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Abstract
Real-world application deployments have hundreds of inter-
dependent configuration parameters, many of which signif-
icantly influence performance and efficiency. With today’s
complex and dynamic services, operators need to continu-
ously monitor and set the right configuration values (configu-
ration tuning) well after a service is widely deployed. This
is challenging since experimenting with different configura-
tions post-deployment may reduce application performance
or cause disruptions. While state-of-the-art ML approaches
do help to automate configuration tuning, they do not fully
address the multiple challenges in end-to-end configuration
tuning of deployed applications.

This paper presents OPPerTune, a service that enables con-
figuration tuning of applications in deployment at Microsoft.
OPPerTune reduces application interruptions while maximiz-
ing the performance of deployed applications as and when
the workload or the underlying infrastructure changes. It auto-
mates three essential processes that facilitate post-deployment
configuration tuning: (a) determining which configurations
to tune, (b) automatically managing the scope at which to
tune the configurations, and (c) using a novel reinforcement
learning algorithm to simultaneously and quickly tune nu-
merical and categorical configurations, thereby keeping the
overhead of configuration tuning low. We deploy OPPerTune
on two enterprise applications in Microsoft Azure’s clusters.
Our experiments show that OPPerTune reduces the end-to-
end P95 latency of microservice applications by more than
50% over expert configuration choices made ahead of de-
ployment. The code and datasets used are made available at
https://aka.ms/OPPerTune.

1 Introduction
The performance and efficiency of large services and applica-
tion deployments depend heavily on how they are configured.
Configurations can be system-level, such as the read_ahead_-
kb parameter, which decides how much extra data to read
from disk during I/O in Linux, and resources.limits.cpu that
limits the amount of CPU a Kubernetes container uses. They
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can also be application-level, such as maxmemory, the mem-
ory usage limit at which Redis starts evicting keys. Any large
application deployment invariably includes hundreds, if not
thousands, of such configuration parameters at multiple layers
and components [25, 35, 48, 50, 66, 75] .

Today, application operators determine the configuration
values using domain-knowledge and canary testing on rela-
tively small deployments before widely deploying the applica-
tion. However, application behavior can change considerably
with time and therefore the configuration values set before
deployment may not work well in the longer term; e.g., devel-
opers continuously add features, the user population and their
usage behavior varies [47], the underlying hardware hosting
the applications also can also change [67, 75]. Consequently,
to squeeze the most performance—say throughput or latency—
or to make it run efficiently on as small a set of resources as
possible without compromising performance, operators need
to constantly monitor and modify these configuration parame-
ters well after they have deployed the application.

Manually exploring and changing the configurations at
regular time intervals can be tedious and risky, given that
the number of parameters is large and, more often than
not, the values of parameters can depend on each other
and the deployment environment. Several recent efforts
have proposed using machine learning (ML) based tech-
niques [15, 25, 27, 40, 44, 46, 48, 61, 68, 69] to automate the
process of configuration tuning. These efforts use online learn-
ing or reinforcement learning (RL) to set the configurations,
observe the application state to determine how well it is do-
ing, and then iteratively refine the configuration based on the
observed states. This approach does reduce the burden on the
operator, and yet, the problem is far from solved. The algo-
rithm is only one necessary component of post-deployment
configuration tuning. Through our experience deploying pop-
ular techniques (e.g., Bayesian Optimization (BO)) and state-
of-the-art frameworks (e.g., SelfTune [40], Kubernetes Au-
toscaler [3]) for parameter tuning in application deployments
at Microsoft, we have observed that there are significant gaps
to be bridged in the end-to-end process of configuration tun-
ing. Some of these gaps, discussed below, may have been
overlooked by prior research, as they are more pronounced in
actual production deployments.

https://aka.ms/OPPerTune


First, since services can easily have hundreds of config-
uration parameters, it would be prohibitively expensive to
automatically tune all of them simultaneously. Thus, an au-
tomated approach should determine which components or
layers of the service to tune, and for each component or layer,
which configuration parameters it should tune.

Second, when a service is running, all configuration pa-
rameters are not equally easy to tune. For instance, chang-
ing worker_process of Nginx (this sets the number of Nginx
worker processes) requires only a service reload after chang-
ing a configuration file [2] with no downtime, but changing
wiredTigerCollectionBlockCompressor in MongoDB requires
a pod restart which leads to a downtime of close to 8 seconds
when deployed with the recreate strategy on Kubernetes [6].
Changing isolcpus, the parameter that isolates CPUs from
the kernel scheduler in Linux, will require an entire system
reboot [63]. Previously proposed algorithms do not consider
this varying difficulty of tuning different types of parameters.
Importantly, to reduce potential disruptions for deployed ser-
vices, the tuning approach should use a very small number of
iterations to converge on the right values.

Third, the tuning system needs to determine the right gran-
ularity for each tuning instance. It could tune a single set of
configuration values for the entire service, or it could tune dif-
ferent values for each geography, or perhaps for every machine
type. We refer to this as determining the right tuning scope.
Currently, the operator has to scope the tuning instances man-
ually irrespective of the tuning algorithm used.

Finally, standard algorithms for tuning work only on numer-
ical [30,40] or only on categorical [19,20, 38,65] parameters;
real-world services will almost always have a combination
of categorical and numerical parameters. For instance, Re-
dis’s maxmemory and maxmemory-policy (sets the eviction
policy) are related parameters that are of type numeric and
categorical, respectively. The key difference between han-
dling numerical and categorical parameters is the notion of
continuity. Categorical parameters lack continuity so the per-
formance can change drastically every time the value of the
parameter is changed. There is no easy way to encode/decode
categoricals as numerals as the usual approaches like 1-hot
encoding [34] would increase the search space substantially.
Popular techniques like BO [16,17] do handle such hybrid pa-
rameter spaces, but they are not meant for scenarios where the
environment of the service changes continually. Deep neural
models for configuration tuning [45, 57], on the other hand,
are usually trained offline rather than in deployment.

We have designed, developed, and deployed OPPerTune
(Online Post-deployment Performance Tuner), a configura-
tion tuning service that addresses all the above challenges.
Given a superset of configuration parameters1 that can be
potentially tuned, OPPerTune can automatically create, man-
age, and scope tuning instances for application operators of

1This work focuses on application- and infrastructure-layer parameters.

large-scale services. The key contributions we make are:
1. OPPerTune introduces a novel tuning algorithm, as part of
its backend, that can tune categorical and numerical parame-
ters simultaneously within the same instance.
2. OPPerTune uses a novel decision-tree based algorithm to
automatically determine the right scope of tuning instances,
taking into account the varying application context in produc-
tion environments, such as workload types and volumes.
3. We have built and deployed OPPerTune as a cloud ser-
vice at Microsoft. First-party applications that are already in
production can be on-boarded to our service with minimal
engineering overhead.

We have evaluated OPPerTune on two applications: (i)
the social networking application from the DeathStarBench
benchmark suite driven by workload traces collected from a
large-scale service that is part of Microsoft Teams application,
and (ii) a large-scale ML experimentation pipeline that uses
Azure ML for model development and Apache Spark for data
processing. Our evaluation and comparison with closely re-
lated works [17,40,45,58,65] show that by using OPPerTune
to tune configuration parameters: (i) the tail latency of the
application consisting of tens of microservices reduces by
more than 50% while tuning in deployment, even under sig-
nificant workload variations, compared to carefully-chosen
pre-deployment configurations; (ii) service disruptions that
may occur due to configuration tuning are reduced by nearly
30%; and (iii) workload completion times drop by 10%–50%
on two Azure ML clusters, over two weeks of deployment;

2 OPPerTune Overview
The goal of OPPerTune is to continuously tune the configura-
tion parameters of an application such that, over time, a given
reward metric (e.g., daily P95 latency) is maximized, and
the application sustains good performance through long-term
and short-term hardware changes and workload fluctuations.
Throughout, we use the term ‘application’ to refer to the sys-
tem/service/application being tuned to avoid confusion with
the OPPerTune service itself. OPPerTune works under the
least knowledge of the application being tuned, i.e., black-box
access. In particular, it does not have access to the code-base
of the application, does not require any form of instrumen-
tation or any knowledge of how its performance metrics are
computed. OPPerTune relies only on the reward as feedback
from the application (after a certain amount of time) for a set
of configuration values it sets for the application. It uses this
feedback to tune the configurations iteratively. OPPerTune’s
back-end supports algorithms that can function with or with-
out context (e.g., workload characteristic, resource utilization,
etc.). If context is available, the operators can use all of the
algorithms in the back-end, but this is not necessary.

