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Abstract
Typical off-policy evaluation (OPE) and off-
policy learning (OPL) are not well-defined prob-
lems under “truncation by death”, where the out-
come of interest is not defined after some events,
such as death. The standard OPE no longer yields
consistent estimators, and the standard OPL re-
sults in suboptimal policies. In this paper, we
formulate OPE and OPL using principal strati-
fication under “truncation by death”. We pro-
pose a survivor value function for a subpopula-
tion whose outcomes are always defined regard-
less of treatment conditions. We establish a novel
identification strategy under principal ignorability,
and derive the semiparametric efficiency bound
of an OPE estimator. Then, we propose mul-
tiply robust estimators for OPE and OPL. We
show that the proposed estimators are consis-
tent and asymptotically normal even with flexi-
ble semi/nonparametric models for nuisance func-
tions approximation. Moreover, under mild rate
conditions of nuisance functions approximation,
the estimators achieve the semiparametric effi-
ciency bound. Finally, we conduct experiments
to demonstrate the empirical performance of the
proposed estimators.

1. Introduction
In many real-world applications of personalized decision-
making, experimentation and exploration can be costly,
risky, or even unethical, such as healthcare (Qian & Murphy,
2011), education (Mandel et al., 2014), and e-commerce
(Swaminathan et al., 2017). This motivates the study of
off-policy evaluation (OPE) and off-policy learning (OPL)
in contextual bandits (Dudı́k et al., 2014; Wang et al., 2017)
and reinforcement learning (Jiang & Li, 2016; Munos et al.,
2016; Fujimoto et al., 2019; Kallus & Uehara, 2020). The
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goal of OPE is to estimate the expected reward of a given
policy using historical data generated by a potentially dif-
ferent policy, while OPL aims to derive an optimal policy
that maximizes the expected reward based on the available
historical data. In contrast, OPE and OPL have also been
extensively studied under the counterfactual and potential-
outcome framework (Rubin, 2005). They are closely related
to a broad body of research on causal inference with observa-
tional data: OPE can be viewed as evaluating the expected
outcome of patients under a given treatment policy and
OPL is to identify the optimal treatment policy that yields
the greatest expected outcome in populations, known as the
value function (Zhang et al., 2012; Luedtke & Van Der Laan,
2016; Kitagawa & Tetenov, 2018; Athey & Wager, 2021).

A variety of studies have revealed that the treatment effects
can vary significantly across different (sub)populations due
to covariate shift, unmeasured confounding and other rea-
sons. These issues result in the generalization challenges
in both OPE and OPL. Standard OPE methods no longer
provide consistent value estimators, and estimated optimal
policies by standard OPL methods may be suboptimal to
certain (sub)populations (e.g. Lipkovich et al., 2017; Vander-
Weele et al., 2019; Fang et al., 2022). Consequently, there is
a pressing need to develop new OPE and OPL methods that
target different (sub)populations. Uehara et al. (2020); Mo
et al. (2021); Chu et al. (2023) focus on the generalization
of policy to new populations with covariate shift and the
use of weighting. Cui & Tchetgen Tchetgen (2021); Qiu
et al. (2021) both utilize instrumental variables to address
potential unmeasured confounding, and learn the optimal
policy in subpopulations with respect to compliance. How-
ever, all of these works consider the same outcome across
different (sub)populations. In many cases, decision-making
goals and outcomes of interest may also be different across
various (sub)populations.

For example, in critical care, the primary goal of treatment
is to save the lives of seriously ill patients (i.e., decrease
mortality). With advancements in medicine, short-term mor-
tality has been reduced in many clinical situations (Wun-
sch et al., 2010; Guérin et al., 2013). However, surviving
critical illness often comes at a cost, as many survivors ex-
perience worsened pain, cognition, physical function, and
mental health during and after treatment. To account for a
patient perspective, the significance of improving “patient-
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important” outcomes, such as functional outcomes and qual-
ity of life among survivors, has gained widespread recog-
nition and has been underlined when making treatment de-
cisions (Fried et al., 2002; Iwashyna et al., 2010; Dinglas
et al., 2018). Another example is that, in vaccine studies,
the primary goal is to estimate the vaccine efficacy, which is
a measure of reduction in infection risk for vaccine relative
to placebo. However, in infected patients, the outcome of in-
terest may shift to the treatment effect on symptom severity
(Paltiel et al., 2021). In the aforementioned examples, the
outcome of interest in subpopulations only has a meaningful
definition before or after an event occurs. In the first case,
once a patient dies, the quality of life is no longer defined,
and thus it can only be assessed among survivors. In the
second case, symptom severity can only be evaluated after
an infection has occurred. The events here can be flexibly
defined based on different study purposes. However, to align
with the causal inference literature, we term such problems
as “truncation by death” (Frangakis & Rubin, 1999). Trun-
cation by death leads outcomes to be undefined and thus
cannot be simply treated as missing data problems.

One of the proper ways to deal with truncation by death prob-
lems is principal stratification (Frangakis & Rubin, 2002;
Imai, 2008; Jiang et al., 2022). Principal stratification parti-
tions the study population into latent subpopulations, known
as principal strata. The partition is based on potential val-
ues of a post-treatment intermediate variable that lies on
the causal pathway between the treatment and the primary
outcome (Lipkovich et al., 2022). Throughout the paper,
we consider the survival indicator as the intermediate vari-
able. A meaningful causal effect can only be defined in
a subpopulation whose potential outcomes are always de-
fined. In other words, subjects in this subpopulation would
always survive regardless of the treatments received. This
subpopulation is termed as the always-survivor stratum and
the causal contrast of this stratum is often referred to as
the survivor average causal effect (SACE). In this paper,
we name the value function and the optimal policy for the
always-survivor stratum as the survivor value function and
the survivor-optimal policy, respectively.

Due to the fundamental problem of the potential outcome
formulation, the survivor value function and the survivor-
optimal policy are not identifiable without additional as-
sumptions. Standard approaches for OPE, such as the direct
method (DM), inverse propensity weighting (IPW) (Horvitz
& Thompson, 1952), and doubly robust (DR) (Dudı́k et al.,
2014; Jiang & Li, 2016) estimators, are not consistent for
the survivor value function. Furthermore, it’s common in
medical studies that observations are subject to right censor-
ing due to dropout or administrative censoring before the
follow-up visit, which however has seldom been considered
in the truncation by death literature. Censoring is a different
concept from truncation by death in that the former leads to

missing values in survival status and outcomes, while the
latter renders outcomes undefined. Therefore, the identifica-
tion of the survivor value function should be established by
incorporating the censoring information.

The contribution of this paper is fourfold.

• First, we provide a novel nonparametric identification
strategy for the survivor value function under principal
ignorability (Follmann, 2000; Stuart & Jo, 2015), an
assumption similar in spirit to treatment ignorability
for estimating causal effects in observational studies
(Rosenbaum & Rubin, 1983).

• Second, we derive the efficient influence function
(EIF) and semiparametric efficiency bound of OPE
under truncation by death. The EIF motivates novel
estimators based on four models: propensity score,
non-censoring probability, survival probability, and
conditional mean outcome. For nuisance parame-
ters involved in these models, we propose two dif-
ferent estimation strategies, by using parametric and
semi/nonparametric methods, respectively.

• Third, we establish theoretical properties for the pro-
posed estimators. We show the estimators are multiply
robust to model-misspecification of nuisance functions.
In addition, the estimators achieve the semiparametric
efficiency bound under mild rate conditions of nuisance
functions approximation.

• Fourth, an OPL method is proposed based on the mul-
tiply robust estimators. We establish theoretical prop-
erties for both the estimated optimal policy and its
associated value estimator. We show the estimated
optimal policy in a pre-specified class has the cubic
root convergence rate and its associated value function
estimator is consistent and asymptotically normal.

2. Preliminaries
In this section, we introduce the setup, formulate the prob-
lem, and review existing works.

2.1. Setup

We consider a binary treatment A ∈ {0, 1}. Let X ∈
X ⊆ Rp denote a vector of pre-treatment covariates. Let
C ∈ {0, 1} be the censoring indicator. Let S ∈ {0, 1}
be the survival indicator and Y the non-mortality primary
outcome at the follow-up visit. We assume Y is bounded
and larger values of Y are preferred by convention. We
adopt the potential-outcome framework under the Stable
Unit Treatment Value Assumption (SUTVA) (Rubin, 2005),
and let C(a), S(a), and Y (a) be the potential values of
the censoring indicator, survival indicator, and outcome if
a subject were to receive treatment condition a (a = 0, 1).
The observed censoring indicator, survival indicator, and
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Table 1. Principal stratification and survival types.

U Survival type Description
11 Always-survivor Subjects who would survive regardless of the treatment conditions
10 Protectable Subjects who would survive if treated but die otherwise
00 Never-survivor Subjects who would die regardless of the treatment conditions
01 Defier Subjects who would survive if untreated but die otherwise

outcome are thus S = AS(1)+(1−A)S(0), C = AC(1)+
(1−A)C(0), and Y = AY (1)+(1−A)Y (0). If censoring
occurs before the follow-up visit, both S and Y are not
observed. If censoring does not occur before the follow-up
visit, S is observed, and in this case, Y is observed when
a subject is alive (S = 1). When a subject is dead at the
follow-up visit (S = 0), Y is undefined, which is also
known as truncation by death. Thus, the observed data are
{YiSi(1 − Ci), Si(1 − Ci), Ci, Ai, Xi, i = 1, . . . , n} and
we assume they are independent and identically distributed.

A policy π : X → [0, 1] is a map from covariates to the
probability of assigning treatment 1. If a policy π were
implemented in the population, without censoring and trun-
cation by death, then the population mean outcome, known
as the value function, would be

V (π) = E [Y (1)π(X) + Y (0){1− π(X)}] .

And the optimal policy π∗ in a policy class Π is the one that
maximizes the value function:

π∗ = argmax
π∈Π

V (π).

2.2. Problem Formulation

Following Frangakis & Rubin (2002), we use the joint po-
tential values of the survival indicator to define the prin-
cipal stratification variable, U = {(S(1), S(0)}. For the
ease of exposition, we simplify {(S(1), S(0)} as S(1)S(0)
throughout the paper. There exists a one-to-one mapping
between the survival type and the principal stratification
variable, which is given in Table 1. The outcomes are only
defined in the survivors, which are a mixture of different
principal strata. However, a meaningful value function can
only be defined in the always-survivor stratum whose po-
tential outcomes are always defined and we term it as the
survivor value function,

V11(π) = E [Y (1)π(X) + Y (0){1− π(X)} | U = 11] .

And we define the survivor-optimal policy as the one that
maximizes the survivor value function:

π∗
11 = argmax

π∈Π
V11(π).

Unless otherwise specified, we will omit the subscript and
use V (π) and π∗ to denote a survivor value function and
a survivor-optimal policy, instead of a general value func-
tion and a general optimal policy, in the remaining paper.
Our first goal is OPE; i.e., estimating V (π) for a given
policy π using the historical data {YiSi(1 − Ci), Si(1 −
Ci), Ci, Ai, Xi, i = 1, . . . , n}. Our second goal is OPL;
i.e., estimating the survivor-optimal policy π∗.

2.3. Standard OPE and OPL

We review three types of standard approaches to estimate
V (π) when there is no censoring and truncation by death
(only one stratum, always-survivor, exists and the survivor
value function is equal to the general value function).

(i) Direct method (DM) estimates the condition mean
outcome functions µa(x) = E[Y (a) | X = x] and
V̂ DM(π) = Pn[µ̂1(X)π(X) + µ̂0(X){1− π(X)}], where
Pn[h(X)] = 1

n

∑n
i=1 h(Xi) for any given function h(X).

DM estimators are known to be sensitive against model
misspecification with regards to µa(x).

(ii) Inverse probability weighting (IPW) estimator
V̂ IPW(π) = Pn

[
πA(X)
φ̂A(X)Y

]
, where πa(x) = aπ(x) + (1−

a){1 − π(x)}, φ̂a(x) is an approximation of φa(x) =
aφ(x)+ (1−a){1−φ(x)}, where φ(x) = P (A = 1|X =
x) is the propensity score, which is also known as the behav-
ior policy that was used to generate the historical data. This
estimator is unbiased when the propensity score is known
but it often suffers from high variance.

(iii) Doubly robust (DB) estimator V̂ DR(π) = V̂ DM(π) +

Pn
[
πA(X)
φ̂A(X){Y − µ̂A(X)}

]
. This estimator is consistent if

either the conditional mean outcome model or propensity
score model is correctly specified.

These estimators are also used for OPL (Zhang et al., 2013;
Luckett et al., 2019; Athey & Wager, 2021). However, when
utilizing these standard methods, one implicitly makes the
“missing at random” assumption, which posits that the out-
comes of non-survivors are missing, and their conditional
distributions given covariates and treatment are equivalent
to those of survivors. Nevertheless, the outcomes of non-
survivors are not well-defined, and even if they were, they
are likely to differ from those of survivors because death im-
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plies the deterioration of underlying health conditions. Con-
sequently, standard OPE and OPL methods are not suitable
approaches to deal with the truncation by death problems.

3. Identification, EIF, and Efficiency Bound
We first make the following identification assumptions.
Assumption 3.1. (i) A⊥⊥{C(a), S(a)} | X;
(ii) A⊥⊥Y (a) | S(a) = 1, X , for a = 0, 1.

Assumption 3.1 rules out unmeasured confounding between
the treatment and potential values of the censoring indicator,
survival indicator and outcome. It holds by the design of
a randomized experiment. It also holds if the observed co-
variates include all the confounders that affect the treatment
as well as the censoring indicator, survival indicator, and
outcome.
Assumption 3.2. (i) E[S(a) | C(a) = 0, X] = E[S(a) |
X]; (ii) E[Y (a) | S(a) = 1, C(a) = 0, X] = E[Y (a) |
S(a) = 1, X], for a = 0, 1.

With Assumption 3.1, Assumption 3.2 implies that the sur-
vival probability for a subject does not vary across censor-
ing and non-censoring groups. And the conditional mean
outcomes of survivors are identical in both censoring and
non-censoring groups.
Assumption 3.3. S(1) ≥ S(0) almost surely.

Assumption 3.3 is known as the monotonicity assumption
(Sommer & Zeger, 1991; Follmann, 2006), which implies
that the treatment has a non-negative impact on the survival
of all subjects, which rules out the defier stratum (U = 01).
It is often plausible in observational studies since providers
cannot assign inferior treatment to patients. Then, from
Table 1, the observed survivors are a mixture of the always-
survivor stratum (U = 11) and the protectable stratum
(U = 10).
Assumption 3.4. E[Y (1) | U = 11, X] = E[Y (1) | U =
10, X].

