
Rise of Inspectron:

Automated Black-box Auditing of Cross-platform Electron Apps

Mir Masood Ali, Mohammad Ghasemisharif, Chris Kanich, and Jason Polakis

University of Illinois Chicago, {mali92, mghas2, ckanich, polakis}@uic.edu

Abstract
Browser-based cross-platform applications have become in-

creasingly popular as they allow software vendors to sidestep

two major issues in the app ecosystem. First, web apps can be

impacted by the performance deterioration affecting browsers,

as the continuous adoption of diverse and complex features

has led to bloating. Second, re-developing or porting apps

to different operating systems and execution environments

is a costly, error-prone process. Instead, frameworks like

Electron allow the creation of standalone apps for different

platforms using JavaScript code (e.g., reused from an existing

web app) and by incorporating a stripped down and config-

urable browser engine. Despite the aforementioned advan-

tages, these apps face significant security and privacy threats

that are either non-applicable to traditional web apps (due to

the lack of access to certain system-facing APIs) or ineffec-

tive against them (due to countermeasures already baked into

browsers). In this paper we present Inspectron, an automated

dynamic analysis framework that audits packaged Electron

apps for potential security vulnerabilities stemming from de-

velopers’ deviation from recommended security practices.

Our study reveals a multitude of insecure practices and prob-

lematic trends in the Electron app ecosystem, highlighting the

gap filled by Inspectron as it provides extensive and compre-

hensive auditing capabilities for developers and researchers.

1 Introduction

The contemporary client-side web programming ecosystem

has enabled effectively effortless cross-platform web app de-

velopment: a full-featured web app can present a unified expe-

rience across Linux, Windows, MacOS, or any other platform

that supports a fully functioning modern browser. This ease of

portability, along with the standardization of access to lower-

level OS functionality through the Node.js platform, gave rise

to Electron, a system that allows combining the open-source

Chrome and Node.js projects with a developer’s code to cre-

ate a freestanding desktop app, which does not require access

to a system browser or the Internet to provide its functionality.

While there are clear advantages to relying on these two

incredibly well-engineered components, doing so introduces

unique challenges. First, there are inevitable issues when

using these software artifacts outside of the context for which

they were designed. Second, the web platform’s ubiquity and

importance has resulted in it attracting significant malicious

attention and, thus, substantial effort is put into the rapid

release and distribution of browser updates. Finally, these

artifacts are themselves massively complex (necessarily so),

and using them as an abstraction upon which to build yet

more complexity is a fraught endeavor.

In spite of these drawbacks, the benefit derived from

fully cross-platform desktop apps that can reuse large parts

of existing web-based interface code is substantial: Slack,

Discord, Twitch, WhatsApp, and many more segment-leading

companies distribute Electron-based desktop apps. Thus, it

is important to more closely investigate the risks inherent in

the use of the Electron platform. Relying on a stripped-down

version of Chrome’s engine results in certain security

mechanisms not becoming available in a timely manner.

More crucially, existing security protections that have

been baked into web browsers for years now become a

configurable option for developers; prior research has shown

how developers struggle with correctly configuring or

deploying security mechanisms [1–4]. This can also lead to

a fragmented ecosystem where different apps have different

versions of the underlying Chrome engine or Electron

framework, akin to the fragmentation problem affecting the

Android ecosystem [5, 6]. As web and mobile apps are known

to lag behind the latest version of third-party libraries [7, 8],

such patterns within the Electron ecosystem could expose

users to significant threats. Because Electron apps package

static versions of their upstream dependencies, attackers can

leverage known exploits during the window between patching

in Chrome and the distribution of new versions of Electron

apps that incorporate the updated Chrome engine. Finally,

cross-platform apps have additional capabilities compared to

their web counterparts that are closer to those of native appli-

cations. Electron’s security model aims to isolate web-facing

CSP configurations, robust input sanitization practices, and

stringent controls on the interaction with third-party resources.

To execute code on a different page or window, attackers

need additional strategies. One method involves bypassing

restrictions to navigation to malicious third-party sites,

allowing them to load and execute code within a different

page under their control. Similarly, opening these sites in a

new window or frame can enable executing code outside the

confines of the current window. Once an attacker finds a way

to execute code within the renderer process, they can then

chain their attack by taking one of the following routes.

1 → 2 Privileged Renderer Process. The renderer pro-

cess can have direct access to Node.js modules. Additionally,

when sharing a context with preloaded APIs, the renderer

process can use prototype pollution attacks [16] to also gain

direct access to Node.js modules. Direct access to Node.js

modules within the renderer process can help malicious code

compromise the underlying system.

1 → 3 → 4 Chromium-based Exploits. Chrome

regularly releases reports on vulnerabilities discovered

within the Blink and V8 engines, which are the underlying

components powering the browser and, consequently, Elec-

tron apps. Despite the fact that the Chrome team promptly

releases patches and updates for their browser to address

these vulnerabilities, app developers who rely on older

versions of the Chromium framework may remain exposed

to these exploits. These vulnerabilities capitalize on the inner

workings of the Blink and V8 engines, thus enabling attackers

to directly execute shell code on the underlying system.

1 → 5 → 6 Incomplete Checks in the Main Process. In

the absence of vulnerabilities enabling one of the previously

described exploitation approaches that require a privileged

renderer process, this route offers an alternative exploit that

takes advantage of incomplete checks in the main process.

Malicious code may take advantage of a lack of checks on

the origin of inter-process communication (IPC) messages,

including oversight in responses to messages from the Preload

API. Additionally, they may exploit the use of incomplete

checks on the use of custom protocols during navigation, and

sanitization errors in cross-context JS execution.

3 Inspectron: Design and Implementation

Here we detail the design and implementation of Inspectron.

Figure 3 provides an overview of our system and workflow.

1 Packaged App. Electron apps are distributed with varying

directory structures depending on the target OS. Depending

on the distributable, Inspectron temporarily mounts the

packaged app and extracts relevant files. Inspectron accesses

app-specific logic from a resources directory, which is also

the directory from where Electron accesses source code [17].

It then identifies the app’s binary executable file, which is

used for version checks. When the binary file is executed

as a Node.js process using the ELECTRON_RUN_AS_NODE

command line flag, Inspectron can access and use the

process.versions object to determine the Node.js version

that the app uses. This object contains key-value pairs that

indicate the Node.js version, the V8 JavaScript engine, and

other modules used to build the app.

2 Instrumented Electron. Electron has a different app

Binary Interface (ABI) from a Node.js binary. Therefore,

while Electron supports developers using native Node.js mod-

ules, those modules must be recompiled [18]. As a result, the

app-specific code extracted from the resources directory in

the previous step can only be run against an Electron binary

compiled with the same Node.js module version. Our instru-

mented version of Electron modifies relevant functions to out-

put the status of specific variables and arguments when called,

enabling Inspectron to identify and report on points of interest.

Web Preferences. Developers can customize the be-

havior of each page in a window or frame using the

webPreferences property, enabling or disabling features

such as nodeIntegration, contextIsolation, and

sandbox. These features impact available privileges, and

developers must evaluate them correctly throughout their app.

Inspectron checks 12 security-related web preferences.

Command-line Switches. These can be used to configure an

Electron app, enable or disable features, modify its behavior,

or set debugging options. Inspectron provides runtime reports

on the setting of 33 command-line switches.

Navigation Handling. Navigation can be constrained

by adding event listeners to each opened window, so as

to ensure users stay within the app’s domain. The built-in

will-navigate event allows intercepting and verifying navi-

gation requests before being sent, enabling URL modification

or cancellation. Additionally, developers must handle the

new-window event by either preventing its opening or creat-

ing a new window with secure preferences. Even though the

new-window event is deprecated in Electron v22, it remains

relevant for apps that have yet to update their frameworks.

Inter-process Communication (IPC). In Electron, IPC is

commonly used to communicate between the main process

and the renderer processes. The main process controls the

app’s lifecycle and manages system resources, while the

renderer processes handle rendering the user interface. Devel-

opers can share data, trigger events, and invoke methods using

IPC messages. To ensure security, Electron recommends

verifying the sender of IPC messages to prevent potential

threats. If the sender is not trusted, the message should

be rejected, preventing potential security threats [19] and

ensuring the integrity of IPC messages. Inspectron reports

and highlights custom IPC calls that require further evaluation

to ensure that the sender of a message is always verified.

Cross-context JS Execution. Using executeJavaScript()

developers can explicitly enable the injection of JavaScript

from the main process to a renderer process. However, when

user-supplied arguments are used with these functions, they

can potentially execute harmful content and modify the app’s

a string. Alternatively, developers can use HTTP headers to

set the CSP for the app. Electron recommends [19] adding an

event listener within the main process, onHeadersReceived,

to intercept network requests made from the app. Developers

may then add or modify response headers to ensure that

the Content-Security-Policy header includes rules

specific to the app. Since Electron provides methods for app

developers to modify CSP within HTTP response headers

after they have been received by the main process, network

logging approaches such as proxies and Chromium’s netLog

command-line flag will fail to capture such modifications.

However, our Puppeteer script observes network responses

after developer modifications, and accurately captures the

responses received by the renderer process.

4 Additional Checks. Once the app has been analyzed

using the instrumented Electron and Puppeteer script, we

perform more checks that do not require running the app.

CSP Evaluation. Inspectron evaluates the CSP captured

from the Puppeteer script using Google’s CSP Evaluator [20].

The library parses policy rules and recommends ways

to harden them, and it includes support for backward

compatibility with older versions of CSP.

Permitted Domain Evaluation. While Inspectron gathers

a list of domains from network requests and CSP rules, we

evaluate these domains in two ways. First, it identifies apps

that load solely from packaged, local files instead of gathering

remotely loaded content. Next, considering remotely loaded

resources, the tool visits these domains using XSStrike [21],

and reports on the use of Web App Firewalls and evaluates

reachable domains for potential DOM XSS.

