Rise of Inspectron:
Automated Black-box Auditing of Cross-platform Electron Apps

Mir Masood Ali, Mohammad Ghasemisharif, Chris Kanich, and Jason Polakis
University of lllinois Chicago, {mali92, mghas2, ckanich, polakis}@uic.edu

Abstract

Browser-based cross-platform applications have become in-
creasingly popular as they allow software vendors to sidestep
two major issues in the app ecosystem. First, web apps can be
impacted by the performance deterioration affecting browsers,
as the continuous adoption of diverse and complex features
has led to bloating. Second, re-developing or porting apps
to different operating systems and execution environments
is a costly, error-prone process. Instead, frameworks like
Electron allow the creation of standalone apps for different
platforms using JavaScript code (e.g., reused from an existing
web app) and by incorporating a stripped down and config-
urable browser engine. Despite the aforementioned advan-
tages, these apps face significant security and privacy threats
that are either non-applicable to traditional web apps (due to
the lack of access to certain system-facing APIs) or ineffec-
tive against them (due to countermeasures already baked into
browsers). In this paper we present Inspectron, an automated
dynamic analysis framework that audits packaged Electron
apps for potential security vulnerabilities stemming from de-
velopers’ deviation from recommended security practices.
Our study reveals a multitude of insecure practices and prob-
lematic trends in the Electron app ecosystem, highlighting the
gap filled by Inspectron as it provides extensive and compre-
hensive auditing capabilities for developers and researchers.

1 Introduction

The contemporary client-side web programming ecosystem
has enabled effectively effortless cross-platform web app de-
velopment: a full-featured web app can present a unified expe-
rience across Linux, Windows, MacOS, or any other platform
that supports a fully functioning modern browser. This ease of
portability, along with the standardization of access to lower-
level OS functionality through the Node.js platform, gave rise
to Electron, a system that allows combining the open-source
Chrome and Node.js projects with a developer’s code to cre-
ate a freestanding desktop app, which does not require access
to a system browser or the Internet to provide its functionality.

While there are clear advantages to relying on these two
incredibly well-engineered components, doing so introduces
unique challenges. First, there are inevitable issues when
using these software artifacts outside of the context for which
they were designed. Second, the web platform’s ubiquity and
importance has resulted in it attracting significant malicious
attention and, thus, substantial effort is put into the rapid
release and distribution of browser updates. Finally, these
artifacts are themselves massively complex (necessarily so),
and using them as an abstraction upon which to build yet
more complexity is a fraught endeavor.

In spite of these drawbacks, the benefit derived from
fully cross-platform desktop apps that can reuse large parts
of existing web-based interface code is substantial: Slack,
Discord, Twitch, WhatsApp, and many more segment-leading
companies distribute Electron-based desktop apps. Thus, it
is important to more closely investigate the risks inherent in
the use of the Electron platform. Relying on a stripped-down
version of Chrome’s engine results in certain security
mechanisms not becoming available in a timely manner.
More crucially, existing security protections that have
been baked into web browsers for years now become a
configurable option for developers; prior research has shown
how developers struggle with correctly configuring or
deploying security mechanisms [1—4]. This can also lead to
a fragmented ecosystem where different apps have different
versions of the underlying Chrome engine or Electron
framework, akin to the fragmentation problem affecting the
Android ecosystem [5, 6]. As web and mobile apps are known
to lag behind the latest version of third-party libraries [7, 8],
such patterns within the Electron ecosystem could expose
users to significant threats. Because Electron apps package
static versions of their upstream dependencies, attackers can
leverage known exploits during the window between patching
in Chrome and the distribution of new versions of Electron
apps that incorporate the updated Chrome engine. Finally,
cross-platform apps have additional capabilities compared to
their web counterparts that are closer to those of native appli-
cations. Electron’s security model aims to isolate web-facing

functionality from system-facing functionality; however,
insecure developer practices and misconfigurations can lead
to web-facing code influencing system-facing functionality.
While many weaknesses of the Electron platform can be
mitigated through proper use of tools like Elecronegativity
or defenses against specific classes of attacks [9, 10], there
is a clear necessity for a system that is both dynamic
and automated, which can continually investigate a more
comprehensive range of failure scenarios than existing tools.
To this end, we develop Inspectron, a framework designed
for uncovering the misconfiguration of security mechanisms,
or the lack thereof, in Electron apps, through an automated
black-box auditing process. Our automated black-box system
uses instrumented versions of Electron to detect and report on
information flow in various entities that could affect an app’s
security. These entities include Inter-process communication

(IPC), page navigation, and cross-context JavaScript execu-

tion. Our system locates the binary executable and determines

the version of Node.js in use. It then uses Puppeteer to run
the application on the instrumented Electron, enabling us to
dynamically perform automated client-side checks.

In summary, our work makes the following contributions:

* We build Inspectron, a dynamic, black-box framework that
audits Electron apps for 16 classes of misconfigurations
without source code access, by detecting the runtime
behavior of apps and gathering the evaluated definitions of
function calls, event handlers, and framework preferences.

* We evaluate 109 Electron apps and find an array of issues
in the implementation of various framework components,
while outperforming the state-of-the-art.

* We perform a more comprehensive examination of 10
popular Electron apps by including pre-recorded user
interaction traces, and find vulnerabilities in four apps
and two instances of incorrect implementations of web
standards by the Electron framework.

* We have responsibly disclosed our findings to the affected
vendors, which has already resulted in a series of patches.

2 Background

The process model adopted by the Electron framework largely
splits the app into two differently privileged contexts [11]
(see Figure 1). This design is based on the motivation that
a single process that renders arbitrary, insecure content could
make the app susceptible to malicious code. Instead, Electron
renders each new frame in its own process, while a single
privileged process controls them and the app as a whole.

System-side (Main) process. This is the privileged
process that controls the app, and has access to system-level
functionality, including the native operating system’s Ul
and Node.js modules. It also creates and interacts with
less-privileged renderer processes. To protect sensitive user
resources, the framework restricts access from third-party
resources loaded in renderer processes.

.............. Feememmmmmecceapemm——————————
1 1

| Renderer Process] Renderer Process !, Renderer Process
| |

1
1
|
I |antendJavascriplLagicI || |anlendJavascnplLog\cl “ IFromendJavascriptLogicI |
1 1 1
II 1 1

'

'

' '
' [__Preload @] ! [Preload :©] ! [Preload (]

Main Process

| Backend Javascript Logic |

i [T |
| Operating System . (j |

Figure 1: Architecture of Electron apps.

Renderer process. Each window (or embed) that is
opened spawns a separate renderer process. Electron uses
Chromium’s Blink engine [12] to render web content — from
HTML, CSS, and Javascript — within these windows. The
execution logic within a renderer process can not directly
access Node modules and, instead, interacts with the main
process for requesting actions that need additional privileges.

Communication between processes. Preload scripts are
used to expose functionality from the main process to a
renderer process in two ways: (i) Shared Window object.
Preload scripts in the renderer process have access to the
global Window object and specific Node.js APIs. Scripts can
wrap Node-based functionality and set global variables for
the embedded web content to access. (ii) Inter-process Com-
munication (IPC). Scripts can create new events on an IPC
channel, and pass information between a renderer process and
the main process. This allows the main process to securely
handle privileged execution by verifying incoming messages.
Next, we describe Electron’s various security and privacy
features, including those that the framework inherits from
Chrome and instances where it deviates.

Web Preferences. Each new web embed (including a pop-
up/webview/iframe) creates a corresponding BrowseriWindow
object that inherits the parent window’s preferences by
default. These include restrictions on the window’s function-
ality. Appendix A.1 provides several detailed examples as
well as their corresponding security implications.

Navigation Handling. While websites loaded within the
browser regularly navigate away to different websites, this
type of navigation is often considered undesirable within such
an application. The Electron framework does not, by default,
restrict any window from navigating to different domains or
from opening new windows. Instead, developers may handle
and verify navigation within their apps using several methods.

Content Security Policy (CSP). CSP is a security feature
that allows developers to specify which resources a webpage
can load and which sources of executable code are considered
trusted. Developers can use CSP to block requests to external
domains or to prevent the execution of untrusted code. By
default, Electron does not implement a CSP on the web

content loaded within an app, and instead recommends that
developers add their own implementations.

Sessions and Cookies. Web content is loaded within a
default, persistent session that handles any information stored
within cookies, storage, and other caches. As these sessions
are managed by the app, information accessed from any
third-party content can be directly managed by the app itself.

Cookies in the main process. While partitioning restrictions
exist within the renderer process, the main process can access
all cookies loaded within the app. The app can additionally
alter session cookies to make them persistent, and also access
HttpOnly cookies using Javascript code.

Origin partitioning. The renderer process inherits parti-
tioning from Chrome. Any third-party content loaded in an
iframe is limited in its interaction with the top-level browsing
context, and can only access its own cookie jar.

Plaintext cookies. While the Chrome browser encrypts
cookies when stored in the filesystem, Electron apps store
them in plaintext by default. The framework offers an
optional fuse in case an app intends to encrypt cookies.

Permissions. Electron inherits Chrome’s permission API
and handles the same types of permissions [13]. However,
unlike Chrome, the framework automatically approves all
permissions. Developers have the option to prompt users to
request access, and are encouraged to explicitly handle permis-
sion requests to avoid providing default access to third-party
content loaded within the application. Below, we describe
how Electron’s implementation diverges from Chrome’s.

Media Device Access. Within both Chrome and Elec-
tron, access to media devices can be made by calling
navigator.mediaDevices.getUserMedia (). While
approving permission access, Electron lets developers either
grant access to all media or deny any access, without individ-
ually allowing access to the webcam, microphone, or screen.

Screen Recording. Chrome makes access to the screen avail-
able through a different API call, i.e., getDisplayMedia ().
However, Electron requires access to screen recording
through a separate desktopCapturer object that developers
need to expose from the main process, and the renderer
process can make the same API call used to access other
media, getUserMedia (), with different constraints passed
in the arguments. Electron’s requirement to explicitly expose
screen capture makes it more secure from third-party access.

File System Access API. The WICG directive recommends
restricting the files that can be picked to be loaded by the
user to avoid picking sensitive files under the root or /etc
folders [14]. Chrome implements this restriction to content
loaded within the browser but Electron does not enforce such
a restriction.

2.1 Threat Model

Due to the distinct nature of Electron apps, prior to conduct-
ing our research we first examined more than 50 vulnerability

© 1mTTT s [
fgmmTTe 3 FeesT)
l pmmm == A AN R A | F '
1 1 1
' | Chromium 8: ' I';enderer’_ﬁi: Vo
P vooL__Trocess T e
o' "
1 .
; Main '1e
<-- -7 1
: Process O -: 1
1
: %
Operating o <= !
LI
> System '.é(----'

Figure 2: An overview of the threat model is shown here.

reports that have been submitted to various Electron apps
over the past 7 years [15]. In this preliminary analysis we
summarized and categorized potential avenues for exploiting
vulnerabilities; these exploitability patterns helped define our
threat model and also guided our design of Inspectron. In this
work, we encapsulate knowledge gathered from a wide-range
of attack vectors into a comprehensive testing framework.
While the attack vectors have been demonstrated in real-world
exploits, to the best of our knowledge, Inspectron is the first
dynamic analysis tool that extensively evaluates Electron apps
for these vectors. Additionally, Inspectron’s analysis includes
five attack vectors that are not considered by Elecronegativity,
a state-of-the-art static analysis tool (discussed in §4.1 and
Appendix A.3). The Electron framework encompasses
multiple components and, as a result, the majority of reported
exploits stem from the interconnectedness of bugs across
these different components. We detail a motivating example
in Appendix A.2. Below, we describe our threat model,
which covers different paths for exploiting vulnerabilities in
Electron apps. We consider an attacker that is either (1) a user
of the application attacking another user, or (2) a malicious
third-party component loaded within the app, e.g., scripts
loaded from third-party libraries, content loaded within
iframes and webviews, and third-party webpages to which
the app permits in-app navigation. Figure 2 serves as a point
of reference and offers a high-level overview.