Assumption 3.4, known as the principal ignorability assump-
tion, is widely used in principal causal analysis literature
(Follmann, 2000; Stuart & Jo, 2015). Under Assumptions
3.1 and 3.3, Assumption 3.4 is equivalent to

E[Y (1)|U = 11, A = 1, S = 1, X]

= E[Y (1)|U = 10, A = 1, S = 1, X]. (1)

(1) implies that the expectations of the potential outcome
Y (1) conditional on covariates are identical in both the
always-survivor stratum and the protectable stratum. Fur-
ther with Assumption 3.2, they simplify to the observable
conditional expectation E[Y | A = 1, C = 0, S = 1, X].
This assumption may not be easily justified by prior knowl-
edge and may be violated in some applications. We provide

a sensitivity analysis technique for the potential violation of
this assumption in Appendix C.

Define the propensity score φ(x) = P (A = 1|X = x) and
let φa(x) = aφ(x) + (1− a){1− φ(x)}. Define the non-
censoring probability Ka(x) = P (C = 0 | A = a,X =
x), the observed survival probability pa(x) = P (S = 1 |
A = a,C = 0, X = x), and the observed conditional mean
outcome µa(x) = E[Y | A = a,C = 0, S = 1, X = x],
for a = 0, 1. Let pa = E[pa(X)]. Suppose the nuisance
functions satisfy the following assumption.

Assumption 3.5. {φa(x),Ka(x), pa(x)} > 0, |µa(x)| <
L, for some L > 0, and x ∈ X .

The assumption of positivity for φa(x) implies that every
individual has a non-zero probability of receiving or not
receiving the treatment. Similarly, the positivity assump-
tion for Ka(x) implies that each individual has a non-zero
probability of being censored or not censored, while the
positivity assumption for pa(x) implies that each individual
has a non-zero probability of surviving or not surviving. In
practice, these assumptions are generally expected to hold.
Furthermore, the bounded conditional outcome model µa(x)
is reasonable because outcomes, such as quality of life, are
typically bounded in real-world applications.

The following theorem provides a nonparametric identifica-
tion formula for V (π).

Theorem 3.6. Let Π be a policy class. Under Assump-
tions 3.1–3.5, for any given policy π ∈ Π, the survivor
value function V (π) is identified,

V (π) = E
[
p0(X)

p0

{
A

φ1(X)

1− C

K1(X)

S

p1(X)
Y π(X)

+
1−A

φ0(X)

1− C

K0(X)

S

p0(X)
Y {1− π(X)}

}]
.

Based on the identification formula provided in Theorem
3.6, we derive the EIF and the semiparametric efficiency
bound for V (π).

Define

ψS(a) =
I(A = a)I(C = 0){S − pa(X)}

φa(X)Ka(X)
+ pa(X), (2)

ψY (a)S(a) =
I(A = a)I(C = 0){Y S − µa(X)pa(X)}

φa(X)Ka(X)

+ µa(X)pa(X). (3)

Theorem 3.7. Suppose V (π) is identified in Theorem 3.6.
The EIF for V (π) is

νπ = {ϕπ − V (π)ψS(0)}/p0,
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and the semiparametric efficiency bound for V (π) is

Υ(π) = E
[
{ϕπ − V (π)ψS(0)}/p0

]2
,

where ϕπ =
[
µ1(X)

{
ψS(0) − p0(X)

p1(X)ψS(1)

}
+

p0(X)
p1(X)ψY (1)S(1)

]
π(X) + ψY (0)S(0){1− π(X)}.

4. Multiply Robust OPE
The EIF νπ motivates the following estimator for V (π):

V̂ (π) =
Pn(ϕ̂π)

Pn{ψ̂S(0)}
, (4)

where ϕ̂π and ψ̂S(0) are the estimators for ϕπ and ψS(0),
respectively. From (2) and (3), we can first build estimators
for φa(X), Ka(X), and pa(X), and then combine them
to get estimators for ψS(a) and ψY (a)S(a). Finally, we can
construct estimators for ϕπ and V (π).

We first consider the case when nuisance functions are esti-
mated parametrically. Let φa(x;α), Ka(x; η), pa(x; γ) and
µa(x; ζ) be working parametric models for φa(x), Ka(x),
pa(x) and µa(x), respectively. Based on the maximum
likelihood estimation, we obtain estimators α̂, η̂, γ̂, and
ζ̂. Let α∗, η∗, γ∗, and ζ∗ be the limits of α̂, η̂, γ̂, and ζ̂,
respectively. We use M with subscripts “ps”, “cs”, “sp”,
and “om” to denote models with the correct specification
of the propensity score, non-censoring probability, survival
probability, and conditional mean outcome, respectively.
For example, under Mps, we have φa(x;α∗) = φa(x). In
addition, we use “+” in the subscript to indicate that multi-
ple nuisance functions are correctly specified. For example,
Mps+cs denotes models with correctly specified φa(x;α)
and Ka(x; η). We also use the union notation to denote
the correct specification of at least one nuisance function,
for example, Mps+cs ∪Msp denotes models with correctly
specified {φ(x;α),Ka(x; η)} or pa(x; γ).

For ψS(a) and ψY (a)S(a), we have the estimators ψ̂S(a) =
I(A=a)I(C=0){S−pa(X;γ̂)}

φa(X;α̂)Ka(X;η̂) + pa(X; γ̂), and ψ̂Y (a)S(a) =

I(A=a)I(C=0){Y S−µa(X;ζ̂)pa(X;γ̂)}
φa(X;α̂)Ka(X;η̂) + µa(X; ζ̂)pa(X; γ̂).

Then for ϕπ, we have the estimator ϕ̂π =[
µ1(X; ζ̂)

{
ψ̂S(0) − p0(X;γ̂)

p1(X;γ̂) ψ̂S(1)

}
+ p0(X;γ̂)

p1(X;γ̂) ψ̂Y (1)S(1)

]
×π(X)+ ψ̂Y (0)S(0)×{1−π(X)}. Plugging ϕ̂π and ψ̂S(0)
into (4), we have a multiply robust (MR) estimator and we
denote it as V̂ MR(π).

Assumption 4.1. {φa(x; α̂),Ka(x; η̂), pa(x; γ̂)} > 0,
|µa(x; ζ̂)| < L, for some L > 0, and x ∈ X .

Theorem 4.2. Suppose Assumptions 3.1–3.5 and 4.1 hold,
V̂ MR(π) is multiply robust in the sense that it is consis-
tent for V (π) under Mps+cs+sp ∪Mps+cs+om ∪Msp+om.

Moreover, under Mps+cs+sp+om, V̂ MR(π) has the influ-
ence function νπ and achieves the semiparametric efficiency
bound Υ(π).

Remark 4.3. Though in Mps+cs+sp and Mps+cs+om, we
require both of the propensity score and the non-censoring
probability to be correctly specified, we actually only need
the correct specification of the product of these two nuisance
functions, that is φa(x)Ka(x) = P (A = a,C = 0|X =
x), to achieve the consistency. Therefore, the estimator is
triply robust in the sense it is consistent for V (π) if any
two of P (A = a,C = 0|X = x), pa(x), and µa(x) are
correctly specified.

Alternatively, the nuisance functions can also be estimated
using nonparametric models. We denote them as φ̂a(x),
K̂a(x), p̂a(x), and µ̂a(x). For a vector z, we use ∥z∥2 =
(zT z)1/2 to denote its Euclidean norm. For a function f(Z),
whereZ is a generic random variable, we define itsL2-norm
as ∥f(Z)∥ = {

∫
f(z)2dP (z)}1/2.

Assumption 4.4. (i) {φ̂a(x), {K̂a(x), {p̂a(x)} >
0, |µ̂a(x)| < L, for some L > 0, and
x ∈ X ; (ii) {φ̂a(x), K̂a(x), p̂a(x), µ̂a(x)} and
{φa(x),Ka(x), pa(x), µa(x)} are in a Donsker
class, and {φ̂a(x), K̂a(x), p̂a(x), µ̂a(x)}

p−→
{φa(x),Ka(x), pa(x), µa(x)} for x ∈ X ; (iii)
∥ĝ(X) − g(X)∥∥ĥ(X) − h(X)∥ = op(n

−1/2), for
any g ̸= h ∈ (φa ×Ka, pa, µa).
Theorem 4.5. Suppose that Assumptions 3.1–3.5 and 4.4
hold. V̂ MR(π) is asymptotically normal, has the influence
function νπ, and achieves the semiparametric efficiency
bound Υ(π).

Remark 4.6. Assumption 4.4 is analogous to those for dou-
ble machine learning estimation of average causal effects
(e.g. Kennedy, 2016; Farrell et al., 2021). The Donsker class
assumption can be relaxed by applying the cross-fitting tech-
nique (Zheng & Laan, 2011; Chernozhukov et al., 2018)
and we summarize the procedure in Algorithm 1.

5. From Robust OPE to OPL
In this section, we propose an OPL method based on the
MR estimator V̂ MR(π) to estimate the survivor-optimal
policy, which is defined as π∗ = argmaxπ∈Π V (π). A
natural estimator for the survivor-optimal policy would be
π̂ = argmaxπ∈Π V̂

MR(π). In many applications such as
clinical practice, it may be desirable to consider a policy
class indexed by a vector of parameters β for feasibility
and interpretability. We denote such a policy class as Πβ
and its element as π(x;β). For example, we can consider
a linear policy class Πβ = {π(x;β) = I(βT x̃ > 0) :
β ∈ Rp+1, ∥β∥2 = 1}, where x̃ = (1, xT )T . Given a
linear policy π(x;β) ∈ Πβ , we use a shorthand to write
its associated survivor value function V (π) as V (β). Let
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Algorithm 1 Multiply Robust OPE with Cross-fitting

Input: The evaluation policy π.
Take a ξ-fold random partition (Ik)

ξ
k=1 of observation

indices {1, . . . , n} such that the size of each fold Ik is
nk = n/ξ.
For each k ∈ {1, . . . , ξ}, define Ick = {1, . . . , n}\Ik.
Define (Dk)ξk=1 with Dk = {YiSi(1 − Ci), Si(1 −
Ci), Ci, Ai, Xi)}i∈Ick .
for k = 1 to ξ do

Construct estimators φ̂a,k(x), K̂a,k(x), p̂a,k(x),and
µ̂a,k(x) using Dk.
Construct an estimator V̂k(π) defined as (4).

end for
Construct an estimator V̂ MR(π) by taking the aver-
age of V̂k(π), for k = 1, . . . , ξ, i.e., V̂ MR(π) =
1
ξ

∑ξ
k=1 V̂k(π).

β∗ = argmaxβ:∥β∥2=1 V (β). Then, the survivor-optimal
linear policy is π(x;β∗). We can establish the MR esti-
mator for a given linear policy π(x;β) and we denote it
as V̂ MR(β). We can obtain the estimated survivor-optimal
linear policy, denoted as π(x; β̂) by directly maximizing
V̂ MR(β), i.e., β̂ = argmaxβ:∥β∥2=1 V̂

MR(β).

We first impose the following regularity conditions.

Assumption 5.1. (i) The survivor value function V (β)
is twice continuously differentiable at a neighborhood of
β∗; (ii) There exist some constants δ0 > 0 such that
P (|X̃Tβ∗| ≤ δ) = O(δ), where the big-O term is uniform
in 0 < δ ≤ δ0.

Assumption 5.1(i) is a standard regularity condition used
to establish the uniform convergence results; Assumption
5.1(ii) excludes the situation with P (X̃Tβ∗ = 0) > 0 and
ensures the true survivor-optimal linear policy is uniquely
defined, known as the margin condition, which is often
assumed to derive a sharp convergence rate for the value
function under the estimated optimal policy (e.g. Luedtke &
Van Der Laan, 2016).

We establish the following Lemma 5.2 and Theorem 5.3
when nuisance functions are estimated nonparametrically.
Similar results for parametric estimation are provided in
Appendix B.

Lemma 5.2. Suppose that Assumptions 3.1–3.5, 4.4, and
5.1 hold, we have n1/3∥β̂ − β∗∥2 = Op(1).

Theorem 5.3. Suppose that Assumptions 3.1–3.5, 4.4,
and 5.1 hold, we have

√
n
{
V̂ MR(β̂)− V (β∗)

}
d−→

N (0,Υ(π(x;β∗))).

In practice, decision-makers may seek to implement the
learned survivor-optimal policy in two ways: (i) across

the entire population, or (ii) exclusively within the always-
survivor stratum. In the case of (i), it becomes essential to
strike a balance between the overall survivor probability of
the entire population and the primary outcome of survivors.
This balance can be attained in studies where we have access
to individual survival time, denoted by T . Let T (a) be the
potential survival time of an individual if he/she were given
treatment a. Under a given policy π, the population-level
t-year survival probability (t is a user-specified time point)
is given by

B(t;π) = E[P ({T (1)π(X)+T (0){1−π(X)}} > t | X)].

The estimation of B(t;π) has been well-studied in the ex-
isting literature (eg. Jiang et al., 2017) and we denote its
estimator as B̂(t;π). To balance the tradeoff between the
survival probability of the entire population and the the pri-
mary outcome of survivors in OPL, we can target specific
levels of survival probability, for example, B̂(t, π) ≥ ∆,
where ∆ is a user-specified probability. Then the OPL can
be formulated as a constrained optimization problem:

maximize
π∈Π

V̂ MR(π), s.t. B̂(t;π) ≥ ∆.

Such a constrained OPL problem has been studied in the
literature (e.g. Zhou et al., 2021).

In the case of (ii), it is important to recall the monotonicity
assumption discussed in Section 3, which is often reasonable
in practical scenarios as healthcare providers are typically
able to administer superior treatment to patients. Under this
assumption, we can rule out the defier stratum and are left
with three strata: always-survivor, protectable, and never-
survivor. In practice, for a patient with covariates x, we use
the survival probability model p̂a(x) to predict which stra-
tum he/she belongs to. For instance, if the estimated survival
probabilities, p̂1(x) and p̂0(x), are both above a specified
threshold δ1, the patient will be classified as belonging to
the always-survivor stratum. Conversely, if both p̂1(x) and
p̂0(x) fall below a threshold δ2, the patient will be assigned
to the never-survivor stratum. In cases where neither thresh-
old condition is met, the patient will be categorized as part
of the protectable stratum.

For the always-survivor stratum, we implement the learned
survivor-optimal policy. For the never-survivor stratum, we
can derive a policy by maximizing B̂(t;π) introduced above.
Finally, for the protectable stratum, the optimal policy is
always to assign treatment since subjects will survive if
treated but die otherwise.
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6. Experiments
6.1. Synthetic Scenarios

We generate the baseline covariates X = (X1, X2, X3)
T

from the following distribution: X1 ∼ Bernoulli(0.5),

(X2, X3)
T |X1 = 1 ∼ N((1,−1)T ,Σ1),

(X2, X3)
T |X1 = 0 ∼ N((−1, 1)T ,Σ2),

Σ1 =

(
1 −0.25

−0.25 1

)
, Σ2 =

(
1 −0.3

−0.3 1

)
.

