

∗
2, . . . ,T

∗
m), we start with Egood and simply swap the

roles of f1 and fm′ . More precisely, we let T∗
j = Tj for j = 2, 3, . . . ,m− 1. We define T∗

1 as comprising the local

decision stumps ϕm′,1, ϕm′,2, . . . , ϕm′,qm′ , which were defined in the proof of the hitting precedence probability lower

bound in the previous section. Define Vj = F(T∗
j ) for j = 1, 2, . . . ,m− 1. We then define Vm to be a grid on features

{1,m,m+ 1, . . . ,m′ − 1}, or in other words, F(T∗
m) is the span of indicators of the cells

Lm,jm,jm+1,...,jm′
:=
{
x : ξi,ji−1 < xi ≤ ξi,ji for i = 1,m,m+ 1, . . . ,m′ − 1

}
, (56)

as we vary i = 1,m,m + 1, . . . ,m′ − 1 and ji = 1, 2, . . . , qi. We construct T∗
m such that F(T∗

m), in the manner

described in the proof of the hitting precedence probability lower bound in the previous section. Here, recall that

dim1(f1) > dim1(fm), which will introduce suboptimality into Ebad.

Notice that f∗ ∈ V := V1 + V2 + · · ·Vm via the same argument as in the previous section. Next, we define the set

A via

A := {(E′
1,E

′, . . . ,E′) : F(Ej) ⊇ Vj for j = 1, 2, . . . ,m}.
We define B to be the outer boundary of A.
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Hitting precedence probability lower bound. This follows the proof of the hitting precedence probability lower

bound in the previous section almost exactly. First, using the same construction, there is path in ΩTSE,m comprising

E∅ = E0,E1, . . . ,Es = Ebad such that Ei+1 is obtained from Ei via a “grow” move and

Bias2(Ei; f∗) > Bias2(Ei−1; f∗)

for i = 0, 1, . . . , s− 1.

Next, we compute

df(Ebad) =

m−1∑

j=2

dim1(fj) + dim1(fm′) + dim1(f1)

m′−1∏

j=m

dim1(fj)−m.

Taking the difference between this and (53) gives

df(Ebad)− df(Egood) = dim1(fm′)− dim1(f1) + dim1(f1)

m′−1∏

j=m

dim1(fj)−
m′∏

j=m

dim1(fj)

= (dim1(f1)− dim1(fm′))

m′−1∏

j=m

dim1(fj), (57)

which is strictly larger than 0 if dim1(f1) > dim1(fm′). Combining this with the fact that Bias2(Ei) > 0 for all i < s,
we therefore have Ei /∈ OPTm(f∗, k − 1) where k is the quantity on the right hand side of (57).

Finally, using Proposition 4.1 and Proposition 4.2, for n large enough, there is a 1− δ/2 event over which

log p(Ei|y)− log p(Ei−1|y) = n

2σ2

(
Bias2(Ei−1; f∗)− Bias2(Ei; f∗)

)
+O

(√
n log(s/δ)

)
. (58)

Conditioning on this set, we get
p(Ei|y)
p(Ei−1|y) = Ω(1) for i = 1, 2, . . . , s for all n large enough. We may then repeat the

calculations in the proof of Theorem 5.2, specifically equations (36) and (37), to get

P
{
τEbad

< τOPTm(f∗,k)

}
≥ P

{
Ei = E

i for i = 1, 2, . . . , s
}
= Ω(1). (59)

BIC lower bound. Consider E′ = (T′
1,T

′
2, . . . ,T

′
m) ∈ B. By definition of B, there exists E = (T1,T2, . . . ,Tm) ∈

A such that E′ is obtained from E via a “prune” move (a “grow” move will now break the defining constraint of A.) We

now show that either Bias2(E′; f∗) > 0 or df(E′) ≥ df(Ebad) + min1≤i≤m′ dim1(fi)− 2.

Let Ti0 be the tree that is pruned, and supposed the prune split is (j, t), occurring on a node t. Since F(T′
i0
) ̸⊇ Vi0 ,

(j, t) must be on a feature split on in T∗
i0

and on a knot ξj,k for fj . Furthermore, because only “grow” and “prune”

moves are allowed, and this is the first time F(T′
i0
) ̸⊇ Vi0 , T∗

i0
must be a subtree of Ti0 , and t is an internal node of

T∗
i0

. Using Lemma F.6, we have coverage(j, t;F(T′
i0
)) ∩ t−j = ∅.