Consider the following example. A web application uses
two containers on a single machine: one to host a front-end
webserver, and the other to run a back-end database. While
serving user requests, the application can enlist OPPerTune



Figure 1: OPPerTune service architecture. Applications cre-
ate tuning instances on the server to tune various configuration
parameters. Autoscoper helps automatically create, manage,
and scope tuning instances based on the application’s dynamic
context. Selector helps pick the most promising configuration
parameters to tune.

to learn how to distribute the machine’s memory and compute
between the webserver and the database so as to minimize
P95 request latency. OPPerTune consumes feedback (or re-
ward) from the application in the form of observed hourly
P95 latency, and uses multiple hours’ feedback to converge on
the right memory and compute distribution between the two
containers. Request characteristics can vary with time; thus,
OPPerTune may need to change the distribution of memory
and compute frequently, and converge quickly to stable con-
figuration values while continuing to minimize P95 latency.
OPPerTune architecture: Figure 1 presents the high-level
architecture of the OPPerTune service. The basic unit of the
service is a tuning instance that consists of (a) configuration
parameters, their data types, enumerations of possible val-
ues/ranges for categorical/numerical configurations; and (b)
a tuning algorithm for updating the instance. Applications
can create one or more tuning instances to tune configura-
tion parameters across various layers of the application stack,
based on its requirements (as shown for ‘App 2’ in the fig-
ure). Alternatively, OPPerTune provides an automatic scop-
ing component (autoscoper) to help applications create, man-
age, and scope the tuning instances in deployment based on
dynamic context information they provide (as shown for ‘App
1’). OPPerTune can also aid applications to pre-determine
(using an offline step) which configuration parameters to tune
in deployment via the selector module.
Creating, fetching, and updating tuning instances: An ap-
plication intending to use OPPerTune makes an API call
to create a tuning instance along with a list of parame-
ters and their meta-data (e.g., range of parameters). This
step can be automated, as in prior works [62, 72], or can
involve the developer to convey a super set of parameters
along with their meta-data. The operators can use their
domain-knowledge to select a subset of parameters to pass
to OPPerTune, but this is optional. The parameter list can
be arbitrarily large, and OPPerTune’s selector module will
pick the performance-critical parameters as discussed later

in this section. OPPerTune persists tuning instances on a
database for the application to access at any point in time,
possibly from multiple machines. For each tunable configu-
ration parameter, the operator can optionally supply the cost
(e.g., is a system restart required) associated with changing
it. When such cost information is available, OPPerTune uses
it to decide how often to tune the configuration parameters.
OPPerTune implements the standard fetch and update client-
API paradigm of existing work [14,40] for online tuning. The
application invokes (a) Predict to fetch the recommended con-
figuration values from a tuning instance, and (b) SetReward,
at some point in time after (one or more) Predict calls, with
a reward value. The SetReward call updates the associated
tuning instance, as per the tuning algorithm it uses. Any delay
in sending back the rewards will only delay the model up-
date/convergence but not affect the application performance.

OPPerTune supports parallel exploration when enough
servers/resources are available to deploy multiple instances of
the same application. If the servers in the cluster are identical,
a single OPPerTune instance can be employed to which all
servers issue Predict and SetReward calls. OPPerTune would
use all deployments to explore and converge towards a single
optimal configuration for the application. For heterogeneous
servers,AutoScope (Section 4) can enlist contextual attributes
(e.g. region, hardware type) to cluster the servers, and tune
parameters for different deployments.
Autoscoper: Applications may have different performance
characteristics on machines with different CPUs or memory
sizes, and hence may consider using a different configuration
tuning instance for each machine type. Similarly, applications
could behave differently for light versus heavy workloads, and
for different API call types. For instance, if the application
runs independently on the cluster machines with varying hard-
ware and workloads, then it could create one tuning instance
per machine (as is done in [40] for tuning configuration pa-
rameters of a workload scheduler). Thus, tuning instances for
the application could be “scoped” along (at least) three dimen-
sions: infrastructure (e.g., machine type), functionality (e.g.,
API call), and workload (e.g., requests per second). Currently,
determining the “right” scope for tuning instances is usually
done, if at all, by domain experts [40], and periodically revis-
ited. As an alternative, in Section 4, we present AutoScope,
an automatic, efficient, and interpretable way of scoping tun-
ing instances. A Predict call to an AutoScope instance returns
configuration values corresponding to the context presented.
Configuration selector: For applications that have several
hundreds or thousands of configuration parameters to tune
across various layers of the application stack,OPPerTune em-
ploys a selector module to pick the most promising configu-
ration parameters to tune. The selector module uses a simple
and effective microbenchmarking strategy to identify such
configurations, as discussed in Section 5. The module pro-
vides a list of parameters, ordered in decreasing order of their
importance, along with a score that quantifies the importance.



The operator can then choose the top-n parameters from this
list, based on their importance score.
Rounds and Sample complexity: Online tuning algorithms,
implemented in OPPerTune’s back-end, iteratively tune the
configuration parameters. Each iteration is called a round.
At each round, the tuning algorithm (i) determines the next
set of parameter values for the application, (ii) observes a
reward computed by the application over a predetermined
period (1 hour, 24 hours, etc.), and (iii) updates its “policy”
(which prescribes how to choose parameters) based on the
reward. Changes made by the algorithm to configuration val-
ues can cause disruptions, e.g., may necessitate application
restarts or even cause downtime. Thus, a desired property of
a tuning service is that it require only a few rounds to learn
suitable configuration values. This quantity, proportional to
the number of rewards measured, is called sample complexity.
OPPerTune achieves low sample complexity for tuning in
real deployments, as we demonstrate in Section 7, using multi-
ple techniques including a novel tuning algorithm (Section 3),
automatic scoping, and microbenchmarking.

3 Configuration Tuning in Hybrid Spaces
In this section, we present a novel algorithm for the post-
deployment configuration tuning problem (Section 2) on a
hybrid space wherein the configuration parameters are a mix
of numerical and categorical ones. We consider the basic
setting when OPPerTune has no additional knowledge (“con-
text”) about the system being tuned; the setting where some
context may be available is considered in the next section.

3.1 Problem Definition and Terminology
We pose the problem of configuration tuning for an applica-
tion post deployment as that of online learning with bandit
feedback. That is, we want to tune iteratively, only interfacing
with the application for setting new parameter values (e.g., #
CPU cores or memory size for containers), and for obtaining
feedback in response to the set parameter values, as an ob-
served reward value that is to be optimized (e.g., latency or
throughput of the application).

A key aspect of bandit formulation is the explore-exploit
tradeoff. We want to exploit the “best” parameters as per pol-
icy learned so far to ensure that the application is functioning
well without disruption; at the same time, we want to explore
potential parameter choices that might yield better rewards.
This tradeoff is especially important in practical scenarios
where the reward function itself changes with time—the same
parameter choices could have different effects on the service
at different time points. For instance, diurnal workload fluctu-
ations can induce very different reward values for the same
setting of memory requirements for a container, depending
on how and when the reward is computed, e.g., hourly P95 la-
tency can vary significantly between peak and off-peak hours.

Bandit learning techniques that can handle time-varying
rewards, therefore, are more appropriate to our problem than

popular alternatives such Bayesian Optimization (BO) [16,
17], heuristic search and global optimization [52], and genetic
algorithms [32]. For instance, BO needs to evaluate the same
reward function at multiple parameter values by design. This
is infeasible for post-deployment tuning because we cannot
evaluate a deployed application multiple times. Most systems
research that leverage BO typically use it in offline scenarios
(i.e., pre-deployment tuning in controlled settings) [17, 22],
in contrast to our post-deployment tuning scenario.

3.2 Hybrid Configuration Space
In practical scenarios, the space of configuration parameters
can be complex: (i) it can be very large; if there are n pa-
rameters to tune, with, say, s possible values each, we have
sn choices, and (ii) they may be discrete (e.g., number of
CPU cores), real-valued (e.g., CPU utilization threshold), or
categorical (e.g., cache eviction policy). Some state-of-the-
art techniques for bandit learning/RL work for categorical
spaces [19, 20, 38, 65] or numerical spaces [30, 40], but not
both. Others have high sample complexity for tuning in de-
ployment [42, 57]. To address this gap, we design a novel
learning algorithm to handle hybrid configurations efficiently.

Formally, the “hybrid configuration space” comprises: (a)
categorical space C over k categorical parameters, and (b)
numerical spaceW over m numerical parameters which is a
bounded subspace of Rm. In our formulation, we treat discrete
parameters as numerical rather than categorical to exploit the
fact that they are ordered spaces.

3.3 Proposed Algorithm: HybridBandits
Our configuration tuning HybridBandits algorithm is pre-
sented in Algorithm 1. It leverages two simple but key ideas.
At each round, (1) it maintains different types of policies for
sampling categorical and numerical actions; in particular: (i)
ε-greedy policy for the categorical configuration space, stan-
dard in multi-arm bandit algorithms, where with probability
ε a random arm is explored, and with probability 1 − ε, high-
reward arms are exploited; and (ii) a “perturbation” policy for
numerical configurations, where the algorithm samples nu-
merical configurations from an ε-radius ball centered around
the “current best” configuration vector, and (2) it uses a single
reward that the system provides as feedback to update both
the policies simultaneously. In particular, it applies sample-
efficient gradient-descent update [30, 40] for the numerical
parameters, and the exponential weights update [41, Chap.
11] for the categorical parameters.