The treatment is generated from A ∼ Bernoulli{φ(X)},
and logit{φ(X)} = 0.5X1+0.5X2+0.2X2

3 . The censoring
indicator is generated from C ∼ Bernoulli{KA(X)}, and
we consider two models for KA(X): (i) logit{KA(X)} =
−X1 − X2 − 0.5X2

3 − A − 1; (ii) logit{KA(X)} =
−X1 − X2 − 0.5X2

3 − A + 0.5. Models (i) and (ii)
result in censoring rates 15% and 30% on the popula-
tion level, respectively. The survival indicator is gener-
ated from S ∼ Bernoulli{pA(X)}, and logit{pA(X)} =
−2X1 − 0.5X2

2 + X3 + A(4X1 + 1). The outcome is
generated from the model Y = µA(X) + ϵ, where

µA(X) = exp {0.2X1 − 0.2X2 + 0.1X3+

1.5A · sign(X1 − 2X2
2 +X3 > 0)

}
, (5)

and ϵ is generated from a normal distribution with mean 0
and variance 0.25.

We consider five different approaches of nuisance functions
approximation for the proposed MR estimator:

(I) φ(x),Ka(x), and pa(x) are estimated by correctly
specified logistic regression models and µa(x) is es-
timated by a correctly specified log-linear regression
model.

(II) pa(x) and µa(x) are estimated by correctly specified
models the same as (I). φ(x) and Ka(x) are estimated
by misspecified logistic regression models.

(III) φ(x), Ka(x), and µa(x) are estimated by correctly
specified models the same as (I). pa(x) is estimated by
a misspecified logistic regression model.

(IV) φ(x), Ka(x), and pa(x) are estimated by correctly
specified models the same as (I). µa(x) is estimated by
a misspecified linear regression model.

(V) φ(x), Ka(x), and pa(x) are estimated by generalized
additive models (GAMs). µa(x) is estimated by a
random forest (RF) model.

OPE: We construct three different evaluation policies as
mixtures of a deterministic policy πd = I(X1−2X2

2+X3 >
0) and the uniform random policy πu by changing a mixture
parameter w, i.e., π = wπd + (1− w)πu. The candidates
of the mixture parameter w are {0.7, 0.4, 0.0}. The true sur-
vivor value function for each evaluation policy is obtained by

generating a large sample using true nuisance functions and
applying the empirical version of the identification formula
provided in Theorem 3.6. We compare five MR methods,
(I)-(V), with DM, IPW, and DR methods. For DM, IPW, and
DR methods, we estimate the conditional mean outcome by
RF and the propensity score by GAM. We consider samples
with size n = 1000, 2000. For each setting, we conduct 500
replications. The root-mean-square error (RMSE) and the
standard deviation (SD) results with n = 2000 are reported
in Table 2 and the results with n = 1000 are reported in
Appendix D. The MR estimators all outperform the standard
estimators including DM, IPW, and DR estimators. Mean-
while, the RMSE and SD are very close to each other for
all MR estimators, which shows the multiple robustness
property that we established in the theorems.

OPL: We consider all policies in the policy class Πβ =
{π(x;β) = I(βT x̃ > 0) : β ∈ R4, ∥β∥2 = 1} as candi-
dates and learn the survivor-optimal linear policy by max-
imizing the MR estimator V̂ MR(β) and the DR estimator
V̂ DR(β) over β. The MR and DR estimators are constructed
in the same way as in OPE experiment. Since the value es-
timators are non-smooth and non-convex in β, we use the
genetic algorithm to maximize the estimators with respect to
β and obtain β̂. To evaluate and compare the performance
of estimated survivor-optimal linear policies obtained by
different methods, we compute the corresponding survivor
value functions and percentages of making correct decisions
(PCD) for the always-survivor stratum. Specifically, we first
generate baseline covariates for a large sample with size
N = 105 and then generate S(0) for each subject in the sam-
ple. Always-survivors are those with S(0) = 1 under the
monotonicity assumption. Let Ns =

∑N
i=1 I{S(0)i = 1}.

The survivor value function for an estimated policy π(x; β̂)
is computed by

V (β̂) = N−1
s

N∑
i=1

I{S(0)i = 1}
[
µ1(Xi)π(Xi; β̂)+

µ0(Xi){1− π(Xi; β̂)}
]
,

and its associated PCD is computed by

N−1
s

N∑
i=1

I{S(0)i = 1}|π(Xi; β̂)− π(Xi;β
∗)|,

where the true survivor-optimal linear policy π(x;β∗) is
obtained by maximizing V (β) over β. We report the value
and PCD results for the policies obtained by MR and DR
methods in Figure 1. We have the following observations.
For censoring rate 30%, MR methods all have good and
comparable performance in terms of values and PCDs. In
addition, as the sample size increases, the means of values
become closer to the true optimal survivor value function,
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Table 2. OPE results. (a) 0.7πd + 0.3πu, (b) 0.4πd + 0.6πu, (c) 0.0πd + 1.0πu.

censoring rate:15%
MR-I MR-II MR-III MR-IV MR-V DM IPW DR

RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD
(a) 0.111 0.110 0.117 0.114 0.109 0.109 0.112 0.112 0.115 0.114 0.872 0.078 0.660 0.141 0.514 0.090
(b) 0.096 0.096 0.101 0.098 0.094 0.094 0.098 0.098 0.100 0.099 0.645 0.068 0.553 0.114 0.447 0.077
(c) 0.077 0.076 0.080 0.078 0.075 0.075 0.084 0.083 0.083 0.083 0.345 0.057 0.412 0.081 0.357 0.062

censoring rate: 30%
MR-I MR-II MR-III MR-IV MR-V DM IPW DR

RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD
(a) 0.138 0.138 0.148 0.141 0.139 0.139 0.142 0.142 0.149 0.148 0.887 0.093 0.713 0.125 0.543 0.112
(b) 0.120 0.120 0.128 0.122 0.121 0.121 0.125 0.125 0.131 0.131 0.666 0.082 0.594 0.105 0.472 0.096
(c) 0.096 0.096 0.102 0.097 0.097 0.097 0.109 0.108 0.115 0.114 0.372 0.068 0.436 0.082 0.377 0.077

PCDs get close to 1, and the standard deviations of values
and PCDs become smaller. When the censoring rate de-
creases to 15%, the performance becomes even better. The
values and PCDs become larger, and their standard devia-
tions become smaller. However, the DR method has poor
performance under all the settings: the means of values are
much smaller than the true optimal survivor value function
and PCDs are much smaller than 1. This implies that the
estimated survivor-optimal linear policy obtained using the
DR method may not be promising for the always-survivors.

Censoring rate: 15% Censoring rate: 30%
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Figure 1. The value and PCD results of estimated survivor-optimal
linear policies under different censoring rates. The red line is the
true optimal survivor value function.

Next, we study the inference results of V̂ (β̂) obtained by
MR and DR methods. The standard errors (SE) are esti-
mated using the bootstrap method. We report the mean and
standard deviation of V̂ (β̂), the mean of estimated standard

errors, and the empirical coverage probability (CP) of 95%
Wald-type confidence intervals for the true optimal survivor
value function V (β∗) = 3.02. The results are summarized
in Table 3. We have the following observations. For each
MR method, the value estimator is nearly unbiased. The
mean of estimated standard errors is close to the standard
deviation of the estimators, and the empirical CP of 95%
confidence intervals is close to the nominal level. The stan-
dard deviation under the censoring rate 15% is smaller than
that under the censoring rate 30%. As the sample size in-
creases, the mean gets closer to the true optimal survivor
value function and the standard deviation becomes smaller.
However, the DR estimator has a large bias and the empirical
CP of 95% confidence intervals is 0.

Table 3. Inference results of V̂ (β̂).

Method MR-I MR-II MR-III MR-IV MR-V DR
censoring rate: 15%

n(×103) 1 2 1 2 1 2 1 2 1 2 1 2
Mean 3.05 3.04 3.08 3.06 3.03 3.02 3.08 3.05 3.03 3.02 2.27 2.24
SD 0.19 0.13 0.20 0.14 0.19 0.13 0.18 0.13 0.20 0.14 0.12 0.09
SE 0.18 0.13 0.19 0.13 0.19 0.13 0.19 0.13 0.20 0.14 0.12 0.09
CP 94.2 94.8 93.2 93.2 94.6 95.4 94.2 93.8 94.0 96.0 0 0

censoring rate: 30%
n(×103) 1 2 1 2 1 2 1 2 1 2 1 2
Mean 3.08 3.04 3.13 3.09 3.05 3.02 3.10 3.05 3.05 3.03 2.29 2.26
SD 0.22 0.16 0.22 0.17 0.22 0.16 0.22 0.16 0.23 0.17 0.15 0.11
SE 0.23 0.16 0.23 0.16 0.23 0.16 0.24 0.16 0.25 0.17 0.14 0.10
CP 96.2 94.6 94.4 93.4 95.8 94.6 96.8 94.4 96.4 96.0 0.02 0

6.2. Real Data Application

We illustrate the proposed methods using an application to
data from the MIMIC-III clinical database (Goldberger et al.,
2000; Johnson et al., 2016; 2019). The MIMIC-III database
comprises de-identified health-related data associated with
over 40,000 patients who stayed in critical care units of
the Beth Israel Deaconess Medical Center between 2001
and 2012. The dataset contains time-stamped physiological
measurements, lab values, and intake/output events. In this
application, we include patients fulfilling the international
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consensus Sepsis-3 criteria (Singer et al., 2016). Sepsis is
a life-threatening condition and causes organ failure (Rhee
et al., 2017). The Sequential Organ Failure Assessment
(SOFA) score is to numerically quantifies the severity of
a person’s organ dysfunction. We select those severely ill
patients with SOFA scores larger than 12 at baseline as
the study sample. There are 798 subjects in total, among
which 496 patients were treated with mechanical ventilation
(A = 1), while the rest were not treated with mechanical
ventilation (A = 0). We consider 48 hours as the follow-up
time point and the SOFA score at 48 hours is the outcome
of interest (smaller values are preferred). The intermediate
variable is the 48-hour mortality. If a patient survived the
first 48 hours after admission to ICU, then S = 1; otherwise,
S = 0. Furthermore, if a patient did not die within the first
48 hours but the outcome is missing at the follow-up time
point, we consider it is censored (C = 1). The censoring
and survival information of the dataset is provided in Table
4. We are interested to estimate the survivor-optimal linear
policy in this case.

Table 4. Censoring and survival information under two treatments.

A = 1 C = 0 C = 1
S = 0 199 53
S = 1 244

A = 0 C = 0 C = 1
S = 0 41 132
S = 1 129

We consider p = 7 baseline covariates: age (years), admis-
sion weights (kg), admission temperature (Celsius), glucose
level (mg/dL), blood urea nitrogen (BUN) amount (mg/dL),
creatinine amount (mg/dL), white blood cell (WBC) count
(K/uL). We randomly sample the training data with a size
798 × 50% = 399 and the remaining sample is used for
testing. We compare the performance of MR and DR
methods. We first construct estimators using the training
dataset. For the MR method, φ(x), Ka(x), and pa(x) are
estimated using GAMs, and µa(x) is estimated using RF.
For the DR method, propensity score and conditional out-
come are estimated the same as in the MR method. Two
survivor-optimal linear policies are obtained by maximiz-
ing the MR and DR estimators within the policy class
Πβ = {π(x;β) = I(βT x̃ > 0) : β ∈ R8, ∥β∥2 = 1},
respectively. We denote the estimated β’s as β̂MR and β̂DR.

We use the MR estimator over the testing sample as the
testing value V test(β). We obtain the optimal survivor
value function V test(β∗) by maximizing the testing value
over β. We compute the difference between V test(β∗)

and V test(β̂MR), and the difference between V test(β∗) and
V test(β̂DR). The training-testing procedure is repeated 50
times. We report the results of V test(β̂MR)−V test(β∗) and
V test(β̂DR)−V test(β∗) in Figure 2. We can see that the av-
erage and variability of V test(β̂MR)− V test(β∗) is smaller

than those of V test(β̂DR)− V test(β∗), which implies that
OPL based on the MR method has better performance than
that based on the DR method.
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Figure 2. The boxplots of difference between testing values under
true and estimated survivor-optimal linear policies by MR and DR
methods.

7. Conclusion and Future Direction
To the best of our knowledge, this is the first paper formaliz-
ing OPE and OPL under the truncation by death setting. We
established identification and the semiparametric efficiency
bound for OPE and proposed OPE and OPL methods for
this situation. In particular, our proposed estimators have
multiple robustness property and achieve the semiparamet-
ric efficiency bound under mild rate conditions of nuisance
functions approximation. The experiments showed that our
proposed OPE and OPL methods outperform the existing
methods.

Our identification strategy relies on some crucial assump-
tions such as principal ignorability and monotonicity, which
may be violated in some real-world applications. In such
cases, we may only have partial identification (Balke &
Pearl, 1997; Imai, 2008; Swanson et al., 2018), instead of
point identification of the survivor value function. The di-
rection for OPE may change to construct bounds for the
survivor value function and corresponding OPL methods
need to be developed. The sensitivity analysis technique we
provide opens a door to this interesting future direction.
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A. Technical Proofs
Throughout the proofs, we will use f(·) to denote the probability density functions for continuous random variables and the
probability mass functions for discrete random variables.

A.1. Proof of Theorem 3.6

Proof. To prove Theorem 3.6, we first state a lemma.

Lemma A.1. For any function h(X) that has a finite moment E[h(X) | U = 11] <∞, the following balancing condition

E
[
p0(X)

p0

A

φ1(X)

1− C

K1(X)

S

p1(X)
h(X)

]
= E

[
p0(X)

p0

1−A

φ0(X)

1− C

K0(X)

S

p0(X)
h(X)

]
= E

[
p0(X)

p0
h(X)

]
. (6)

holds. Under Assumptions 3.1–3.3, the three expectations in (6) equal E[h(X) | U = 11].

Proof.

E
[
p0(X)

p0

A

φ1(X)

1− C

K1(X)

S

p1(X)
h(X)

]
= E

[
E
[
p0(X)

p0

A

φ1(X)

1− C

K1(X)

S

p1(X)
h(X) | X

]]
= E

[
p0(X)

p0

P (A = 1, C = 0, S = 1 | X)

φ1(X)K1(X)p1(X)
h(X)

]
= E

[
p0(X)

p0
h(X)

]
.

E
[
p0(X)

p0

1−A

φ0(X)

1− C

K0(X)

S

p0(X)
h(X)

]
= E

[
E
[
p0(X)

p0

1−A

φ0(X)

1− C

K0(X)

S

p0(X)
h(X) | X

]]
= E

[
p0(X)

p0

P (A = 0, C = 0, S = 1 | X)

φ0(X)K0(X)p0(X)
h(X)

]
= E

[
p0(X)

p0
h(X)

]
.