Electron Fuse Checks. This is a feature subset that enables

developers to dynamically disable default functionality in

production apps. Fuses are security flags that determine

enabled and disabled features at runtime. Inspectron reports

on the use of fuses to determine if apps explicitly enable

the encryption of cookies stored on the disk with OS level

cryptographic keys. If an app stores cookies in plaintext,

malicious access to files from within the app, and other

software on the user’s system, can read or modify the

sensitive information stored in the app’s cookies.

5 Report. The results of all evaluations performed in Steps

2, 3, and 4 are stored across multiple files and in varying

formats. Inspectron reads and evaluates the results of individ-

ual tests and combines them in a single, parsable report. The

final report of the analysis highlights scenarios and config-

urations of relevant checks that require further evaluation of

misconfigurations that can result in potential vulnerabilities.

The report generated by Inspectron highlights insecure

practices within packaged apps. However, it is important to

note that these findings do not verify that the app is entirely

exploitable. Rather, they indicate the presence of problematic

practices that could potentially be exploited; in certain cases

that could involve chaining together multiple insecurities in

the context of the app’s specific architecture. In the next sec-

tion we report on how such practices are not isolated incidents,

but rather indicative of a broader ecosystem-wide problem.

4 Evaluation

In this section, we present our extensive experimental

evaluation of Inspectron, as well as the results from our

black-box auditing study of the Electron app ecosystem.

Terminology. We first define the terminology we use.

Insecure practices. Individual checks included in the

reports generated by Inspectron highlight known, insecure

practices. The report highlights app configurations that

Electron warns against and scenarios that have been used

in prior exploits [19, 22]. However, these reports represent

flaws and do not prove that apps can be exploited in practice.

Exploits. Apps that adopt insecure practices can potentially

be exploited when these practices are considered in the

context of individual configurations and use cases. Creating

proof-of-concept exploits requires manual effort, which

we demonstrate for a subset of our findings. Unless stated

otherwise, the findings presented in this section highlight in-

secure practices. Within descriptions of checks for individual

insecure practices, we present examples of potential exploits.

False Positives. We consider the incorrect inclusion

of insecure practices in reports to be false positives (i.e.,

reporting an insecure practice when the app actually does

something securely). In our test set of 109 apps (see App

Dataset below), we manually verified every detection and

confirmed that none were false positives.

Electron Dataset. A crucial element of Inspectron relies on

utilizing an instrumented version of Electron. As mentioned

in §3, Electron apps can only be evaluated against an Electron

version with a matching app Binary Interface (ABI). Conse-

quently, we developed multiple instrumented versions, each

corresponding to a major release version of Electron and the

underlying platform, such as Linux or MacOS. To facilitate

this process, we employed an existing wrapper [23], which

streamlined the synchronization of relevant dependencies,

while also enabling the retrieval of specific Electron and

Chromium versions for each build of the Electron source

code. It is worth noting that even though older versions

are accessible, they are no longer actively maintained. As

a result, when we encountered difficulties in retrieving all

the required files to construct a specific version of Electron,

we discontinued the build process. We encountered this

challenge when attempting to build Linux-specific Electrons

<v13, as certain underlying Debian build files were no longer

available or accessible. For each version, we obtained the

Electron source code, instrumented specific TypeScript and

C++ code, and rebuilt the framework. Subsequently, we

extracted the resulting distributable for the respective version

and platform. Through this process, we successfully created

a dataset comprising 24 instrumented versions of Electron

 0

 2

 4

 6

 8

 10

 12

 14

 16

20
19

-0
5

20
19

-0
8

20
19

-0
9

20
19

-1
0

20
19

-1
2

20
20

-0
3

20
20

-0
4

20
20

-0
5

20
20

-0
6

20
20

-0
7

20
20

-0
8

20
20

-0
9

20
20

-1
1

20
20

-1
2

20
21

-0
1

20
21

-0
2

20
21

-0
3

20
21

-0
4

20
21

-0
6

20
21

-0
7

20
21

-0
8

20
21

-0
9

20
21

-1
0

20
21

-1
1

20
21

-1
2

20
22

-0
1

20
22

-0
2

20
22

-0
3

20
22

-0
4

20
22

-0
5

20
22

-0
6

20
22

-0
7

20
22

-0
8

20
22

-0
9

20
22

-1
0

20
22

-1
1

20
23

-0
1

20
23

-0
2

20
23

-0
3

20
23

-0
4

20
23

-0
5

N
u

m
b

e
r

o
f

a
p

p
s

Figure 4: Release date of the Electron binary used by the latest

version (as of May 2023) of the apps audited by Inspectron.

(v14-v24 for Linux, v12-v24 for MacOS), which we then

used for the analysis described in this section.

App Dataset. The Electron website provides a showcase

of apps that have been developed using the framework. This

showcase lists a diverse array of apps, including both new

and old releases, commercial and free downloads, as well

as packaged and open-source projects. Through a manual

investigation of 282 apps’ pages, and after filtering out

apps that were unavailable, discontinued, incompatible with

Linux and MacOS, or required some form of payment, we

successfully downloaded 167 apps, each of which we further

examined to determine their underlying Electron version. The

findings of this evaluation are presented below. Subsequently,

from this collection, we identified 109 apps for which we had

successfully built an equivalent instrumented Electron version

to test against, which we use for the remainder of our analysis.

Electron Versions. We conducted a comprehensive evalu-

ation of the underlying Electron framework versions utilized

by a total of 167 downloaded apps. Electron regularly releases

new stable versions every eight weeks [24]. The latest stable

version available at the time of this writing (May 2023) was

v24, which had been accessible for a minimum of four weeks

before our testing. Furthermore, Electron offers support for

up to four stable major versions, implying that apps relying on

versions as low as v21 could potentially receive updates if re-

quired [25]. However, our findings, shown in Figure 4, reveal

that apps depend on Electron versions that are up to four years

old, with the majority of them relying on releases between six

months and two years prior to our analysis. It is worth noting

that Electron strongly recommends that developers keep their

apps up to date with the latest release [19], as that ensures the

incorporation of numerous security fixes for Chrome, Node.js,

and the framework itself. Unfortunately, as we discuss below,

our analysis reveals that a significant number of apps use older

versions of Electron which remain vulnerable to well-known

exploits, even if developers adhere to the best security prac-

tices available for the older Electron version they rely upon.

Web Preferences. As aforementioned, each new frame or

window within an Electron app possesses a set of preferences

that determine the privileges and functionality available

to the web content. While Electron advises limiting these

preferences [19], our observations unveiled a significant

Table 1: Insecure Web Preferences detected by Inspectron.

Web Preference Insecure Value # Apps

Node Integration True 49

Context Isolation False 54

Sandbox False 64

Web Security False 8

Allow Running Insecure Content True 6

Disable Popups False 64

Enable WebSQL True 81

Javascript True 83

WebView Tag True 15

number of apps that explicitly enabled functionalities that

could exacerbate compromises on the renderer process (see

Table 1). We discovered that the majority of apps (n = 54)

failed to isolate the context between their preloaded scripts

and the renderer process, thereby leaving them vulnerable

to exploits like prototype pollution attacks that have been

previously documented [26]. Surprisingly, we observed that 8

applications expicitly disabled web security, thus disabling

the enforcement of the Same Origin Policy (SOP), arguably

the most fundamental web security measure. Developer-

focused apps like Postman [27] (an API development app)

and Altair GraphQL [28] (a GraphQL server debugging app)

disable SOP to allow interaction with different endpoints,

and include additional measures like CSPs and restricted

windows to limit its impact. This also helps apps (e.g.,

IPTVnator [29], a TV streaming app) easily host content

from multiple external services, but still reduces their overall

security. More concerning was the discovery that out of the

109 apps analyzed, 49 of them granted the renderer process

complete access to Node.js functionality. This configuration

allows malicious code within the renderer process to import

any Node.js module and directly execute shell commands

on the user’s system. It is essential to emphasize that these

options are disabled by default, indicating that developers

deliberately chose to override the app’s inherent security

measures in favor of enhanced functionality.

Reliance on Insecure Defaults. Over time, the Electron

framework has made significant strides in enhancing its

security measures. Notably, certain preferences such as

nodeIntegration and contextIsolation have been

transitioned to secure defaults since v5 and v12 of Electron,

respectively. However, it was not until v20 (Aug. 2022)

that Electron introduced sandboxing of processes as the

default behavior; prior to this, it strongly recommended that

developers implement sandboxing. As the majority of apps

are built on older versions of Electron, we found that a signif-

icant number of developers (n=64) have left their processes

unsandboxed, potentially exposing their apps to exploits. We

made similar observations regarding developers enabling

WebSQL, despite it being a largely-deprecated storage

mechanism that is infrequently used in modern browsers [30].

Despite its diminishing relevance, many developers (n=81)

still enabled WebSQL in their Electron apps. We further

found popups being commonly allowed in the renderer

processes (n=64), effectively permitting the creation of new

windows. These observations highlight the prevalence of

certain insecure practices that undermine the overall security

posture of Electron apps, warranting a closer examination.

Limiting Preferences on WebViews. Each new window

or frame possesses its own set of associated preferences;

consequently, when a window in an app loads external

content in a WebView, the WebView inherits the preferences

of its parent by default [31]. However, a malicious WebView

has the capability to create new renderer processes with

elevated privileges, regardless of its parent, enabling the

execution of code on the underlying system. To mitigate

potential security risks, Electron recommends that apps

actively listen for the new creation of each WebView as it

is attached, and explicitly impose limitations on the available

preferences. By doing so, developers can exert greater control

over the behavior and permissions of WebViews within their

apps. However, out of the 15 apps that utilized WebViews,

only 4 implemented the recommended practice of listening

to the relevant event and enforcing preference limitations.