Algorithm description: Algorithm 1 maintains a multino-
mial distribution p(t) over categorical actions C, i.e., there is
a probability associated with each possible k-tuple of cate-
gorical parameter choices at every round t. For the numerical
actions, it maintains a vector w(t) ∈Rm.

Initialization: The weights for the numerical parameters w
are initialized to default choices that the application provides.
The multinomial p is initialized to the uniform distribution,



Algorithm 1 HybridBandits: Post-Deployment Configuration Tuning for Hybrid Spaces

1: Input: exploration parameter ε ∈ (0,1), learning rate η > 0, space C of k categorical parameters, spaceW of m numerical parameters.
2: Initialize: categorical space weights p(0)i = 1/∣C∣, for 1 ≤ i ≤ ∣C∣ // uniform distribution, and numerical parameters w(0) ∈W // default
3: for t = 0,1,2, . . . do
4: Let p̃i ∶= (1 − ε)p(t)i + ε

1
∣C∣

// Define explore-exploit multinomial distribution over the categorical space

1 Sample categorical and numerical actions to deploy

5: Sample c ∼ p̃ from the multinomial and let a(t)c be the corresponding k-tuple of categorical parameters
6: Sample numerical parameters from a ball centered at w(t), radius ε; i.e., w̃(t) ∶=w(t)+εu, where u ∈Rm is sampled from {u ∶ ∥u∥2 = 1}

// Identical to Bluefin [40]
2 Deploy the actions and measure reward

7: Deploy numerical a(t)r ∶= ΠW(w̃(t)) // appropriately scaled and categorical actions a(t)c in the application
8: Receive reward r(t) ∶= rt(a(t)c ,a(t)r ) ∈R // black-box access to a metric, e.g., hourly P95 latency, computed by the application

3 Perform updates based on the reward received

9: Update numerical parameters center: w(t+1)
←w(t)+ 1

ε
⋅ η ⋅ r(t) ⋅ u, where u is the sample obtained in Step 6.

10: Define scaled reward: r̃(t) = r(t)/p̃c, where c is the sample obtained in Step 5

11: Update categorical distribution: p(t+1)
c ← p(t)c eηr̃(t)

, and for i ≠ c, p(t+1)
i ← p(t)i ; Renormalize p(t+1) to sum to 1

i.e., pi =
1
∣C∣

for i ∈ C. At each round, the algorithm performs:
Sampling actions (Steps 5-6): For the categorical ac-
tions, following the standard exponential weights algorithm
(EXP3, [41, Chap. 11]), it samples a k-tuple from the distribu-
tion p (exploit) with probability 1 − ε, and from the uniform
distribution (explore) with probability ε. For the numerical
actions, it samples a m-dimensional vector from a ball cen-
tered at the current w, with radius ε.
Deploy actions and receive reward (Steps 7-8): The sam-
pled numerical (scaled appropriately) and categorical con-
figurations are then deployed in the application, and (after a
certain amount of time) the algorithm receives a reward value
from the application (implementation details in Section 7).
Update policies (Steps 9-11): For the numerical parameter
weights, the algorithm follows the gradient estimation scheme
studied in the optimization literature [30], as well as applied
in the context of online system parameter tuning [40]. For
the categorical parameters, it: (a) computes an unbiased es-
timate of the reward for the sampled choices, and (b) scales
the probability of the sampled choices using a factor that is
exponential in the reward estimate.

The algorithm has hyperparameters ε and η, and we set
these to default values in all of our experiments (following
SelfTune [40]). In practice, C can be very large; the mi-
crobenchmarking strategy (Section 5) can be used to restrict
C to the most impactful categorical parameters, and to ensure
that the algorithm has low sample complexity. We conjecture
that Algorithm HybridBandits has convergence guarantees
for certain classes of reward functions (for instance, if the
reward functions rt are convex, for any fixed combination of
the categorical parameters in C). Empirically (in Section 7,
and in our synthetic problem setup in Appendix B), we find
that the algorithm convergences well in practice; obtaining a
formal proof of convergence is an exciting open problem. We

also note that when the configuration space contains only nu-
merical parameters, HybridBandits is the same as SelfTune’s
Bluefin algorithm.

4 Automatic Scoping of Tuning Instances
Consider an operator who wants to tune the parameters of
a distributed application that is I/O-bound. There are two
extreme options available to the operator in terms of how
they can set up tuning instances on the OPPerTune server
(Figure 1): (1) set up one “global” instance to tune all the
application parameters across all machines/workloads, that,
say, uses HybridBandits presented in Section 3 for tuning;
or (2) set up multiple “local” instances based on the domain
expertise that the workloads are I/O-bound; e.g., one instance
per disk type or one instance per spindle speed, where each in-
stance independently tunes parameters using HybridBandits.
The latter option is more appealing as the application per-
formance, and therefore the optimal parameter choices will
likely vary with the disk type the workloads are accessing.

In this section, we consider the setting when OPPerTune is
provided some context of the application (i.e., disk type and
spindle speed in the above example) being tuned at every
round. OPPerTune can exploit the observed context to simul-
taneously do scoping and configuration tuning.

4.1 Joint Scoping and Configuration Tuning
To perform joint scoping and configuration tuning, at each
round, along with the reward, the application must provide
additional context information such as machine type, disk
type, spindle speed, workload volume, etc. Using this
additional context, OPPerTune determines a lightweight and
interpretable scoping policy that the operators can understand.
For instance, given job type jobtype and requests per second
(rps) as context, and numcores and mem as the configuration



I0
0 I0

1 I0
2 I0

3 I0
4 I0

5 I0
6 I0

7 I1
0 I1

1 I1
2 I1

3

RPS > 500

I1
4 I1

5 I1
6

Job 3

I1
7

Cluster A

It
0 It

1 It
2 It

3

RPS > 1000

It
4

Job 4

It
5

Cluster B

It
6 It

7I0 I1 I2 I3

RPS > 1000

I4 I5 I6 I7

Job 1,
Job 2

Cluster A

⋮

. . .

numcores=2
mem=1G

numcores= 4
mem=2G

numcores=8
mem=3G

numcores=16
mem=2G

RPS
Cluster

Job

RPS
Cluster

Job

RPS
Cluster

Job

(a) Tree0 (b) Tree1

(c) Treet(d) TreeFinal

Scope 7

Figure 2: AutoScope: Iteratively learning to scope tuning
instances via decision trees. At each round, the observed
context (rps, cluster, job) is used to update the tree model and
the leaf instance (numcores, mem configurations) it lands in.

values to tune, it learns rules of the form if (jobtype ==
‘cpu_bound’) and (rps > 1000) then numcores=16,
mem=2G else numcores=4, mem=2G.

These kinds of scoping rules can be captured by decision
tree models illustrated in Figure 2(d). Each root-to-leaf path in
the tree constitutes a scope, and each leaf maintains a tuning
instance for the scope. In the Figure, ‘Scope 7’ is interpreted
as application running in Cluster A, when its workload vol-
ume (RPS) > 1000, involving jobs of type 1 or 2. Its leaf node
maintains a tuning instance, i.e., values for the two parameters
numcores and mem. These values will be returned for Pre-
dict requests satisfying this scope, and will be updated when
a reward arrives for these requests from the application.

4.2 Proposed Algorithm: AutoScope
Learning decision trees in the bandit setting is a challenging
problem, and popular tree learning algorithms do not apply
(see Section 8). We extend a state-of-the-art technique pro-
posed in [39] (for trees with only one parameter in leaf nodes)
to our general setting where each leaf node is a tuning instance
with several (hybrid) parameters.

We start by giving the key intuitions, before giving a de-
tailed technical description of the tree learning algorithm.

Algorithm outline: AutoScope maintains a binary deci-
sion tree fT of max specified height h (h = 3 suffices for
scenarios evaluated in Section 7), as illustrated in Figure 2.
At first, the tree f (0)T effectively behaves like a single tun-
ing instance, initialized identical to Algorithm 1, i.e., all the
leaf instances I0

k in Figure 2 (a), for 0 ≤ k ≤ 7, are initialized
identically. At round t, the algorithm observes a context vec-
tor, denoted as ct . When the current tree model f (t)T (ct) is
applied to ct , it will land in a unique leaf node containing a
tuning instance. That is, the context vector is first applied to a

linear model in the root node (whose weights are initialized
to default value in the beginning). Depending on the sign of
the resulting value, ct traverses left or right, and continues
in this fashion making branching decisions at every inter-
mediate node until it reaches a leaf. The root-to-leaf path ct
traverses is its “current scope”, and AutoScope will invoke
the leaf’s tuning instance. Figure 2 (b) shows the attributes
(RPS > 500,cluster =A,Job= 3) getting resolved to the scope
6 (I1

6 ) in the first round.
This amounts to doing one round of Algorithm 1 on the

leaf’s tuning instance, thereupon updating it. Now the techni-
cal challenge is updating the tree model f (t)T parameters (i.e.,
the internal node weights for making branching or scoping
decisions), besides the configuration parameter values in each
of the leaf nodes. We describe the algorithm in detail next.