Therefore, (6) holds. Under Assumptions 3.1–3.3, we have

P (U = 11 | X) = P [S(0) = 1, S(1) = 1 | X]

=P [S(0) = 1 | X] (Assumption 3.3)

=P [S(0) = 1 | C(0) = 0, X] (Assumption 3.2)

=P [S(0) = 1 | A = 0, C(0) = 0, X] (Assumption 3.1)

=P (S = 1 | A = 0, C = 0, X) (SUTVA)

=p0(X),

and thus P (U = 11) = p0. Then

E[h(X) | U = 11] = E
[
f(X | U = 11)

f(X)
h(X)

]
= E

[
P (U = 11 | X)

P (U = 11)
h(X)

]
= E

[
p0(X)

p0
h(X)

]
. (7)

□

For a given policy π ∈ Π, we have

V (π) = E [Y (1)π(X) + Y (0){1− π(X)} | U = 11]

= E [E[Y (1)π(X) + Y (0){1− π(X)} | U = 11, X] | U = 11]
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= E [E[Y (1) | U = 11, X]π(X) | U = 11]

+E [E[Y (0) | U = 11, X]{1− π(X)} | U = 11]

= E [E[Y (1) | U = 11 or 10, X]π(X) | U = 11] (Assumption 3.4)

+E [E[Y (0) | U = 11, X]{1− π(X)} | U = 11]

= E [E[Y (1) | S(1) = 1, X]π(X) | U = 11]

+E [E[Y (0) | S(0) = 1, X]{1− π(X)} | U = 11] (Assumption 3.3)

= E [E[Y (1) | C(1) = 0, S(1) = 1, X]π(X) | U = 11]

+E [E[Y (0) | C(0) = 0, S(0) = 1, X]{1− π(X)} | U = 11] (Assumption 3.2)

= E [E[Y | A = 1, C(1) = 0, S(1) = 1, X]π(X) | U = 11]

+E [E[Y | A = 0, C(0) = 0, S(0) = 1, X]{1− π(X)} | U = 11] (Assumption 3.1)

= E [E[Y | A = 1, C = 0, S = 1, X]π(X) | U = 11]

+E [E[Y | A = 0, C = 0, S = 1, X]{1− π(X)} | U = 11] (SUTVA)

= E [µ1(X)π(X) + µ0(X){1− π(X)} | U = 11] . (8)

By Lemma A.1, for any h(X),

E{h(X) | U = 11} = E
[
p0(X)

p0

A

φ1(X)

1− C

K1(X)

S

p1(X)
h(X)

]
= E

[
p0(X)

p0

1−A

φ0(X)

1− C

K0(X)

S

p0(X)
h(X)

]
= E

[
p0(X)

p0
h(X)

]
.

Continuing from (8),

V (π) = E
[
p0(X)
p0

[µ1(X)π(X) + µ0(X){1− π(X)}]
]
, (9)

and

V (π) = E
[
p0(X)

p0

A

φ1(X)

1− C

K1(X)

S

p1(X)
µ1(X)π(X)

+
p0(X)

p0

1−A

φ0(X)

1− C

K0(X)

S

p0(X)
µ0(X){1− π(X)}

]
= E

[
E
[
p0(X)

p0

A

φ1(X)

1− C

K1(X)

S

p1(X)
µ1(X)π(X)

+
p0(X)

p0

1−A

φ0(X)

1− C

K0(X)

S

p0(X)
µ0(X){1− π(X)} | X

]]
= E

[
E
[
p0(X)

p0

A

φ1(X)

1− C

K1(X)

S

p1(X)
Y π(X)

+
p0(X)

p0

1−A

φ0(X)

1− C

K0(X)

S

p0(X)
Y {1− π(X)} | X

]]
= E

[
p0(X)

p0

{
A

φ1(X)

1− C

K1(X)

S

p1(X)
Y π(X)

+
1−A

φ0(X)

1− C

K0(X)

S

p0(X)
Y {1− π(X)}

}]
.

□

A.2. Proof of Theorem 3.7

Proof. We will use the semiparametric theory in Bickel et al. (1993) to derive the EIF. Let O = {X,A,C, (1− C)S, (1−
C)SY } summarize the vector of observed variables with the likelihood factorized as

f(O) = f(X)f(A | X)f(C | A,X){f(S | A,C = 0, X)}I(C=0){f(Y | A,C = 0, S = 1, X)}I(C=0,S=1). (10)
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To derive the EIF for V (π), we consider a one-dimensional parametric submodel, fθ(O), which contains the true model
f(O) at θ = 0, i.e., fθ(O)|θ=0 = f(O). We use θ in the subscript to denote the quantity with respect to the submodel,
e.g., Vθ(π) is the value of V (π) in the submodel. We use dot to denote the partial derivative with respect to θ, e.g.,
V̇θ(π) = ∂Vθ(π)/∂θ, and use sθ(·) to denote the score function of the submodel. From (10), the score function under the
submodel can be decomposed as

sθ(O) = sθ(X) + sθ(A | X) + sθ(C | A,X) + sθ(S | A,C = 0, X) + sθ(Y | A,C = 0, S = 1, X),

where sθ(X) = ∂ log fθ(X)/∂θ, sθ(A | X) = ∂ log fθ(A | X)/∂θ, sθ(C | A,X) = ∂ log fθ(C | A,X)/∂θ, sθ(S |
A,C = 0, X) = ∂ log fθ(S | A,C = 0, X)/∂θ, sθ(Y | A,C = 0, S = 1, X) = ∂ log fθ(Y | A,C = 0, S = 1, X)/∂θ
are the score functions corresponding to the five components of the likelihood. Analogous to fθ(O)|θ=0 = f(O), we write
sθ(·)|θ=0 as s(·), which is the score function evaluated at the true parameter under the one-dimensional submodel.

From the semiparametric theory, the tangent space,

Λ = H1 ⊕H2 ⊕H3 ⊕H4 ⊕H5

is the direct sum of

H1 = {h(X) : E[h(X)] = 0},
H2 = {h(A,X) : E[h(A,X) | X] = 0},
H3 = {h(C,A,X) : E[h(C,A,X) | A,X] = 0},
H4 = {h(S,A,C = 0, X) : E[h(S,A,C = 0, X) | A,C = 0, X] = 0},
H5 = {h(Y,A,C = 0, S = 1, X) : E[h(Y,A,C = 0, S = 1, X) | A,C = 0, S = 1, X] = 0},

where H1, H2, H3, H4, H5 are orthogonal to each other. The EIF for V (π) denoted by νπ(O) ∈ Λ, must satisfy

V̇θ(π)|θ=0 = E[νπ(O)s(O)].

We will derive the EIF by calculating V̇θ(π)|θ=0. To simplify the proof, we introduce some lemmas.

Lemma A.2. Consider a ratio-type parameter R = N/D. If Ṅθ|θ=0 = E[νN (O)s(O)] and Ḋθ|θ=0 = E[νD(O)s(O)],
then Ṙθ|θ=0 = E[νR(O)s(O)] where

νR(O) =
1

D
νN (O)− R

D
νD(O). (11)

In particular, if νN (O) and νD(O) are the EIFs for N and D, then νR(O) is the EIF for R.

Proof. Let Rθ, Nθ, and Dθ denote the quantities R, N , and D evaluated with respect to the parametric submodel fθ(O). By
the chain rule, we have

Ṙθ|θ=0 =
Ṅθ
D

∣∣∣∣
θ=0

−Rθ
Ḋθ

D

∣∣∣∣
θ=0

=
1

D
E[νN (O)s(O)]− R

D
E[νD(O)s(O)]

= E
[{

1

D
νN (O)− R

D
νD(O)

}
s(O)

]
,

which yields (11). □

Lemma A.3. For any h(O) that does not depend on θ, ∂Eθ[h(O)]/∂θ|θ=0 = E[h(O)s(O)].

The proof is straightforward and thus omitted.

Lemma A.4. Define µaf (X) = E[f(Y, S,X) | A = a,C = 0, X] for any f(Y, S,X), where a = 0, 1. We have

µ̇af,θ(X)|θ=0 = E
[
{ψf(Y (a),S(a),X) − µaf (X)}s(Y, S | A,C = 0, X) | X

]
.

As a special case,
ṗa,θ(X)|θ=0 = E

[
{ψS(a) − pa(X)}s(S | A,C = 0, X) | X

]
.
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Proof. We first prove the general result:

µ̇af,θ(X)|θ=0 =
∂

∂θ
Eθ[f(Y, S,X) | A = a,C = 0, X]|θ=0

= E[f(Y, S,X)× s(Y, S | A = a,C = 0, X) | A = a,C = 0, X] (Lemma A.3)
= E [{f(Y, S,X)− µaf (X)}s(Y, S | A = a,C = 0, X) | A = a,C = 0, X]

= E
[
I{A = a}I(C = 0){f(Y, S,X)− µaf (X)}

φa(X)Ka(X)
s(Y, S | A,C = 0, X) | X

]
= E

[
{ψf(Y (a),S(a),X) − µaf (X)}s(Y, S | A,C = 0, X) | X

]
, (12)

where the third equality follows from µaf (X)E[s(Y, S | A = a,C = 0, X) | A = a,C = 0, X] = 0.

Choosing f(Y, S,X) = S, the result for pa(X) follows because

E
[
{ψS(a) − pa(X)}s(Y | A,C = 0, S = 1, X) | X

]
= 0.

□

Lemma A.5. Define µaf = E[µaf (X)] for any f(Y, S,X), where a = 0, 1. We have

µ̇af,θ|θ=0 = E
[
{ψf(Y (a),S(a),X) − µaf}s(O)

]
.

Moreover, ψf(Y (a),S(a),X) − µaf is the EIF for µaf , a = 0, 1. As a special case, for pa = E[pa(X)], we have

ṗa,θ|θ=0 = E
[
{ψS(a) − pa}s(O)

]
and ψS(a) − pa is the EIF for pa, a = 0, 1.

Proof. We prove the general result:

µ̇af,θ|θ=0 = E[µaf (X)s(O)] + E[µ̇af,θ(X)|θ=0] (Lemma A.3)
= E[µaf (X)s(O)] + E[{ψf(Y (a),S(a),X) − µaf (X)}s(Y, S | A,C = 0, X)] (Lemma A.4)
= E[{ψf(Y (a),S(a),X) − µaf}s(Y, S | A,C = 0, X)]

= E[{ψf(Y (a),S(a),X) − µaf}s(O)],

where the last equality follows from E[{ψf(Y (a),S(a),X)−µaf}s(A | X)] = E[{ψf(Y (a),S(a),X)−µaf}s(X)] = 0. Because
ψf(Y (a),S(a),X)−µaf lies in the tangent space, it is the EIF for µaf . The result for pa follows by taking f(Y, S,X) = S. □

Lemma A.6. For µa(X), we have

µ̇a,θ(X)|θ=0 = E
[
ψY (a)S(a) − µa(X)ψS(a)

pa(X)
s(Y | A,C = 0, S = 1, X) | X

]
.

Proof. A key observation is the ratio representation:

µa(X) = E[Y | A = a,C = 0, S = 1, X] =
E[Y S | A = a,C = 0, X]

E[S | A = a,C = 0, X]
=

E[Y S | A = a,C = 0, X]

pa(X)

From Lemma A.4, the numerator satisfies

∂

∂θ
Eθ{Y S | A = a,C = 0, X}|θ=0 = E

[
{ψY (a)S(a) − pa(X)µa(X)}s(Y, S | A,C = 0, X) | X

]
.

and denominator satisfies

ṗa(X)|θ=0 = E
[
{ψS(a) − pa(X)}s(Y, S | A,C = 0, X) | X

]
We then use Lemma A.2 to calculate the path derivative of µa,θ(X) with all distributions conditional on X , yielding

µ̇a,θ(X)|θ=0 = E
[
ψY (a)S(a) − µa(X)ψS(a)

pa(X)
s(Y, S | A,C = 0, X) | X

]
.
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The conclusion follows by using E
[
{ψY (a)S(a) − µa(X)ψS(a)}s(S | A,C = 0, X) | X

]
= 0. □

Below, we derive the EIF for V (π).

First, from (9), we can write V (π) = N/D, where

N = E [p0(X) [µ1(X)π(X) + µ0(X){1− π(X)}]] , D = p0.

From Lemma A.5,
νD(O) = ψS0

− p0 = ψS0
−D.

From the chain rule, we have

Ṅθ |θ=0 =
∂

∂θ
Eθ [p0,θ(X) [µ1,θ(X)π(X) + µ0,θ(X){1− π(X)}]]

∣∣∣∣
θ=0

= E [p0(X) [µ1(X)π(X) + µ0(X){1− π(X)}] s(X)] (Lemma A.3)
+Eθ [ṗ0,θ(X) [µ1,θ(X)π(X) + µ0,θ(X){1− π(X)}]] |θ=0

+Eθ [p0,θ(X) [µ̇1,θ(X)π(X) + µ̇0,θ(X){1− π(X)}]] |θ=0. (13)

Because E{Ns(X)} = 0, the first term in (13) equals

E [p0(X) [µ1(X)π(X) + µ0(X){1− π(X)}] s(X)]

= E [{p0(X) [µ1(X)π(X) + µ0(X){1− π(X)}]−N} s(X)] .

From Lemma A.4, the second term in (13) reduces to

Eθ [ṗ0,θ(X) [µ1,θ(X)π(X) + µ0,θ(X){1− π(X)}]] |θ=0

= E
[
E
[{
ψS(0) − p0(X)

}
s(S | A,C = 0, X) {µ1(X)π(X) + µ0(X){1− π(X)}} | X

]]
= E

[
{ψS(0) − p0(X)} {µ1(X)π(X) + µ0(X){1− π(X)}} s(S | A,C = 0, X)

]
.

From Lemma A.6, the third term in (13) reduces to

Eθ [p0,θ(X) [µ̇1,θ(X)π(X) + µ̇0,θ(X){1− π(X)}]] |θ=0

= E
[
p0(X)

{
ψY (1)S(1) − µ1(X)ψS(1)

p1(X)
π(X) +

ψY (0)S(0) − µ0(X)ψS(0)

p0(X)
{1− π(X)}

}
×s(Y | A,C = 0, S = 1, X)

]
.

Plugging the above three formulas into (13) gives

Ṅθ |θ=0

= E [{p0(X) [µ1(X)π(X) + µ0(X){1− π(X)}]−N} s(X)]

+E
[
{ψS(0) − p0(X)} {µ1(X)π(X) + µ0(X){1− π(X)}} s(S | A,C = 0, X)

]
+E

[
p0(X)

{
ψY (1)S(1) − µ1(X)ψS(1)

p1(X)
π(X) +

ψY (0)S(0) − µ0(X)ψS(0)

p0(X)
{1− π(X)}

}
(14)

×s(Y | A,C = 0, S = 1, X)

]
.