Suppose that Bias2(E′; f∗) = 0, i.e. f∗ ∈ F(E′). Let I1, I2, . . . , Im be the subsets of feature indices split on

in trees T∗
1,T

∗
2, . . . ,T

∗
m respectively. We claim that there exists some tree Ti, i ̸= i0 such that for all choices of

coordinates xIi in the index set Ii, there exists a choice of coordinates z−Ii∪{j} in the index set {1, 2, . . . , b}\(Ii∪{j})
such that (xIi , z−Ii∪{j}) ∈ coverage(j, t;F(Ti)). This claim is proved as Lemma H.1 below. Assuming it for now,

let L1,L2, . . . ,LL be the leaves of T∗
i . Consider one such leaf Ll. Since Ll does not depend on the features in Ii,

we may pick (xIi , z−Ii) ∈ coverage(j, t;F(Ti)) such that (xIi , z−Ii) ∈ Ll. By Lemma F.6, Ll in Ti must contain a

descendent that uses the splitting rule (j, t). In particular, Ll is split in Ti, and this split can be represented by a local

decision stump ψl. In this manner, we obtain ψ1, ψ2, . . . , ψL. Denote U = span(ψ1, ψ2, . . . , ψL−1). We claim that

U∩V = ∅. To see this, take any f =
∑L−1
l=1 al1Ll

∈ U and assume that f ̸= 0. First note that f ⊥ Vi by orthogonality

of local decision stump features from a single tree. Furthermore, f has jump locations with respect to features in Ii.
But no function in V−i depends on features in Ii, which means that f /∈ V−i. This gives f /∈ V.
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Let ψ′ denote the local decision stump associated to the pruned split, and let V′ denote its orthogonal complement

in V. We have V
′ ⊂ F(E′) and have further shown that U ⊂ F(E′). We therefore have

df(E′) = dim(F(E′))

≥ dim(V′) + dim(U)

= df(Ebad)− 1 + L− 1

≥ df(Ebad) + min
1≤i≤m′

dim1(fi)− 2.

Here, the first inequality follows from the trivial intersection of V′ and U.

Using Proposition 4.1 and Proposition 4.2, there is a 1− δ/2 event over which

∆BIC(E′,E)

=





n
σ2 Bias2(E′; f∗) +O

(√
n log(|B|/δ)

)
if Bias2(E′; f∗) > 0

log n(df(E′)− df(Ebad)) +O
(√

log(|B|/δ)
)

otherwise.
(60)

Condition further on this event.

Conclusion. Applying Proposition 6.1 together with equations (59) and (60), while taking n large enough, we get a

1− 2δ probability event over which

E
{
τOPTm(f∗,k)

}
= Ω

(
na/2−1

)
,

where k = max1≤i≤m′ dim1(fi)−min1≤i≤m′ dim1(fi)− 1 and a = min1≤i≤m′ dim1(fi).

Lemma H.1 (Existence of tree covering a cylinder). There exists some tree Ti, i ̸= i0 such that for all choices of

coordinates xIi in the index set Ii, there exists a choice of coordinates z−Ii∪{j} in the index set {1, 2, . . . , b}\(Ii ∪{j})
such that (xIi , z−Ii∪{j}) ∈ coverage(j, t;F(Ti)).

Proof. Let r1, r2, . . . , rm be a permutation of {1, 2, . . . ,m}, with r1 = i0 (this implies that j ∈ Ir1). For k =
2, 3, . . . ,m− 1, set Jk = ∪i≥kIri , and set Vk = F(Trk) + F(Trk+1

) + · · ·+ F(Trm).
We make the following observation: For some k, suppose there exists a cylinder set Ck ⊂ coverage(j, t;Vk) that

does not depend on any feature in Jk. Suppose that there exists some xIrk in the projection of C to coordinates in Irk
such that (xIi , z−Ii∪{j}) /∈ coverage(j, t;F(Trk)) for all choices of z−Ii∪{j}. Then taking the intersection of Ck and

{xIrk } × {1, 2, . . . , b}−Irk∪{j}
gives a cylinder set Ck+1 that does not depend on any feature in Jk+1 and such that

Ck+1 ⊂ coverage(j, t;Vk+1).
Now, since t−j ∩ coverage(j, t;F(T′

r1)) = ∅, we have t−j ⊂ coverage(j, t;V2). Since t−j is an internal node of

T∗
r1 , it is a cylinder set that does not depend on any feature in J2. By applying the above observation inductively on

k = 2, 3, . . . ,m− 1, we obtain the statement of the lemma.

I Proof of Proposition 6.1

Proposition 6.1 will follow almost immediately from the following more general result.