Code Execution in the Renderer Process. In Electron
apps, external users and externally-sourced third-party
resources engage with the application’s logic through the ren-
derer process. By gaining control over code execution within
the renderer process, attackers can begin compromising the
security of other components of the application. When at-
tempting to execute code within the app’s existing user-facing
window, various techniques can be employed. For instance,
unsafe Content Security Policy (CSP) configurations can
create an avenue for executing cross-site scripting (XSS)
attacks. Another approach involves taking over third-party
resources, and leveraging their vulnerabilities to execute
malicious code. Additionally, bypassing input sanitization
measures can enable the injection and execution of harmful
code within user-facing components. Safeguarding against
these vulnerabilities necessitates implementing secure

CSP configurations, robust input sanitization practices, and
stringent controls on the interaction with third-party resources.
To execute code on a different page or window, attackers
need additional strategies. One method involves bypassing
restrictions to navigation to malicious third-party sites,
allowing them to load and execute code within a different
page under their control. Similarly, opening these sites in a
new window or frame can enable executing code outside the
confines of the current window. Once an attacker finds a way
to execute code within the renderer process, they can then
chain their attack by taking one of the following routes.

© — O Privileged Renderer Process. The renderer pro-
cess can have direct access to Node.js modules. Additionally,
when sharing a context with preloaded APIs, the renderer
process can use prototype pollution attacks [16] to also gain
direct access to Node.js modules. Direct access to Node.js
modules within the renderer process can help malicious code
compromise the underlying system.

O - ©® — O Chromium-based Exploits. Chrome
regularly releases reports on vulnerabilities discovered
within the Blink and V8 engines, which are the underlying
components powering the browser and, consequently, Elec-
tron apps. Despite the fact that the Chrome team promptly
releases patches and updates for their browser to address
these vulnerabilities, app developers who rely on older
versions of the Chromium framework may remain exposed
to these exploits. These vulnerabilities capitalize on the inner
workings of the Blink and V8 engines, thus enabling attackers
to directly execute shell code on the underlying system.
© — O — O Incomplete Checks in the Main Process. In
the absence of vulnerabilities enabling one of the previously
described exploitation approaches that require a privileged
renderer process, this route offers an alternative exploit that
takes advantage of incomplete checks in the main process.
Malicious code may take advantage of a lack of checks on
the origin of inter-process communication (IPC) messages,
including oversight in responses to messages from the Preload
API. Additionally, they may exploit the use of incomplete
checks on the use of custom protocols during navigation, and
sanitization errors in cross-context JS execution.

3 Inspectron: Design and Implementation

Here we detail the design and implementation of Inspectron.
Figure 3 provides an overview of our system and workflow.

@ Packaged App. Electron apps are distributed with varying
directory structures depending on the target OS. Depending
on the distributable, Inspectron temporarily mounts the
packaged app and extracts relevant files. Inspectron accesses
app-specific logic from a resources directory, which is also
the directory from where Electron accesses source code [17].
It then identifies the app’s binary executable file, which is
used for version checks. When the binary file is executed
as a Node.js process using the ELECTRON_RUN_AS_NODE

command line flag, Inspectron can access and use the
process.versions object to determine the Node.js version
that the app uses. This object contains key-value pairs that
indicate the Node.js version, the V8 JavaScript engine, and
other modules used to build the app.

@ Instrumented Electron. Electron has a different app
Binary Interface (ABI) from a Node.js binary. Therefore,
while Electron supports developers using native Node.js mod-
ules, those modules must be recompiled [18]. As a result, the
app-specific code extracted from the resources directory in
the previous step can only be run against an Electron binary
compiled with the same Node.js module version. Our instru-
mented version of Electron modifies relevant functions to out-
put the status of specific variables and arguments when called,
enabling Inspectron to identify and report on points of interest.

Web Preferences. Developers can customize the be-
havior of each page in a window or frame using the
webPreferences property, enabling or disabling features
such as nodelIntegration, contextIsolation, and
sandbox. These features impact available privileges, and
developers must evaluate them correctly throughout their app.
Inspectron checks 12 security-related web preferences.

Command-line Switches. These can be used to configure an
Electron app, enable or disable features, modify its behavior,
or set debugging options. Inspectron provides runtime reports
on the setting of 33 command-line switches.

Navigation Handling. Navigation can be constrained
by adding event listeners to each opened window, so as
to ensure users stay within the app’s domain. The built-in
will-navigate event allows intercepting and verifying navi-
gation requests before being sent, enabling URL modification
or cancellation. Additionally, developers must handle the
new-window event by either preventing its opening or creat-
ing a new window with secure preferences. Even though the
new-window event is deprecated in Electron v22, it remains
relevant for apps that have yet to update their frameworks.

Inter-process Communication (IPC). In Electron, IPC is
commonly used to communicate between the main process
and the renderer processes. The main process controls the
app’s lifecycle and manages system resources, while the
renderer processes handle rendering the user interface. Devel-
opers can share data, trigger events, and invoke methods using
IPC messages. To ensure security, Electron recommends
verifying the sender of IPC messages to prevent potential
threats. If the sender is not trusted, the message should
be rejected, preventing potential security threats [19] and
ensuring the integrity of IPC messages. Inspectron reports
and highlights custom IPC calls that require further evaluation
to ensure that the sender of a message is always verified.

Cross-context JS Execution. Using executeJavaScript ()
developers can explicitly enable the injection of JavaScript
from the main process to a renderer process. However, when
user-supplied arguments are used with these functions, they
can potentially execute harmful content and modify the app’s

© Packaged

Application © Report
s - o / ® Instrumented Electron © Puppeteer
e~ = 50 = 7
i = D @ % "
Download Window Command-line (9 = 7
Distributable Preferences Switches Permission Preloaded APIs Gather
o Protocol Request Individual
& Registration Handling Evaluation
@ Navigation Inter-process > O Results
Handling Communication : 3 \)
Extract Files j} Ore
— i Chrome Version | | —3p| =
= Certificate Open
Cross-context JS P &)
. Preloaded APIs Verification External
Execution -
— . Parse Findings
Evaluate as a Node.js @ Additional Evaluation Network
Process - Requests o
(S y o=—
(=W o o
P & EI's: 2] o=
& L A Z
Identify Framework Electron Fuse Permitted Domain Content Security Content Security Final Report
Versions __ Checks Evaluation Policy Evaluation | Policy
N~/

Figure 3: Inspectron’s components and auditing workflow for evaluating Electron apps.

behavior. To mitigate this risk, it is important to verify the
use of such functions with dynamic arguments. When the
calls to executeJavaScript () are triggered, Inspectron
reports on the use of such functions for further evaluation.

Preloaded APIs. Preload scripts and Electron’s
contextBridge can be used to expose functionality across
contexts, set up custom event listeners, inject CSS styles and
JavaScript code, and modify built-in browser APIs. Since
APIs may be exposed as arbitrary objects and functions on the
client-side window object, our framework collects all calls to
the contextBridge available at a singular endpoint. Unlike
the aforementioned checks, calls made to the contextBridge
involve the renderer process and therefore cannot be directly
reported to a file. Inspectron instead collects them in a
global variable, window.reportExposedAPIs, which can
be accessed by a Puppeteer script.

Custom Protocol Registration. New URI schemes can be
registered for handling app requests, especially for custom
network protocols or unavailable resources via HTTP/HTTPS.
Custom protocols should be carefully considered when
handling navigation, verifying IPC messages, and overriding
certificate verification. Inspectron reports on custom protocol
registrations to consider during the evaluation of other checks.

Permission Request Handling. Electron grants complete
access to devices such as the camera, microphone, Bluetooth,
and screen by default. It is recommended that developers
explicitly handle permission requests. Inspectron reports on
whether an app properly handles incoming permissions.

Certificate Verification. When loading resources over
HTTPS, it is important to verify X.509 certificates - a
functionality that is baked into Electron by default. How-
ever, developers may opt out of these checks and handle
specific domains differently, especially during development.
Inspectron reports on overrides of certificate verification.

Open External. Electron apps can open external apps
or files using the system’s default apps. This is useful for
displaying content outside the app, like opening external

links or viewing files. The openExternal function can also
launch email or calendar apps for user interaction. However,
it is important to verify and sanitize values passed to this
function to prevent misuse and potential security risks.

Inspectron reports on openExternal invocations for further
analysis. Since calls to this functionality are made within
the main process, we cannot automatically trigger them from
a Puppeteer script. However, the function is often called
when limiting in-app navigation, and we manually evaluate
navigation handlers to identify any additional sanitization
that they may perform before passing links to the system.

@ Puppeteer Script. Remote debugging can be enabled
in Electron by specifying a port number during app launch.
This allows using debugging tools like Chrome DevTools to
inspect and debug the app from a remote device. We run each
app with an instrumented version of Electron and a debugging
port, and attach a Puppeteer script for client-side checks.

Preloaded APIs. The instrumented version of Electron
collects functionality exposed via the contextBridge
and makes it available at window.reportExposedAPIs.
The Puppeteer script accesses this global variable on the
client-side and adds it to our framework’s report.

Chrome Version. In addition to collecting the under-
lying libraries in Step 1, the Puppeteer script reports
on the Chrome version used by the app by parsing the
navigator.appVersion object on the client-side.

Network Requests. The Puppeteer script intercepts all
network requests performed within the app, and gathers a list
of all accessed domains for further analysis.

CSP. Electron recommends that developers set a CSP on
each window within their app, as it can greatly reduce the risk
of XSS attacks. Developers can set a CSP policy using either a
meta tag or HTTP headers. The meta tag approach is the same
as with web pages loaded in a browser, i.e., it involves adding
a <meta> tag to the app’s HTML file with the http-equiv
attribute set to Content-Security-Policy. The content
attribute of this tag then contains the CSP rules in the form of

a string. Alternatively, developers can use HTTP headers to
set the CSP for the app. Electron recommends [19] adding an
event listener within the main process, onHeadersReceived,
to intercept network requests made from the app. Developers
may then add or modify response headers to ensure that
the Content-Security-Policy header includes rules
specific to the app. Since Electron provides methods for app
developers to modify CSP within HTTP response headers
after they have been received by the main process, network
logging approaches such as proxies and Chromium’s netLog
command-line flag will fail to capture such modifications.
However, our Puppeteer script observes network responses
after developer modifications, and accurately captures the
responses received by the renderer process.