(15)

We can verify that

p0(X) [µ1(X)π(X) + µ0(X){1− π(X)}]−N ∈ H1,

{ψS(0) − p0(X)} [µ1(X)π(X) + µ0(X){1− π(X)}] ∈ H4,

p0(X)

{
ψY (1)S(1) − µ1(X)ψS(1)

p1(X)
π(X) +

ψY (0)S(0) − µ0(X)ψS(0)

p0(X)
{1− π(X)}

}
∈ H5.
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Because H1, H2, H3, H4, and H5 are orthogonal to each other, we can write (15) as

Ṅθ |θ=0 = E [{p0(X) [µ1(X)π(X) + µ0(X){1− π(X)}]−N} s(O)]

+E
[
{ψS(0) − p0(X)} [µ1,θ(X)π(X) + µ0,θ(X){1− π(X)}] s(O)

]
+E

[
p0(X)

{
ψY (1)S(1) − µ1(X)ψS(1)

p1(X)
π(X) +

ψY (0)S(0) − µ0(X)ψS(0)

p(0)(X)
{1− π(X)}

}
s(O)

]
.

As a result, we obtain the EIF for N :

νN (O) = p0(X) [µ1(X)π(X) + µ0(X){1− π(X)}]−N

+{ψS(0) − p0(X)} [µ1(X)π(X) + µ0(X){1− π(X)}]

+p0(X)

{
ψY (1)S(1) − µ1(X)ψS(1)

p1(X)
π(X) +

ψY (0)S(0) − µ0(X)ψS(0)

p0(X)
{1− π(X)}

}
=

[
µ1(X)

{
ψS(0) −

p0(X)

p1(X)
ψS(1)

}
+
p0(X)

p1(X)
ψY (1)S(1)

]
π(X) + ψY (0)S(0){1− π(X)} −N

From Lemma A.2, the EIF for V (π) is

νπ =
1

p0
{ϕπ − V (π)ψS(0)},

where ϕπ =
[
µ1(X)

{
ψS(0) − p0(X)

p1(X)ψS(1)

}
+ p0(X)

p1(X)ψY (1)S(1)

]
π(X) + ψY (0)S(0){1− π(X)}. □

A.3. Proof of Theorem 4.2

Proof. Recall the MR estimator

V̂ MR(π) =
Pn(ϕ̂π)

Pn{ψ̂S(0)}
.

From (9), we can write V (π) = N/D, where

N = E [p0(X) [µ1(X)π(X) + µ0(X){1− π(X)}]] , D = p0.

Therefore, we only need to prove the probability limit of Pn{ψ̂S(0)} is equal to D and the probability limit of Pn(ϕ̂π) is
equal to N under Mps+cs+sp ∪Mps+cs+om ∪Msp+om.

For the ease of exposition, we write φa(X;α∗) = φ∗
a(X), Ka(X; η∗) = K∗

a(X), pa(X; γ∗) = p∗a(X), µa(X; ζ∗) =
µ∗
a(X) and let

ψ∗
S(a) =

I{A = a}I(C = 0){S − p∗a(X)}
φ∗
a(X)K∗

a(X)
+ p∗a(X),

ψ∗
Y (a)S(a) =

I(A = a)I(C = 0){Y S − µ∗
a(X)p∗a(X)}

φ∗
a(X)K∗

a(X)
+ µ∗

a(X)p∗a(X),

ϕ∗π =

[
µ∗
1(X)

{
ψ∗
S(0) −

p∗0(X)

p∗1(X)
ψ∗
S(1)

}
+
p∗0(X)

p∗1(X)
ψ∗
Y (1)S(1)

]
π(X) + ψ∗

Y (0)S(0){1− π(X)}.

We first prove that under Mps+cs ∪ Msp ⊂ Mps+cs+sp ∪ Mps+cs+om ∪ Msp+om, the probability limit of Pn{ψ̂S(0)},
E[ψ∗

S(0)], is equal to D = p0.

E[ψ∗
S(0)] =E

[
I{A = 0}I(C = 0){S − p∗0(X)}

φ∗
a(X)K∗

0 (X)
+ p∗0(X)

]
=E

{
E
[
I{A = 0}I(C = 0){S − p∗0(X)}

φ∗
a(X)K∗

0 (X)
+ p∗0(X)

]
| A = 0, C = 0, X

}
=E

[
P (A = 0, C = 0 | X)

φ∗
0(X)K∗

0 (X)
{E[S = 1 | A = 0, C = 0, X]− p∗0(X)}+ p∗0(X)

]
18
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=E
[
φ0(X)K0(X)

φ∗
a(X)K∗

0 (X)
{p0(X)− p∗0(X)}+ p∗0(X)

]
.

Under Mps+cs, φ0(X) = φ∗
0(X), K0(X) = K∗

0 (X), and thus E[ψ∗
S(0)] = E[p0(X)] = p0. Under Msp, p0(X) = p∗0(X),

and thus E[ψ∗
S(0)] = E[p0(X)] = p0.

Next, we prove the probability limit of Pn(ϕ̂π), E[ϕ∗π], is equal to N . We first decompose the probability limit as

E[ϕ∗π] =E
[[
µ∗
1(X)

{
ψ∗
S(0) −

p∗0(X)

p∗1(X)
ψ∗
S(1)

}
+
p∗0(X)

p∗1(X)
ψ∗
Y (1)S(1)

]
π(X) + ψ∗

Y (0)S(0){1− π(X)}
]

=E
[
µ∗
1(X)ψ∗

S(0)π(X)
]
− E

[
µ∗
1(X)

p∗0(X)

p∗1(X)
ψ∗
S(1)π(X)

]
+ E

[
p∗0(X)

p∗1(X)
ψ∗
Y (1)S(1)π(X)

]
+ E

[
ψ∗
Y (0)S(0){1− π(X)}

]
. (16)

(i) Under Mps+cs+sp, φa(X) = φ∗
a(X), Ka(X) = K∗

a(X), pa(X) = p∗a(X). The first term in (16) equals

E
[
µ∗
1(X)ψ∗

S(0)π(X)
]
= E

[
E
[
µ∗
1(X)ψ∗

S(0)π(X) | A = 0, C = 0, X
]]

=E
[
µ∗
1(X)π(X)

[
P (A = 0, C = 0 | X)

φ∗
0(X)K∗

0 (X)
{E [S = 1 | A = 0, C = 0, X]− p∗0(X)}+ p∗0(X)

]]
=E

[
µ∗
1(X)π(X)

[
φ0(X)K0(X)

φ0(X)K0(X)
{p0(X)− p0(X)}+ p0(X)

]]
=E [µ∗

1(X)π(X)p0(X)] . (17)

The second term in (16) equals

E
[
µ∗
1(X)

p∗0(X)

p∗1(X)
ψ∗
S(1)π(X)

]
= E

[
E
[
µ∗
1(X)

p∗0(X)

p∗1(X)
ψ∗
S(1)π(X) | A = 1, C = 0, X

]]
=E

[
µ∗
1(X)π(X)

p∗0(X)

p∗1(X)

[
P (A = 1, C = 0 | X)

φ∗
1(X)K∗

1 (X)
{E [S = 1 | A = 1, C = 0, X]− p∗1(X)}+ p∗1(X)

]]
=E

[
µ∗
1(X)π(X)

p0(X)

p1(X)

[
φ1(X)K1(X)

φ1(X)K1(X)
{p1(X)− p1(X)}+ p1(X)

]]
=E [µ∗

1(X)π(X)p0(X)] . (18)

The third term in (16) equals

E
[
p∗0(X)

p∗1(X)
ψ∗
Y (1)S(1)π(X)

]
= E

[
E
[
p∗0(X)

p∗1(X)
ψ∗
Y (1)S(1)π(X) | A = 1, C = 0, X

]]
=E

[
π(X)

p∗0(X)

p∗1(X)

{
P (A = 1, C = 0 | X)

φ∗
1(X)K∗

1 (X)
{E[Y S | A = 1, C = 0, X]− µ∗

1(X)p∗1(X)}+ µ∗
1(X)p∗1(X)

}]
=E

[
π(X)

p0(X)

p1(X)

{
φ1(X)K1(X)

φ1(X)K1(X)
{µ1(X)p1(X)− µ∗

1(X)p1(X)}+ µ∗
1(X)p1(X)

}]
=E [µ1(X)π(X)p0(X)] . (19)

The fourth term in (16) equals

E
[
ψ∗
Y (0)S(0){1− π(X)}

]
= E

[
E
[
ψ∗
Y (0)S(0){1− π(X)} | A = 0, C = 0, X

]]
=E

[
{1− π(X)}

{
P (A = 0, C = 0 | X)

φ∗
0(X)K∗

0 (X)
{E[Y S | A = 0, C = 0, X]− µ∗

0(X)p∗0(X)}+ µ∗
0(X)p∗0(X)

}]
=E

[
{1− π(X)}

{
φ0(X)K0(X)

φ0(X)K0(X)
{µ0(X)p0(X)− µ∗

0(X)p0(X)}+ µ∗
0(X)p0(X)

}]
19
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=E [µ0(X){1− π(X)}p0(X)] . (20)

Combining (16)–(20), we have

E
[[
µ∗
1(X)

{
ψ∗
S(0) −

p∗0(X)

p∗1(X)
ψ∗
S(1)

}
+
p∗0(X)

p∗1(X)
ψ∗
Y (1)S(1)

]
π(X) + ψ∗

Y (0)S(0){1− π(X)}
]

=E [µ∗
1(X)π(X)p0(X)]− E [µ∗

1(X)π(X)p0(X)] + E [µ1(X)π(X)p0(X)]

+ E [µ0(X){1− π(X)}p0(X)]

=E [p0(X) [µ1(X)π(X) + µ0(X){1− π(X)}]] = N.

Therefore, under Mps+cs+sp, V̂ MR(π) is consistent for V (π).

(ii) Under Mps+cs+om, φa(X) = φ∗
a(X), Ka(X) = K∗

a(X), µa(X) = µ∗
a(X). The first term in (16) equals

E
[
µ∗
1(X)ψ∗

S(0)π(X)
]
= E

[
E
[
µ∗
1(X)ψ∗

S(0)π(X) | A = 0, C = 0, X
]]

=E
[
µ∗
1(X)π(X)

[
P (A = 0, C = 0 | X)

φ∗
0(X)K∗

0 (X)
{E [S = 1 | A = 0, C = 0, X]− p∗0(X)}+ p∗0(X)

]]
=E

[
µ1(X)π(X)

[
φ0(X)K0(X)

φ0(X)K0(X)
{p0(X)− p∗0(X)}+ p∗0(X)

]]
=E [µ1(X)π(X)p0(X)] . (21)

The second term in (16) equals

E
[
µ∗
1(X)

p∗0(X)

p∗1(X)
ψ∗
S(1)π(X)

]
= E

[
E
[
µ∗
1(X)

p∗0(X)

p∗1(X)
ψ∗
S(1)π(X) | A = 1, C = 0, X

]]
=E

[
µ∗
1(X)π(X)

p∗0(X)

p∗1(X)

[
P (A = 1, C = 0 | X)

φ∗
1(X)K∗

1 (X)
{E [S = 1 | A = 1, C = 0, X]− p∗1(X)}+ p∗1(X)

]]
=E

[
µ1(X)π(X)

p∗0(X)

p∗1(X)

[
φ1(X)K1(X)

φ1(X)K1(X)
{p1(X)− p∗1(X)}+ p∗1(X)

]]
=E

[
µ1(X)π(X)p∗0(X)

p1(X)

p∗1(X)

]
. (22)

The third term in (16) equals

E
[
p∗0(X)

p∗1(X)
ψ∗
Y (1)S(1)π(X)

]
= E

[
E
[
p∗0(X)

p∗1(X)
ψ∗
Y (1)S(1)π(X) | A = 1, C = 0, X

]]
=E

[
π(X)

p∗0(X)

p∗1(X)

{
P (A = 1, C = 0 | X)

φ∗
1(X)K∗

1 (X)
{E[Y S | A = 1, C = 0, X]− µ∗

1(X)p∗1(X)}+ µ∗
1(X)p∗1(X)

}]
=E

[
π(X)

p∗0(X)

p∗1(X)

{
φ1(X)K1(X)

φ1(X)K1(X)
{µ1(X)p1(X)− µ1(X)p∗1(X)}+ µ1(X)p∗1(X)

}]
=E

[
µ1(X)π(X)p∗0(X)

p1(X)

p∗1(X)

]
. (23)

The fourth term in (16) equals

E
[
ψ∗
Y (0)S(0){1− π(X)}

]
= E

[
E
[
ψ∗
Y (0)S(0){1− π(X)} | A = 0, C = 0, X

]]
=E

[
{1− π(X)}

{
P (A = 0, C = 0 | X)

φ∗
0(X)K∗

0 (X)
{E[Y S | A = 0, C = 0, X]− µ∗

0(X)p∗0(X)}+ µ∗
0(X)p∗0(X)

}]
=E

[
{1− π(X)}

{
φ0(X)K0(X)

φ0(X)K0(X)
{µ0(X)p0(X)− µ0(X)p∗0(X)}+ µ0(X)p∗0(X)

}]
20
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=E [µ0(X){1− π(X)}p0(X)] . (24)

Combining (16) and (21)–(24) , we have

E
[[
µ∗
1(X)

{
ψ∗
S(0) −

p∗0(X)

p∗1(X)
ψ∗
S(1)

}
+
p∗0(X)

p∗1(X)
ψ∗
Y (1)S(1)

]
π(X) + ψ∗

Y (0)S(0){1− π(X)}
]

=E [µ1(X)π(X)p0(X)]− E
[
µ1(X)π(X)p∗0(X)

p1(X)

p∗1(X)

]
+ E

[
µ1(X)π(X)p∗0(X)

p1(X)

p∗1(X)

]
+ E [µ0(X){1− π(X)}p0(X)]

=E [p0(X) [µ1(X)π(X) + µ0(X){1− π(X)}]] = N.

Therefore, under Mps+cs+om, V̂ MR(π) is consistent for V (π).