Proposition I.1 (General statement for recipe). Let X0, X1, . . . be an irreducible and aperiodic discrete time Markov

chain on a finite state space Ω, with stationary distribution π. Let x ∈ Ω be a state and C ⊂ Ω be a subset such that

their hitting times from an initial state x0 ∈ Ω satisfy

P{τx < τC | X0 = x0} ≥ c

for some constant c. Let B ⊂ Ω be a subset such that every path from x to C intersects B. Then the hitting time of C
satisfies

E{τC | X0 = x0} ≥ cπ(x)

π(B) .
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Proof. By conditioning on the event {τx < τC}, we calculate

E{τC | X0 = x0} ≥ E{τC1{τx < τC} | X0 = x0}
= E{τC | X0 = x0, τx < τC}P{τx < τC | X0 = x0}.

The second multiplicand on the right is lower bounded by c by assumption, so we just need to bound the first one. Using

the strong Markov property, we first lower bound this as:

E{τC | X0 = x0, τx < τC} = E{τC | X0 = x}+ E{τx|τx < τC}
≥ E{τC | X0 = x}. (61)

Let Z denote the number of times (Xt) returns to x before hitting B. Then, assuming that X0 = x, we have the

inequalities

τC ≥ τB ≥ Z + 1.

Note that Z + 1 is a geometric random variable with success probability

p =
{
τ+x > τB | X0 = x

}
,

where τ+x is the first return time to x, i.e.

min{t > 0: Xt = x}.
We therefore continue (61) to get

E{τC | X0 = x} ≥ 1

P
{
τ+x > τB | X0 = x

} . (62)

We next write this probability in terms of another random variable W , which we define to be the number of visits to

states in B before returning to x, when the chain is started at X0 = x. We then have

P
{
τ+x > τB | X0 = x

}
= P{W ≥ 1} ≤ E{W}. (63)

To bound this expectation, for each y ∈ B, let Wy denote the number of visits to y before returning to x, and observe

that W =
∑
y∈BWy. Let π denote the unique stationary distribution of (Xt). Using Lemma I.2, we then have

E{Wy} ≤ π(y)/π(x). Adding up these inequalities, we get

E{W} =
∑

y∈B

E{Wy} ≤ π(y)

π(x)
=
π(B)
π(x)

. (64)

Combining equations (62), (63), and (64) completes the proof.

Proof of Proposition 6.1. It is clear that the Markov chain induced by a run of the BART sampler is irreducible and

aperiodic, with stationary distribution given by the marginal posterior p(E|y). We hence use Proposition I.1 to get

E
{
τOPTm(f∗,k)

}
= Ω

(
p(Ebad|y)
p(B|y)

)
.

We now compute

p(Ebad|y)
p(B|y) ≥ 1

|B| min
E∈B

p(Ebad|y)
p(E|y)

=
1

|B| exp
(
min
E∈B

{log p(Ebad|y)− log p(E|y)}
)

≥ 1

|B| exp
(
1

2
min
E∈B

∆BIC(E,Ebad)−O
(√

log(|B|/δ)
))

= Ω

(
exp

(
1

2
min
E∈B

∆BIC(E,Ebad)

))
,

where the second inequality follows from Proposition 4.2 and holds with probability at least 1− δ.
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Lemma I.2 (Bounding number of visits). Let X0, X1, . . . be an irreducible and aperiodic discrete time Markov chain

on a finite state space Ω, with stationary distribution π. For any two states x, y ∈ Ω, we have

E{number of visits to y before returning to x|X0 = x} =
π(y)

π(x)
. (65)

Proof. Fix x and denote the quantity on the left side of equation (65) by π̃(y). We may then rewrite equations (1.25)

and (1.26) of Levin et al. (2006) in our notation as follows:

π(y) =
π̃(y)

E
{
τ+x |X0 = x

} ,

π(x) =
1

E
{
τ+x |X0 = x

} ,

where τ+x is the first return time to x. Taking the ratio of the two equations completes the proof.

J Invariance of PEM Dimension to Change of Measure

Lemma J.1 (Characterization of subspace dimension). Let v1,v2, . . . ,vn be vectors in an inner product space. Let G

be the Gram matrix of these vectors, in other words, its (i, j) entry satisfies Gij = ⟨vi,vj⟩ for 1 ≤ i, j ≤ n. Then the

dimension of the subspace spanned by v1,v2, . . . ,vn is equal to the number of nonzero eigenvalues of G.

Proof. By restricting to a linearly independent set, it suffices to show that v1,v2, . . . ,vn are linearly independent if and

only if G is invertible. For the forward direction, suppose G is not invertible, then there exists a vector of coefficients

α = (α1, . . . , αn) such that αTGα = 0. But in that case, we have

0 = α
TGα =

〈
n∑

i=1

αivi,
n∑

i=1

αivi

〉
.

By definition of the inner product, this means that
∑n
i=1 αivi = 0, contradicting linear independence. The reverse

direction is similar.