Command-line Switches. Developers have the option of

overriding app-wide defaults and controlling runtime flags

that can be passed to Node.js-based and Chromium-based

processes. Most apps we evaluated resort to defaults and do

not enable experimental, command-line switches. However,

we found 3 apps that increased V8’s garbage-collected heap

size available at runtime [32]. Overriding the heap space

taken up by the application and improper garbage collection

can affect the system’s memory use. We observed 10 apps

that disabled default features offered by Chromium.

Cross-Origin-Opener-Policy (COOP). The COOP HTTP

response header aims to improve isolation between docu-

ments and origins by requesting a new browsing context and

process, which can help mitigate exploits like cross-window

and process-wide attacks [33]. These types of attacks can

occur when a loaded document shares a browsing context and

process with cross-origin documents, potentially allowing

malicious code to leak data. The COOP header aims to

mitigate these issues by allowing loaded resources to sever

all references to other browsing contexts, making it easier

for browsers to load documents in a new process, preventing

attacks like Spectre. Three of the apps that we evaluated, Col-

ibri (a browser) [34], Ferdi (an app-in-app ecosystem) [35],

and Biscuit (a browser) [36], explicitly disabled support for

this feature, thereby rendering their apps vulnerable.

Out-of-Blink CORS. The Cross-Origin Resource Sharing

(CORS) protocol is an established web standard used to

safeguard servers against unexpected cross-origin network

accesses [37]. Previously, Chrome implemented this protocol

within the rendering engine, Blink, which ran in a renderer

process. However, the Out-of-Blink CORS feature, enabled

by default since Chromium v83, moves the inspection of

network accesses out of the renderer, to be handled by a

separate process, the network service. This change was

motivated by several historical design, reliability, and security

issues [37, 38]. However, Advanced Rest Client (a developer

tool) [39] explicitly disables this feature.

Navigation Handling. When a user interacts with an

Electron app by clicking on third-party links or triggering

code execution that modifies the window.location or opens

new windows, Electron generates events (will-navigate

and new-window) that, if not handled, cause these links to

open within the app similarly to browsers. This behavior

can be problematic for both functionality and security. To

address this, developers need to actively listen to these events

and ensure that users remain within the designated app pages.

However, our evaluation of 109 apps revealed that only 24

of them implemented navigation limitations. Furthermore,

only 32 prevented the loading of arbitrary content in new

windows. This situation is concerning, particularly because

when pages fail to restrict navigation, the third-party domain

loaded within the same window gains access to additional

preloaded APIs. This access enables interactions with the

main process, which would typically be unavailable within

a web browser. Additionally, when new windows are opened,

these windows have the ability to create further windows

with extended privileges and relaxed security boundaries.

Therefore, the lack of proper navigation restrictions and

content loading prevention poses a significant risk.

Use of deprecated event handlers. In Electron v22 (Nov.

2022), the new-window event was deprecated [40]. Prior ver-

sions included warnings about this deprecation, and in newer

versions Electron requires developers to handle the creation of

new windows using setWindowOpenHandler(). However,

this has not yet been widely implemented in existing apps.

Inspectron found that only 23 apps incorporated handlers

using the new approach, while 11 apps continued to rely on

the deprecated event, which is compatible with their older

versions of Electron. It is crucial that these 11 apps adopt

the new approach when they eventually update their version

of Electron, to ensure that their checks remain effective.

Inter-process Communication. Electron’s renderer

process is inherently limited in its privileges. However, apps

can utilize IPC calls to delegate privileged execution tasks

to the main process. Nonetheless, a compromised renderer

process can potentially exploit these IPC channels to trigger

malicious functionality. Therefore, it is crucial for developers

to implement sender verification mechanisms before execut-

ing relevant code based on IPC messages. We discovered that

43 apps established custom IPC channels to their renderer

process. We manually verified the handlers used by these

applications and determined that only 13 of these apps

implemented sender verification. In the remaining 30 apps,

a compromised renderer process would have unrestricted

access to trigger IPC channels without any checks in place.

Preloaded APIs. We found 19 apps that exposed select

additional functionality from the main process to the renderer

process, using a context bridge. Of these, 7 apps did not

isolate contexts between the preload script and the renderer

process. Note that in the absence of context isolation, the

renderer process can gain access to Electron internals and

Node.js APIs by compromising the preload script. This can

be achieved through prototype pollution attacks [16] that

override definitions of built-ins like Array or Object to take

control over the execution of the preload script [26].

Custom Protocols. When utilizing custom non-standard

protocol handlers for requests that target internal functionality

(which may even be registered by third-party libraries like

Sentry [41]), developers must consider the associated values

when implementing navigation restrictions. We found 36

apps that register custom protocols; upon manual inspection,

we found that only 4 of them also take into consideration

requests involving custom protocols when determining

whether to allow or prevent navigation attempts.

Permission Request Handling. In contrast to Chrome,

Electron approves any request made to hardware devices,

such as the camera, microphone, and screen. However,

developers can add handlers that prompt users for permission

and verify the integrity of incoming requests. Inspectron

found only 11 apps that handled permission requests, while

the rest granted access by default, further highlighting the

prevalence of insecure defaults in Electron apps. For example,

Wordpress [42], which allows users to manage their websites,

should not need the screen-recording and microphone per-

missions. However, it permits in-app navigation to external

domains, which can access the user’s device, including

camera, microphone, and screen, without prompting the user.

Certificate Verification. While Electron handles the

verification of X.509 certificates by default, apps have the

option to proceed with network requests despite errors in

certificate verification. We found 8 apps that overrode and

logged such errors instead of resorting to Electron’s default

behavior. Upon manual verification we observed that the

apps overrode certificate errors only for specific domains.

Open External. The openExternal functionality enables

developers to open links or files using the operating system’s

defaults, rather than within the Electron app itself. This

feature is particularly useful for handling links or files that

should be opened outside the app, such as URLs or local files

that require specific apps. However, it is crucial to ensure

proper verification and sanitization when utilizing this func-

tionality, as Electron passes the link to a shell command in the

underlying operating system (example, xdg-open in Linux).

During our evaluation, we identified 56 apps that made use of

this functionality. We additionally examined the navigation

handlers that were previously highlighted. Surprisingly, we

discovered that none of these handlers perform any additional

URL sanitization when passing it to the shell command.

Consequently, while this practice prevents external links from

opening within the app, it can result in passing malformed or

even malicious links directly to the underlying system. To mit-

igate these risks, it is imperative that developers implement

thorough verification and sanitization measures even when

these links do not directly concern the app’s functionality.

Content Security Policy (CSP). CSP is an important

safeguard against cross-site scripting and data injection

attacks, as it grants developers control over which resources

are allowed to be loaded, thereby reducing the risk of

unauthorized or malicious content being executed. In our

evaluation of 109 apps, we discovered that only 18 apps had

implemented a CSP. However, upon further analysis using

Google’s CSP Evaluator [20], we found that the CSPs of 16

of these apps returned warnings. Of these, 15 apps included

a directive with an attributed severity value of 50, associated

with a possible medium severity finding.

Cookie Encryption. Starting from Electron v15 (Sept.

2021), developers can encrypt cookies stored on the user’s

file system [43]. However, Inspectron found only two apps

(Front [44] and Slack [45]) doing this, while all other apps

stored cookie values in plaintext. This poses a significant

security risk since, in contrast to mobile platforms, these

files will be readable to essentially any other process being

executed. Upon manual evaluation, we found 66 apps that

store sensitive information, including information necessary

for authentication/sign-in (e.g., ChatWork [46], an enterprise

team chat application, and Wordpress [42]).

Popular apps. We also perform a more in-depth exam-

ination of 10 popular Electron apps. First, we download

multiple historical versions of each app and report on the

frequency of their updates. Next, for each app we consider

the latest available version as of May 2023, and employ

proof-of-concept exploits affecting V8 and Blink to verify

if these bugs have a trickle-down effect on Electron apps.

Finally, we augment Inspectron with pre-recorded user

interaction traces to increase coverage (see Appendix ??).

User Interactions. These apps have unique features and

capabilities, so we developed a series of custom-tailored user

interaction patterns. These include actions such as (a) signing

in, (b) opening and closing tabs and windows, (c) engaging

with and providing text input (e.g., within messaging inter-

faces), (d) interacting with and uploading files (e.g., media

attachments), and (e) clicking on links within the app. These

additional interactions enabled Inspectron to provide more

extensive reports. To facilitate further research and analysis,

we will make these interactions available upon publication.

Historical Versions. Beginning in September 2021,

Electron moved to a new release cadence, with a new stable

version released every 8 weeks, following Chrome’s Extended

Stable release cycles. As a result, Electron keeps up-to-date

with alternating Chrome releases [24]. These regular updates

are intended to help Electron-based apps stay updated

with upstream fixes, including from Chrome, in terms of

performance and security. While our larger analysis showed

 75

 80

 85

 90

 95

 100

 105

 110

 115

Apr
 2

0

Ju
l 2

0

O
ct
 2

0

Ja
n

21

Apr
 2

1

Ju
l 2

1

O
ct
 2

1

Ja
n

22

Apr
 2

2

Ju
l 2

2

O
ct
 2

2

Ja
n

23

Apr
 2

3

Ju
l 2

3

C
h
ro

m
e
 V

e
rs

io
n
s

Month/Year

Discord
GHDesktop

Notion
Obsidian

Skype
Slack

VSCode
WhatsApp

Chrome

Figure 5: Distribution of Chrome versions of popular apps.

Table 2: Comparative impact analysis of various CVEs.