Algorithm description: We present the procedure for
jointly learning the scoping and the tuning instances, i.e.,
parameters corresponding to each scope, formally in Algo-
rithm 2 in Appendix A. The algorithm maintains a decision
tree model denoted fT ; each internal node j in the tree has a
linear model z j ∈Rd (where d is the number of context vari-
ables) that makes routing decisions of the form ⟨c(t),z j⟩ > 0.
Each root-to-leaf path in the tree corresponds to a scope. Each
scope ends at a leaf node ℓ which holds a tuning instance,
i.e., pℓ ∈ [0,1]∣C∣ (for categorical actions) and wℓ ∈ Rm (for
numerical actions). We work with binary trees of height h
with 2h scopes (and tuning instances).

Learning a tree policy entails learning the internal node
parameters z j, for 0 ≤ j ≤ 2h − 2 and the leaf instances pℓ,wℓ,
for 0 ≤ ℓ ≤ 2h − 1. Widely-used tree learning algorithms like
CART [23], C4.5 [56], and their variants do not apply to the
bandit feedback setting because they need access to labeled
training data (which in our scenario means optimal parame-
ters for different context vectors, which is difficult to obtain in
practice). There has been recent work on learning trees using
bandit feedback [28, 29], but they work only for categorical
spaces. The closest to our setting is the technique proposed
in [39], but it handles only a single parameter (either numeri-
cal or categorical) in the leaf nodes. We extend their technique
to handle multi-dimensional, hybrid tuning instances in the
leaf nodes.

Algorithm 2 follows the structure of Algorithm 1 closely.
Each leaf node is initialized (Step 2) identical to Algorithm 1,
Step 2. The first key difference is that, at each round t, the ob-
served context ct determines which tuning instance, i.e., leaf
node is selected (Steps 4–5). Once the leaf node is selected, in
Step 6, we use the corresponding tuning instance to obtain the
configuration and deploy the system with this configuration
(Step 7) to observe the reward just as in Algorithm 1. The
second key difference is how the tree is updated (Steps 8–9),
as discussed below.

The main challenge in learning decision trees in general,
not just in the bandit setting, is that the tree function fT ∶

ct ↦ leaf ℓ is highly discontinuous and non-differentiable. If



we can approximate fT with a differentiable function, then
we will be able to jointly learn fT model as well as the leaf
node parameters using online gradient descent techniques in
a sample-efficient manner. We leverage the relaxation in [39]
that, in particular, replaces discontinuous branching decisions
(“go left or right”) at the internal nodes with differentiable
sigmoid functions (“go left with probability 0.9 and right with
probability 0.1”).

Using chain rule of differentiation, we can show that the
gradient of the reward function rt with respect to the tree
model parameters (both internal node and leaf) can be written
as a tensor product of the gradient of rT with respect to the
leaf node parameters and the gradient of fT with respect to
the tree model parameters.

Scalability: AutoScope scales well with arbitrary state
spaces. Its model size scales linearly in the size of context
vector c and the tree’s height is typically very small. Though
there are far too many ways of jointly slicing the context
dimensions, AutoScope tries to automatically find scopes that
are most beneficial in improving the reward metric without
other hints.

5 Configuration Selection
For applications that have several hundreds or thousands of
configuration parameters to tune across various layers of the
application stack, OPPerTune employs a configuration selec-
tor module (Figure 1) that leverages a simple and effective
microbenchmarking strategy to identify the most promising
configuration parameters. while the techniques outlined here
are heuristic, they are inspired by optimization theory [51,53].

The role of the selector module is two-fold: (a) it prunes
the size of the configuration space, which in turn helps reduce
the algorithm’s sample complexity; and (b) it helps minimize
the number of disruptions (e.g., container restarts) in the ap-
plication while tuning. If (b) is the only goal, selecting just
the configuration parameters that do not require restarts, may
suffice. However, that might compromise on application per-
formance by ignoring configurations that could significantly
impact the performance (as illustrated in Section 7.3).

OPPerTune uses a microbenchmarking strategy to assess
the effect of changing each configuration parameter on the
application’s performance (i.e., the reward value), while keep-
ing the others fixed. Let us consider numerical configurations
for the moment. The strategy is inspired by how coordinate
descent algorithms [51], which are rigorously studied in the
optimization community, work. These algorithms pick one
coordinate (i.e., configuration parameter) at a time and com-
pute the gradient of the reward function with respect to only
that parameter. They iteratively pick coordinates (cyclically
or randomly) to optimize the reward function.

We do not know of any variants of these algorithms that
provably work in our online bandit setting. But, we find that
the basic idea is empirically effective for the goal of selecting
candidate parameters to tune. We use the same gradient esti-

mation technique employed in Step 9 of Algorithm 1 for each
configuration parameter while holding all other parameters
fixed (to the default choices, for example). OPPerTune ac-
complishes this by simply creating microbenchmarking in-
stances, each with just one configuration parameter, and per-
forming one round of the HybridBandits algorithm. The mag-
nitude of the (scalar) gradients computed at the instances tells
us the impact of each configuration parameter. In practice,
this idea can also be extended to categorical spaces—perform
one round of the algorithm on each categorical parameter, and
compute the magnitude of change in reward for a randomly
chosen value vs. the default value for the parameter.

The configuration selector module then picks top-n param-
eters, sorted by decreasing magnitudes of these “gradients”
where n is customizable by the application. This greedy se-
lection strategy, i.e., picking the coordinate (or parameter)
yielding maximum absolute gradient, has been shown to be
provably better than other heuristics for selecting coordinates,
for some classes of reward functions [53].

Microbenchmarking can be done in canary/test deploy-
ments of the application. The tuning instances for the appli-
cation can work with the selected configuration parameters
in deployment. OPPerTune provides a flag to periodically
revisit microbenchmarking and re-assess the top-n parameter
selections. Operators can turn this flag on when there are
long-term changes (e.g., hardware, new workloads).

6 OPPerTune Implementation
OPPerTune’s implementation has three major components:
the server, client, and the algorithm backend. We have imple-
mented the server in Go using Fiber [10], and the client in
Python (for ease of integration with applications which are
often written in Python). We have implemented our proposed
algorithms in Python, and have integrated the server with ex-
isting Python implementations of other algorithms. We now
describe each component in some detail.
1. OPPerTune Server: The server implements three key in-
terfaces for the applications (clients) submitting requests via
REST API calls: a) creation of tuning instances, b) fetching
the values from the instances, and c) updating the instances
using the the reward values sent back to the server. The server
persists configuration tuning instances (consisting of the list
of parameters to tune and their constraints, and the model
for tuning) in a database. Persisting instances enables re-
suming from the saved model state at a later point of time,
and freeing the memory taken up by instances that are not
needed. For each fetch call from the client, the server responds
with the configuration values along with a requestId. The
client is expected to pass the reward value along with the
associated requestId, for the server to be able to correctly
issue an update to the corresponding tuning instance. System
changes that are bursty and short-lived can potentially impact
the observed reward. OPPerTune mitigates this by eliciting
an optional reward measurement period from developers that



sustains such spikes (e.g., aggregation of the metric over a
time period). Furthermore, our bandit algorithms (Section 3
and 4) accommodate such adversarial changes. We host the
server on Microsoft Azure that provides persistent storage,
high availability, and wide accessibility.
2. OPPerTune Client: The client is a library which imple-
ments easy-to-use REST API calls; these calls provide ab-
straction over raw HTTP requests, and applications use them
to create, fetch (i.e., Predict), or update (i.e., SetReward) in-
stances at the OPPerTune server. The library also manages
mapping client requests to API endpoints, payload prepara-
tion, and error-checking. We provide an installable package
of OPPerTune client for applications to use.
3. Service Backend/Tuning Algorithms: The backend con-
sists of implementations of various tuning algorithms, and au-
toscoper and configuration selector components. Any tuning
algorithm is expected to implement Predict and SetReward
interfaces. We have implemented (i) the proposed algorithms
HybridBandits and AutoScope; (ii) state-of-the-art online pa-
rameter tuning algorithm Bluefin [30, 40] and deep reinforce-
ment learning (RL) algorithm DDPG [45, 55, 57]; and (iii)
with minimal effort, we have integrated the contextual bandits-
based algorithm Slates [65], and BayesianOptimization from
the popular Python libraries VowpalWabbit [12] and scikit-
optimize [11], respectively. The challenge in using deep RL
techniques such as DDPG in deployment, typically, is their
prohibitive model sizes and sample complexity. They use con-
text differently than AutoScope to learn policies that require
large complex models (the notion of scoping is implicit in
DDPG). Hence, we have implemented a custom version of
DDPG with light-weight models, similar to AutoScope, to be
of use in post-deployment tuning.