@ Additional Checks. Once the app has been analyzed
using the instrumented Electron and Puppeteer script, we
perform more checks that do not require running the app.

CSP Evaluation. Inspectron evaluates the CSP captured
from the Puppeteer script using Google’s CSP Evaluator [20].
The library parses policy rules and recommends ways
to harden them, and it includes support for backward
compatibility with older versions of CSP.

Permitted Domain Evaluation. While Inspectron gathers
a list of domains from network requests and CSP rules, we
evaluate these domains in two ways. First, it identifies apps
that load solely from packaged, local files instead of gathering
remotely loaded content. Next, considering remotely loaded
resources, the tool visits these domains using XSStrike [21],
and reports on the use of Web App Firewalls and evaluates
reachable domains for potential DOM XSS.

Electron Fuse Checks. This is a feature subset that enables
developers to dynamically disable default functionality in
production apps. Fuses are security flags that determine
enabled and disabled features at runtime. Inspectron reports
on the use of fuses to determine if apps explicitly enable
the encryption of cookies stored on the disk with OS level
cryptographic keys. If an app stores cookies in plaintext,
malicious access to files from within the app, and other
software on the user’s system, can read or modify the
sensitive information stored in the app’s cookies.
© Report. The results of all evaluations performed in Steps
2, 3, and 4 are stored across multiple files and in varying
formats. Inspectron reads and evaluates the results of individ-
ual tests and combines them in a single, parsable report. The
final report of the analysis highlights scenarios and config-
urations of relevant checks that require further evaluation of
misconfigurations that can result in potential vulnerabilities.

The report generated by Inspectron highlights insecure
practices within packaged apps. However, it is important to
note that these findings do not verify that the app is entirely
exploitable. Rather, they indicate the presence of problematic
practices that could potentially be exploited; in certain cases
that could involve chaining together multiple insecurities in
the context of the app’s specific architecture. In the next sec-

tion we report on how such practices are not isolated incidents,
but rather indicative of a broader ecosystem-wide problem.

4 Evaluation

In this section, we present our extensive experimental
evaluation of Inspectron, as well as the results from our
black-box auditing study of the Electron app ecosystem.

Terminology. We first define the terminology we use.

Insecure practices. Individual checks included in the
reports generated by Inspectron highlight known, insecure
practices. The report highlights app configurations that
Electron warns against and scenarios that have been used
in prior exploits [19,22]. However, these reports represent
flaws and do not prove that apps can be exploited in practice.

Exploits. Apps that adopt insecure practices can potentially
be exploited when these practices are considered in the
context of individual configurations and use cases. Creating
proof-of-concept exploits requires manual effort, which
we demonstrate for a subset of our findings. Unless stated
otherwise, the findings presented in this section highlight in-
secure practices. Within descriptions of checks for individual
insecure practices, we present examples of potential exploits.

False Positives. We consider the incorrect inclusion
of insecure practices in reports to be false positives (i.e.,
reporting an insecure practice when the app actually does
something securely). In our test set of 109 apps (see App
Dataset below), we manually verified every detection and
confirmed that none were false positives.

Electron Dataset. A crucial element of Inspectron relies on
utilizing an instrumented version of Electron. As mentioned
in §3, Electron apps can only be evaluated against an Electron
version with a matching app Binary Interface (ABI). Conse-
quently, we developed multiple instrumented versions, each
corresponding to a major release version of Electron and the
underlying platform, such as Linux or MacOS. To facilitate
this process, we employed an existing wrapper [23], which
streamlined the synchronization of relevant dependencies,
while also enabling the retrieval of specific Electron and
Chromium versions for each build of the Electron source
code. It is worth noting that even though older versions
are accessible, they are no longer actively maintained. As
a result, when we encountered difficulties in retrieving all
the required files to construct a specific version of Electron,
we discontinued the build process. We encountered this
challenge when attempting to build Linux-specific Electrons
<v13, as certain underlying Debian build files were no longer
available or accessible. For each version, we obtained the
Electron source code, instrumented specific TypeScript and
C++ code, and rebuilt the framework. Subsequently, we
extracted the resulting distributable for the respective version
and platform. Through this process, we successfully created
a dataset comprising 24 instrumented versions of Electron

Number of apps
oM s o ®
T
|
I
|

Figure 4: Release date of the Electron binary used by the latest
version (as of May 2023) of the apps audited by Inspectron.

(v14-v24 for Linux, v12-v24 for MacOS), which we then
used for the analysis described in this section.

App Dataset. The Electron website provides a showcase
of apps that have been developed using the framework. This
showcase lists a diverse array of apps, including both new
and old releases, commercial and free downloads, as well
as packaged and open-source projects. Through a manual
investigation of 282 apps’ pages, and after filtering out
apps that were unavailable, discontinued, incompatible with
Linux and MacOS, or required some form of payment, we
successfully downloaded 167 apps, each of which we further
examined to determine their underlying Electron version. The
findings of this evaluation are presented below. Subsequently,
from this collection, we identified 109 apps for which we had
successfully built an equivalent instrumented Electron version
to test against, which we use for the remainder of our analysis.

Electron Versions. We conducted a comprehensive evalu-
ation of the underlying Electron framework versions utilized
by a total of 167 downloaded apps. Electron regularly releases
new stable versions every eight weeks [24]. The latest stable
version available at the time of this writing (May 2023) was
v24, which had been accessible for a minimum of four weeks
before our testing. Furthermore, Electron offers support for
up to four stable major versions, implying that apps relying on
versions as low as v21 could potentially receive updates if re-
quired [25]. However, our findings, shown in Figure 4, reveal
that apps depend on Electron versions that are up to four years
old, with the majority of them relying on releases between six
months and two years prior to our analysis. It is worth noting
that Electron strongly recommends that developers keep their
apps up to date with the latest release [19], as that ensures the
incorporation of numerous security fixes for Chrome, Node.js,
and the framework itself. Unfortunately, as we discuss below,
our analysis reveals that a significant number of apps use older
versions of Electron which remain vulnerable to well-known
exploits, even if developers adhere to the best security prac-
tices available for the older Electron version they rely upon.

Web Preferences. As aforementioned, each new frame or
window within an Electron app possesses a set of preferences
that determine the privileges and functionality available
to the web content. While Electron advises limiting these
preferences [19], our observations unveiled a significant

Table 1: Insecure Web Preferences detected by Inspectron.

Web Preference Insecure Value # Apps
Node Integration True 49
Context Isolation False 54
Sandbox False 64
Web Security False 8
Allow Running Insecure Content True 6
Disable Popups False 64
Enable WebSQL True 81
Javascript True 83
WebView Tag True 15

number of apps that explicitly enabled functionalities that
could exacerbate compromises on the renderer process (see
Table 1). We discovered that the majority of apps (n = 54)
failed to isolate the context between their preloaded scripts
and the renderer process, thereby leaving them vulnerable
to exploits like prototype pollution attacks that have been
previously documented [26]. Surprisingly, we observed that 8
applications expicitly disabled web security, thus disabling
the enforcement of the Same Origin Policy (SOP), arguably
the most fundamental web security measure. Developer-
focused apps like Postman [27] (an API development app)
and Altair GraphQL [28] (a GraphQL server debugging app)
disable SOP to allow interaction with different endpoints,
and include additional measures like CSPs and restricted
windows to limit its impact. This also helps apps (e.g.,
IPTVnator [29], a TV streaming app) easily host content
from multiple external services, but still reduces their overall
security. More concerning was the discovery that out of the
109 apps analyzed, 49 of them granted the renderer process
complete access to Node.js functionality. This configuration
allows malicious code within the renderer process to import
any Node.js module and directly execute shell commands
on the user’s system. It is essential to emphasize that these
options are disabled by default, indicating that developers
deliberately chose to override the app’s inherent security
measures in favor of enhanced functionality.

Reliance on Insecure Defaults. Over time, the Electron
framework has made significant strides in enhancing its
security measures. Notably, certain preferences such as
nodeIntegration and contextIsolation have been
transitioned to secure defaults since v5 and v12 of Electron,
respectively. However, it was not until v20 (Aug. 2022)
that Electron introduced sandboxing of processes as the
default behavior; prior to this, it strongly recommended that
developers implement sandboxing. As the majority of apps
are built on older versions of Electron, we found that a signif-
icant number of developers (n=64) have left their processes
unsandboxed, potentially exposing their apps to exploits. We
made similar observations regarding developers enabling
WebSQL, despite it being a largely-deprecated storage
mechanism that is infrequently used in modern browsers [30].

Despite its diminishing relevance, many developers (n=281)
still enabled WebSQL in their Electron apps. We further
found popups being commonly allowed in the renderer
processes (n=64), effectively permitting the creation of new
windows. These observations highlight the prevalence of
certain insecure practices that undermine the overall security
posture of Electron apps, warranting a closer examination.
Limiting Preferences on WebViews. Each new window
or frame possesses its own set of associated preferences;
consequently, when a window in an app loads external
content in a WebView, the WebView inherits the preferences
of its parent by default [31]. However, a malicious WebView
has the capability to create new renderer processes with
elevated privileges, regardless of its parent, enabling the
execution of code on the underlying system. To mitigate
potential security risks, Electron recommends that apps
actively listen for the new creation of each WebView as it
is attached, and explicitly impose limitations on the available
preferences. By doing so, developers can exert greater control
over the behavior and permissions of WebViews within their
apps. However, out of the 15 apps that utilized WebViews,
only 4 implemented the recommended practice of listening
to the relevant event and enforcing preference limitations.
Command-line Switches. Developers have the option of
overriding app-wide defaults and controlling runtime flags
that can be passed to Node.js-based and Chromium-based
processes. Most apps we evaluated resort to defaults and do
not enable experimental, command-line switches. However,
we found 3 apps that increased V8’s garbage-collected heap
size available at runtime [32]. Overriding the heap space
taken up by the application and improper garbage collection
can affect the system’s memory use. We observed 10 apps
that disabled default features offered by Chromium.
Cross-Origin-Opener-Policy (COOP). The COOP HTTP
response header aims to improve isolation between docu-
ments and origins by requesting a new browsing context and
process, which can help mitigate exploits like cross-window
and process-wide attacks [33]. These types of attacks can
occur when a loaded document shares a browsing context and
process with cross-origin documents, potentially allowing
malicious code to leak data. The COOP header aims to
mitigate these issues by allowing loaded resources to sever
all references to other browsing contexts, making it easier
for browsers to load documents in a new process, preventing
attacks like Spectre. Three of the apps that we evaluated, Col-
ibri (a browser) [34], Ferdi (an app-in-app ecosystem) [35],
and Biscuit (a browser) [36], explicitly disabled support for
this feature, thereby rendering their apps vulnerable.
Out-of-Blink CORS. The Cross-Origin Resource Sharing
(CORS) protocol is an established web standard used to
safeguard servers against unexpected cross-origin network
accesses [37]. Previously, Chrome implemented this protocol
within the rendering engine, Blink, which ran in a renderer
process. However, the Out-of-Blink CORS feature, enabled

by default since Chromium v83, moves the inspection of
network accesses out of the renderer, to be handled by a
separate process, the network service. This change was
motivated by several historical design, reliability, and security
issues [37, 38]. However, Advanced Rest Client (a developer
tool) [39] explicitly disables this feature.