(iii) Under Msp+om, pa(X) = p∗a(X), µa(X) = µ∗
a(X). The first term in (16) equals

E
[
µ∗
1(X)ψ∗

S(0)π(X)
]
= E

[
E
[
µ∗
1(X)ψ∗

S(0)π(X) | A = 0, C = 0, X
]]

=E
[
µ∗
1(X)π(X)

[
P (A = 0, C = 0 | X)

φ∗
0(X)K∗

0 (X)
{E [S = 1 | A = 0, C = 0, X]− p∗0(X)}+ p∗0(X)

]]
=E

[
µ1(X)π(X)

[
φ0(X)K0(X)

φ∗
0(X)K∗

0 (X)
{p0(X)− p0(X)}+ p0(X)

]]
=E [µ1(X)π(X)p0(X)] . (25)

The second term in (16) equals

E
[
µ∗
1(X)

p∗0(X)

p∗1(X)
ψ∗
S(1)π(X)

]
= E

[
E
[
µ∗
1(X)

p∗0(X)

p∗1(X)
ψ∗
S(1)π(X) | A = 1, C = 0, X

]]
=E

[
µ∗
1(X)π(X)

p∗0(X)

p∗1(X)

[
P (A = 1, C = 0 | X)

φ∗
1(X)K∗

1 (X)
{E [S = 1 | A = 1, C = 0, X]− p∗1(X)}+ p∗1(X)

]]
=E

[
µ1(X)π(X)

p0(X)

p1(X)

[
φ1(X)K1(X)

φ∗
1(X)K∗

1 (X)
{p1(X)− p1(X)}+ p1(X)

]]
=E [µ1(X)π(X)p0(X)] . (26)

The third term in (16) equals

E
[
p∗0(X)

p∗1(X)
ψ∗
Y (1)S(1)π(X)

]
= E

[
E
[
p∗0(X)

p∗1(X)
ψ∗
Y (1)S(1)π(X) | A = 1, C = 0, X

]]
=E

[
π(X)

p∗0(X)

p∗1(X)

{
P (A = 1, C = 0 | X)

φ∗
1(X)K∗

1 (X)
{E[Y S | A = 1, C = 0, X]− µ∗

1(X)p∗1(X)}+ µ∗
1(X)p∗1(X)

}]
=E

[
π(X)

p0(X)

p1(X)

{
φ1(X)K1(X)

φ∗
1(X)K∗

1 (X)
{µ1(X)p1(X)− µ1(X)p1(X)}+ µ1(X)p1(X)

}]
=E [µ1(X)π(X)p0(X)] . (27)

The fourth term in (16) equals

E
[
ψ∗
Y (0)S(0){1− π(X)}

]
= E

[
E
[
ψ∗
Y (0)S(0){1− π(X)} | A = 0, C = 0, X

]]
=E

[
{1− π(X)}

{
P (A = 0, C = 0 | X)

φ∗
0(X)K∗

0 (X)
{E[Y S | A = 0, C = 0, X]− µ∗

0(X)p∗0(X)}+ µ∗
0(X)p∗0(X)

}]
=E

[
{1− π(X)}

{
φ0(X)K0(X)

φ∗
0(X)K∗

0 (X)
{µ0(X)p0(X)− µ0(X)p0(X)}+ µ0(X)p0(X)

}]
21
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=E [µ0(X){1− π(X)}p0(X)] . (28)

Combining (16) and (25)–(28) , we have

E
[[
µ∗
1(X)

{
ψ∗
S(0) −

p∗0(X)

p∗1(X)
ψ∗
S(1)

}
+
p∗0(X)

p∗1(X)
ψ∗
Y (1)S(1)

]
π(X) + ψ∗

Y (0)S(0){1− π(X)}
]

=E [µ1(X)π(X)p0(X)]− E [µ1(X)π(X)p0(X)] + E [µ1(X)π(X)p0(X)]

+ E [µ0(X){1− π(X)}p0(X)]

=E [p0(X) [µ1(X)π(X) + µ0(X){1− π(X)}]] = N.

Therefore, under Msp+om, V̂ MR(π) is consistent for V (π).

Under Mps+cs+sp+om, we show that the influence function of V̂ MR(π) is the same as the EIF in Theorem 3.7 and therefore
V̂ MR(π) achieves the local efficiency. Let θ denote the parameter vector containing α, η,γ, and ζ. Let θ∗ be the probability
limit of θ̂. Let Pn{g(O; θ̂)} = 0 be the estimation equations for θ. By Taylor expansion, we have

Pn{g(O; θ̂)} = Pn{g(O; θ∗)}+ P{ġ(O; θ∗)}(θ̂ − θ) + op(n
−1/2) = 0. (29)

For a ratio estimator Pn{N(O; θ̂)}/Pn{D(O; θ̂)}, by Taylor expansion,

Pn{N(O; θ̂)}
Pn{D(O; θ̂)}

=
Pn{N(O; θ̂)}
P{D(O; θ∗)}

− P{N(O; θ∗)}
[P{D(O; θ∗)}]2

[
Pn{D(O; θ̂)} − P{D(O; θ∗)}

]
+ op(n

−1/2). (30)

Pn{N(O; θ̂)} = Pn{N(O; θ∗)}+ P{Ṅ(O; θ∗)}(θ̂ − θ) + op(n
−1/2), (31)

Pn{D(O; θ̂)} = Pn{D(O; θ∗)}+ P{Ḋ(O; θ∗)}(θ̂ − θ) + op(n
−1/2). (32)

For V̂ MR(π) = Pn(ϕ̂π)

Pn{ψ̂S(0)}
, we have N(O; θ) = ϕπ(θ) and D(O; θ) = ψS(0)(θ). Combining (29)–(32), we have

V̂ MR(π)− V (π) =
Pn{N(O; θ̂)}
Pn{D(O; θ̂)}

− V (π)

=
Pn{N(O; θ̂)}
P{D(O; θ∗)}

− P{N(O; θ∗)}
[P{D(O; θ∗)}]2

[
Pn{D(O; θ̂)} − P{D(O; θ∗)}

]
− V (π) + op(n

−1/2)

=
Pn{N(O; θ∗)}+ P{Ṅ(O; θ∗)}(θ̂ − θ)

P{D(O; θ∗)}
− P{N(O; θ∗)}

[P{D(O; θ∗)}]2
[
Pn{D(O; θ∗)}+ P{Ḋ(O; θ∗)}(θ̂ − θ)

]
+ op(n

−1/2)

=Pn

[
N(O; θ∗)

P{D(O; θ∗)}
− P{Ṅ(O; θ∗)}

P{D(O; θ∗)}P{ġ(O; θ∗)}
g(O; θ∗)− P{N(O; θ∗)}

[P{D(O; θ∗)}]2}
D(O; θ∗) +

P{Ḋ(O; θ∗)}
P{ġ(O; θ∗)}

g(O; θ∗)

]
+ op(n

−1/2). (33)

By the central limit theorem (CLT), V̂ MR(π) − V (π) is asymptotically normal. Under Mps+cs+sp+om, ϕπ(θ∗) = ϕπ,
ψS(0)(θ

∗) = ψS(0), P{N(O; θ∗)} = P [p0(X) [µ1(X)π(X) + µ0(X){1− π(X)}]], and P{D(O; θ∗)} = p0. We can
verify that P{Ṅ(O; θ∗)} = P{Ḋ(O; θ∗)} = 0. Continuing (33),

V̂ MR(π)− V (π)

=Pn

[
N(O; θ∗)

P{D(O; θ∗)}
− P{Ṅ(O; θ∗)}

P{D(O; θ∗)}P{ġ(O; θ∗)}
g(O; θ∗)− P{N(O; θ∗)}

[P{D(O; θ∗)}]2}
D(O; θ∗) +

P{Ḋ(O; θ∗)}
P{ġ(O; θ∗)}

g(O; θ∗)

]
+ op(n

−1/2)
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=Pn
[

N(O; θ∗)

P{D(O; θ∗)}
− P{N(O; θ∗)}

[P{D(O; θ∗)}]2}
D(O; θ∗)

]
+ op(n

−1/2)

=Pn
[
ϕπ − V (π)ψS(0)

p0

]
+ op(n

−1/2).

This completes the proof. □

A.4. Proof of Theorem 4.5

Proof. We show that V̂ MR(π) constructed by {φ̂a(x), K̂a(x), p̂a(x), µ̂a(x)} is asymptotically normal and its influence
function is the same as the EIF in Theorem 3.7, and therefore achieving the semiparametric efficiency. Let θ denote the
nuisance functions {φa(x),Ka(x), pa(x), µa(x)} and let θ∗ be the probability limit of θ̂.

Notice that V̂ MR(π) is a ratio estimator Pn{N(O; θ̂)}/Pn{D(O; θ̂)}, where N(O; θ) = ϕπ(θ) and D(O; θ) =
ψS(0)(θ). We continue the Taylor expansion of a ratio estimator as in (30). Assumption 4.4(ii) implies that θ∗ =
{φa(x),Ka(x), pa(x), µa(x)}, and thus ϕπ(θ∗) = ϕπ and ψS(0)(θ∗) = ψS(0). By the empirical process theory, we have

Pn{N(O; θ̂)} − P{N(O; θ∗)} = (Pn − P){N(O; θ̂)}+ P{N(O; θ̂)−N(O; θ∗)}

=(Pn − P){N(O; θ∗)}+ P{N(O; θ̂)−N(O; θ∗)}+ op(n
−1/2), (34)

where the second equality follows by Assumption 4.4(ii). It remains to analyze the second term P{N(O; θ̂)−N(O; θ∗)}.

|P{N(O; θ̂)−N(O; θ∗)}|

=

∣∣∣∣P [[
µ̂1(X)

{
ψ̂S(0) −

p̂0(X)

p̂1(X)
ψ̂S(1)

}
+
p̂0(X)

p̂1(X)
ψ̂Y (1)S(1)

]
π(X) + ψ̂Y (0)S(0){1− π(X)}

]
− P [p0(X) [µ1(X)π(X) + µ0(X){1− π(X)}]]

∣∣∣∣
≤

∣∣∣∣∣P
[
π(X)µ̂1(X)

{φ0(X)K0(X)− φ̂0(X)K̂0(X)}{p0(X)− p̂0(X)}
φ̂0(X)K̂0(X)

]∣∣∣∣∣+∣∣∣∣∣P
[
π(X)µ̂1(X)

p̂0(X)

p̂1(X)

{φ1(X)K1(X)− φ̂1(X)K̂1(X)}{p1(X)− p̂1(X)}
φ̂1(X)K̂1(X)

]∣∣∣∣∣+∣∣∣∣∣P
[
π(X)µ1(X)

p̂0(X)

p̂1(X)

{φ1(X)K1(X)− φ̂1(X)K̂1(X)}{p1(X)− p̂1(X)}
φ̂1(X)K̂1(X)

]∣∣∣∣∣+∣∣∣∣∣P
[
π(X)p̂0(X)

{φ1(X)K1(X)− φ̂1(X)K̂1(X)}{µ1(X)− µ̂1(X)}
φ̂1(X)K̂1(X)

]∣∣∣∣∣+∣∣∣∣∣P
[
{1− π(X)}µ0(X)

{φ0(X)K0(X)− φ̂0(X)K̂0(X)}{p0(X)− p̂0(X)}
φ̂0(X)K̂0(X)

]∣∣∣∣∣+∣∣∣∣∣P
[
{1− π(X)}p̂0(X)

{φ0(X)K0(X)− φ̂0(X)K̂0(X)}{µ0(X)− µ̂0(X)}
φ̂0(X)K̂0(X)

]∣∣∣∣∣+∣∣∣∣P [
π(X)

p0(X)

p̂1(X)
{µ1(X)− µ̂1(X)}{p1(X)− p̂1(X)}

]∣∣∣∣+∣∣∣∣P [
π(X)

p1(X)

p̂1(X)
{µ1(X)− µ̂1(X)}{p0(X)− p̂0(X)}

]∣∣∣∣ .
By the Cauchy–Schwarz inequality and Assumption 4.4(iii), it follows that for some constant l > 0, we have

|P{N(O; θ̂)−N(O; θ∗)}|

≤l × ∥φ0(X)K0(X)− φ̂0(X)K̂0(X)∥2 × [∥p0(X)− p̂0(X)∥2 + ∥µ0(X)− µ̂0(X)∥2] +
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l × ∥p1(X)− p̂1(X)∥2 ×
[
∥φ1(X)K1(X)− φ̂1(X)K̂1(X)∥2 + ∥µ1(X)− µ̂1(X)∥2

]
+

l × ∥p0(X)− p̂0(X)∥2 × ∥µ0(X)− µ̂0(X)∥2 = op(−n1/2).
(35)

Continuing with (34), we have Pn{N(O; θ̂)} − P{N(O; θ∗)} = (Pn − P){N(O; θ∗)} + op(n
−1/2). Similarly, we can

show Pn{D(O; θ̂)} − P{D(O; θ∗)} = (Pn − P){D(O; θ∗)}+ op(n
−1/2). Continuing with (30), we have

V̂ MR(π)− V (π) =
Pn{N(O; θ̂)}
Pn{D(O; θ̂)}

− V (π)

=
Pn{N(O; θ̂)}
P{D(O; θ∗)}

− P{N(O; θ∗)}
[P{D(O; θ∗)}]2

[
Pn{D(O; θ̂)} − P{D(O; θ∗)}

]
− V (π) + op(n

−1/2)

=
Pn{N(O; θ̂)}
P{D(O; θ∗)}

− P{N(O; θ∗)}
[P{D(O; θ∗)}]2

(Pn − P){D(O; θ∗)} − P{N(O; θ∗)}
P{D(O; θ∗)}

+ op(n
−1/2)

=
Pn{N(O; θ̂)} − P{N(O; θ∗)}

P{D(O; θ∗)}
− P{N(O; θ∗)}

[P{D(O; θ∗)}]2
(Pn − P){D(O; θ∗)}+ op(n

−1/2)

=
(Pn − P){N(O; θ∗)}

P{D(O; θ∗)}
− P{N(O; θ∗)}

[P{D(O; θ∗)}]2
(Pn − P){D(O; θ∗)}+ op(n

−1/2)

=
Pn{N(O; θ∗)}
P{D(O; θ∗)}

− P{N(O; θ∗)}
[P{D(O; θ∗)}]2

Pn{D(O; θ∗)}+ op(n
−1/2)

=
Pn{ϕπ}
p0

− V (π)
Pn{ψS(0)}

p0
+ op(n

−1/2)

=Pn
[
ϕπ − V (π)ψS(0)

p0

]
+ op(n

−1/2).

This completes the proof. □

A.5. Proof of Lemma 5.2

Proof. Step 1: We first show that β̂ converges in probability to β∗ as n→ ∞, by checking three conditions for the Argmax
Theorem:

(1) By Assumption 5.1(i), V (β) is twice continuously differentiable at a neighborhood of β∗.

(2) In Section A.4, we have shown that for any β, V̂ MR(β) is consistent for V (β).

(3) Since β̂ = argmaxβ:∥β∥2=1 V̂
MR(β), we have the estimated policy as π(x; β̂) = I

(
x̃T β̂ > 0

)
and the corresponding

value estimator V̂ MR(β̂) such that
V̂ MR(β̂) ≥ sup

β:∥β∥2=1

V̂ MR(β).

Thus we have β̂ converges in probability to β∗ as n→ ∞.

Step 2: We show that n1/3∥β̂ − β∗∥2 = Op(1). We check three conditions of the Theorem 14.4: Rate of convergence in
Kosorok (2008):

(1) For every β in a neighborhood of β∗, i.e., ∥β − β∗∥2 < ε, for some constant ε > 0, we take the second order Taylor
expansion on V (β) at β = β∗,

V (β)− V (β∗) = V ′(β∗)∥β − β∗∥2 +
1

2
V ′′(β∗)∥β − β∗∥22 + o

(
∥β − β∗∥22

)
=

1

2
V ′′(β∗)∥β − β∗∥22 + o

(
∥β − β∗∥22

)
(V ′(β∗) = 0).