7 Evaluation
To evaluate OPPerTune, we use a combination of mi-
crobenchmarking and real deployments of two applications.
Our evaluation focuses on the following aspects: 1) How
does application performance improve using OPPerTune?,
2) How does OPPerTune reduce the cost of tuning (e.g., sys-
tem restarts)? 3) How effectively does automatic scoping
accelerate the tuning process in real deployments by reducing
sample complexity?, and 4) How scalable is our service im-
plementation (OPPerTune server and backend algorithms)?

7.1 Evaluated Applications
To evaluate OPPerTune, we use two applications, each serv-
ing certain classes of workloads.
7.1.1 Social Networking Application
We use the SocialNetwork application from the
DeathStarBench [31] benchmarking suite which mim-
ics a stack consisting of a gateway server (Nginx), database
engine (MongoDB), caches (Redis), and application logic.
The application creates a network of users, and supports
API calls to create and read messages from the users’ home

Microservice type Number of parameters
Categorical Continuous Discrete
MS RS MS RS MS RS

memcached 0 0 4 8 16 8
MongoDB 12 0 6 12 12 12

Nginx 0 0 0 4 8 4
RabbitMQ 0 0 0 2 0 2

Redis 4 0 0 8 16 8
App logic 0 0 0 24 23 24

MS=Microservices, RS=Rightsizing (Kubernetes)

Table 1: SocialNetwork application configuration parameters
(217 in total) used for Figures 4, 5, and Tables 3, 6.

pages. We use wrk2 [9] to emulate two workloads: (a)
constRPS: a mix of 90% GET (read timeline) and 10%
POST (create posts) requests (this mix has been used in
previous work [40]), with the requests generated at a constant
rate (requests-per-second), and (b) AMStraces: real access
traces collected from AMS, a large-scale asynchronous
media-sharing service that is part of the Microsoft Teams
application, on 3 production clusters over 4 weeks from Sep
14, 2022 to Oct 10, 2022 (see Appendix C.1 for details on the
traces and experiments).

For this application, the performance metric of interest is
P95 latency of requests submitted. This metric is critical to
consumer-facing services [26, 31]. For the constRPS work-
load, we measure the P95 latency for each 10-minute period,
and for AMStraces, we measure it for each hour. This is fed
as the reward value to the OPPerTune service.

Table 1 outlines the list of microservices that
SocialNetwork uses. Here, “rightsizing” layer refers to
configuration parameters in Kubernetes that are used to
determine the compute and memory limits for containers
running the microservices. For each of the microservices,
we tune a mix of real-valued, discrete, and categorical
parameters picked from prior works and product docu-
ments [1, 4, 5, 7, 8, 13, 40, 61]. We note that operators
can use such prior knowledge to reduce the number of
parameters. However, the design of OPPerTune does not
enforce this approach and the operators can pass arbitrarily
large number of parameters. OPPerTune can automatically
select a subset of performance-critical parameters if needed,
as discussed in Section 7.3. The optimal values of these
parameters depend on the workload characteristics; e.g., to
support the same P95 latency, the MongoDB microservice
will require higher resource limits for a higher request
volume, and a larger number of clients would require higher
concurrency setting for Nginx, etc. Additionally, the cost
of tuning these parameters is passed to OPPerTune so it
can decide how often to tune (as noted in Section 2). For
example, some of these parameters require a container
restart. OPPerTune piggybacks on scheduled maintenance
(once daily for AMS) to tune such parameters. We defer the
evaluation of other types of tuning costs (e.g., performance
degradation without impacting availability and revenue cost
associated with changing resource parameters) to future



research. We use the default values of all the parameters as
the starting configuration for all the algorithms.

We deploy the SocialNetwork application on a cluster with
7 virtual machines (VMs) provisioned on Azure. Each VM
hosts a copy of the application stack, with the component
microservices running on individual containers on the same
VM, managed by Kubernetes. Thus, by tuning the parameters
in Table 1 appropriately, OPPerTune allocates each VM’s
resources in the right proportions to the various microservices
so as to minimize P95 latency.

We use separate, dedicated VMs (7 more) in the same
cluster as Kubernetes master nodes, to generate the workloads.
Each VM has Intel Xeon Platinum 8272CL processor (32
vCPUs), 64 GiB RAM and 250 GiB storage (large enough to
support the entire application stack).
7.1.2 ML-Experimentation Pipeline
We deploy OPPerTune in one of Microsoft’s ML experimen-
tation pipelines called MLExp (real name withheld) that uses
Apache Spark to prepare data before training various ML
models. This is an actual production deployment consisting
of workloads and jobs. Each workload is an experiment, con-
sisting of a collection of jobs arranged in a directed acyclic
graph (DAG). A job loads, selects, filters, or processes data
in different ways. MLExp supports 11 job types.

Table 2 shows the configuration parameters that MLExp
developers manually set for each job before submitting the
workload to the cluster. We use OPPerTune to tune the same
set of parameters for each job, initialized to modest initial-
ization values elicited from the developers for our and the
baseline algorithms.

Developers wish to minimize average job completion
time over all jobs that comprise a workload. Lower job com-
pletion times imply lower workload completion time, which
further implies faster iterations of building ML models. When
a workload completes, the platform provides the individual
job completion times, which OPPerTune uses as the reward
for updating tuning instances.

One could argue that setting the parameters in Table 2
to maximum values (such as setting spark.driver.memory to
25GB, spark.driver.cores to 4, etc.) would minimize average
job completion time. However this does not work in practice
because MLExp’s scheduler will enqueue this workload until
all the specified resources are available, thereby increasing
the completion time. Hence, OPPerTune attempts to find the
right balance between increasing these values and decreasing
the workload’s wait time in the MLExp scheduler’s queue.

We have integrated OPPerTune in two production compute
clusters: Cluster1, with 120 nodes, 1800 cores, and 7.03 TB
of memory, and Cluster2 with 100 nodes, 1500 cores and 5.86
TB of memory. Each of these clusters serves 24 workloads on
average every day, submitted by the ML pipeline developers.
Figure 3 shows the spread of completion times for the 11
job types in the two clusters over a period of 1 week before
integrating with OPPerTune.

Parameter Range
Min Max

spark.driver.memory 4GB 25GB
spark.driver.cores 1 4
spark.executor.memory 4GB 24GB
spark.executor.cores 1 4
spark.executor.instances 24 384
spark.default.parallelism 100 10000
spark.sql.shuffle_partitions 100 10000

Table 2: Job configuration parameters used for Tables 4, 5.

Figure 3: Apache Spark job completion times sorted by the
P95 percentile in the third week of November 2022 in two
production clusters of MLExp application.

7.2 Improving Application Performance
A) Effectiveness of HybridBandits: We first look at how
effective the proposed algorithm HybridBandits is for perfor-
mance tuning of applications in deployment, and how it fares
relative to various state-of-the-art tuning techniques that we
implement as part of OPPerTune backend (as discussed in
Section 6). For this evaluation, we use the SocialNetwork ap-
plication, as it has a mix of real-valued, discrete, and categor-
ical parameters (Table 1). For each rps (constRPS workload),
we run each tuning algorithm for a maximum of 50 rounds.
The results are presented in Figure 4. We report the mean
and standard deviation of P95 latencies, for the converged
configuration values, over 5 trials (10-minute windows each).

“Predeployment” in Figure 4 refers to the baseline perfor-
mance against manually chosen configurations that optimized
the performance for a 3500 rps workload (which is close
to the peak capacity supported by our cluster), and keeping
them fixed for the rest of the rps. “Kubernetes Autoscaler”
refers to the Vertical Pod Autoscaler (VPA) [3] for deter-
mining the rightsizing parameters. VPA performs poorly in
general, as rightsizing decisions are solely based on container
utilization, and not P95 latency of the application. We also
baseline against several existing approaches, i.e. Bayesian Op-
timization (BO)2, state-of-the-art RL techniques Slates and
DDPG (we set episode length to 1 for the constRPS ex-
periments, so DDPG is effectively standard contextual ban-
dits [74]), and SelfTune’s Bluefin with HybridBandits.

2Our implementation of BO differs from CherryPick [17] in the choice
of acquisition function. We use GP-UCB instead of EI, motivated by the
superior performance of GP-UCB as demonstrated by Hoffman et al. [36].



Figure 4: Comparison of various techniques for post-
deployment configuration tuning of the SocialNetwork ap-
plication using constRPS workloads. ‘Predeployment’ is the
baseline performance achieved with configuration choices we
manually chose based on 3500-rps workload.