Navigation Handling. When a user interacts with an
Electron app by clicking on third-party links or triggering
code execution that modifies the window.location or opens
new windows, Electron generates events (will-navigate
and new-window) that, if not handled, cause these links to
open within the app similarly to browsers. This behavior
can be problematic for both functionality and security. To
address this, developers need to actively listen to these events
and ensure that users remain within the designated app pages.
However, our evaluation of 109 apps revealed that only 24
of them implemented navigation limitations. Furthermore,
only 32 prevented the loading of arbitrary content in new
windows. This situation is concerning, particularly because
when pages fail to restrict navigation, the third-party domain
loaded within the same window gains access to additional
preloaded APIs. This access enables interactions with the
main process, which would typically be unavailable within
a web browser. Additionally, when new windows are opened,
these windows have the ability to create further windows
with extended privileges and relaxed security boundaries.
Therefore, the lack of proper navigation restrictions and
content loading prevention poses a significant risk.

Use of deprecated event handlers. In Electron v22 (Nov.
2022), the new-window event was deprecated [40]. Prior ver-
sions included warnings about this deprecation, and in newer
versions Electron requires developers to handle the creation of
new windows using setWindowOpenHandler (). However,
this has not yet been widely implemented in existing apps.
Inspectron found that only 23 apps incorporated handlers
using the new approach, while 11 apps continued to rely on
the deprecated event, which is compatible with their older
versions of Electron. It is crucial that these 11 apps adopt
the new approach when they eventually update their version
of Electron, to ensure that their checks remain effective.

Inter-process Communication. Electron’s renderer
process is inherently limited in its privileges. However, apps
can utilize IPC calls to delegate privileged execution tasks
to the main process. Nonetheless, a compromised renderer
process can potentially exploit these IPC channels to trigger
malicious functionality. Therefore, it is crucial for developers
to implement sender verification mechanisms before execut-
ing relevant code based on IPC messages. We discovered that
43 apps established custom IPC channels to their renderer
process. We manually verified the handlers used by these
applications and determined that only 13 of these apps
implemented sender verification. In the remaining 30 apps,
a compromised renderer process would have unrestricted
access to trigger IPC channels without any checks in place.

Preloaded APIs. We found 19 apps that exposed select
additional functionality from the main process to the renderer
process, using a context bridge. Of these, 7 apps did not
isolate contexts between the preload script and the renderer
process. Note that in the absence of context isolation, the
renderer process can gain access to Electron internals and
Node.js APIs by compromising the preload script. This can
be achieved through prototype pollution attacks [16] that
override definitions of built-ins like Array or Object to take
control over the execution of the preload script [26].

Custom Protocols. When utilizing custom non-standard
protocol handlers for requests that target internal functionality
(which may even be registered by third-party libraries like
Sentry [41]), developers must consider the associated values
when implementing navigation restrictions. We found 36
apps that register custom protocols; upon manual inspection,
we found that only 4 of them also take into consideration
requests involving custom protocols when determining
whether to allow or prevent navigation attempts.

Permission Request Handling. In contrast to Chrome,
Electron approves any request made to hardware devices,
such as the camera, microphone, and screen. However,
developers can add handlers that prompt users for permission
and verify the integrity of incoming requests. Inspectron
found only 11 apps that handled permission requests, while
the rest granted access by default, further highlighting the
prevalence of insecure defaults in Electron apps. For example,
Wordpress [42], which allows users to manage their websites,
should not need the screen-recording and microphone per-
missions. However, it permits in-app navigation to external
domains, which can access the user’s device, including
camera, microphone, and screen, without prompting the user.

Certificate Verification. While Electron handles the
verification of X.509 certificates by default, apps have the
option to proceed with network requests despite errors in
certificate verification. We found 8 apps that overrode and
logged such errors instead of resorting to Electron’s default
behavior. Upon manual verification we observed that the
apps overrode certificate errors only for specific domains.

Open External. The openExternal functionality enables
developers to open links or files using the operating system’s
defaults, rather than within the Electron app itself. This
feature is particularly useful for handling links or files that
should be opened outside the app, such as URLSs or local files
that require specific apps. However, it is crucial to ensure
proper verification and sanitization when utilizing this func-
tionality, as Electron passes the link to a shell command in the
underlying operating system (example, xdg-open in Linux).
During our evaluation, we identified 56 apps that made use of
this functionality. We additionally examined the navigation
handlers that were previously highlighted. Surprisingly, we
discovered that none of these handlers perform any additional
URL sanitization when passing it to the shell command.
Consequently, while this practice prevents external links from

opening within the app, it can result in passing malformed or
even malicious links directly to the underlying system. To mit-
igate these risks, it is imperative that developers implement
thorough verification and sanitization measures even when
these links do not directly concern the app’s functionality.

Content Security Policy (CSP). CSP is an important
safeguard against cross-site scripting and data injection
attacks, as it grants developers control over which resources
are allowed to be loaded, thereby reducing the risk of
unauthorized or malicious content being executed. In our
evaluation of 109 apps, we discovered that only 18 apps had
implemented a CSP. However, upon further analysis using
Google’s CSP Evaluator [20], we found that the CSPs of 16
of these apps returned warnings. Of these, 15 apps included
a directive with an attributed severity value of 50, associated
with a possible medium severity finding.

Cookie Encryption. Starting from Electron v15 (Sept.
2021), developers can encrypt cookies stored on the user’s
file system [43]. However, Inspectron found only two apps
(Front [44] and Slack [45]) doing this, while all other apps
stored cookie values in plaintext. This poses a significant
security risk since, in contrast to mobile platforms, these
files will be readable to essentially any other process being
executed. Upon manual evaluation, we found 66 apps that
store sensitive information, including information necessary
for authentication/sign-in (e.g., ChatWork [46], an enterprise
team chat application, and Wordpress [42]).

Popular apps. We also perform a more in-depth exam-
ination of 10 popular Electron apps. First, we download
multiple historical versions of each app and report on the
frequency of their updates. Next, for each app we consider
the latest available version as of May 2023, and employ
proof-of-concept exploits affecting V8 and Blink to verify
if these bugs have a trickle-down effect on Electron apps.
Finally, we augment Inspectron with pre-recorded user
interaction traces to increase coverage (see Appendix ?7?).

User Interactions. These apps have unique features and
capabilities, so we developed a series of custom-tailored user
interaction patterns. These include actions such as (a) signing
in, (b) opening and closing tabs and windows, (c) engaging
with and providing text input (e.g., within messaging inter-
faces), (d) interacting with and uploading files (e.g., media
attachments), and (e) clicking on links within the app. These
additional interactions enabled Inspectron to provide more
extensive reports. To facilitate further research and analysis,
we will make these interactions available upon publication.

Historical Versions. Beginning in September 2021,
Electron moved to a new release cadence, with a new stable
version released every 8 weeks, following Chrome’s Extended
Stable release cycles. As a result, Electron keeps up-to-date
with alternating Chrome releases [24]. These regular updates
are intended to help Electron-based apps stay updated
with upstream fixes, including from Chrome, in terms of
performance and security. While our larger analysis showed

115

Discord —+—

GHDesktop —»—
Roicn P

110 1+ Obsidian
Sk

]
<
@
e}
g p=
ags
5

105 4

A
/

95

M
% /*f/fM /
. /4:%7'7# x—s—k /../

Chrome Versions

80 /
75 T
I R R I I

v 3 v v
S N R A A MY SN R N
Month/Year

Figure 5: Distribution of Chrome versions of popular apps.

Table 2: Comparative impact analysis of various CVEs.

oo CVE | 2021-30632 2022-1364 2022-3656 DiffCSP [47]
P Chrome (High) (High) (Medium) -

WordPress.com ‘ 89.0.4389.128 ‘ v v v v
Postman | 100.0.4896.160 | X X v v
WhasApp | 91.04472.164 | X v e Ve
Chrome | 113.05672.127 | X X X X

v denotes that the app is vulnerable.
*

Implements custom handlers for file drag & drop. We expand upon this in the text.
" Vulnerable to “javascript:alert ()’. We expand upon this in the text.

that apps rarely use the latest Electron version, this is also
the case with widely popular apps. We gathered the release
versions of 8 popular apps between August 2020 and May
2023, and matched their underlying Chromium versions.! An
overview of our findings is presented in Figure 5. Despite
Electron’s regular releases, these apps are consistently behind
the latest version of Chrome. Additionally, each app follows
its own release and update cycle, independent of Electron
and Chrome. As a result, security fixes and updates remain
unfixed and known vulnerabilities remain exploitable for
months before apps update to newer versions.

Chrome Version and V8/Blink-based Exploits. Electron apps
also depend on Chrome’s implementation of V8 and Blink.
Chrome regularly receives high-severity exploits of these com-
ponents, with some attacks even granting remote code access
to the user’s system [48]. As a result, when bugs are reported
in these components, they also affect Electron. While Chrome
quickly ships patches, Electron apps can only take advantage
of these patches if and when they update to the latest version
of Chrome available in Electron. Next, we chose three CVEs
with publicly available proof-of-concept exploits. These
CVEs make use of vulnerabilities in V8 and Blink and have
known usage in Remote Code Execution (RCE) attacks. In Ta-
ble 2, we show that the latest available versions of Wordpress,
Postman, and WhatsApp desktop apps are vulnerable to ex-
ploits that are up to 2 years old as of May 2023. First, we iden-

'We do not include Wordpress and Postman as we could not find prior
versions of the former, and the latter has non-dated release information.

Table 3: Overview of vulnerable components of popular apps.