Since V ′′(β∗) < 0, there exists c0 = − 1
2V

′′(β∗) > 0 such that

V (β)− V (β∗) < c0∥β − β∗∥22. (36)
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(2) From Section A.4, we have

V̂ MR(β)− V (β) = Pn
[
ϕπ(X;β) − V (β)ψS(0)

p0

]
+ op(n

−1/2),

V̂ MR(β∗)− V (β∗) = Pn
[
ϕπ(X;β∗) − V (β∗)ψS(0)

p0

]
+ op(n

−1/2).

Let E∗(·) denote the outer expectation. Then, for all n large enough and sufficiently small ε, the centered process V̂ MR − V
satisfies

E∗

[
n1/2 sup

∥β−β∗∥2<ε

∣∣∣V̂ MR(β)− V (β)− {V̂ MR(β∗)− V (β∗)}
∣∣∣]

=E∗

[
n1/2 sup

∥β−β∗∥2<ε

∣∣∣∣Pn{ϕπ(X;β) − V (β)ψS(0)

p0

}
− Pn

{
ϕπ(X;β∗) − V (β∗)ψS(0)

p0

}∣∣∣∣
]

=E∗

[
n1/2 sup

∥β−β∗∥2<ε

∣∣∣∣Pn{ϕπ(X;β) − V (β)p0 + V (β)p0 − V (β)ψS(0)

p0

}

− Pn
{
ϕπ(X;β∗) − V (β∗)p0 + V (β∗)p0 − V (β∗)ψS(0)

p0

}∣∣∣∣
]

=E∗

[
n1/2 sup

∥β−β∗∥2<ε

∣∣∣∣Pn{ϕπ(X;β) − ϕπ(X;β∗)}
p0

− {V (β)− V (β∗)}

+ {V (β)− V (β∗)}
{
1−

Pn{ψS(0)}
p0

} ∣∣∣∣
]

≤E∗

[
n1/2 sup

∥β−β∗∥2<ε

∣∣∣∣Pn{ϕπ(X;β) − ϕπ(X;β∗)}
p0

− {V (β)− V (β∗)}
∣∣∣∣
]

︸ ︷︷ ︸
τ1

+ E∗

[
n1/2 sup

∥β−β∗∥2<ε

∣∣∣∣{V (β)− V (β∗)}
{
1−

Pn{ψS(0)}
p0

} ∣∣∣∣
]

︸ ︷︷ ︸
τ2

. (37)

Note that

ϕπ(X;β) − ϕπ(X;β∗)

=

[
µ1(X)

{
ψS(0) −

p0(X)

p1(X)
ψS(1)

}
+
p0(X)

p1(X)
ψY (1)S(1) − ψY (0)S(0)

]{
I(X̃Tβ > 0)− I(X̃Tβ∗ > 0)

}
.

We define a class of functions

Fβ(y, a, c, s, x) =

{[
µ1(x)

{
ψS(0) −

p0(x)

p1(x)
ψS(1)

}
+
p0(x)

p1(x)
ψY (1)S(1) − ψY (0)S(0)

]
×

{
I(x̃Tβ > 0)− I(x̃Tβ∗ > 0)

}
: ∥β − β∗∥2 < ε

}
,

where

ψS(0) =
I{a = 0}I(c = 0){s− p0(x)}

φ0(x)K0(x)
+ p0(x),

ψS(1) =
I{a = 1}I(c = 0){s− p1(x)}

φ1(x)K1(x)
+ p1(x),
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ψY (0)S(0) =
I(a = 0)I(c = 0){ys− µ0(x)p0(x)}

φ0(x)K0(x)
µ0(x)p0(x),

ψY (1)S(1) =
I(a = 1)I(c = 0){ys− µ1(x)p1(x)}

φ1(x)K1(x)
µ1(x)p1(x).

Let M = sup
∣∣∣µ1(x)

{
ψS(0) − p0(x)

p1(x)
ψS(1)

}
+ p0(x)

p1(x)
ψY (1)S(1) − ψY (0)S(0)

∣∣∣. By Assumption 3.5, we have M <∞. When

∥β − β∗∥2 < ε, there exists a constant 0 < k0 < ∞, such that |x̃T (β − β∗)| < k0ε. For the indicator function
I(−k0ε ≤ x̃Tβ∗ ≤ k0ε),

(i) when −k0ε ≤ x̃Tβ∗ ≤ k0ε,

I(−k0ε ≤ x̃Tβ∗ ≤ k0ε) = 1 ≥
∣∣I {x̃Tβ > 0

}
− I

{
x̃Tβ∗ > 0

}∣∣ ;
(ii) when x̃Tβ∗ > k0ε, x̃Tβ = x̃T (β − β∗) + x̃Tβ∗ > −k0ε+ k0ε > 0,

I(−k0ε ≤ x̃Tβ∗ ≤ k0ε) = 0 =
∣∣I {x̃Tβ > 0

}
− I

{
x̃Tβ∗ > 0

}∣∣ ;
(iii) when x̃Tβ∗ < −k0ε, x̃Tβ = x̃T (β − β∗) + x̃Tβ∗ < k0ε+ (−k0ε) < 0,

I(−k0ε ≤ x̃Tβ∗ ≤ k0ε) = 0 =
∣∣I {x̃Tβ > 0

}
− I

{
x̃Tβ∗ > 0

}∣∣ .
Therefore, we always have I(−k0ε ≤ x̃Tβ∗ ≤ k0ε) ≥

∣∣I(x̃Tβ > 0)− I(x̃Tβ∗ > 0)
∣∣ when ∥β − β∗∥2 < ε.

We then define the envelope of Fβ(y, a, c, s, x) as F = MI(−k0ε ≤ x̃Tβ∗ ≤ k0ε). By Assumption 5.1(ii), there exits a
constant 0 < k1 <∞, such that

∥F∥P,2 =M
√
P (−k0ε ≤ x̃Tβ∗ ≤ k0ε) ≤M

√
k1 · 2k0ε =M

√
2k0k1ε

1/2 <∞.

Since Fβ is a class of indicator functions, by the conclusion of Lemma 9.6 and Lemma 9.9 in Kosorok (2008), Fβ is a
VC class of functions. Thus, the entropy of Fβ , denoted as J∗

[](1,F), is finite, i.e., J∗
[](1,F) <∞. Next, we consider the

following empirical process indexed by β,

GnFβ = n−1/2
n∑
i=1

[Fβ (Oi)− E [Fβ (O)}] .

Note that GnFβ = n1/2
[
Pn{ϕπ(X;β)−ϕπ(X;β∗)}

p0
− {V (β)− V (β∗)}

]
. By applying Theorem 11.2 in Kosorok (2008), we

have

τ1 = E∗

[
n1/2 sup

∥β−β∗∥2<ε

∣∣∣∣Pn{ϕπ(X;β) − ϕπ(X;β∗)}
p0

− {V (β)− V (β∗)}
∣∣∣∣
]

= E∗

[
sup

∥β−β∗∥2<ε

|GnFβ |

]
≤ lJ∗

[](1,F)∥F∥P,2 ≤ lJ∗
[](1,F)M

√
2k0k1ε

1/2,

where l is a finite constant.

Let c1 ≡ lJ∗
[](1,F)M

√
2k0k1, since l, J∗

[](1,F), M , k0 and k1 are bounded, we have c1 <∞, i.e.,

τ1 ≤ c1ε
1/2. (38)

τ2 =E∗

[
n1/2 sup

∥β−β∗∥2<ε

∣∣∣∣{V (β)− V (β∗)}
{
1−

Pn{ψS(0)}
p0

} ∣∣∣∣
]
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=E∗

[{
sup

∥β−β∗∥2<ε

∣∣∣∣{V (β)− V (β∗)}
∣∣∣∣
} ∣∣∣∣n1/2 {1− Pn{ψS(0)}

p0

} ∣∣∣∣
]

≤

[
sup

∥β−β∗∥2<ε

∣∣∣∣{V (β)− V (β∗)}
∣∣∣∣
]
E∗

[∣∣∣∣n1/2 {1− Pn{ψS(0)}
p0

} ∣∣∣∣
]

≤O(ε), (39)

where the last inequality follows from the mean value theory and n1/2
{
1− Pn{ψS(0)}

p0

}
= Op(1). Combining (37), (38),

and (39), we have

E∗

[
n1/2 sup

∥β−β∗∥2<ε

∣∣∣V̂ MR(β)− V (β)− {V̂ MR(β∗)− V (β∗)}
∣∣∣] ≤ τ1 + τ2 ≤ c1ε

1/2 +O(ε) ≤ c2λ(ε), (40)

where c2 is a finite positive constant, and λ(ε) = ε1/2 + ε.

(3) Let α = 3
2 < 2. λ(ε)εα = ε−1 + ε−1/2 is decreasing not depending on n. Let rn = n1/3, and then rn satisfies

r2nλ(r
−1
n ) = n2/3λ(n−1/3) = n1/2 + n1/3 = O(n1/2).

Combining (1)-(3) in Step 2, by the Theorem 14.4 in (Kosorok, 2008), we have n1/3∥β̂ − β∗∥2 = Op(1). □

A.6. Proof of Theorem 5.3

Proof. Notice that

√
n
{
V̂ MR(β̂)− V (β∗)

}
=

√
n
{
V̂ MR(β̂)− V̂ MR(β∗) + V̂ MR(β∗)− V (β∗)

}
=
√
n
{
V̂ MR(β̂)− V̂ MR(β∗)

}
+

√
n
{
V̂ MR(β∗)− V (β∗)

}
.

First, we show √
n
{
V̂ MR(β̂)− V̂ MR(β∗)

}
= op(1).

which is sufficient to show
√
n
[{
V̂ MR(β̂)− V̂ MR(β∗)

}
−

{
V (β̂)− V (β∗)

}]
= op(1),

√
n
{
V (β̂)− V (β∗)

}
= op(1).

We take the Taylor expansion on V (β̂) at β∗,

√
n
{
V (β̂)− V (β∗)

}
=

√
n

{
V ′(β∗)∥β̂ − β∗∥2 +

1

2
V ′′(β∗)∥β̂ − β∗∥22 + op

(
∥β̂ − β∗∥22

)}
=

√
n

{
1

2
V ′′(β∗)∥β̂ − β∗∥22 + op

(
∥β̂ − β∗∥22

)}
(V ′(β∗) = 0)

=
√
n

{
1

2
V ′′(β∗)Op(n

−2/3) + op(n
−2/3)

}
(Lemma 5.2)

=
1

2
V ′′(β∗)Op(n

−1/6) = op(1). (41)

By Lemma 5.2, we have ∥β̂ − β∗∥2 = c3n
−1/3, for some constant 0 < c3 <∞. From (40), we have

√
n
[{
V̂ MR(β̂)− V̂ MR(β∗)

}
−

{
V (β̂)− V (β∗)

}]
≤E∗

[
n1/2 sup

∥β̂−β∗∥2<c3n−1/3

∣∣∣V̂ MR(β)− V (β)− {V̂ MR(β∗)− V (β∗)}
∣∣∣]
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≤c2
(
c
1/2
3 n−1/6 + c3n

−1/3
)
= op(1). (42)

By (41) and (42), we have

√
n
{
V̂ MR(β̂)− V̂ MR(β∗)

}
=
√
n
[{
V̂ MR(β̂)− V̂ MR(β∗)

}
−
{
V (β̂)− V (β∗)

}]
+

√
n
{
V (β̂)− V (β∗)

}
=op(1) + op(1) = op(1).

Then,

√
n
{
V̂ MR(β̂)− V (β∗)

}
=

√
n
{
V̂ MR(β̂)− V̂ MR(β∗)

}
+

√
n
{
V̂ MR(β∗)− V (β∗)

}
=
√
n
{
V̂ MR(β∗)− V (β∗)

}
+ op(1).

Therefore, V̂ MR(β̂)− V (β∗) has the same asymptotic distribution as V̂ MR(β∗). From Thoerem 4.5, V̂ MR(β∗)− V (β∗) is
asymptotically normal with mean zero and variance Υ(π(x;β∗)). This completes the proof. □

B. Additional Theoretical Properties for OPL
When nuisance functions in the MR estimator are estimated using parametric models, we have the following results.

Lemma B.1. Suppose that Assumptions 3.1–3.5, 4.1, and 5.1 hold, under Mps+cs+sp ∪Mps+cs+om ∪Msp+om, we have
n1/3∥β̂ − β∗∥2 = Op(1).

Proof. Step 1: We first show that β̂ converges in probability to β∗ as n→ ∞, by checking three conditions for the Argmax
Theorem:

(1) By Assumption 5.1(i), V (β) is twice continuously differentiable at a neighborhood of β∗.

(2) In Section A.3, we have shown that for any β, V̂ MR(β) is consistent for V (β).

(3) Since β̂ = argmaxβ:∥β∥2=1 V̂
MR(β), we have the estimated policy as π(x; β̂) = I

(
x̃T β̂ > 0

)
and the corresponding

value estimator V̂ MR(β̂) such that
V̂ MR(β̂) ≥ sup

β:∥β∥2=1

V̂ MR(β).

Thus we have β̂ converges in probability to β∗ as n→ ∞.

Step 2: We show that n1/3∥β̂ − β∗∥2 = Op(1). We check three conditions of the Theorem 14.4: Rate of convergence in
Kosorok (2008):

(1) For every β in a neighborhood of β∗, i.e., ∥β − β∗∥2 < ε, for some constant ε > 0, we take the second order Taylor
expansion on V (β) at β = β∗,

V (β)− V (β∗) = V ′(β∗)∥β − β∗∥2 +
1

2
V ′′(β∗)∥β − β∗∥22 + o

(
∥β − β∗∥22

)
=

1

2
V ′′(β∗)∥β − β∗∥22 + o

(
∥β − β∗∥22

)
(V ′(β∗) = 0).

Since V ′′(β∗) < 0, there exists c0 = − 1
2V

′′(β∗) > 0 such that

(2) Let V̂ MR(β) = Pn{N(O;θ̂,β)}
Pn{D(O;θ̂)}

, where N(O; θ, β) = ϕπ(X;β)(θ) and D(O; θ) = ψS(0)(θ). Under Mps+cs+sp ∪
Mps+cs+om ∪Msp+om, P{N(O; θ∗, β)/P{D(O; θ∗)} = V (β), P{D(O; θ∗)} = p0. By (33), we have
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V̂ MR(β)− V (β)

=Pn

[
ϕπ(X;β)(θ

∗)

p0
−
V (β)ψS(0)(θ

∗)

p0
− P{Ṅ(O; θ∗, β)}

p0P{ġ(O; θ∗)}
g(O; θ∗) +

P{Ḋ(O; θ∗)}
P{ġ(O; θ∗)}

g(O; θ∗)

]
+ op(n

−1/2).