Apps
Chrome

CVE 2021-30632 2022-1364 2022-3656 DiffCSP [47]

(High) (High) (Medium) –

WordPress.com 89.0.4389.128 ✓ ✓ ✓ ✓

Postman 100.0.4896.160 ✗ ✗ ✓ ✓

WhatsApp 91.0.4472.164 ✗ ✓ ✓* ✓***

Chrome 113.0.5672.127 ✗ ✗ ✗ ✗

✓denotes that the app is vulnerable.
* Implements custom handlers for file drag & drop. We expand upon this in the text.
** Vulnerable to ‘javascript:alert()’. We expand upon this in the text.

that apps rarely use the latest Electron version, this is also

the case with widely popular apps. We gathered the release

versions of 8 popular apps between August 2020 and May

2023, and matched their underlying Chromium versions.1 An

overview of our findings is presented in Figure 5. Despite

Electron’s regular releases, these apps are consistently behind

the latest version of Chrome. Additionally, each app follows

its own release and update cycle, independent of Electron

and Chrome. As a result, security fixes and updates remain

unfixed and known vulnerabilities remain exploitable for

months before apps update to newer versions.

Chrome Version and V8/Blink-based Exploits. Electron apps

also depend on Chrome’s implementation of V8 and Blink.

Chrome regularly receives high-severity exploits of these com-

ponents, with some attacks even granting remote code access

to the user’s system [48]. As a result, when bugs are reported

in these components, they also affect Electron. While Chrome

quickly ships patches, Electron apps can only take advantage

of these patches if and when they update to the latest version

of Chrome available in Electron. Next, we chose three CVEs

with publicly available proof-of-concept exploits. These

CVEs make use of vulnerabilities in V8 and Blink and have

known usage in Remote Code Execution (RCE) attacks. In Ta-

ble 2, we show that the latest available versions of Wordpress,

Postman, and WhatsApp desktop apps are vulnerable to ex-

ploits that are up to 2 years old as of May 2023. First, we iden-

1We do not include Wordpress and Postman as we could not find prior

versions of the former, and the latter has non-dated release information.

Table 3: Overview of vulnerable components of popular apps.

App Renderer Process Chromium Main Process

Wordpress.com G#

Postman G#

WhatsApp G# G#

Notion G# G#

Obsidian G# G#

Discord # G#

Skype - #

VS Code G# #

Slack G# #

GitHub Desktop G# #

tified the underlying version of Chrome that each of these apps

relies on. Next, we identified three CVEs that affected the V8

or Blink engines and had proof-of-concept exploits that were

publicly available [49–51]. To evaluate each CVE on the app,

we opened it and navigated to the DevTools console. We ex-

ecuted the CVE’s proof-of-concept code and verified success-

ful execution, i.e., it reported an expected type confusion [50],

heap corruption [49], or provided access to sensitive files [51].

Therefore, we confirmed that these bugs also affect the latest

version of Electron apps despite being patched in Chrome.

Vulnerabilities across components. Our threat model (§2.1)

highlights the risk of chaining multiple vulnerabilities across

components for exploiting existing app vulnerabilities. In

Table 3, we detail vulnerable components in popular apps.

Note that a successfully chained exploit requires compromise

and code execution within the renderer process that can then

be chained with compromises in Chromium components

(V8/Blink) or with vulnerabilities in the Main Process.

Below, we discuss examples of insecure practices and present

scenarios for exploits which we responsibly disclosed.

Wordpress. The Wordpress desktop app utilizes outdated

versions of Chromium, V8, and Blink, which contain bugs

that have been targeted in RCE attacks. Furthermore, the app

lacks proper restrictions on external navigation; when users

click on links they are navigated to these links within the app,

allowing the sites accessed through these links to maintain

access to JavaScript execution on the renderer process. This

flaw becomes particularly critical due to the app’s use of

older versions of Electron, which do not implement default

process sandboxing. Consequently, an attacker can leverage

this vulnerability by posting a comment containing a link on a

Wordpress blog or sending a message to a Wordpress account.

If the victim, who manages their blog using the Wordpress

app, clicks on the provided link, they will be unwittingly

redirected to a malicious site that can execute arbitrary code.

Postman. This app also similarly relies on outdated

versions of Chromium, V8, and Blink. Since this app hosts

documentation for public APIs, which often contain external

links, it has implemented a protective measure by opening

clicked links within a new window that operates in a restricted

and sandboxed environment. This setup aims to limit the

reach and impact of third-party content. However, the app’s

use of older Chromium versions introduces a significant

weakness, as known bugs in Blink and V8 can bypass the re-

strictions imposed by the sandbox. Consequently, despite the

attempt to confine the impact of external links, the outdated

dependencies increase the risk of successful RCE attacks.

WhatsApp. The latest version (May 2023) incorporates

Electron v13 (Chromium v91), which is currently 15 months

old. Over this period, several critical security vulnerabilities

have been identified and addressed. However, the app

still operates within an insecure web environment, lacking

context isolation and the utilization of Chromium’s sandbox

features. Furthermore, it permits the use of a deprecated

feature that allows the remote loading of node modules,

further compromising its security posture. While WhatsApp

restricts users from navigating to third-party websites within

the app, it does grant access to https://www.facebook.com,

thus relying on the security measures of that particular

domain. This exposes the app to any vulnerabilities that may

appear on Facebook’s website. Moreover, the app employs

an insecure CSP that permits the execution of scripts from

multiple origins, including potentially vulnerable paths. For

example, XSStrike [21] reported at least one vulnerable path

under https://maps.googleapis.com. WhatsApp implements

custom handlers when a user drags-and-drops a file, which

interferes with the proof-of-concept exploit available for CVE

2022-3656 [51]; however, the Chromium version it depends

on remains vulnerable. This version is also vulnerable to CSP

enforcement bugs found by Wi et al. [47], which erroneously

allow the execution of arbitrary javascript code despite lim-

iting such execution using the script-src-elem directive.

Notion. Notion is a popular productivity app that is

widely utilized by organizations for content management

and creation, and collaboration and task coordination among

teams. By default, the Notion app follows a security-oriented

approach where external links are passed to the host operating

system, ensuring that third-party sites cannot be loaded

within the app. However, there is a special provision in

place that allows the app to allowlist Single Sign-On (SSO)

domains associated with user logins, including organizational

SSO redirects. This means that if a team configures its

employees to access the app using email addresses like

employee@company.com, which redirects to a designated

SSO domain such as sso.company.com, Notion permits

navigation to that specific SSO domain within the app.

Furthermore, when the app navigates to these allowlisted

third-party links, the Notion app retains access to preloaded

APIs that trigger unverified IPC calls to the main process.

This design decision enables the renderer process to maintain

connectivity and functionality with essential features handled

by the main process, which does not verify the sender. As a

result, these third-party links now possess the capability to

pass messages to the main process, allowing for actions such

as (1) accessing, modifying, and deleting cookies, and (2)

accessing auth-tokens utilized for the app’s websocket-based

communication with Notion’s servers. In the previously stated

example, if an organization’s SSO redirect were to be compro-

mised, its members would face privacy risks as sensitive infor-

mation from the team’s Notion workspace could be extracted.

Additional evaluation. Here we discuss additional

findings; first, we present two new attack vectors that we

reported to the developers of Electron.js. Next, we evaluate

how Electron apps inherit CSP bugs from Chromium.

Permissions-Policy. This directive offers a way for develop-

ers to control access to specific features, including permission

to access hardware devices, like the camera and microphone.

This can be configured by either setting the allow attribute

on iframes or by including the directive in the HTTP response

header. Electron relies on the underlying Chromium source

to enforce the Permissions-Policy. Consequently, when

the corresponding directives are detected, Electron restricts

access to the camera or microphone by restricting calls to

navigator.getUserMedia() which correctly blocks access.

Similarly, when the Permissions-Policy directive aims to

limit access to the screen by including the display-capture

directive, Electron imposes restrictions on the use of the

navigator.getDisplayMedia() function. However,

Electron instead exposes access to the display through calls

made to navigator.getUserMedia() [52] (see §2), which

remain unaffected by the Permissions-Policy directive.

This results in an erroneous implementation that fails to limit

access to the screen even when explicitly directed to do so.

X-Frame-Options. Electron implements the <webview>

tag as an out-of-process iframe (OOPIF). Consequently, it

is important to respect the X-Frame-Options: DENY header

when loading content within the <webview> tag. When

loading content within a regular <iframe> tag, we found

that the framework relies on Chrome’s implementation

of restrictions and prohibits the loading of content that

includes an X-Frame-Options: DENY header in its response;

however, it does not do the same with content loaded within

the <webview> tag. Allowing cross-site content to load

within another frame can potentially result in manipulation of

sensitive content within those frames. This problem may be

further exacerbated depending on the Electron app’s specific

implementation of privileges exposed to the webview, includ-

ing IPC communication and preloaded APIs. We reported

this finding to the Electron team and were informed that this

is “expected and desired behavior” of the <webview> tag: “It

bypasses certain traditional restrictions of iframes, includes

[sic] X-Frame-Options, but also allows more capabilities that

would also violate the traditional web security model.”

Content Security Policy (CSP) Enforcement. Wi et al. [47]

conducted an extensive analysis of how various CSP

directives were enforced across different web browsers, and

reported six critical bugs to the Chrome browser. We reached

out to the authors and accessed the proof-of-concept snippets

that they had included in their disclosures. After replicating

Table 4: Number of apps that did not pass each type of check.