App Renderer Process Chromium Main Process
‘Wordpress.com ° () ©
Postman (] [J 0
WhatsApp © [] ©
Notion © [©
Obsidian © [O
Discord O [] ©
Skype - [@)
VS Code © [] @)
Slack © [©)
GitHub Desktop [)) ® @)

tified the underlying version of Chrome that each of these apps
relies on. Next, we identified three CVEs that affected the V8
or Blink engines and had proof-of-concept exploits that were
publicly available [49-51]. To evaluate each CVE on the app,
we opened it and navigated to the DevTools console. We ex-
ecuted the CVE’s proof-of-concept code and verified success-
ful execution, i.e., it reported an expected type confusion [50],
heap corruption [49], or provided access to sensitive files [51].
Therefore, we confirmed that these bugs also affect the latest
version of Electron apps despite being patched in Chrome.
Vulnerabilities across components. Our threat model (§2.1)
highlights the risk of chaining multiple vulnerabilities across
components for exploiting existing app vulnerabilities. In
Table 3, we detail vulnerable components in popular apps.
Note that a successfully chained exploit requires compromise
and code execution within the renderer process that can then
be chained with compromises in Chromium components
(V8/Blink) or with vulnerabilities in the Main Process.
Below, we discuss examples of insecure practices and present
scenarios for exploits which we responsibly disclosed.
Wordpress. The Wordpress desktop app utilizes outdated
versions of Chromium, V8, and Blink, which contain bugs
that have been targeted in RCE attacks. Furthermore, the app
lacks proper restrictions on external navigation; when users
click on links they are navigated to these links within the app,
allowing the sites accessed through these links to maintain
access to JavaScript execution on the renderer process. This
flaw becomes particularly critical due to the app’s use of
older versions of Electron, which do not implement default
process sandboxing. Consequently, an attacker can leverage
this vulnerability by posting a comment containing a link on a
Wordpress blog or sending a message to a Wordpress account.
If the victim, who manages their blog using the Wordpress
app, clicks on the provided link, they will be unwittingly
redirected to a malicious site that can execute arbitrary code.
Postman. This app also similarly relies on outdated
versions of Chromium, V8, and Blink. Since this app hosts
documentation for public APIs, which often contain external
links, it has implemented a protective measure by opening
clicked links within a new window that operates in a restricted
and sandboxed environment. This setup aims to limit the

reach and impact of third-party content. However, the app’s
use of older Chromium versions introduces a significant
weakness, as known bugs in Blink and V8 can bypass the re-
strictions imposed by the sandbox. Consequently, despite the
attempt to confine the impact of external links, the outdated
dependencies increase the risk of successful RCE attacks.
WhatsApp. The latest version (May 2023) incorporates
Electron v13 (Chromium v91), which is currently 15 months
old. Over this period, several critical security vulnerabilities
have been identified and addressed. However, the app
still operates within an insecure web environment, lacking
context isolation and the utilization of Chromium’s sandbox
features. Furthermore, it permits the use of a deprecated
feature that allows the remote loading of node modules,
further compromising its security posture. While WhatsApp
restricts users from navigating to third-party websites within
the app, it does grant access to https://www.facebook.com,
thus relying on the security measures of that particular
domain. This exposes the app to any vulnerabilities that may
appear on Facebook’s website. Moreover, the app employs
an insecure CSP that permits the execution of scripts from
multiple origins, including potentially vulnerable paths. For
example, XSStrike [21] reported at least one vulnerable path
under https://maps.googleapis.com. WhatsApp implements
custom handlers when a user drags-and-drops a file, which
interferes with the proof-of-concept exploit available for CVE
2022-3656 [51]; however, the Chromium version it depends
on remains vulnerable. This version is also vulnerable to CSP
enforcement bugs found by Wi et al. [47], which erroneously
allow the execution of arbitrary javascript code despite lim-
iting such execution using the script-src-elem directive.

Notion. Notion is a popular productivity app that is
widely utilized by organizations for content management
and creation, and collaboration and task coordination among
teams. By default, the Notion app follows a security-oriented
approach where external links are passed to the host operating
system, ensuring that third-party sites cannot be loaded
within the app. However, there is a special provision in
place that allows the app to allowlist Single Sign-On (SSO)
domains associated with user logins, including organizational
SSO redirects. This means that if a team configures its
employees to access the app using email addresses like
employee @ company.com, which redirects to a designated
SSO domain such as sso.company.com, Notion permits
navigation to that specific SSO domain within the app.

Furthermore, when the app navigates to these allowlisted
third-party links, the Notion app retains access to preloaded
APIs that trigger unverified IPC calls to the main process.
This design decision enables the renderer process to maintain
connectivity and functionality with essential features handled
by the main process, which does not verify the sender. As a
result, these third-party links now possess the capability to
pass messages to the main process, allowing for actions such
as (1) accessing, modifying, and deleting cookies, and (2)

accessing auth-tokens utilized for the app’s websocket-based
communication with Notion’s servers. In the previously stated
example, if an organization’s SSO redirect were to be compro-
mised, its members would face privacy risks as sensitive infor-
mation from the team’s Notion workspace could be extracted.
Additional evaluation. Here we discuss additional
findings; first, we present two new attack vectors that we
reported to the developers of Electron.js. Next, we evaluate
how Electron apps inherit CSP bugs from Chromium.
Permissions-Policy. This directive offers a way for develop-
ers to control access to specific features, including permission
to access hardware devices, like the camera and microphone.
This can be configured by either setting the allow attribute
on iframes or by including the directive in the HTTP response
header. Electron relies on the underlying Chromium source
to enforce the Permissions-Policy. Consequently, when
the corresponding directives are detected, Electron restricts
access to the camera or microphone by restricting calls to
navigator.getUserMedia () which correctly blocks access.
Similarly, when the Permissions-Policy directive aims to
limit access to the screen by including the display-capture
directive, Electron imposes restrictions on the use of the
navigator.getDisplayMedia() function. However,
Electron instead exposes access to the display through calls
made to navigator.getUserMedia () [52] (see §2), which
remain unaffected by the Permissions-Policy directive.
This results in an erroneous implementation that fails to limit
access to the screen even when explicitly directed to do so.
X-Frame-Options. Electron implements the <webview>
tag as an out-of-process iframe (OOPIF). Consequently, it
is important to respect the X-Frame-Options: DENY header
when loading content within the <webview> tag. When
loading content within a regular <iframe> tag, we found
that the framework relies on Chrome’s implementation
of restrictions and prohibits the loading of content that
includes an X-Frame-Options: DENY header in its response;
however, it does not do the same with content loaded within
the <webview> tag. Allowing cross-site content to load
within another frame can potentially result in manipulation of
sensitive content within those frames. This problem may be
further exacerbated depending on the Electron app’s specific
implementation of privileges exposed to the webview, includ-
ing IPC communication and preloaded APIs. We reported
this finding to the Electron team and were informed that this
is “expected and desired behavior” of the <webview> tag: “It
bypasses certain traditional restrictions of iframes, includes
[sic] X-Frame-Options, but also allows more capabilities that
would also violate the traditional web security model.”
Content Security Policy (CSP) Enforcement. Wi et al. [47]
conducted an extensive analysis of how various CSP
directives were enforced across different web browsers, and
reported six critical bugs to the Chrome browser. We reached
out to the authors and accessed the proof-of-concept snippets
that they had included in their disclosures. After replicating

Table 4: Number of apps that did not pass each type of check.

Checks Electronegativity Inspectron Intersection
Web Preferences* 29 (6) 66 17
Navigation Handling 91 (19) 75 59
Command-line Switches 5 10 2
Cross-context JS Execution 24 27 9
Preloaded APIs 11 19 7
Permission Request Handling 97 (1) 98 96
Custom Protocols 29 36 22
Certificate Verification 13 8 5
Open External 75 56 52
Content Security Policy 101 (9) 87 78
Total True Positives 440 482 347

E3
We report on nodeIntegration, contextIsolation, and sandbox.

the issues in Chrome v99 (the version they used), we then
evaluated the CSP implementations of the corresponding
Electron framework v17.4.11. We discovered that the incor-
rect enforcements observed in Chrome had trickled down
to Electron as well. Consequently, these security flaws also
impact any app developed using Electron, thus amplifying
the potential risks posed by Electron’s reliance on Chrome.

4.1 Comparison to State-of-the-Art

Electronegativity is a state-of-the-art static analysis tool for
app developers to assess their Electron apps for potential
security concerns [53]. Given a directory that contains an
app’s code, Electronegativity thoroughly examines HTML,
JavaScript, and JSON files, and utilizes an Abstract Syntax
Tree (AST) to conduct checks at two distinct levels. First,
it performs “atomic” checks that evaluate branches within the
codebase to identify potential vulnerabilities. Then, it applies
“global” checks that combine atomic checks and discard false
positives, before reporting points of concern.

Checks and Capabilities. Despite adopting fundamentally
different approaches, both Electronegativity and Inspectron
report on certain overlapping attributes of Electron apps.
We developed Inspectron with a larger purview of checks
and capabilities, in order to provide a more comprehensive
assessment of app behavior. Table 5 (Appendix) presents an
overview of the differences in the tools’ capabilities. Briefly,
Inspectron exclusively handles 5 checks that are not consid-
ered by Electronegativity. Of the 10 overlapping checks, In-
spectron employs additional, in-depth evaluation for 7 factors,
which include important aspects missed by Electronegativity.
We provide a more detailed comparison in §A.3 (Appendix).

App Evaluation. We compared both tools by generating
reports on the same app dataset. We evaluated each app
following our one-touch approach, i.e., opening the app but
not interacting with it. Our setup limited the coverage gained
by Inspectron but allowed a comparison on a wider array
of apps for comparison. For Electronegativity we explicitly
provided the Electron version of the framework instead of
relying on Electronegativity’s incomplete detection. This

way, we ensured that the reports provided by both tools
address the same underlying framework version. We find
that even without app-exercising user interactions, Inspectron
outperforms Electronegativity in identifying and reporting
potential vulnerabilities for the majority of common checks,
as it conducts a more comprehensive analysis. A comparison
of the potential vulnerabilities reported by Inspectron and
Electronegativity is presented in Table 4, where (#) indicates
false postives (e.g., 29 (6) indicates 23 true positive findings).
Static and Computed Configurations. Electronegativity
relies on analyzing multiple files spread across the applica-
tion’s directory and looks for specific nodes and relationships
within the constructed AST. Even so, the tool experiences
difficulty in correctly gathering configuration values, includ-
ing command-line switches that enable/disable experimental
features and web preferences on individual windows. Apps
declare both checks as JSON objects but include these
objects in different locations, e.g., within the app’s metadata
declared within a package. json file, within an environment
(.env) file, or within code but in an obfuscated manner that is
computed at runtime (e.g., setting nodeIntegration: !0).
Eletronegativity managed to correctly identify insecure pref-
erences in only 23 apps (vs. 66 apps reported by Inspectron)
and identified the use of experimental features in 5 apps (vs.
10 apps reported by Inspectron). Our findings indicate that
Electronegativity is limited in its ability to parse inter-file
relationships and to compute actual configuration values.

Coverage. We used Inspectron to perform a one-touch com-
parison and, as a result, did not trigger functionality specific to
each application. As a result, the numbers reported for event-
based triggers (e.g., cross-context JS execution, open exter-
nal) and window-specific handlers (e.g., navigation handling,
preloaded APIs, certificate verification) present a lower bound.
Inspectron can report on these checks only after observing
their use, which is triggered by interaction. On the other hand,
Electronegativity can scan the source code of the entire appli-
cation and therefore does not face that limitation. As a result,
it reports the use of open external in 75 apps (vs. 56 apps re-
ported by Inspectron), certificate verification bypasses within
13 apps (vs. 8 apps reported by Inspectron), and also the use
of preloaded APIs on 4 apps for which Inspectron did not open
the corresponding window. However, even with its advantage
in coverage, Electronegativity missed 18 apps that attempted
JS execution in a cross-context manner, and 16 apps that in-
cluded handlers for in-app navigation, which were detected
by Inspectron. Similarly, while Inspectron outperforms Elec-
tronegativity in reporting the remaining 7 checks, in the one-
touch comparison Inspectron misses findings for these checks
that are observed by Electronegativity. However, researchers
can overcome this limitation by creating scripts to simulate
user interaction specific to each application, as we demon-
strated with the 10 popular apps (§A.3 in the Appendix).