For all n large enough and sufficiently small ε, the centered process V̂ MR − V satisfies

E∗

[
n1/2 sup

∥β−β∗∥2<ε

∣∣∣V̂ MR(β)− V (β)− {V̂ MR(β∗)− V (β∗)}
∣∣∣]

=E∗

[
n1/2 sup

∥β−β∗∥2<ε

∣∣∣∣Pn{ϕπ(X;β)(θ
∗)− ϕπ(X;β∗)(θ

∗)}
p0

− {V (β)− V (β∗)}

+ {V (β)− V (β∗)}
{
1−

Pn{ψS(0)(θ∗)}
p0

}
− P{Ṅ(O; θ∗, β)} − P{Ṅ(O; θ∗, β∗)}

p0P{ġ(O; θ∗)}
Pn{g(O; θ∗)}

∣∣∣∣
]

≤E∗

[
n1/2 sup

∥β−β∗∥2<ε

∣∣∣∣Pn{ϕπ(X;β) − ϕπ(X;β∗)}
p0

− {V (β)− V (β∗)}
∣∣∣∣
]

︸ ︷︷ ︸
τ1

+ E∗

[
n1/2 sup

∥β−β∗∥2<ε

∣∣∣∣{V (β)− V (β∗)}
{
1−

Pn{ψS(0)}
p0

} ∣∣∣∣
]

︸ ︷︷ ︸
τ2

+ E∗

[
n1/2 sup

∥β−β∗∥2<ε

∣∣∣∣P{Ṅ(O; θ∗, β)} − P{Ṅ(O; θ∗, β∗)}
p0P{ġ(O; θ∗)}

Pn{g(O; θ∗)}
∣∣∣∣
]

︸ ︷︷ ︸
τ3

. (43)

We can show similarly as in Section A.5, τ1 + τ2 < c1(ε
1/2 + ε) for some constant 0 < c1 <∞. It remains to analyze τ3.

τ3 = E∗

[
n1/2 sup

∥β−β∗∥2<ε

∣∣∣∣P{Ṅ(O; θ∗, β)} − P{Ṅ(O; θ∗, β∗)}
p0P{ġ(O; θ∗)}

Pn{g(O; θ∗)}
∣∣∣∣
]

≤

[
sup

∥β−β∗∥2<ε

∣∣∣∣P{Ṅ(O; θ∗, β)} − P{Ṅ(O; θ∗, β∗)}
p0P{ġ(O; θ∗)}

∣∣∣∣
]
E∗

[∣∣∣∣n1/2Pn{g(O; θ∗)}
∣∣∣∣
]

≤O(ε).

where the last inequality follows from the mean value theory and that n1/2Pn{g(O; θ∗)} = Op(1).

Continuing (43), we have

E∗

[
n1/2 sup

∥β−β∗∥2<ε

∣∣∣V̂ MR(β)− V (β)− {V̂ MR(β∗)− V (β∗)}
∣∣∣] ≤ τ1 + τ2 + τ3 ≤ c1(ε

1/2 + ε) +O(ε) ≤ c2λ(ε),

(44)

where c2 is a finite positive constant, and λ(ε) = ε1/2 + ε.

(3) Let α = 3
2 < 2. λ(ε)εα = ε−1 + ε−1/2 is decreasing not depending on n. Let rn = n1/3, and then rn satisfies

r2nλ(r
−1
n ) = n2/3λ(n−1/3) = n1/2 + n1/3 = O(n1/2).

Combining (1)-(3) in Step 2, by the Theorem 14.4 in Kosorok (2008), we have n1/3∥β̂ − β∗∥2 = Op(1). □
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Theorem B.2. Suppose that Assumptions 3.1–3.5, 4.1, and 5.1 hold, under Mps+cs+sp∪Mps+cs+om∪Msp+om, V̂ MR(β̂)−
V (β) is asymptotically normal with mean zero. Moreover, under Mps+cs+sp+om, V̂ MR(β̂) achieves the semiparametric
efficiency bound Υ(π(x;β∗)).

Proof. Notice that

√
n
{
V̂ MR(β̂)− V (β∗)

}
=

√
n
{
V̂ MR(β̂)− V̂ MR(β∗) + V̂ MR(β∗)− V (β∗)

}
=
√
n
{
V̂ MR(β̂)− V̂ MR(β∗)

}
+

√
n
{
V̂ MR(β∗)− V (β∗)

}
.

First, we show √
n
{
V̂ MR(β̂)− V̂ MR(β∗)

}
= op(1).

which is sufficient to show
√
n
[{
V̂ MR(β̂)− V̂ MR(β∗)

}
−

{
V (β̂)− V (β∗)

}]
= op(1),

√
n
{
V (β̂)− V (β∗)

}
= op(1).

We take the Taylor expansion on V (β̂) at β∗,

√
n
{
V (β̂)− V (β∗)

}
=

√
n

{
V ′(β∗)∥β̂ − β∗∥2 +

1

2
V ′′(β∗)∥β̂ − β∗∥22 + op

(
∥β̂ − β∗∥22

)}
=

√
n

{
1

2
V ′′(β∗)∥β̂ − β∗∥22 + op

(
∥β̂ − β∗∥22

)}
(V ′(β∗) = 0)

=
√
n

{
1

2
V ′′(β∗)Op(n

−2/3) + op(n
−2/3)

}
(Lemma 5.2)

=
1

2
V ′′(β∗)Op(n

−1/6) = op(1). (45)

By Lemma 5.2, we have ∥β̂ − β∗∥2 = c3n
−1/3, for some constant 0 < c3 <∞. From (44), we have

√
n
[{
V̂ MR(β̂)− V̂ MR(β∗)

}
−

{
V (β̂)− V (β∗)

}]
≤E∗

[
n1/2 sup

∥β̂−β∗∥2<c3n−1/3

∣∣∣V̂ MR(β)− V (β)− {V̂ MR(β∗)− V (β∗)}
∣∣∣]

≤c2
(
c
1/2
3 n−1/6 + c3n

−1/3
)
= op(1). (46)

By (45) and (46), we have

√
n
{
V̂ MR(β̂)− V̂ MR(β∗)

}
=
√
n
[{
V̂ MR(β̂)− V̂ MR(β∗)

}
−
{
V (β̂)− V (β∗)

}]
+

√
n
{
V (β̂)− V (β∗)

}
=op(1) + op(1) = op(1).

Then,
√
n
{
V̂ MR(β̂)− V (β∗)

}
=

√
n
{
V̂ MR(β̂)− V̂ MR(β∗)

}
+

√
n
{
V̂ MR(β∗)− V (β∗)

}
=
√
n
{
V̂ MR(β∗)− V (β∗)

}
+ op(1).

Therefore, V̂ MR(β̂)− V (β∗) has the same asymptotic distribution as V̂ MR(β∗)− V (β∗). From Section A.3, V̂ MR(β∗)−
V (β∗) is asymptotically normal with mean zero. Under Mps+cs+sp+om, V̂ MR(β̂) achieves the semiparametric efficiency
bound Υ(π(x;β∗)). This completes the proof. □
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C. Sensitivity Analysis
Assumption 3.4 may be violated if there are latent confounders between the principal strata and outcome. For the sensitivity
analysis, we assume the following tilting model:

E[Y (1) | U = 10, X]

E[Y (1) | U = 11, X]
= ρ(X). (47)

Then, we can use ρ(X) as the sensitivity parameter. If ρ(X) = 1, then Assumptions 3.4 holds. The following theorem
establishes the nonparametric identification of V (π) when the sensitivity parameter is known. Define

ω(X) =
p1(X)

ρ(X)p1(X) + {1− ρ(X)}p0(X)
.

Theorem C.1. Let Π be a policy class. Under Assumptions 3.1–3.3, 3.5, and (47) with known ρ(X), for any given policy
π ∈ Π, the survivor value function V (π) is identified,

V (π) = E
[
p0(X)

p0
[ω(X)µ1(X)π(X) + µ0(X){1− π(X)}]

]
. (48)

Proof.

µ1(X) =E[Y | A = 1, C = 0, S = 1, X]

=E[Y | A = 1, C = 0, S = 1, U = 11, X]P (U = 11 | A = 1, C = 0, S = 1, X)

+ E[Y | A = 1, C = 0, S = 1, U = 10, X]P (U = 10 | A = 1, C = 0, S = 1, X)

=E[Y (1) | A = 1, C(1) = 0, S(1) = 1, U = 11, X]P (U = 11 | A = 1, C = 0, S = 1, X)

+ E[Y (1) | A = 1, C(1) = 0, S(1) = 1, U = 10, X]P (U = 10 | A = 1, C = 0, S = 1, X) (SUTVA)

=E[Y (1) | C(1) = 0, S(1) = 1, U = 11, X]P (U = 11 | A = 1, C = 0, S = 1, X)

+ E[Y (1) | C(1) = 0, S(1) = 1, U = 10, X]P (U = 10 | A = 1, C = 0, S = 1, X) (Assumption 3.1)

=E[Y (1) | S(1) = 1, U = 11, X]P (U = 11 | A = 1, C = 0, S = 1, X)

+ E[Y (1) | S(1) = 1, U = 10, X]P (U = 10 | A = 1, C = 0, S = 1, X) (Assumption 3.2)

=E[Y (1) | U = 11, X]P (U = 11 | A = 1, C = 0, S = 1, X)

+ E[Y (1) | U = 10, X]P (U = 10 | A = 1, C = 0, S = 1, X)

=E[Y (1) | U = 11, X]
p0(X)

p1(X)
+ E[Y (1) | U = 10, X]

p1(X)− p0(X)

p1(X)

=E[Y (1) | U = 11, X]
p0(X)

p1(X)
+ ρ(X)E[Y (1) | U = 11, X]

p1(X)− p0(X)

p1(X)
(by 47)

=
E[Y (1) | U = 11, X]

ω(X)
. (49)

µ0(X) =E[Y | A = 0, C = 0, S = 1, X]

=E[Y (0) | A = 1, C(0) = 0, S(0) = 1, X] (SUTVA)

=E[Y (0) | C(0) = 0, S(0) = 1, X] (Assumption 3.1)

=E[Y (0) | S(0) = 1, X] (Assumption 3.2)

=E[Y (0) | U = 11, X]. (Assumption 3.3) (50)

V (π) = E [Y (1)π(X) + Y (0){1− π(X)} | U = 11]
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= E [E[Y (1)π(X) + Y (0){1− π(X)} | U = 11, X] | U = 11]

= E [E[Y (1) | U = 11, X]π(X) | U = 11]

+E [E[Y (0) | U = 11, X]{1− π(X)} | U = 11]

= E [ω(X)µ1(X)π(X) | U = 11] (by (49))

+E [µ0(X){1− π(X)} | U = 11] (by (50))

= E
[
p0(X)

p0
[ω(X)µ1(X)π(X) + µ0(X){1− π(X)}] .

]
(by (7))

Starting from the identification formula (48), we can derive the EIF for V (π) using the same technique in Section A.2.
Therefore, we directly give the following result and omit the proof.

Theorem C.2. Suppose V (π) is identified in Theorem C.1. The EIF for V (π) is

ν′π =
1

p0
{ϕ′π − V (π)ψS(0)},

and the semiparametric efficiency bound for V (π) is

Υ′(π) = E
[
1

p0
{ϕ′π − V (π)ψS(0)}

]2
,

where ϕ′π =
[
ω2(X)µ1(X)

ρ(X)

{
ψS(0) − p0(X)

p1(X)ψS(1)

}
+ ω(X)p0(X)

p1(X) ψY (1)S(1)

]
π(X) + ψY (0)S(0){1− π(X)}.

The EIF ν′π motivates the following estimator for V (π):

V̂ (π) =
Pn(ϕ̂′π)

Pn{ψ̂S(0)}
, (51)

where ϕ̂′π
[
ω2(X)µ̂1(X)

ρ(X)

{
ψ̂S(0) − p̂0(X)

p̂1(X) ψ̂S(1)

}
+ ω(X)p̂0(X)

p̂1(X) ψ̂Y (1)S(1)

]
π(X) + ψ̂Y (0)S(0){1 − π(X)}. This estimator

achieves the semiparametric efficiency bound Υ′(π) under mild nonparametric rate conditions of nuisance functions
estimation.

Theorem C.3. Suppose that Assumptions 3.1-3.3, 3.5, 4.4, and (47) with known ρ(X) > 0 hold. V̂ (π) in (51) has the
influence function ν′π and therefore achieves the semiparametric efficiency bound Υ′(π).

The proof of Theorem C.3 is similar to that of Theorem 4.5 and thus omitted.

We re-visit the real data application in Section 6.2 to assess the violation of Assumption 3.4. For the ease of presentation, we
assume the sensitivity parameter is not dependent onX , i.e., ρ(X) = ρ, and vary them from 0.8 to 1.2. We estimate nuisance

functions using the entire dataset and the same models as those in Section 6.2. We construct estimators V̂ (β) =
Pn{ϕ̂′

π(X;β)}
Pn{ψ̂S(0)}

with different values of ρ. We estimate the survivor-optimal linear policy by maximizing these estimators within the linear
policy class Πβ = {π(x;β) = I(βT x̃ > 0) : β ∈ R8, ∥β∥2 = 1}. We denote the estimated β as β̂. We report the values of
V̂ (β̂) in Figure 3. We find that the result is not sensitive to the violation of Assumption 3.4.
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Figure 3. Sensitivity analysis for Section 6.2.

D. Additional OPE Experiment Results in Section 6
We report the OPE experiment results with sample size n = 1000 in Table 5. The other setting is the same as Section 6.1.

Table 5. OPE results with n = 1000. (a) 0.7πd + 0.3πu, (b) 0.4πd + 0.6πu, (c) 0.0πd + 1.0πu.

censoring rate:15%
MR-I MR-II MR-III MR-IV MR-V DM IPW DR

RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD
(a) 0.159 0.158 0.167 0.164 0.159 0.159 0.161 0.160 0.172 0.172 0.882 0.103 0.691 0.118 0.517 0.129
(b) 0.137 0.137 0.144 0.142 0.138 0.138 0.144 0.143 0.148 0.148 0.652 0.092 0.585 0.087 0.449 0.111
(c) 0.110 0.109 0.115 0.113 0.110 0.110 0.126 0.125 0.123 0.122 0.347 0.078 0.445 0.051 0.359 0.090

censoring rate: 30%
MR-I MR-II MR-III MR-IV MR-V DM IPW DR

RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD
(a) 0.187 0.186 0.200 0.190 0.186 0.186 0.189 0.188 0.201 0.200 0.899 0.119 0.770 0.174 0.545 0.147
(b) 0.162 0.161 0.173 0.164 0.162 0.162 0.169 0.167 0.175 0.175 0.674 0.105 0.654 0.142 0.474 0.126
(c) 0.131 0.130 0.138 0.131 0.130 0.130 0.149 0.148 0.151 0.148 0.375 0.088 0.502 0.105 0.380 0.101
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