Checks Electronegativity Inspectron Intersection

Web Preferences* 29 (6) 66 17

Navigation Handling 91 (19) 75 59

Command-line Switches 5 10 2

Cross-context JS Execution 24 27 9

Preloaded APIs 11 19 7

Permission Request Handling 97 (1) 98 96

Custom Protocols 29 36 22

Certificate Verification 13 8 5

Open External 75 56 52

Content Security Policy 101 (9) 87 78

Total True Positives 440 482 347

* We report on nodeIntegration, contextIsolation, and sandbox.

the issues in Chrome v99 (the version they used), we then

evaluated the CSP implementations of the corresponding

Electron framework v17.4.11. We discovered that the incor-

rect enforcements observed in Chrome had trickled down

to Electron as well. Consequently, these security flaws also

impact any app developed using Electron, thus amplifying

the potential risks posed by Electron’s reliance on Chrome.

4.1 Comparison to State-of-the-Art

Electronegativity is a state-of-the-art static analysis tool for

app developers to assess their Electron apps for potential

security concerns [53]. Given a directory that contains an

app’s code, Electronegativity thoroughly examines HTML,

JavaScript, and JSON files, and utilizes an Abstract Syntax

Tree (AST) to conduct checks at two distinct levels. First,

it performs “atomic” checks that evaluate branches within the

codebase to identify potential vulnerabilities. Then, it applies

“global” checks that combine atomic checks and discard false

positives, before reporting points of concern.

Checks and Capabilities. Despite adopting fundamentally

different approaches, both Electronegativity and Inspectron

report on certain overlapping attributes of Electron apps.

We developed Inspectron with a larger purview of checks

and capabilities, in order to provide a more comprehensive

assessment of app behavior. Table 5 (Appendix) presents an

overview of the differences in the tools’ capabilities. Briefly,

Inspectron exclusively handles 5 checks that are not consid-

ered by Electronegativity. Of the 10 overlapping checks, In-

spectron employs additional, in-depth evaluation for 7 factors,

which include important aspects missed by Electronegativity.

We provide a more detailed comparison in §A.3 (Appendix).

App Evaluation. We compared both tools by generating

reports on the same app dataset. We evaluated each app

following our one-touch approach, i.e., opening the app but

not interacting with it. Our setup limited the coverage gained

by Inspectron but allowed a comparison on a wider array

of apps for comparison. For Electronegativity we explicitly

provided the Electron version of the framework instead of

relying on Electronegativity’s incomplete detection. This

way, we ensured that the reports provided by both tools

address the same underlying framework version. We find

that even without app-exercising user interactions, Inspectron

outperforms Electronegativity in identifying and reporting

potential vulnerabilities for the majority of common checks,

as it conducts a more comprehensive analysis. A comparison

of the potential vulnerabilities reported by Inspectron and

Electronegativity is presented in Table 4, where (#) indicates

false postives (e.g., 29 (6) indicates 23 true positive findings).

Static and Computed Configurations. Electronegativity

relies on analyzing multiple files spread across the applica-

tion’s directory and looks for specific nodes and relationships

within the constructed AST. Even so, the tool experiences

difficulty in correctly gathering configuration values, includ-

ing command-line switches that enable/disable experimental

features and web preferences on individual windows. Apps

declare both checks as JSON objects but include these

objects in different locations, e.g., within the app’s metadata

declared within a package.json file, within an environment

(.env) file, or within code but in an obfuscated manner that is

computed at runtime (e.g., setting nodeIntegration: !0).

Eletronegativity managed to correctly identify insecure pref-

erences in only 23 apps (vs. 66 apps reported by Inspectron)

and identified the use of experimental features in 5 apps (vs.

10 apps reported by Inspectron). Our findings indicate that

Electronegativity is limited in its ability to parse inter-file

relationships and to compute actual configuration values.

Coverage. We used Inspectron to perform a one-touch com-

parison and, as a result, did not trigger functionality specific to

each application. As a result, the numbers reported for event-

based triggers (e.g., cross-context JS execution, open exter-

nal) and window-specific handlers (e.g., navigation handling,

preloaded APIs, certificate verification) present a lower bound.

Inspectron can report on these checks only after observing

their use, which is triggered by interaction. On the other hand,

Electronegativity can scan the source code of the entire appli-

cation and therefore does not face that limitation. As a result,

it reports the use of open external in 75 apps (vs. 56 apps re-

ported by Inspectron), certificate verification bypasses within

13 apps (vs. 8 apps reported by Inspectron), and also the use

of preloaded APIs on 4 apps for which Inspectron did not open

the corresponding window. However, even with its advantage

in coverage, Electronegativity missed 18 apps that attempted

JS execution in a cross-context manner, and 16 apps that in-

cluded handlers for in-app navigation, which were detected

by Inspectron. Similarly, while Inspectron outperforms Elec-

tronegativity in reporting the remaining 7 checks, in the one-

touch comparison Inspectron misses findings for these checks

that are observed by Electronegativity. However, researchers

can overcome this limitation by creating scripts to simulate

user interaction specific to each application, as we demon-

strated with the 10 popular apps (§A.3 in the Appendix).

False Positives. The static analysis approach adopted

by Electronegativity is limited in its ability to correctly

determine apps’ runtime configurations. We manually

evaluated the reports gathered for each application and

observed that the practices highlighted by Electronegativity

include numerous false positives. While reporting on in-app

navigation it does not consider the use of Electron.js’s

setWindowOpenHandler, and includes incorrect reports for

19 apps. Additionally, Electronegativity cannot evaluate CSP

values that are set at runtime, (e.g., with network response

headers, and within remote content), and therefore incorrectly

reports the absence of a CSP in 9 apps. Finally, as highlighted

earlier, the tool is limited in its ability to determine computed

values, and reports 6 apps as using insecure preferences when

the eventual preference set at runtime are actually secure.

Inspectron does not suffer from these limitations since it high-

lights insecure practices only upon observing them at runtime.

5 Discussion and Limitations

Limitations. While Inspectron offers a comprehensive evalu-

ation of packaged apps at runtime, it is important to acknowl-

edge its limitations. First, Inspectron necessitates the use of

an equivalent instrumented version of Electron. While the

initial engineering investment was nontrivial, the necessary

modifications have remained roughly consistent across ver-

sions, and we expect that maintaining this patchset should not

be burdensome for the Electron project, security researchers,

or interested downstream applications. Additionally, if Elec-

tron (or security researchers) released an instrumented version

for each major version, this would eliminate the burden on in-

dividual app developers and streamline the use of Inspectron.

Second, our system encounters challenges when dealing

with the unique directory structures and integrity checks

implemented by app developers. This includes (1) additional

dependent resources being placed outside of the designated

resources directory, (2) non-standard helper libraries and mod-

ified Electron versions being used to build within packaged

apps, (3) additional integrity checks hindering the execution

of files copied from the resources directory in a different

environment, and (4) restricting the use of command-line

switches at runtime, limiting our ability to connect to the app

via the DevTools protocol and test it using a Puppeteer script.

Finally, Inspectron is a dynamic analysis tool, and fully

analyzing an app requires UI-based interaction (as we did for

10 popular apps). This additional workload can be offset by

developers recording UI traces once for their app, and reusing

these traces by integrating them into their automated Inspec-

tron testing. Despite these limitations, our tool surpasses the

state-of-the-art in identifying security violations in apps.

Countermeasures and guidelines. Our study has illumi-

nated multiple problematic aspects of the Electron app ecosys-

tem. While Electron has evolved toward more secure default

configurations over time, older versions have significant omis-

sions. Moreover, as we found many cases of developers re-

moving protections offered by the default configurations, Elec-

tron maintainers should explore strategies for constraining the

level of customization possible in security-critical functional-

ity and implementing stricter default policies. This approach

can be particularly beneficial for less “security-aware” devel-

opers who may not have in-depth knowledge of secure coding

practices. Next, even though Electron provides regular up-

dates, our findings indicate that most apps do not keep up with

them. As such, it is crucial that app developers ensure that

they always rely on the latest version of the Electron frame-

work. However, while enforcing regular updates can guaran-

tee that Chromium and V8 receive the latest security patches,

it is important to note that frequent updates can present main-

tenance challenges (e.g., handling newly added or deprecated

features). Nonetheless, until such solutions are explored, de-

velopers can integrate Inspectron into their testing pipeline

and regularly test if their apps violate secure practices.

Ethics and disclosure. All of our experiments were carried

out locally without any interaction or impact on real users;

for apps that required authentication we used test accounts.

When using XSStrike [21] we only evaluated domains for

DOM XSS to report potentially vulnerable objects, and did

not adversely affect any domain. Prior to our initial paper

submission, we submitted reports to 4 popular apps in June

2023. Between June and November 2023, we performed an

additional round of manual verification of our findings across

all evaluated apps, and prepared individual reports. For each

app, we parsed their website or repository (if available),

and identified their stated disclosure procedure (i.e., email,

custom portal, GitHub/GitLab issue, or a specific disclosure

process within repositories). We submitted reports to an addi-

tional 100 apps; we did not submit reports to 4 popular apps

(VSCode, Slack, Obsidian, and Discord), since we found that

they include additional measures as mitigations against our

attack vectors (e.g., prompting users). Additionally, Discord

RPC Maker [54] was archived before we could submit a

report. We received responses from 43 apps, and 11 apps

have deployed corresponding fixes. We received rewards

from three apps (Postman, Wordpress, and Cacher), and our

disclosure to Altair GraphSQL was evaluated as a “High

Severity” CVE by NIST, while GitHub released an advisory

based on our report. We also submitted two reports to the

Electron framework regarding their implementations of web

standards, i.e., Permissions-Policy and X-Frame-Options.

Availability. We are making our tool’s source code and

UI traces available, along with an extended version of this

paper that further details the implications of our checks [55].

6 Related Work

Inspectron is a novel, automated, dynamic analysis system

that evaluates Electron apps. In this section, we discuss prior

work that analyzed the web and app ecosystems.