First, the benefit of using OPPerTune service post-
deployment is clear: every algorithm, almost for every
rps, finds better configuration choices to adapt to chang-
ing workload volumes. Second, almost for every rps,
HybridBandits significantly outperforms BO, Slates, and
DDPG, and achieves the best P95 latency. For instance, at the
peak workload of 3600 rps, HybridBandits achieves nearly
2x reduction in P95 latency compared to the best config-
uration predicted by BO that has a large variance. Third,
the utility of tuning categorical parameters together with the
numerical parameters, using HybridBandits, is clear at high
workloads, compared to Bluefin algorithm in the SelfTune
framework [40] that supports only numerical parameters. In
particular, HybridBandits (32.6ms) achieves about 15% re-
duction in P95 latency relative to Bluefin (38.6ms) for the
3600-rps workload. DDPG performs reasonably well in high
workloads, despite the absence of informative context. We
see similar results when the initial configuration to our al-
gorithm is bad (i.e., yields very high latency), indicating
HybridBandits’s ability to converge to near-optimal config-
urations quickly even if the configurations are poor in the
initial few rounds.

Takeaway 1. OPPerTune with HybridBandits achieves the
best performance, especially at peak workloads, among the
state-of-the-art ML techniques used in systems performance
optimization.

B) Effectiveness of AutoScope: We now evaluate the
benefits of automatically scoping tuning instances us-
ing AutoScope, in terms of the application performance as
well as sample complexity. We consider SocialNetwork with
AMStraces and MLExp for this evaluation.
1. SocialNetwork + AMStraces: We compare

AutoScope with a domain-expertise based scoping strategy,
informed by the diurnal patterns of workloads in AMStraces.
We use one tuning instance for every 2 consecutive hours in
a cluster-day. Each tuning instance runs HybridBandits in-
dependently to learn suitable configuration parameters for
its 2-hour scope. We refer to this as HybridBanditscluster,hour.
For AutoScope, we use average rps over every 2 consecutive
hours in a day as context. We build a simple estimator for rps
values using the first week traces, and use them for all the
weeks. This is because we can not know the true rps values
(in the future) at the time of Predict calls.

We let all the methods use the first 3 weeks’ traces to tune
the configuration parameters for SocialNetwork in deploy-
ment. We then evaluate the converged parameters on the last
week’s trace. In Table 3, we present, for each technique and for
each cluster, (a) P50, P95, and maximum value of hourly P95
latency, computed over the last week, i.e., over 168 hours, and
(b) sample complexity of the technique (i.e., # rewards used
while tuning). We compare AutoScope with (i) the baseline of
using “Pre-deployment choices” of configuration parameters,
(ii) domain-expertise based scoping HybridBanditscluster,hour,
(iii) deep-RL based DDPG that uses rps, and CPU and mem-
ory utilization of microservices and VMs as features (“states”)
for implicit scoping, and (iv) AutoScopecluster where a sepa-
rate AutoScope instance is created for each cluster with rps
as the scoping attribute. We see that max P95 latencies for
Clusters 2 and 3 are in the order of seconds with the Pre-
deployment choices. OPPerTune, using each of the three
algorithms, significantly reduces the worst-case P95 latencies.
Importantly, AutoScope achieves significantly better perfor-
mance in general compared to HybridBanditscluster,hour, and
DDPG in Clusters 2 and 3 especially.

Remarkably, AutoScope achieves this performance using
one-third of samples (i.e., # rewards) as that of other tech-
niques. AutoScope exploits the overlap of diurnal patterns
and workload volumes (Appendix C.1) across clusters to im-
prove overall performance, using as few as 8 tuning instances
(a height-3 tree), compared to manual scoping using 36 (3
clusters × 12 time-windows in a day) tuning instances. More-
over, AutoScopecluster (one AutoScope instance per cluster)
performs similarly (except for max latencies) to AutoScope;
a single instance of AutoScope can adapt to application dy-
namics across deployments when the presented context (here,
workload volumes) adequately captures the dynamics.

Takeaway 2. OPPerTune with AutoScope is able to sig-
nificantly improve the application performance, using 3x
fewer samples needed by manual scoping strategies.

2. MLExp: For this application, we have 3 types of context
information available at the job submission time, namely, job
type (11 possible values), dataset size (‘large’ or ‘small’),
and cluster used (1 or 2). So, as a baseline, we use the fol-
lowing domain-expertise based scoping strategy. We create
one tuning instance per combination, yielding 11 × 2 × 2 = 44



Method (P50, P95, max) of P95 latency of each hour over the 4th week (ms) Sample Complexity
Cluster 1 Cluster 2 Cluster 3 (#rewards for tuning)

P50 P95 max P50 P95 max P50 P95 max

Pre-deployment choices 12.7 19.4 23.8 12.4 18.2 1959.1 12.3 44.1 4018.4 -
HybridBanditscluster, hour 10.6 17.3 19.3 9.5 19.6 21.0 10.9 17.4 36.7 756

DDPG 10.4 17.0 23.2 8.3 14.2 18.4 9.2 18.1 32.6 756
AutoScopecluster 10.6 15.8 17.0 8.7 15.8 16.8 7.1 15.2 17.6 756

AutoScope 10.1 15.8 23.7 8.5 13.5 17.1 7.9 15.7 33.4 252

Table 3: Comparison of various techniques for post-deployment configuration tuning of the SocialNetwork application using real
workloads (AMStraces). Algorithms in the last three rows, implemented in OPPerTune, use the first 3 week-traces for tuning.
The first row is the baseline performance achieved with manually-chosen configuration choices.

instances. Each instance runs Bluefinindependently to tune
Apache Spark configuration parameters (Table 2) for the
jobs in the scope. We refer to this as Bluefincluster, type, size.
AutoScope uses the 3 context values for scoping via height-
3 trees, i.e., at most 8 tuning instances (in the leaves). We
initialized all the instances using the default choices for job
parameters that the developers provided.

We use workloads submitted to the 2 clusters in the
Nov 20-Dec 03, 2022 period to tune job parameters us-
ing Bluefincluster, type, size (suffix indicates the manual scop-
ing strategy) and AutoScope. We ensured that each of the
44 instances using Bluefincluster, type, size, as well as the 8 in-
stances of AutoScope get at least 5 reward values during the
period (to make meaningful updates). We then evaluate the
converged instances on the workloads submitted to the 2 clus-
ters between Dec 04, 2022 and Dec 10, 2022. Whenever a
developer submits an ML workload, a Predict call is made
which decides the scope. Rewards (completion times) are sent
back when workloads are complete.

The mean and standard deviation of the workload (i.e., ex-
periment) completion times over one week for different tech-
niques are presented in Table 4. We compare AutoScope with
(i) Pre-deployment choices, (ii) Expert choices, which are job-
specific configuration choices we elicited from MLExp devel-
opers; they have implemented hand-crafted heuristics (refined
over several months) to improve the job completion times on
the clusters, based on individual job characteristics such as the
number of data records processed in the pipeline, type of the
job, repartitioning costs, etc., and (iii) Bluefincluster, type, size.

We see that Bluefincluster, type, size and AutoScope have re-
duced the mean workload completion times by more than
50% that of the Pre-deployment choices in Cluster 1; and by
about 10% in Cluster 2. Also, they perform as well as the Ex-
pert choices in Cluster 1, and better (significance determined
using standard t-test at p-value of 0.05) in Cluster 2. For 8 out
of 11 job types, AutoScope achieves up to 2× smaller P95
completion times than expert choices (see Appendix C.2).

A highlight of this deployment study is that AutoScope,
using only 90 samples (rewards) for 8 instances, is able
to achieve performance competitive to Bluefincluster, type, size
that uses 407 samples for 44 instances. The manual cluster-
ing of Bluefincluster, type, size indeed is marginally better than

Method
Experiment Completion Time

(in minutes)
Sample Complexity

(#rewards)
Cluster 1 Cluster 2 Cluster 1 Cluster 2

Pre-deployment choices 105.85 ± 16.75 36.66 ± 1.60 - -
Expert choices 42.41 ± 5.28 34.46 ± 4.72 - -

Bluefincluster, type, size 38.56 ± 6.55 30.79 ± 0.52 94 313
AutoScope 38.98 ± 5.90 32.71 ± 0.26 29 61

Table 4: Comparison of techniques for post-deployment con-
figuration tuning of Apache Spark parameters in MLExp ap-
plication, on 2 production clusters, over 1 week of evaluation.
AutoScope is competitive to domain-expertise based scoping
strategy (Bluefincluster, type, size) using far fewer samples.

AutoScope. This is expected because Bluefincluster, type, size
fits optimal parameters for individual partitions of the deploy-
ment, i.e., job type, size, cluster. This is sample-inefficient
in practice, as we can share parameters when partitions are
similar (say two job types with similar resource requirements).
AutoScope does this and can achieve similar results with a
third of the samples. We also present individual job comple-
tion time statistics for the 11 different job types in Table 5.
The observations are similar to Table 4.