False Positives. The static analysis approach adopted
by Electronegativity is limited in its ability to correctly

determine apps’ runtime configurations. We manually
evaluated the reports gathered for each application and
observed that the practices highlighted by Electronegativity
include numerous false positives. While reporting on in-app
navigation it does not consider the use of Electron.js’s
setWindowOpenHandler, and includes incorrect reports for
19 apps. Additionally, Electronegativity cannot evaluate CSP
values that are set at runtime, (e.g., with network response
headers, and within remote content), and therefore incorrectly
reports the absence of a CSP in 9 apps. Finally, as highlighted
earlier, the tool is limited in its ability to determine computed
values, and reports 6 apps as using insecure preferences when
the eventual preference set at runtime are actually secure.
Inspectron does not suffer from these limitations since it high-
lights insecure practices only upon observing them at runtime.

5 Discussion and Limitations

Limitations. While Inspectron offers a comprehensive evalu-
ation of packaged apps at runtime, it is important to acknowl-
edge its limitations. First, Inspectron necessitates the use of
an equivalent instrumented version of Electron. While the
initial engineering investment was nontrivial, the necessary
modifications have remained roughly consistent across ver-
sions, and we expect that maintaining this patchset should not
be burdensome for the Electron project, security researchers,
or interested downstream applications. Additionally, if Elec-
tron (or security researchers) released an instrumented version
for each major version, this would eliminate the burden on in-
dividual app developers and streamline the use of Inspectron.
Second, our system encounters challenges when dealing
with the unique directory structures and integrity checks
implemented by app developers. This includes (1) additional
dependent resources being placed outside of the designated
resources directory, (2) non-standard helper libraries and mod-
ified Electron versions being used to build within packaged
apps, (3) additional integrity checks hindering the execution
of files copied from the resources directory in a different
environment, and (4) restricting the use of command-line
switches at runtime, limiting our ability to connect to the app
via the DevTools protocol and test it using a Puppeteer script.
Finally, Inspectron is a dynamic analysis tool, and fully
analyzing an app requires Ul-based interaction (as we did for
10 popular apps). This additional workload can be offset by
developers recording Ul traces once for their app, and reusing
these traces by integrating them into their automated Inspec-
tron testing. Despite these limitations, our tool surpasses the
state-of-the-art in identifying security violations in apps.
Countermeasures and guidelines. Our study has illumi-
nated multiple problematic aspects of the Electron app ecosys-
tem. While Electron has evolved toward more secure default
configurations over time, older versions have significant omis-
sions. Moreover, as we found many cases of developers re-
moving protections offered by the default configurations, Elec-

tron maintainers should explore strategies for constraining the
level of customization possible in security-critical functional-
ity and implementing stricter default policies. This approach
can be particularly beneficial for less “security-aware” devel-
opers who may not have in-depth knowledge of secure coding
practices. Next, even though Electron provides regular up-
dates, our findings indicate that most apps do not keep up with
them. As such, it is crucial that app developers ensure that
they always rely on the latest version of the Electron frame-
work. However, while enforcing regular updates can guaran-
tee that Chromium and V8 receive the latest security patches,
it is important to note that frequent updates can present main-
tenance challenges (e.g., handling newly added or deprecated
features). Nonetheless, until such solutions are explored, de-
velopers can integrate Inspectron into their testing pipeline
and regularly test if their apps violate secure practices.
Ethics and disclosure. All of our experiments were carried
out locally without any interaction or impact on real users;
for apps that required authentication we used test accounts.
When using XSStrike [21] we only evaluated domains for
DOM XSS to report potentially vulnerable objects, and did
not adversely affect any domain. Prior to our initial paper
submission, we submitted reports to 4 popular apps in June
2023. Between June and November 2023, we performed an
additional round of manual verification of our findings across
all evaluated apps, and prepared individual reports. For each
app, we parsed their website or repository (if available),
and identified their stated disclosure procedure (i.e., email,
custom portal, GitHub/GitLab issue, or a specific disclosure
process within repositories). We submitted reports to an addi-
tional 100 apps; we did not submit reports to 4 popular apps
(VSCode, Slack, Obsidian, and Discord), since we found that
they include additional measures as mitigations against our
attack vectors (e.g., prompting users). Additionally, Discord
RPC Maker [54] was archived before we could submit a
report. We received responses from 43 apps, and 11 apps
have deployed corresponding fixes. We received rewards
from three apps (Postman, Wordpress, and Cacher), and our
disclosure to Altair GraphSQL was evaluated as a “High
Severity” CVE by NIST, while GitHub released an advisory
based on our report. We also submitted two reports to the
Electron framework regarding their implementations of web
standards, i.e., Permissions-Policy and X-Frame-Options.
Availability. We are making our tool’s source code and
UI traces available, along with an extended version of this
paper that further details the implications of our checks [55].

6 Related Work

Inspectron is a novel, automated, dynamic analysis system
that evaluates Electron apps. In this section, we discuss prior
work that analyzed the web and app ecosystems.

Browser testing. Web browsers have been extensively
studied in the past with various frameworks evaluating imple-

mentations of a range of security-relevant features. Singh et
al. [56] built a framework for analyzing the usage of browser
features in the wild and detecting access-control flaws.
De Groef et al. [57] developed a browser that implements
precise and flexible information flow controls for web scripts.
Schwenk et al. [58] showed that a lack of specification
resulted in browsers including varying implementations of the
Same-Origin policy. Similarly, Wi et al. [47] found variation
in the enforcement of CSP directives across modern browsers.
Luo et al. [59] developed a browser-agnostic framework and
studied UI vulnerabilities in mobile browsers. Jueckstock and
Kapravelos [60] developed VisibleV8, an dynamic analysis
framework hosted in V8, that reported property accesses at
runtime. Similarly, Sarker et al. [61] developed an instru-
mented Chromium and used dynamic analysis to identify JS
obfuscation through API calls in the wild. Numerous other
works have evaluated the implementation of cookies and
caching mechanisms [62—68], authentication flows [69-71],
and access control and authorization pitfalls [72-75].

Automated app testing. Kals et al. [76] developed a
vulnerability scanner that evaluated web apps for various
vulnerabilities including SQL injections and Cross-Site
Scripting (XSS). Doupé et al. [77] adopted a way to infer
the web app’s internal state, which was incorporated in their
vulnerability evaluation. Duchéne et al. [78, 79] implemented
a fuzzing and reverse engineering approach to infer control
and data flows for XSS detection. More recently, Eriksson et
al. [80] used navigation modeling, traversing, and the tracking
of inter-state data dependencies for developing a web app
scanner. Drakonakis et al. [81] presented a scanner-agnostic
middleware framework that performs black-box evaluation
that mediates the scanner’s interactions with the web app
with the help of an instrumented web browser.

Evaluating Electron. Carettoni [82] presented the static
analysis tool, Electronegativity, and covered the state of
Electron security, addressing its implications and adoption
back in 2017. Krishna et al. [83] presented examples of
exploits in popular Electron apps due to insecure web
preferences. More recently, Xiao et al. [10] studied Remote
Code Execution (RCE) attacks within cross-platform desktop
apps. They instrumented the V8 source code on a single
version of the Electron framework to identify and defend
against cross-context control flow between the renderer
and main processes. Their approach covers Electron’s IPC
communication, which is one of the checks covered by
Inspectron. They state that their instrumentation also covers
36 Node.js APIs and 2 native Javascript APlIs, i.e., calls to
libraries other than those used by the Electron framework
— unfortunately, we have not been able to obtain their code
to conduct a more comprehensive comparison. While their
approach attempts to limit IPC, our work highlights that
vulnerabilities within Electron apps can result from numerous
components beyond communication channels alone. In
addition to checking IPC channels, we additionally report

on vulnerabilities resulting from insecure configurations
within the main process, fuses and command-line switches
that affect the app as a whole, and resources and various
web-based practices adopted within the renderer process.
Jin et al. [9] evaluated Electron apps for vulnerabilities
resulting from unintended modifications to the DOM-tree.
They instrumented Blink to enforce a parallel type-based
DOM, analogous to the implementation of the Trusted Types
specification [84]. Their approach requires developers to
comprehensively evaluate all features of their app against
the instrumented Electron so that it learns and builds a
type-based DOM tree. =~ While their approach requires
significant overhead in participation and effort from devel-
opers, a comprehensively-evaluated app could successfully
protect it against sanitization-based vulnerabilities. Their
defense addresses some potential concerns that we report
on, i.e., incorrect handling of new windows and webviews.
Nonetheless, Inspectron covers a vast range of additional
vulnerabilities, including those resulting from insecure CSPs,
misuse of preloaded APIs, and all of the checks covered
within the main process. In summary, we perform a more
extensive evaluation of numerous security violations and
cover a larger threat model beyond the scope of prior work.
Despite the popularity and wide adoption of Electron apps,
they have received limited scrutiny from researchers. The
general disregard for web standards and good security prac-
tices that we have found within this ecosystem is particularly
concerning. We hope that our work will incentivize additional
research and investigations from the security community.

7 Conclusion

The heterogeneity of execution environments poses a major
challenge for software companies that aim to have a presence
on different application platforms. As a result, cross-platform
apps have become an attractive solution, due to the ability
to reuse large parts of their existing web-based application
code when creating standalone apps for various platforms.
However, as our study reveals, this comes at a significant
cost. Using Inspectron, we conducted a black-box auditing
of a wide range of Electron apps that differ in terms of
functionality, capabilities, and popularity. Our findings reveal
a fragmented ecosystem fraught with insecure practices,
misconfigurations, and outdated components. Crucially, we
find that the entire ecosystem exhibits a significant regression
in terms of the protections offered to users, as the configura-
bility of the Electron framework has resulted in apps that are
vulnerable to attacks that have become obsolete in the web
ecosystem due to the security mechanisms already baked into
modern browsers. Overall, our research sheds light on the
problematic practices of Electron app developers, highlighting
the need for more constraints in the configuration of security-
relevant functionality and more stringent policies about
keeping the core components of Electron apps up-to-date.

Acknowledgements

We thank the anonymous reviewers for their helpful feed-
back. This project was supported by the National Science
Foundation (CNS-2211574, CNS-2143363). The views in
this paper are only those of the authors and may not reflect
those of the US Government or the NSF.

References

[1]

[2]

[3]

[4

=

[5

—_

[7

—

[8

[t}

[9

—

[10

(1]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

S.Roth, T. Barron, S. Calzavara, N. Nikiforakis, and B. Stock, “Complex
security policy? a longitudinal analysis of deployed content security
policies,” in NDSS, 2020.

J. Chen, J. Jiang, H.-X. Duan, T. Wan, S. Chen, V. Paxson, and M. Yang,
“We still don’t have secure cross-domain requests: an empirical study
of cors.” in USENIX Security, 2018.

S. Calzavara, A. Rabitti, and M. Bugliesi, “Content security problems?
evaluating the effectiveness of content security policy in the wild,” in
ACM CCS, 2016.

C. Dietrich, K. Krombholz, K. Borgolte, and T. Fiebig, “Investigating
system operators’ perspective on security misconfigurations,” in ACM
CCS,2018.

L. Wei, Y. Liu, and S.-C. Cheung, “Taming android fragmentation:
Characterizing and detecting compatibility issues for android apps,” in
IEEE/ACM ASE, 2016.

M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library
detection in android and its security applications,” in ACM CCS, 2016.