Lemma J.2 (Invariance of dimension to covariate distribution). Let ν and ν′ be two measures on a compact covariate

space X that are absolutely continuous with respect to each other. Let v1, v2, . . . , vn ∈ L2(X , ν). Then v1, v2, . . . , vn
span the same subspace in both L2(X , ν) and L2(X , ν′).
Proof. By restricting to a linearly independent set, it suffices to show that v1, v2, . . . , vn are linearly independent in

L2(X , ν) if and only if they are linearly independent in L2(X , ν′). By definition of absolute continuity, there exists a

constant c > 0 such that

c−1

∫

X

f(x)dν(x) ≤
∫

X

f(x)dν′(x) ≤ c

∫

X

f(x)dν(x)

for any f ∈ Let G and G′ be their Gram matrices in L2(X , ν) and L2(X , ν′) respectively. Let α = (α1, . . . , αn) be

any vector of coefficients. Then we have

α
TGα =

∫

X

(
n∑

i=1

αivi(x)

)2

dν(x)

≤ c

∫

X

(
n∑

i=1

αivi(x)

)2

dν′(x)

= cαTG′
α.

Similarly, we get αTG′
α ≤ cαTGα.

This shows that whenever the covariate distribution ν has full support, it is equivalent to the uniform measure.
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K Real Data Simulations

We further investigated the effect of training sample size on the mixing performance of BART as we fit it to a number

of real world regression datasets. We studied several datasets used in the random forest paper along with three of the

largest non-redundant datasets from the PMLB benchmark. Details on the datasets are provided below in Table 2.

Name Samples Features

Breast tumor (Romano et al., 2021) 116640 9

California housing (Pace and Barry, 1997) 20640 8

Echo months (Romano et al., 2021) 17496 9

Satellite image (Romano et al., 2021) 6435 36

Abalone (Nash et al., 1994) 4177 8

Diabetes (Efron et al., 2004) 442 10

Table 2: Real world datasets studied.

Furthermore, a heuristic estimate of the signal-to-noise ratio present in each dataset can be obtained by inspecting

the simulation results in Tan et al. (2022b). California housing and Satellite image have relatively high SNR (the R2 of

random forest is larger than 0.8), whereas all other datasets have relatively low SNR (the R2 of random forest is lower

than 0.6.)

For each dataset we set aside 15% of the overall dataset as a test set. The remaining data is used as the training data

set and is subsampled to create a variety of sample sizes. For each subsample proportion, we sample a random set of

the training data and fit the BART algorithm on this subset of the training data with 1, 2, and 5 chains. This is repeated

for 100 Monte Carlo iterations for each sample size and the RMSE on the test set is evaluated each time. The remainder

of the simulation set-up is the same as that of Experiment 3, as described in Section 8.

Results. The results are displayed in Figure 8. Note that instead of plotting RMSE, we have chosen to plot relative

RMSE, which measures the ratio between the RMSE obtained from multiple chains and that obtained for a single

chain for a given data setting. Since we are working with real datasets, error is measured with respect to the observed

responses, rather than a true regression function. In almost all of the real data sets, we see that increasing the number of

chains in the BART algorithm consistently decreases the RMSE of the predictions, and the performance gap grows

with the training sample size. This provides further evidence that the poor mixing performance of BART applies to

real world datasets. On the other hand, the effect seems to be much less significant compared to that for the simulated

datasets studied in Experiment 3. This is unsurprising as the RMSE for real datasets incorporates and hence is inflated

by aleatoric uncertainty in the responses. Notably, in the data sets with higher SNR (California housing and Satellite

image), the performance gap remains significant.
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Figure 8: RMSE for the predictions from BART run with several different numbers of chains relative to the RMSE

obtained from running BART with a single chain. The X axis displays the percentage of the training data that is sampled

for each Monte Carlo replication. The RMSE is calculated over an independent test set consisting of 15% of the overall

data.

L Additional results for Experiment 3

In order to further explore the effect of the number of chains on mixing performance, we also repeated Experiment 3

using 20 chains. The results are shown in Figure 9
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Figure 9: The RMSE (top panel) and empirical coverage (bottom panel) of BART improve if we average posterior

samples from multiple sampler chains, given a fixed total budget of posterior samples. The relative performance gaps

increases with the number of training samples, providing evidence that the tendency of HPDR hitting time to grow

with training sample size is consistent across a wide range of DGPs. The biggest improvement seems to occur when

increasing the number of chains from 1 to 2 and there seems to be diminishing returns thereafter. Both RMSE and

coverage are calculated on an independent test set and are averaged over 100 experimental replicates, with error bars

representing ±1.96SE.
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