7.3 Mitigating Cost Of Tuning In-Deployment
So far, we have focused on the impact of tuning on the ap-
plication performance. We now turn to the cost of tuning in
deployment—every change to configuration parameters in
production introduces potential risk. This section also demon-
strates how operators can use the selector (Section 5) module
of OPPerTune to select a subset of parameters that improve
another metric of interest along with performance. In this case,
we use availability as the metric of interest. As we discussed
in Section 2, tuning certain configuration parameters necessi-
tates microservice/pod restarts, causing downtimes. Improv-
ing latency of the application at the expense of throughput, or
service reliability, may not be acceptable.

We evaluate OPPerTune, in terms of how it trades off im-
proving performance and mitigating restarts while tuning, on
the SocialNetwork application and constRPS workloads. The
results are summarized in Table 6 and in Figure 5. We consider
various strategies for picking configuration parameters, fol-
lowed by tuning the selected parameters with HybridBandits,
to mitigate the number of pod restarts. The first row of the



Method Job Completion Time in minutes (mean ± std. dev)
Select Filter Explode Normalize Stats Extract Dedup Split Sample Debug Eval

Default choices 14.92 ± 19.80 18.43 ± 7.53 21.70 ± 6.64 3.12 ± 2.26 4.17 ± 1.41 2.04 ± 1.01 4.86 ± 1.28 2.24 ± 0.45 6.49 ± 2.50 6.13 ± 2.88 4.09 ± 2.24
Expert choices 6.20 ± 6.87 5.58 ± 1.29 7.16 ± 2.56 1.96 ± 0.45 3.73 ± 1.17 1.43 ± 0.20 5.59 ± 2.31 2.52 ± 0.44 3.06 ± 0.78 3.31 ± 0.98 2.26 ± 0.88

Bluefincluster, type, size 4.84 ± 4.71 5.21 ± 0.87 7.42 ± 4.01 1.88 ± 0.38 2.51 ± 0.66 2.14 ± 0.09 3.18 ± 0.25 3.08 ± 0.39 2.78 ± 0.32 2.96 ± 0.19 1.85 ± 0.21
AutoScope 4.92 ± 4.23 6.45 ± 0.46 6.69 ± 3.12 1.66 ± 0.19 2.36 ± 0.42 2.22 ± 0.13 4.77 ± 0.35 2.97 ± 0.12 2.62 ± 0.3 3.88 ± 0.1 1.78 ± 0.23

Table 5: Job completion times for various job types submitted to 2 MLExp clusters over 1 week of evaluation.

Parameters/ P95 Latency (ms) (mean ± std. dev)
Layers tuned RPS = 2000 RPS = 2800 RPS = 3200 RPS = 3600

MS ∪ RS 5.973 ± 0.046 17.864 ± 1.150 21.068 ± 1.641 32.656 ± 2.798
NR 6.916 ± 0.076 24.545 ± 1.184 31.281 ± 1.958 70.542 ± 22.485
MS 6.405 ± 0.039 24.209 ± 1.594 26.764 ± 2.184 38.853 ± 2.500
RS 6.828 ± 0.022 25.373 ± 0.607 26.774 ± 2.168 70.175 ± 8.267

MBT-25 6.820 ± 0.060 23.697 ± 1.802 27.022 ± 1.278 34.503 ± 2.642
MBT-50 6.094 ± 0.075 19.248 ± 1.362 21.888 ± 0.853 37.821 ± 1.489

MS=Microservices, RS=Rightsizing, NR=NoRestarts, MBT=Microbenchmark-Top

Table 6: Comparison of various ways of selecting param-
eters to tune (here, via OPPerTune-HybridBandits) in the
SocialNetwork application stack using constRPS workloads.
Microbenchmarking strategy (last row) yields performance
nearly as good as tuning all the parameters (first row).

table (“Microservices ∪ Rightsizing”) corresponds to tuning
all the parameters listed in Table 1. The second row of the ta-
ble (“NoRestarts”) corresponds to tuning only the parameters
that do not require any restarts. As expected, they achieve the
best and the worst P95 latency values, respectively.

In Section 5, we introduced the microbenchmarking strat-
egy in OPPerTune for picking the most promising configura-
tions ahead of tuning in deployment. The last row of Table 6
shows the performance achieved using HybridBandits on
the top-50 parameters (See Appendix D for the list of pa-
rameters): (i) in 3 out of 4 workload rates, we see that the
strategy achieves statistically similar performance as the best
(“Microservices ∪ Rightsizing”); (ii) with the reduced con-
figuration space, HybridBandits converges within 30 rounds,
compared to the 50 rounds needed by the best method (not
indicated in the table); and (iii) HybridBandits is superior to
tuning only the microservices layer parameters (third row) or
rightsizing layer parameters (fourth row). We also included
the performance using top-25 in the fifth row for comparison.

Figure 5: Number of microservice pod restarts (per round)
and mean P95 latency (RPS=2800) while tuning different pa-
rameters/layers of SocialNetwork app using HybridBandits.

Figure 5 shows the relationship between average P95 la-
tency (measured in milliseconds) and the number of pod
restarts per round for each of the five strategies shown in Ta-
ble 6. We see that our microbenchmarking strategy achieves
a good trade-off between cost and performance, using 2800-
rps workload as example (though the findings are consistent
across all rps). The best average P95 latency (17.9ms) of
“Microservices ∪ Rightsizing” or “MS ∪ RS” comes at the ex-
pense of 29 pod restarts per round as seen from Figure 5. The
microbenchmarking strategy (“MB-50” in 5) nearly matches
the best method’s P95 latency (19.2ms), with nearly 30%
fewer pod restarts per round (20 restarts).

Takeaway 3. HybridBandits + microbenchmarking strat-
egy of OPPerTune reduces the cost of tuning in terms of ser-
vice disruptions in deployment significantly, while achieving
competitive performance.

7.4 Scalability
We evaluate the scalability of OPPerTune service with re-
spect to various tuning algorithms that we implemented (or in-
tegrated) as part of the backend (as discussed in Section 6). We
perform this study on the same VM type as in Section 7.1.1.

We focus on the throughput of OPPerTune service, i.e.,
number of Predict and SetReward requests served, with vari-
ous back-end algorithms; so, we use a simple synthetic appli-
cation to stress-test the service and the algorithms.

Using wrk2, we simulate a scenario where there is one client
that (a) creates a new instance, specifying 30 configuration
parameters (25 numerical and 5 categorical for algorithms that
allow hybrid configurations) and the algorithm to use, and (b)
then repeatedly sends Predict and SetReward requests to the
created instance on the OPPerTune server, for 120 seconds.
For algorithms which need context (AutoScope, DDPG), we
use random context vectors of size d = 8. For rewards, we use
a random value between 0 and 1 (actual reward value does
not matter for this study). We maintain the instance state in
memory for all the tuning algorithms for this study.

In this setting, we first verified that our Go-based server
can handle 4096 rps without dropping any request, bypassing
the tuning algorithm. Table 7 shows the OPPerTune service
throughput for various backend algorithms. First, we find
that the ordering of Bluefin, HybridBandits, AutoScope, and
DDPG (our implementations) is as expected. The latency
of the requests is proportional to the size of the model—
HybridBandits achieves lower throughput than Bluefin, be-
cause it needs to sample from a probability distribution
over all possible categorical choices (∣C∣ = 720 in this study).



Algorithm Bluefin HybridBandits AutoScope DDPG Slates BO

Throughput (RPS) 2226 1540 825 594 2.2 1.5

Table 7: Maximum throughput of OPPerTune service with
various back-end algorithms.

Among the algorithms that use context, i.e., AutoScope and
DDPG, AutoScope is faster because its inference time is
proportional to hd + m + ∣C∣, where h = 3 is the tree height
for experiments in this paper, d = 8, m = 25, for this study
(see notation in Section 3.2); whereas, DDPG has to per-
form inference using a neural network of size (m + k + d)×

#hidden layers, where m+k = 30 parameters in this study, and
#hidden layers = 32 for experiments in this paper. Popular im-
plementations of BO and Slates algorithms, that we integrated
in our back-end, do not scale at all.

8 Related Work
Configuration Tuning: Performance optimization of sys-
tems through configuration tuning is a long-studied prob-
lem [37, 59, 60] that continues to garner interest from the
systems research community. Prior works on configuration
tuning mainly focus on parameters of specific subsystems of
applications [16,17,24,46,54,69,69–71] such as database and
storage or of the hosting infrastructure [21, 22, 55, 58, 63]. In
such works, the configuration search space is relatively small,
and the advantages of jointly tuning parameters across the
software stack are not considered. Moreover, the approaches
are tailored to the specific subsystem being tuned, sometimes
requiring domain expertise [16, 24]. Recently, jointly tuning
parameters across the software stack [25,48] and across multi-
ple components of an application [61, 64] is gaining attention.
Such works either ignore the cost of reconfiguration [61] or
require an expensive offline training [25, 48, 64].