T. Lauinger, A. Chaabane, S. Arshad, W. Robertson, C. Wilson, and
E. Kirda, “Thou shalt not depend on me: Analysing the use of outdated
javascript libraries on the web,” in NDSS, 2017.

P. Salza, F. Palomba, D. Di Nucci, A. De Lucia, and F. Ferrucci, “Third-
party libraries in mobile apps: When, how, and why developers update
them,” Empirical Software Engineering, vol. 25, pp. 2341-2377, 2020.

Z.Jin, S. Chen, Y. Chen, H. Duan, J. Chen, and J. Wu, “A security study
about electron applications and a programming methodology to tame
dom functionalities,” in NDSS, 2023.

F. Xiao, Z. Yang, J. Allen, G. Yang, G. Williams, and W. Lee,

“Understanding and mitigating remote code execution vulnerabilities
in cross-platform ecosystem,” in ACM CCS, 2022.

“Process Model | Electron,” 2023. [Online]. Available:
https://electronjs.org/docs/latest/tutorial/process-model
“Blink (Rendering Engine),” 2023. [Online]. Available:

https://www.chromium.org/blink/

“Diving Into Electron Web API Permissions - Doyensec’s Blog,” 2022.
[Online]. Available: https://blog.doyensec.com/2022/09/27/electro
n-api-default-permissions.html

“File System Access,” 2023. [Online]. Available:
https://wicg.github.io/file-system-access/#privacy-considerations

“Copies of Existing Electron Vulnerability Reports,” 2023. [Online].
Available: https://anonymous.4open.science/r/electron-past-bug-r
eports-33C6

S. Li, M. Kang, J. Hou, and Y. Cao, “Detecting node. js prototype
pollution vulnerabilities via object lookup analysis,” in ACM ESEC/FSE,
2021.

“Application Packaging | Electron,” 2023. [Online]. Available:
https://electronjs.org/docs/latest/tutorial/application-distribution

“Native Node Modules | Electron,” 2023. [Online]. Available: https:
/Iwww.electronjs.org/docs/latest/tutorial/using-native-node-modules

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

“Security | Electron,” 2023. [Online]. Available:
https://electronjs.org/docs/latest/tutorial/security

“CSP Evaluator | Google,” 2023. [Online]. Available:
https://csp-evaluator.withgoogle.com/

“XSStrike | GitHub,” 2023. [Online]. Available:

https://github.com/sOmd3v/XSStrike

“Doyensec | Awesome Electronjs Hacking | Vulnerabilities Write-Ups
and Exploits,” 2022. [Online]. Available: https://github.com/doyensec/
awesome-electronjs- hacking#vulnerabilities- write- ups-and-exploits

“Electron build tools,” 2023. [Online]. Available:
https://github.com/electron/build-tools

“New Electron Release Cadence,” 2021. [Online]. Available:
https://www.electronjs.org/blog/8- week-cadence

“Electron Releases,” 2023. [Online]. Available:

https://www.electronjs.org/docs/latest/tutorial/electron-timelines

L. Carretoni, ‘“Preloading Insecurity In Your Electron,”
https://i.blackhat.com/asia- 19/Thu-March-28/bh-asia-Caret
toni-Preloading-Insecurity-In-Your-Electron.pdf, 2019.

Postman, Inc., “Postman api platform,” 2023. [Online]. Available:
https://www.postman.com/

Altair, “Altair graphgl client,” 2023. [Online]. Available:

https://altairgraphql.dev/

IPTVnator, “Cross-platform IPTV player application with multiple
features, such as support of m3u and m3u8 playlists, favorites, tv
guide, tv archive/catchup and more.” 2023. [Online]. Available:
https://github.com/4gray/iptvnator

T. Steiner, “Deprecating and removing WebSQL,” aug 2022. [Online].
Available: https://developer.chrome.com/blog/deprecating-web-sql/

“desktopCapturer | Electron,” 2023. [Online]. Available:
https://www.electronjs.org/docs/latest/api/desktop-capturer

T. Junghans, “Node V8 Option max-old-space-size,” may 2023.
[Online]. Available: https://gist.github.com/tjunghans/90ff3bbf575
b8blda41f3fb56e374931

“Trusted Types,” sep 2022.
https://www.w3.org/TR/trusted- types/

[Online]. Available:
“Colibri: Browse without tabs,” may 2023. [Online]. Available:
https://colibri.opqr.co/

“Ferdi: All your apps in one place,” may 2023. [Online]. Available:
https://getferdi.com/

“Biscuit: A browser so your apps donf get buried in tabs,” may 2023. [On-
line]. Available: https://chromestatus.com/feature/5768642492891136
“Feature: Out-Of-Renderer Cross-Origin Resource Sharing (aka

OOR-CORS or OutOfBlinkCors),” oct 2019. [Online]. Available:
https://www.chromium.org/Home/loading/oor-cors/

“OO0R-CORS: Out of Renderer CORS,” oct 2018. [Online]. Available:
https://eatbiscuit.com/

“Advanced REST Client,” may 2023. [Online]. Available:
https://install.advancedrestclient.com/

“Breaking Changes | Electron,” 2023. [Online]. Available:

https://www.electronjs.org/docs/latest/breaking-changes#removed
-webcontents-new-window-event

“Sentry | Electron,” 2023. [Online].
https://docs.sentry.io/platforms/javascript/guides/electron/

Available:

Wordpress.com, “Give wordpress a permanent home in your dock,”
2023. [Online]. Available: https://apps.wordpress.com/desktop/

P. Krill, “Electron framework adds encryption APL” sep 2021. [Online].
Auvailable: https://www.infoworld.com/article/3634383/electron-fra
mework-adds-encryption-api.html

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

“Front: Stay connected from any device,” may 2023. [Online].

Available: https://front.com/download

“Slack: Where work happens,” may 2023. [Online]. Available:
https://slack.com/

Chatwork, “Group chat for global teams,” 2023. [Online]. Available:
https://go.chatwork.com/en/

S. Wi, T. T. Nguyen, J. Kim, B. Stock, and S. Son, “Diffcsp: Finding
browser bugs in content security policy enforcement through differential
testing,” in NDSS, 2023.

“CVE: Seach Results,” may 2023. [Online]. Available:
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=v8
“CVE-2021-30632 Detail,” 2021. [Online]. Available:
https://mvd.nist.gov/vuln/detail/ CVE-2021-30632

“CVE-2022-1364 Detail,” 2022. [Online]. Available:
https://nvd.nist.gov/vuln/detail/CVE-2022-1364

“2022-3656 Detail,” 2022. [Online]. Available:
https://mvd.nist.gov/vuln/detail/ CVE-2022-3656

“Web Embeds,” 2023. [Online]. Available: https:

/Iwww.electronjs.org/docs/latest/tutorial/web-embeds

“Doyensec | Electronegativity Official Documentation,” 2022. [Online].
Available: https://github.com/doyensec/electronegativity/wiki/Home

ThatOneCalculator, “DiscordRPCMaker: The best way to make and
manage custom discord rich presences with buttons,” 2023. [Online].
Available: https://github.com/thatonecalculator/discordrpcmaker

“Inspectron Repository,” 2024. [Online]. Available:
https://github.com/masood/inspectron

K. Singh, A. Moshchuk, H. J. Wang, and W. Lee, “On the incoherencies
in web browser access control policies,” in IEEE Symposium on Security
and Privacy, 2010.

'W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens, “Flowfox:
A web browser with flexible and precise information flow control,” in
ACM CCS, 2012.

J. Schwenk, M. Niemietz, and C. Mainka, “Same-Origin policy:
Evaluation in modern browsers,” in USENIX Security, 2017.

M. Luo, O. Starov, N. Honarmand, and N. Nikiforakis, “Hindsight:
Understanding the evolution of ui vulnerabilities in mobile browsers,”
inACM CCS, 2017.

J. Jueckstock and A. Kapravelos, “Visiblev8: In-browser monitoring
of javascript in the wild,” in ACM IMC, 2019.

S. Sarker, J. Jueckstock, and A. Kapravelos, “Hiding in plain site:
Detecting javascript obfuscation through concealed browser api usage,”
inACM IMC, 2020.

S. Englehardt and A. Narayanan, “Online tracking: A 1-million-site
measurement and analysis,” in ACM CCS, 2016.

K. Drakonakis, S. Ioannidis, and J. Polakis, “The cookie hunter:
Automated black-box auditing for web authentication and authorization
flaws,” in ACM CCS, 2020.

M. M. Ali, B. Chitale, M. Ghasemisharif, C. Kanich, N. Nikiforakis,
and J. Polakis, “Navigating Murky Waters: Automated Browser Feature
Testing for Uncovering Tracking Vectors,” in NDSS, 2023.

L. Knittel, C. Mainka, M. Niemietz, D. T. NoB, and J. Schwenk,
“Xsinator.com: From a formal model to the automatic evaluation of
cross-site leaks in web browsers,” in ACM CCS, 2021.

J. Rautenstrauch, G. Pellegrino, and B. Stock, “The leaky web:
Automated discovery of cross-site information leaks in browsers and
the web,” in IEEE Symposium on Security and Privacy, 2023.

S. Sivakorn, I. Polakis, and A. D. Keromytis, “The cracked cookie jar:
Hittp cookie hijacking and the exposure of private information,” in [EEE
Symposium on Security and Privacy, 2016.

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

A

K. Solomos, J. Kristoff, C. Kanich, and J. Polakis, “Tales of favicons
and caches: Persistent tracking in modern browsers,” in NDSS, 2021.

M. Ghasemisharif, A. Ramesh, S. Checkoway, C. Kanich, and J. Polakis,
“O single Sign-Off, where art thou? an empirical analysis of single
Sign-On account hijacking and session management on the web,” in
USENIX Security, 2018.

M. Ghasemisharif, C. Kanich, and J. Polakis, “Towards automated
auditing for account and session management flaws in single sign-on
deployments,” in IEEE Symposium on Security and Privacy, 2022.

A. Sudhodanan and A. Paverd, “Pre-hijacked accounts: An empirical
study of security failures in user account creation on the web,” in
USENIX Security, 2022.

S. Roth, S. Calzavara, M. Wilhelm, A. Rabitti, and B. Stock, “The
security lottery: Measuring Client-Side web security inconsistencies,”
in USENIX Security, 2022.

Z. Weinberg, E. Y. Chen, P. R. Jayaraman, and C. Jackson, “T still
know what you visited last summer: Leaking browsing history via user
interaction and side channel attacks,” in IEEE Symposium on Security
and Privacy, 2011.

S. Calzavara, T. Urban, D. Tatang, M. Steffens, and B. Stock, “Reining
in the Web’s Inconsistencies with Site Policy,” 2021.

S. Karami, P. Ilia, and J. Polakis, “Awakening the web’s sleeper
agents: Misusing service workers for privacy leakage,” in Network and
Distributed System Security Symposium, 2021.

S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic, “Secubat: A web
vulnerability scanner,” in WWW, 2006.

A.Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of the state:
A State-Aware Black-Box web vulnerability scanner,” in USENIX
Security,2012.

F. Duché, S. Rawat, J.-L. Richier, and R. Groz, “Ligre: Reverse-
engineering of control and data flow models for black-box xss detection,”
in Working Conference on Reverse Engineering (WCRE), 2013.