Browser testing. Web browsers have been extensively

studied in the past with various frameworks evaluating imple-

mentations of a range of security-relevant features. Singh et

al. [56] built a framework for analyzing the usage of browser

features in the wild and detecting access-control flaws.

De Groef et al. [57] developed a browser that implements

precise and flexible information flow controls for web scripts.

Schwenk et al. [58] showed that a lack of specification

resulted in browsers including varying implementations of the

Same-Origin policy. Similarly, Wi et al. [47] found variation

in the enforcement of CSP directives across modern browsers.

Luo et al. [59] developed a browser-agnostic framework and

studied UI vulnerabilities in mobile browsers. Jueckstock and

Kapravelos [60] developed VisibleV8, an dynamic analysis

framework hosted in V8, that reported property accesses at

runtime. Similarly, Sarker et al. [61] developed an instru-

mented Chromium and used dynamic analysis to identify JS

obfuscation through API calls in the wild. Numerous other

works have evaluated the implementation of cookies and

caching mechanisms [62–68], authentication flows [69–71],

and access control and authorization pitfalls [72–75].

Automated app testing. Kals et al. [76] developed a

vulnerability scanner that evaluated web apps for various

vulnerabilities including SQL injections and Cross-Site

Scripting (XSS). Doupé et al. [77] adopted a way to infer

the web app’s internal state, which was incorporated in their

vulnerability evaluation. Duchéne et al. [78, 79] implemented

a fuzzing and reverse engineering approach to infer control

and data flows for XSS detection. More recently, Eriksson et

al. [80] used navigation modeling, traversing, and the tracking

of inter-state data dependencies for developing a web app

scanner. Drakonakis et al. [81] presented a scanner-agnostic

middleware framework that performs black-box evaluation

that mediates the scanner’s interactions with the web app

with the help of an instrumented web browser.

Evaluating Electron. Carettoni [82] presented the static

analysis tool, Electronegativity, and covered the state of

Electron security, addressing its implications and adoption

back in 2017. Krishna et al. [83] presented examples of

exploits in popular Electron apps due to insecure web

preferences. More recently, Xiao et al. [10] studied Remote

Code Execution (RCE) attacks within cross-platform desktop

apps. They instrumented the V8 source code on a single

version of the Electron framework to identify and defend

against cross-context control flow between the renderer

and main processes. Their approach covers Electron’s IPC

communication, which is one of the checks covered by

Inspectron. They state that their instrumentation also covers

36 Node.js APIs and 2 native Javascript APIs, i.e., calls to

libraries other than those used by the Electron framework

– unfortunately, we have not been able to obtain their code

to conduct a more comprehensive comparison. While their

approach attempts to limit IPC, our work highlights that

vulnerabilities within Electron apps can result from numerous

components beyond communication channels alone. In

addition to checking IPC channels, we additionally report

on vulnerabilities resulting from insecure configurations

within the main process, fuses and command-line switches

that affect the app as a whole, and resources and various

web-based practices adopted within the renderer process.

Jin et al. [9] evaluated Electron apps for vulnerabilities

resulting from unintended modifications to the DOM-tree.

They instrumented Blink to enforce a parallel type-based

DOM, analogous to the implementation of the Trusted Types

specification [84]. Their approach requires developers to

comprehensively evaluate all features of their app against

the instrumented Electron so that it learns and builds a

type-based DOM tree. While their approach requires

significant overhead in participation and effort from devel-

opers, a comprehensively-evaluated app could successfully

protect it against sanitization-based vulnerabilities. Their

defense addresses some potential concerns that we report

on, i.e., incorrect handling of new windows and webviews.

Nonetheless, Inspectron covers a vast range of additional

vulnerabilities, including those resulting from insecure CSPs,

misuse of preloaded APIs, and all of the checks covered

within the main process. In summary, we perform a more

extensive evaluation of numerous security violations and

cover a larger threat model beyond the scope of prior work.

Despite the popularity and wide adoption of Electron apps,

they have received limited scrutiny from researchers. The

general disregard for web standards and good security prac-

tices that we have found within this ecosystem is particularly

concerning. We hope that our work will incentivize additional

research and investigations from the security community.

7 Conclusion

The heterogeneity of execution environments poses a major

challenge for software companies that aim to have a presence

on different application platforms. As a result, cross-platform

apps have become an attractive solution, due to the ability

to reuse large parts of their existing web-based application

code when creating standalone apps for various platforms.

However, as our study reveals, this comes at a significant

cost. Using Inspectron, we conducted a black-box auditing

of a wide range of Electron apps that differ in terms of

functionality, capabilities, and popularity. Our findings reveal

a fragmented ecosystem fraught with insecure practices,

misconfigurations, and outdated components. Crucially, we

find that the entire ecosystem exhibits a significant regression

in terms of the protections offered to users, as the configura-

bility of the Electron framework has resulted in apps that are

vulnerable to attacks that have become obsolete in the web

ecosystem due to the security mechanisms already baked into

modern browsers. Overall, our research sheds light on the

problematic practices of Electron app developers, highlighting

the need for more constraints in the configuration of security-

relevant functionality and more stringent policies about

keeping the core components of Electron apps up-to-date.

Acknowledgements

We thank the anonymous reviewers for their helpful feed-

back. This project was supported by the National Science

Foundation (CNS-2211574, CNS-2143363). The views in

this paper are only those of the authors and may not reflect

those of the US Government or the NSF.

References

[1] S. Roth, T. Barron, S. Calzavara, N. Nikiforakis, and B. Stock, “Complex

security policy? a longitudinal analysis of deployed content security

policies,” in NDSS, 2020.

[2] J. Chen, J. Jiang, H.-X. Duan, T. Wan, S. Chen, V. Paxson, and M. Yang,

“We still don’t have secure cross-domain requests: an empirical study

of cors.” in USENIX Security, 2018.

[3] S. Calzavara, A. Rabitti, and M. Bugliesi, “Content security problems?

evaluating the effectiveness of content security policy in the wild,” in

ACM CCS, 2016.

[4] C. Dietrich, K. Krombholz, K. Borgolte, and T. Fiebig, “Investigating

system operators’ perspective on security misconfigurations,” in ACM

CCS, 2018.

[5] L. Wei, Y. Liu, and S.-C. Cheung, “Taming android fragmentation:

Characterizing and detecting compatibility issues for android apps,” in

IEEE/ACM ASE, 2016.

[6] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library

detection in android and its security applications,” in ACM CCS, 2016.

[7] T. Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson, and

E. Kirda, “Thou shalt not depend on me: Analysing the use of outdated

javascript libraries on the web,” in NDSS, 2017.

[8] P. Salza, F. Palomba, D. Di Nucci, A. De Lucia, and F. Ferrucci, “Third-

party libraries in mobile apps: When, how, and why developers update

them,” Empirical Software Engineering, vol. 25, pp. 2341–2377, 2020.

[9] Z. Jin, S. Chen, Y. Chen, H. Duan, J. Chen, and J. Wu, “A security study

about electron applications and a programming methodology to tame

dom functionalities,” in NDSS, 2023.

[10] F. Xiao, Z. Yang, J. Allen, G. Yang, G. Williams, and W. Lee,

“Understanding and mitigating remote code execution vulnerabilities

in cross-platform ecosystem,” in ACM CCS, 2022.

[11] “Process Model | Electron,” 2023. [Online]. Available:

https://electronjs.org/docs/latest/tutorial/process-model

[12] “Blink (Rendering Engine),” 2023. [Online]. Available:

https://www.chromium.org/blink/

[13] “Diving Into Electron Web API Permissions · Doyensec’s Blog,” 2022.

[Online]. Available: https://blog.doyensec.com/2022/09/27/electro

n-api-default-permissions.html

[14] “File System Access,” 2023. [Online]. Available:

https://wicg.github.io/file-system-access/#privacy-considerations

[15] “Copies of Existing Electron Vulnerability Reports,” 2023. [Online].

Available: https://anonymous.4open.science/r/electron-past-bug-r

eports-33C6

[16] S. Li, M. Kang, J. Hou, and Y. Cao, “Detecting node. js prototype

pollution vulnerabilities via object lookup analysis,” in ACM ESEC/FSE,

2021.

[17] “Application Packaging | Electron,” 2023. [Online]. Available:

https://electronjs.org/docs/latest/tutorial/application-distribution

[18] “Native Node Modules | Electron,” 2023. [Online]. Available: https:

//www.electronjs.org/docs/latest/tutorial/using-native-node-modules

[19] “Security | Electron,” 2023. [Online]. Available:

https://electronjs.org/docs/latest/tutorial/security

[20] “CSP Evaluator | Google,” 2023. [Online]. Available:

https://csp-evaluator.withgoogle.com/

[21] “XSStrike | GitHub,” 2023. [Online]. Available:

https://github.com/s0md3v/XSStrike

[22] “Doyensec | Awesome Electronjs Hacking | Vulnerabilities Write-Ups

and Exploits,” 2022. [Online]. Available: https://github.com/doyensec/

awesome-electronjs-hacking#vulnerabilities-write-ups-and-exploits

[23] “Electron build tools,” 2023. [Online]. Available:

https://github.com/electron/build-tools

[24] “New Electron Release Cadence,” 2021. [Online]. Available:

https://www.electronjs.org/blog/8-week-cadence

[25] “Electron Releases,” 2023. [Online]. Available:

https://www.electronjs.org/docs/latest/tutorial/electron-timelines

[26] L. Carretoni, “Preloading Insecurity In Your Electron,”

https://i.blackhat.com/asia-19/Thu-March-28/bh-asia-Caret

toni-Preloading-Insecurity-In-Your-Electron.pdf, 2019.