RL/Bandit Algorithms: While there are several RL-based
configuration tuning approaches [55, 57, 73], they are either
limited in the type of parameters being tuned or are inef-
ficient for online post-deployment tuning scenarios. Some
approaches do handle hybrid parameter spaces [43, 49] via
cascaded optimization which are effective only when trained
offline. Deploying parameters, observing a reward and making
updates in real systems fits the bandits paradigm (sample; re-
ward; update) better than long-horizon RL paradigm (sample;
reward; sample; reward; . . .; update). Long-horizon/episodic
RL has higher sample complexity and needs hand-crafted state
information (e.g, utilization metrics) to learn effective poli-
cies. While this allows robustness in dynamic environments,
it poses additional engineering overhead, and hand-designing
state information is challenging in enterprise scenarios. In
our experience working with developers, determining a useful
reward cycle (time horizon) is fairly easy with some domain
expertise making our bandits approach effective compared
to RL and our proposed HybridBandits can tune all types of
parameters in deployment without such overhead.

Recent work on learning trees using bandit feedback [28,
29] are designed for categorical spaces. Popular tree learning
algorithms like CART [23] and C4.5 [56] do not apply to the
bandit feedback setting because they need access to labeled
training data (which in our scenario means optimal parameters
for different context vectors, which we do not have).
Tuning Frameworks: Recent works have addressed the need
for a generic configuration tuning framework for production
systems [33,40,58,67,75]. KEA [75], Microsoft’s internal tun-
ing framework for cluster-wide configurations, uses historical
data to make decisions on parameters in the pre-deployment
stages. The most recent SelfTune [40] framework from Mi-
crosoft for tuning cluster managers supports post-deployment
tuning but lacks support for tuning categorical parameters
and requires domain expertise for setting up tuning instances
for complex, distributed applications. Google’s Vizier [33]
is their internal service for hyper-parameter tuning of ML
workloads in the offline setting. Twine [67] is Meta’s clus-
ter management system for workload-specific customizations
such as tuning of hardware and OS settings. OpenTuner [18]
provides a framework to build domain-specific tuners.

9 Conclusion
We have designed, built, and deployed the OPPerTune con-
figuration tuning service at Microsoft. Our work differs from
related work on configuration tuning in many ways: 1) we
tackle challenges arising in post-deployment tuning, 2) we
focus on sample complexity of algorithms as well as the cost
of tuning, unlike systems tuning efforts that rely on offline
training or controlled settings, 3) we give an end-to-end solu-
tion for configuration tuning that is fairly general and readily
applicable. We demonstrate through two real-world deploy-
ments that our techniques yield state-of-the-art performance,
are sample-efficient, and reduce the tuning cost.

This work addresses many challenges in post-deployment
configuration tuning through OPPerTune. However, future
work can address the following challenges and also improve
the framework for easier adoption. Firstly, OPPerTune’s scal-
ability can be evaluated by using it to tune applications with a
very large (say, thousands) number of parameters. Secondly, a
fine-grained analysis of different costs (e.g., performance and
revenue) associated with tuning parameters can be conducted.
Thirdly, tuning parameters from different layers of the soft-
ware stack (e.g., OS and hardware), along with an analysis of
their interrelationships, would be an exciting direction. Lastly,
OPPerTune can be implemented as a Kubernetes operator
for seamless integration with the application ecosystem.
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A AutoScope Algorithm

Algorithm 2 AutoScope: Automatic Scoping of Configura-
tion Tuning via Decision Trees

1: Input: tree height h, learning rate η > 0, categorical pa-
rameter space C ∶= C1 ×C2 × ⋯ ×Ck, numerical parameter
spaceW =W1 ×W2 × ⋯ ×Wm

2: Initialize: Tree node weights z(0)j ∈Rd , for each internal
node 0≤ j ≤ 2h −2, ℓth leaf node categorical space weights
p(0)i,ℓ = 1/∣C∣, for 1 ≤ i ≤ ∣C∣ // uniform distribution, and ℓth

leaf node numerical parameters w(0)i,ℓ ∈Wi, for 1 ≤ i ≤m,
0 ≤ ℓ ≤ 2h − 1 // default choices

� Each leaf node := a “tuning instance”, and is
initialized identical to Algorithm HybridBandits Step 2.

3: for t = 0,1,2, . . . do
1 Determine the scope using the tree guided by

the observed context, and use the appropriate tuning in-
stance

4: Observe context c(t) ∈Rd

5: Get the instance at the leaf node ℓ by navigating the
tree fT (c(t);{z(t)j })

6: Sample categorical and numerical actions following
Steps 4–6 of Algorithm HybridBandits on the ℓth instance

2 Deploy the actions and measure reward
7: Follow Steps 7–8 of Algorithm HybridBandits and

observe the reward r(t) = rt(⋅)

3 Perform updates on the tree
8: Update the ℓth instance using Steps 9–11 of Algo-

rithm HybridBandits // Other tuning instances remain the
same

9: Update tree node weights, for 0 ≤ j ≤ 2h − 2:
z(t+1)

j ← z(t)j + η∇̃z j rt(⋅) // ∇̃ is the estimated gradient
as in [38]

B HybridBandits Convergence
We design a simple synthetic function characterized by five
continuous parameters and one categorical parameter. The
categorical parameter offers a choice between two options
{f1, f2} while all continuous parameters are bounded within
the range [0,1]. The blackbox function, f ∶ [C,W]→R, calcu-
lates the root mean squared error of the continuous parameters.
Additionally, it incorporates a bias term that depends on the
categorical parameter’s choice (bias=1 if f2 else bias=0). We
compare the convergence of our proposed HybridBandits al-
gorithm, with Hyperopt’s Tree of Parzen Estimators (TPE)
and the random search baseline in Figure 6. The metric plotted
here is the mean cumulative “regret” (i.e., the difference be-
tween the estimates of the parameters and their optimal values,
accumulated over rounds) with shaded 95% Confidence In-
terval (CI). We can see that random search does not converge
as expected, while HybridBandits demonstrates significantly

faster convergence compared to TPE.

Figure 6: Mean ± 95% CI cumulative regret over 25 runs.

C Experiment Details
In this section, we provide additional experimental details.

C.1 SocialNetwork + AMStraces
The AMStraces consist of traces collected from 3 different
data center regions across two continents. The traces consist
of the number of GET and PUT requests that arrive each
minute over four weeks along with additional details like
payload size, latency, etc. The peak requests per minute (RPM)
across the 3 clusters are around 30000, 40000, and 140000.
As seen in Figure 7, the traces show a diurnal pattern with a
reduced load over the weekend. We sample from these traces
such that a day’s original trace can be replayed in 1.2 hours.
We started with a higher sampling rate and arrived at this as
it succinctly captures the patterns in the original traces yet
makes the experiment iteration feasible.

The PUT and GET requests in the AMStraces are mapped
to the PUT (compose-post) and GET (read-user-timeline and
read-home-timeline) requests of the social networking appli-
cation. The payload size of the PUT requests is also driven
by the payload sizes from the traces. The call graphs of the
GET and PUT requests in the social networking application
capture the complexities of the GET and PUT requests in the
AMS service.

C.2 MLExp
In Table 8, we provide 95th percentile of the job com-
pletion time in minutes. For 8 out of 11 job types,
AutoScope achieves up to smaller P95 completion times than
expert choices.

D Microbenchmarking: Top-50 Parameters
Figure 8 gives the top-50 parameters used in Table 6 and
Figure 5. The figure also indicates the importance of tuning
the application (30 out of top-50) and Kubernetes parameters



Figure 7: Requests Per Minute (RPM) across the three clusters over a week. The figure shows a diurnal pattern with a significant
reduction in traffic over the weekends.

Method P95 Job Completion Time in minutes
Select Filter Explode Normalize Stats Extract Dedup Split Sample Debug Eval

Default choices 58.39 29.16 31.78 6.72 5.96 3.71 6.96 2.96 11.56 10.76 7.64
Expert choices 17.36 7.65 9.9 2.68 5.48 1.75 9.04 3.13 4.38 4.60 3.55

Bluefincluster, type, size 13.47 6.33 12.38 2.49 3.92 2.29 3.56 3.69 3.43 3.13 2.11
AutoScope 11.45 7.05 10.56 1.85 3.12 2.35 5.14 3.14 3.15 3.94 2.09

Table 8: P95 Job completion times for various job types submitted to 2 MLExp clusters over 1 week of evaluation.

(20 out of top-50) jointly as they are both critical to the appli-
cation’s performance. We can also see a mixture of numerical

and categorical parameters among the top 50 parameters.



Figure 8: Top 50 parameters selected by the micro-benchmarking strategy in Section 6, and the maximum absolute relative
difference in P95 latencies observed by perturbing each of the 50 parameters one at a time w.r.t. a fixed baseline.
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