F. Duchene, S. Rawat, J.-L. Richier, and R. Groz, “Kameleonfuzz: Evo-
lutionary fuzzing for black-box xss detection,” in ACM CODASPY, 2014.
B. Eriksson, G. Pellegrino, and A. Sabelfeld, “Black widow: Blackbox
data-driven web scanning,” in IEEE Symposium on Security and
Privacy, 2021.

K. Drakonakis, S. Ioannidis, and J. Polakis, “Rescan: A middleware
framework for realistic and robust black-box web application scanning,”
in NDSS, 2023.

L. Carettoni, “Electronegativity - A Study of Electron Secu-
rity,” Las Vegas, NV, USA, Jul. 2017. [Online]. Available:
https://infocondb.org/con/black-hat/black-hat-usa-2017/electroneg
ativity-a-study-of-electron-security

M. S. R. Krishna, M. Garrett, A. Purani, and W. Bowling,
“ElectroVolt: Pwning Popular Desktop Apps While Uncovering
New Attack Surface on Electron,” Aug. 2022. [Online]. Available:
https://www.youtube.com/watch?v=Tzo8ucHAS5xw
“Cross-Origin-Opener-Policy,” may 2023. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cr
o0ss-Origin-Opener-Policy

M. Kinugawa, “Discord Desktop app RCE,” 2020. [Online]. Available:
https://mksben.10.cm/2020/10/discord-desktop-rce.html

Appendix

A.1 Web Preferences Examples

This section provides detailed examples showcasing the
functionality and restrictions of inheritable preferences and
their security implications in Electron apps.

Node Integration. [default: False] If set to True, any con-
tent rendered within the window, including third-party scripts,
has direct access to Node modules, and can execute code on
the system. Similarly, the nodelntergrationInSubframes and
NodelntegrationlnWorkers preferences determine if access
to exposed Node APIs can be made available to embedded
iframes and workers respectively. Electron (>=v5; 2019)
sets a secure default for this preference.

Preload scripts. [default: None] This preference lets
developers provide a path to preload scripts that expose ad-
ditional functionality to the rendered web content. Improper
configuration of these scripts can make the app vulnerable.
Electron does not provide a preload script by default.

Context Isolation. [default: True] This preference
determines whether global variables are shared between
preload scripts and renderer processes. If they share the same
state, a malicious script in the renderer process can perform
prototype pollution attacks, i.e., it may override API calls on
the window object, or change the definition of the Array data
type to bypass checks used within the preload script, and
gain access to Node.js APIs. Electron (>=v12; 2021) sets
a secure default for this preference.

Sandboxing. [default: True] Borrowing from Chromium’s
sandboxing implementation, this option uses the underlying
operating system to limit accesses available to the renderer
process. This option further reduces the Node modules
that can be exposed even to preload scripts. The renderer
process would instead need to open new Inter-process
Communication (IPC) channels and send requests to the
main process, which can instead interact with the system on
behalf of the renderer process. Electron (>=v20; 2022) sets
a secure default for this preference.

Other. Electron provides other options that may be set to
unsafe defaults. These include allowpopups, disablewebsecu-
rity, enableBlinkFeatures. Each of these options can enable
a different type of insecure access, not necessarily enabling
remote access to execution on the system. Electron sets
secure defaults for all of the above preferences by default.

A.2 Motivating Example

To better understand the types of attacks that can affect
cross-platform frameworks like Electron, we discuss a
previously-reported vulnerability against Discord. A Remote
Code Execution (RCE) attack that was reported in 2020 [85].

Insecure web preferences. In Electron, each new window
(or web embed, e.g., iframe) is associated with its renderer
process, which is associated with a list of web preferences that
determine the level of privilege it can access. Two important
options are nodeIntegration, which determines whether
the renderer process has access to all Node modules, and
contextIsolation, which determines whether the preload
script and the web content loaded in the renderer process

Table 5: Capability comparison to Electronegativity.

Capabilities

Handle Packaged & Obfuscated Code
Bypass Integrity-based Restrictions
Window-level Reporting Granularity
Capture Network Requests

Report Function & Handler Definitions
Detect Electron Version

Checks

‘Web Preferences

Navigation Handling

Inter-process Communication
Command-line Switches
Cross-context JS Execution
Preloaded APIs

Custom Protocols

Permission Request Handling
Certificate Verification

Open External

Content Security Policy

Cookie Encryption

Chrome/V8 Versions

Permitted Domain Evaluation

Fuse Checks

Electronegativity Inspectron

& 000 eO0
o000 -0

Electronegativity Inspectron

ACEVECNONCN J
o0

e

[ONONONN N N
0000000O0C0OCGCOOGOS

O

share the same context. The Discord app disabled context
isolation, exposing its renderer process to potential misuse.

XSS in loaded contents. The app’s CSP, through the
frame-src directive, allowed third-party content from a list
of domains to be loaded within iframes. One of the allowed
domains, sketchfab.com, was vulnerable to XSS. If a hosted
HTML file included a particular script, it would execute
within the iframe in the Discord app.

Navigation handling. A bug in the Electron framework
ensured that a will-navigate event was not triggered if the
top-browsing context was navigated away from a call by an
iframe if the top-level frame and the iframe were from differ-
ent origins. The embedded frame could, therefore, navigate
the top window to an attacker-hosted site, leading to RCE.

The RCE attack was the result of combining three separate
bugs. While the Discord app had set an insecure web prefer-
ence (contextIsolation), the attack was made possible by
external vulnerabilities, i.e., an XSS on a third-party domain
(sketchfab.com) and a bug within the Electron framework.
The app’s CSP did not suffice in preventing the attack,
and the navigation restriction bypass bug in the Electron
framework itself enabled the app to be successfully exploited.
This example illustrates how the unique capabilities and
characteristics of a cross-platform framework like Electron
can expose users to severe security threats. The Discord
app’s vulnerabilities showed how even recommended security
checks could not prevent an attack when there are external
vulnerabilities, highlighting the importance of constantly
monitoring and patching an application’s security and the
need for a comprehensive auditing framework that can guide
app developers towards better securing their applications.

A.3 Comparison to Electronegativity

We provide additional details on the checks and capabilities of
both tools in Table 5. We elaborate on the differences between
the two tools in an extended version of this paper [55].

* Runtime Behavior. Electronegativity does not provide
insights into the runtime behavior of an app. Instead, it
analyzes the code starting from a potential entry point and
reports vulnerabilities based on the Abstract Syntax Tree
(AST) it manages to create at that point.

» Packaged and Obfuscated Code. Navigating packaged
apps and obfuscated code poses a challenge for Elec-
tronegativity. Automatic detection of entry points and
dependencies becomes difficult when they are spread across
multiple files or when the code is intentionally obfuscated.
Analyzing specific code snippets can be challenging when
dealing with minified code. Electronegativity attempts
to point to the location of reported vulnerabilities, but
the analysis becomes more difficult when code is heavily
minified. To improve manageability, it is important to
report specific event listeners, handlers, and procedures
when they are registered with the Electron framework.

* Reporting Granularity. Electronegativity reports potential
vulnerabilities at the overall app-level, but it may not
specify which specific window or frame of an Electron
app is responsible for a particular vulnerability. This
information is crucial for effectively identifying and
addressing the reported issues.

» Network Requests. Electronegativity focuses on analyzing
JS and HTML files and does not capture network requests
or analyze loaded resources beyond these file types.

* Electron Version Detection. Extracting information about
the underlying version of Electron used by the app can
be limited. While Electronegativity tries to determine
the Electron version from the package.json file, this
information may not be available in packaged apps and can
only be retrieved at runtime.

* Web Preferences and Command-line Switches. Elec-
tronegativity attempts to capture web preferences and
command-line switches from multiple locations, i.e., the
package. json file in the app’s root folder, the app’s
JavaScript code, and from attributes included in HTML
tags. However, code is distributed across multiple files, and
these preferences are also computed at runtime, making
it difficult to accurately capture the eventual value used by
the application.

* Nagiation Handling. The tool does not check for the use
of Electron’s updated setWindowOpenHandler and, as
a result, incorrectly reports the absence of limitations on
navigations within applications.

* Preloaded APIs. Electronegativity detects the use of
preloaded APIs from HTML tags and from declared web
preferences, in a similar manner to its detection of web
preferences, and only points to the file location where the

Table 6: Number of apps that did not pass each type of check
from an evaluation of 10 popular apps. (#) indicates false posi-
tives and {#} indicates the intersection with Electronegativity.

- Inspectron Inspectron
Checks Electronegativity (One-touch) (w/Interaction)
Web Preferences* 1 6 {1} 6 {1}
Navigation Handling 6(4) 3{2} 4 {2}
Command-line Switches 0 2 3
Cross-context JS Execution 1 1 2 {1}
Preloaded APIs 2 4 {2} 6 {2}
Permission Request Handling 6 (1) 5{5} 5{5}
Custom Protocols 5 6 {4} 8 {5}
Certificate Verification 2 2 {1} 3{2}
Open External 6 2 {2} 9 {6}
Content Security Policy 10 (2) 9 {7} 10 {8}
Total True Positives 32 40 {24} 56 {32}

¥
‘We report on nodeIntegration, contextIsolation, and sandbox.

configuration was added. However, its analysis does not

provide any insight into the functionality that is exposed.
* Custom Protocols. Electronegativity additionally reports
on whether an application sets a custom protocol. However,
the associated underlying protocol, i.e., the use of alter-
native values for file: and http: links, is necessary for
understanding the implications of the protocol itself, but this
is neither detected nor reported by the static analysis tool.
Certificate Verification and Open External. In these
overlapping checks, both, Electronegativity and Inspec-
tron attempt to cover similar checks and usage. Given
Electronegativity’s advantage in terms of code coverage,
it detects and reports the use of these provisions in a larger
number of instances. Inspectron’s reporting of these checks
is dependent on the functionality being triggered
Additional Checks and Capabilities. Inspectron performs
multiple additional evaluations that are otherwise not
considered by Electronegativity. These additional checks
are important given their inclusion in recommendations
from Electron and use in prior app exploits [15, 19].
Next, compare the reports generated by Inspectron for 10
popular apps for which we developed user interaction (UI)
traces, against Inspectron’s baseline one-touch approach
as well as the reports generated by Electronegativity (see
Table 6). While Inspectron with a one-touch approach
reports more problematic practices than Electronegativ-
ity, it also misses checks captured by the static analysis
tool. This is especially highlighted in its detection of
shell.openExternal (). We made similar observations
with reports of insecure CSP, certificate verification, and
the use of custom protocols. However, with the UI traces,
Inspectron captures checks missed by the one-touch approach
and further reports on findings missed by Electronegativity
as well. These findings further highlight Inspectron’s
effectiveness when compared to the state-of-the-art, as well
as the performance boost offered by UI traces which increase
the coverage obtained by our dynamic analysis tool.

	Introduction
	Background
	Threat Model

	Inspectron: Design and Implementation
	Evaluation
	Comparison to State-of-the-Art

	Discussion and Limitations
	Related Work
	Conclusion
	Appendix
	Web Preferences Examples
	Motivating Example
	Comparison to Electronegativity