[27] Postman, Inc., “Postman api platform,” 2023. [Online]. Available:

https://www.postman.com/

[28] Altair, “Altair graphql client,” 2023. [Online]. Available:

https://altairgraphql.dev/

[29] IPTVnator, “Cross-platform IPTV player application with multiple

features, such as support of m3u and m3u8 playlists, favorites, tv

guide, tv archive/catchup and more.” 2023. [Online]. Available:

https://github.com/4gray/iptvnator

[30] T. Steiner, “Deprecating and removing WebSQL,” aug 2022. [Online].

Available: https://developer.chrome.com/blog/deprecating-web-sql/

[31] “desktopCapturer | Electron,” 2023. [Online]. Available:

https://www.electronjs.org/docs/latest/api/desktop-capturer

[32] T. Junghans, “Node V8 Option max-old-space-size,” may 2023.

[Online]. Available: https://gist.github.com/tjunghans/90ff3bbf575

b8b1da41f3fb56e374931

[33] “Trusted Types,” sep 2022. [Online]. Available:

https://www.w3.org/TR/trusted-types/

[34] “Colibri: Browse without tabs,” may 2023. [Online]. Available:

https://colibri.opqr.co/

[35] “Ferdi: All your apps in one place,” may 2023. [Online]. Available:

https://getferdi.com/

[36] “Biscuit: A browser so your apps dont́ get buried in tabs,” may 2023. [On-

line]. Available: https://chromestatus.com/feature/5768642492891136

[37] “Feature: Out-Of-Renderer Cross-Origin Resource Sharing (aka

OOR-CORS or OutOfBlinkCors),” oct 2019. [Online]. Available:

https://www.chromium.org/Home/loading/oor-cors/

[38] “OOR-CORS: Out of Renderer CORS,” oct 2018. [Online]. Available:

https://eatbiscuit.com/

[39] “Advanced REST Client,” may 2023. [Online]. Available:

https://install.advancedrestclient.com/

[40] “Breaking Changes | Electron,” 2023. [Online]. Available:

https://www.electronjs.org/docs/latest/breaking-changes#removed

-webcontents-new-window-event

[41] “Sentry | Electron,” 2023. [Online]. Available:

https://docs.sentry.io/platforms/javascript/guides/electron/

[42] Wordpress.com, “Give wordpress a permanent home in your dock,”

2023. [Online]. Available: https://apps.wordpress.com/desktop/

[43] P. Krill, “Electron framework adds encryption API,” sep 2021. [Online].

Available: https://www.infoworld.com/article/3634383/electron-fra

mework-adds-encryption-api.html

[44] “Front: Stay connected from any device,” may 2023. [Online].

Available: https://front.com/download

[45] “Slack: Where work happens,” may 2023. [Online]. Available:

https://slack.com/

[46] Chatwork, “Group chat for global teams,” 2023. [Online]. Available:

https://go.chatwork.com/en/

[47] S. Wi, T. T. Nguyen, J. Kim, B. Stock, and S. Son, “Diffcsp: Finding

browser bugs in content security policy enforcement through differential

testing,” in NDSS, 2023.

[48] “CVE: Seach Results,” may 2023. [Online]. Available:

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=v8

[49] “CVE-2021-30632 Detail,” 2021. [Online]. Available:

https://nvd.nist.gov/vuln/detail/CVE-2021-30632

[50] “CVE-2022-1364 Detail,” 2022. [Online]. Available:

https://nvd.nist.gov/vuln/detail/CVE-2022-1364

[51] “2022-3656 Detail,” 2022. [Online]. Available:

https://nvd.nist.gov/vuln/detail/CVE-2022-3656

[52] “Web Embeds,” 2023. [Online]. Available: h t tps :

//www.electronjs.org/docs/latest/tutorial/web-embeds

[53] “Doyensec | Electronegativity Official Documentation,” 2022. [Online].

Available: https://github.com/doyensec/electronegativity/wiki/Home

[54] ThatOneCalculator, “DiscordRPCMaker: The best way to make and

manage custom discord rich presences with buttons,” 2023. [Online].

Available: https://github.com/thatonecalculator/discordrpcmaker

[55] “Inspectron Repository,” 2024. [Online]. Available:

https://github.com/masood/inspectron

[56] K. Singh, A. Moshchuk, H. J. Wang, and W. Lee, “On the incoherencies

in web browser access control policies,” in IEEE Symposium on Security

and Privacy, 2010.

[57] W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens, “Flowfox:

A web browser with flexible and precise information flow control,” in

ACM CCS, 2012.

[58] J. Schwenk, M. Niemietz, and C. Mainka, “Same-Origin policy:

Evaluation in modern browsers,” in USENIX Security, 2017.

[59] M. Luo, O. Starov, N. Honarmand, and N. Nikiforakis, “Hindsight:

Understanding the evolution of ui vulnerabilities in mobile browsers,”

in ACM CCS, 2017.

[60] J. Jueckstock and A. Kapravelos, “Visiblev8: In-browser monitoring

of javascript in the wild,” in ACM IMC, 2019.

[61] S. Sarker, J. Jueckstock, and A. Kapravelos, “Hiding in plain site:

Detecting javascript obfuscation through concealed browser api usage,”

in ACM IMC, 2020.

[62] S. Englehardt and A. Narayanan, “Online tracking: A 1-million-site

measurement and analysis,” in ACM CCS, 2016.

[63] K. Drakonakis, S. Ioannidis, and J. Polakis, “The cookie hunter:

Automated black-box auditing for web authentication and authorization

flaws,” in ACM CCS, 2020.

[64] M. M. Ali, B. Chitale, M. Ghasemisharif, C. Kanich, N. Nikiforakis,

and J. Polakis, “Navigating Murky Waters: Automated Browser Feature

Testing for Uncovering Tracking Vectors,” in NDSS, 2023.

[65] L. Knittel, C. Mainka, M. Niemietz, D. T. Noß, and J. Schwenk,

“Xsinator.com: From a formal model to the automatic evaluation of

cross-site leaks in web browsers,” in ACM CCS, 2021.

[66] J. Rautenstrauch, G. Pellegrino, and B. Stock, “The leaky web:

Automated discovery of cross-site information leaks in browsers and

the web,” in IEEE Symposium on Security and Privacy, 2023.

[67] S. Sivakorn, I. Polakis, and A. D. Keromytis, “The cracked cookie jar:

Http cookie hijacking and the exposure of private information,” in IEEE

Symposium on Security and Privacy, 2016.

[68] K. Solomos, J. Kristoff, C. Kanich, and J. Polakis, “Tales of favicons

and caches: Persistent tracking in modern browsers,” in NDSS, 2021.

[69] M. Ghasemisharif, A. Ramesh, S. Checkoway, C. Kanich, and J. Polakis,

“O single Sign-Off, where art thou? an empirical analysis of single

Sign-On account hijacking and session management on the web,” in

USENIX Security, 2018.

[70] M. Ghasemisharif, C. Kanich, and J. Polakis, “Towards automated

auditing for account and session management flaws in single sign-on

deployments,” in IEEE Symposium on Security and Privacy, 2022.

[71] A. Sudhodanan and A. Paverd, “Pre-hijacked accounts: An empirical

study of security failures in user account creation on the web,” in

USENIX Security, 2022.

[72] S. Roth, S. Calzavara, M. Wilhelm, A. Rabitti, and B. Stock, “The

security lottery: Measuring Client-Side web security inconsistencies,”

in USENIX Security, 2022.

[73] Z. Weinberg, E. Y. Chen, P. R. Jayaraman, and C. Jackson, “I still

know what you visited last summer: Leaking browsing history via user

interaction and side channel attacks,” in IEEE Symposium on Security

and Privacy, 2011.

[74] S. Calzavara, T. Urban, D. Tatang, M. Steffens, and B. Stock, “Reining

in the Web’s Inconsistencies with Site Policy,” 2021.

[75] S. Karami, P. Ilia, and J. Polakis, “Awakening the web’s sleeper

agents: Misusing service workers for privacy leakage,” in Network and

Distributed System Security Symposium, 2021.

[76] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic, “Secubat: A web

vulnerability scanner,” in WWW, 2006.

[77] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of the state:

A State-Aware Black-Box web vulnerability scanner,” in USENIX

Security, 2012.

[78] F. Duché, S. Rawat, J.-L. Richier, and R. Groz, “Ligre: Reverse-

engineering of control and data flow models for black-box xss detection,”

in Working Conference on Reverse Engineering (WCRE), 2013.

[79] F. Duchene, S. Rawat, J.-L. Richier, and R. Groz, “Kameleonfuzz: Evo-

lutionary fuzzing for black-box xss detection,” in ACM CODASPY, 2014.

[80] B. Eriksson, G. Pellegrino, and A. Sabelfeld, “Black widow: Blackbox

data-driven web scanning,” in IEEE Symposium on Security and

Privacy, 2021.

[81] K. Drakonakis, S. Ioannidis, and J. Polakis, “Rescan: A middleware

framework for realistic and robust black-box web application scanning,”

in NDSS, 2023.

[82] L. Carettoni, “Electronegativity - A Study of Electron Secu-

rity,” Las Vegas, NV, USA, Jul. 2017. [Online]. Available:

https://infocondb.org/con/black-hat/black-hat-usa-2017/electroneg

ativity-a-study-of-electron-security

[83] M. S. R. Krishna, M. Garrett, A. Purani, and W. Bowling,

“ElectroVolt: Pwning Popular Desktop Apps While Uncovering

New Attack Surface on Electron,” Aug. 2022. [Online]. Available:

https://www.youtube.com/watch?v=Tzo8ucHA5xw

[84] “Cross-Origin-Opener-Policy,” may 2023. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cr

oss-Origin-Opener-Policy

[85] M. Kinugawa, “Discord Desktop app RCE,” 2020. [Online]. Available:

https://mksben.l0.cm/2020/10/discord-desktop-rce.html

A Appendix

A.1 Web Preferences Examples

This section provides detailed examples showcasing the

functionality and restrictions of inheritable preferences and

their security implications in Electron apps.

Node Integration. [default: False] If set to True, any con-

tent rendered within the window, including third-party scripts,

has direct access to Node modules, and can execute code on

the system. Similarly, the nodeIntergrationInSubframes and

NodeIntegrationInWorkers preferences determine if access

to exposed Node APIs can be made available to embedded

iframes and workers respectively. Electron (>=v5; 2019)

sets a secure default for this preference.

Preload scripts. [default: None] This preference lets

developers provide a path to preload scripts that expose ad-

ditional functionality to the rendered web content. Improper

configuration of these scripts can make the app vulnerable.

Electron does not provide a preload script by default.

Context Isolation. [default: True] This preference

determines whether global variables are shared between

preload scripts and renderer processes. If they share the same

state, a malicious script in the renderer process can perform

prototype pollution attacks, i.e., it may override API calls on

the window object, or change the definition of the Array data

type to bypass checks used within the preload script, and

gain access to Node.js APIs. Electron (>=v12; 2021) sets

a secure default for this preference.

Sandboxing. [default: True] Borrowing from Chromium’s

sandboxing implementation, this option uses the underlying

operating system to limit accesses available to the renderer

process. This option further reduces the Node modules

that can be exposed even to preload scripts. The renderer

process would instead need to open new Inter-process

Communication (IPC) channels and send requests to the

main process, which can instead interact with the system on

behalf of the renderer process. Electron (>=v20; 2022) sets

a secure default for this preference.

Other. Electron provides other options that may be set to

unsafe defaults. These include allowpopups, disablewebsecu-

rity, enableBlinkFeatures. Each of these options can enable

a different type of insecure access, not necessarily enabling

remote access to execution on the system. Electron sets

secure defaults for all of the above preferences by default.

A.2 Motivating Example

To better understand the types of attacks that can affect

cross-platform frameworks like Electron, we discuss a

previously-reported vulnerability against Discord. A Remote

Code Execution (RCE) attack that was reported in 2020 [85].

Insecure web preferences. In Electron, each new window

(or web embed, e.g., iframe) is associated with its renderer

process, which is associated with a list of web preferences that

determine the level of privilege it can access. Two important

options are nodeIntegration, which determines whether

the renderer process has access to all Node modules, and

contextIsolation, which determines whether the preload

script and the web content loaded in the renderer process

Table 5: Capability comparison to Electronegativity.

Capabilities Electronegativity Inspectron

Handle Packaged & Obfuscated Code #

Bypass Integrity-based Restrictions G#

Window-level Reporting Granularity #

Capture Network Requests #

Report Function & Handler Definitions #

Detect Electron Version G#

Checks Electronegativity Inspectron

Web Preferences

Navigation Handling G#

Inter-process Communication #

Command-line Switches G#

Cross-context JS Execution G#

Preloaded APIs G#

Custom Protocols G#

Permission Request Handling G#

Certificate Verification

Open External

Content Security Policy G#

Cookie Encryption #

Chrome/V8 Versions #

Permitted Domain Evaluation #

Fuse Checks #

share the same context. The Discord app disabled context

isolation, exposing its renderer process to potential misuse.

XSS in loaded contents. The app’s CSP, through the

frame-src directive, allowed third-party content from a list

of domains to be loaded within iframes. One of the allowed

domains, sketchfab.com, was vulnerable to XSS. If a hosted

HTML file included a particular script, it would execute

within the iframe in the Discord app.

Navigation handling. A bug in the Electron framework

ensured that a will-navigate event was not triggered if the

top-browsing context was navigated away from a call by an

iframe if the top-level frame and the iframe were from differ-

ent origins. The embedded frame could, therefore, navigate

the top window to an attacker-hosted site, leading to RCE.

The RCE attack was the result of combining three separate

bugs. While the Discord app had set an insecure web prefer-

ence (contextIsolation), the attack was made possible by

external vulnerabilities, i.e., an XSS on a third-party domain

(sketchfab.com) and a bug within the Electron framework.

The app’s CSP did not suffice in preventing the attack,

and the navigation restriction bypass bug in the Electron

framework itself enabled the app to be successfully exploited.

This example illustrates how the unique capabilities and

characteristics of a cross-platform framework like Electron

can expose users to severe security threats. The Discord

app’s vulnerabilities showed how even recommended security

checks could not prevent an attack when there are external

vulnerabilities, highlighting the importance of constantly

monitoring and patching an application’s security and the

need for a comprehensive auditing framework that can guide

app developers towards better securing their applications.

A.3 Comparison to Electronegativity

We provide additional details on the checks and capabilities of

both tools in Table 5. We elaborate on the differences between

the two tools in an extended version of this paper [55].

• Runtime Behavior. Electronegativity does not provide

insights into the runtime behavior of an app. Instead, it

analyzes the code starting from a potential entry point and

reports vulnerabilities based on the Abstract Syntax Tree

(AST) it manages to create at that point.

• Packaged and Obfuscated Code. Navigating packaged

apps and obfuscated code poses a challenge for Elec-

tronegativity. Automatic detection of entry points and

dependencies becomes difficult when they are spread across

multiple files or when the code is intentionally obfuscated.

Analyzing specific code snippets can be challenging when

dealing with minified code. Electronegativity attempts

to point to the location of reported vulnerabilities, but

the analysis becomes more difficult when code is heavily

minified. To improve manageability, it is important to

report specific event listeners, handlers, and procedures

when they are registered with the Electron framework.

• Reporting Granularity. Electronegativity reports potential

vulnerabilities at the overall app-level, but it may not

specify which specific window or frame of an Electron

app is responsible for a particular vulnerability. This

information is crucial for effectively identifying and

addressing the reported issues.

• Network Requests. Electronegativity focuses on analyzing

JS and HTML files and does not capture network requests

or analyze loaded resources beyond these file types.

• Electron Version Detection. Extracting information about

the underlying version of Electron used by the app can

be limited. While Electronegativity tries to determine

the Electron version from the package.json file, this

information may not be available in packaged apps and can

only be retrieved at runtime.

• Web Preferences and Command-line Switches. Elec-

tronegativity attempts to capture web preferences and

command-line switches from multiple locations, i.e., the

package.json file in the app’s root folder, the app’s

JavaScript code, and from attributes included in HTML

tags. However, code is distributed across multiple files, and

these preferences are also computed at runtime, making

it difficult to accurately capture the eventual value used by

the application.

• Nagiation Handling. The tool does not check for the use

of Electron’s updated setWindowOpenHandler and, as

a result, incorrectly reports the absence of limitations on

navigations within applications.

• Preloaded APIs. Electronegativity detects the use of

preloaded APIs from HTML tags and from declared web

preferences, in a similar manner to its detection of web

preferences, and only points to the file location where the

Table 6: Number of apps that did not pass each type of check

from an evaluation of 10 popular apps. (#) indicates false posi-

tives and {#} indicates the intersection with Electronegativity.

Checks Electronegativity
Inspectron Inspectron

(One-touch) (w/ Interaction)

Web Preferences* 1 6 {1} 6 {1}

Navigation Handling 6 (4) 3 {2} 4 {2}

Command-line Switches 0 2 3

Cross-context JS Execution 1 1 2 {1}

Preloaded APIs 2 4 {2} 6 {2}

Permission Request Handling 6 (1) 5 {5} 5 {5}

Custom Protocols 5 6 {4} 8 {5}

Certificate Verification 2 2 {1} 3 {2}

Open External 6 2 {2} 9 {6}

Content Security Policy 10 (2) 9 {7} 10 {8}

Total True Positives 32 40 {24} 56 {32}

* We report on nodeIntegration, contextIsolation, and sandbox.

configuration was added. However, its analysis does not

provide any insight into the functionality that is exposed.

• Custom Protocols. Electronegativity additionally reports

on whether an application sets a custom protocol. However,

the associated underlying protocol, i.e., the use of alter-

native values for file: and http: links, is necessary for

understanding the implications of the protocol itself, but this

is neither detected nor reported by the static analysis tool.

• Certificate Verification and Open External. In these

overlapping checks, both, Electronegativity and Inspec-

tron attempt to cover similar checks and usage. Given

Electronegativity’s advantage in terms of code coverage,

it detects and reports the use of these provisions in a larger

number of instances. Inspectron’s reporting of these checks

is dependent on the functionality being triggered

• Additional Checks and Capabilities. Inspectron performs

multiple additional evaluations that are otherwise not

considered by Electronegativity. These additional checks

are important given their inclusion in recommendations

from Electron and use in prior app exploits [15, 19].

Next, compare the reports generated by Inspectron for 10

popular apps for which we developed user interaction (UI)

traces, against Inspectron’s baseline one-touch approach

as well as the reports generated by Electronegativity (see

Table 6). While Inspectron with a one-touch approach

reports more problematic practices than Electronegativ-

ity, it also misses checks captured by the static analysis

tool. This is especially highlighted in its detection of

shell.openExternal(). We made similar observations

with reports of insecure CSP, certificate verification, and

the use of custom protocols. However, with the UI traces,

Inspectron captures checks missed by the one-touch approach

and further reports on findings missed by Electronegativity

as well. These findings further highlight Inspectron’s

effectiveness when compared to the state-of-the-art, as well

as the performance boost offered by UI traces which increase

the coverage obtained by our dynamic analysis tool.

	Introduction
	Background
	Threat Model

	Inspectron: Design and Implementation
	Evaluation
	Comparison to State-of-the-Art

	Discussion and Limitations
	Related Work
	Conclusion
	Appendix
	Web Preferences Examples
	Motivating Example
	Comparison to Electronegativity

