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New Bounds for Matrix Multiplication: from Alpha to Omega
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Abstract

The main contribution of this paper is a new improved variant of the laser method for designing matrix
multiplication algorithms. Building upon the recent techniques of [Duan, Wu, Zhou, FOCS 2023], the new
method introduces several new ingredients that not only yield an improved bound on the matrix multiplication
exponent w, but also improve the known bounds on rectangular matrix multiplication by [Le Gall and Urrutia,
SODA 2018].

In particular, the new bound on w is

w < 2.371552 (improved from w < 2.371866).

For the dual matrix multiplication exponent « defined as the largest « for which w(1, «, 1) = 2, we obtain the
improvement

a > 0.321334 (improved from a > 0.31389).
Similar improvements are obtained for various other exponents for multiplying rectangular matrices.

1 Introduction

Matrix multiplication is arguably the most basic linear algebraic operation, with plentiful applications throughout
computer science and beyond. Its algorithmic complexity has been studied for many decades. In 1969 a
breakthrough result by Strassen [31] showed that n x n matrices can be multiplied faster than the naive cubic time
algorithm. Since then there has been an explosion of results obtaining lower and lower bounds on the exponent w
defined as the smallest constant such that for all € > 0, n x n matrices can be multiplied using O(n**¢) arithmetic
operations (additions, subtractions, multiplications and divisions; this is called the arithmetic circuit model of
computation). In recent years, the bound w < 2.373 has been obtained [33, 15, 23, 4]. A new paper by Duan, Wu
and Zhou [17] shows that w < 2.3719.

The dream bound would be w = 2, implying a near-linear time algorithm for multiplying matrices.
Unfortunately, a series of works [6, 2, 10, 1, 3, 8, 5, 9] has shown that the known techniques for multiplying
matrices cannot achieve w = 2.

All work on matrix multiplication since 1986 [32, 33, 15, 23, 4, 17] has used various variants of the so-called
laser method. The strongest limitation result known for the laser method and its variants [6] is that such techniques
cannot show that w < 2.3078.

The limitation results could mean that radically new methods need to be produced to make big strides. Yet,
even if one stays within the laser method framework, it is still an intriguing question: how close can we get to the
2.3078 barrier bound?

In many applications of matrix multiplication, one needs to multiply rectangular matrices: n® x n® by n®? x n®,
where a,b, ¢ are different. Here one defines w(a,b,c) to be the exponent for which matrix products of such
dimensions can be multiplied in O(n®(®)+¢) time for all £ > 0, in the arithmetic circuit model of computation.

For instance, in the study of All-Pairs Shortest Paths (APSP) in unweighted directed graphs [34], the
complexity of APSP depends on the value p which is defined as the real number satisfying the equation
w(l,p,1) =1+ 2u. The same value is needed for the best known algorithms for computing minimum witnesses
of Boolean Matrix Multiplication [14], for All-Pairs Bottleneck Paths in node-weighted graphs [30] and other
problems.
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In the work on k-clique detection, the value of w(1,2,1) is important, as it is known [18] that 4-cliques in
n-node graphs can be detected in O(n®(2D+¢) time for any ¢ > 0. Moreover, if w(1,2,1) < 3.16, this would
improve the known algorithms for k-clique detection for all k > 8 [27].

A final value of interest is «, the largest constant so that w(1,a, 1) = 2, first studied by Coppersmith [11, 12].
If w =2, then a = 1. So one can view the goal of increasing « as another way to attempt to prove that w = 2.

The best bounds on rectangular matrix multiplication to date are given by Le Gall and Urrutia [25], which
improved upon [11, 12, 20, 21, 22]. For the values listed above, the bounds obtained by [25] are as follows:
< 0.5286, w(1,2,1) < 3.25164 and « < 0.31389.

The goal of this paper is to obtain better bounds on w, o, p and rectangular matrix multiplication in general.

1.1 Our results. The main result of this paper is a new improved variant of the laser method for designing
matrix multiplication algorithms. Applying the new method, we obtain improved bounds for both square and
rectangular matrix multiplication.

In particular, we show that o > 0.321334 (improving upon the previous bound 0.31389), © < 0.527661
(improving upon the previous bound 0.5286) and w(1,2,1) < 3.250385 (improving upon 3.25164).

As a consequence, Zwick’s algorithm for APSP in directed unweighted graphs (and several other algorithms,
e.g., minimum witnesses for Boolean Matrix Multiplication [14] and All-Pairs Bottleneck Paths in node-weighted
graphs [30]) runs in O(n?-527661) time and 4-cliques can be found in O(n3-2°9385) time.

For many other bounds on rectangular matrix multiplication, see Table 1.

Table 1: Our bounds on w(1, x, 1) by analyzing the fourth power of the CW tensor compared to the best previous
bounds. The previous bound for k = 1 comes from [17]’s eighth-power analysis, while all other entries come
from [25].

. upper bound on | previous bound . upper bound on | previous bound
w(l, Kk, 1) on w(l,xk,1) w(l, Kk, 1) on w(l,k,1)
0.321334 2 N/A 0.75 2.186210 2.187543
0.33 2.000100 2.000448 0.80 2.220929 2.222256
0.34 2.000600 2.001118 0.85 2.256984 2.258317
0.35 2.001363 2.001957 0.90 2.294209 2.295544
0.40 2.009541 2.010314 0.95 2.332440 2.333789
0.45 2.023788 2.024801 1.00 2.371552 2.371866
0.50 2.042994 2.044183 1.10 2.452056 2.453481
0.527661 2.055322 N/A 1.20 2.535063 2.536550
0.55 2.066134 2.067488 1.50 2.794941 2.796537
0.60 2.092631 2.093981 2.00 3.250385 3.251640
0.65 2.121734 2.123097 2.50 3.720468 3.721503
0.70 2.153048 2.154399 3.00 4.198809 4.199712

Independent Work. Independently, Le Gall [24] also obtained bounds on rectangular matrix multiplication,
improving over [25]. His method generalizes the approach of [17] to rectangular matrices. For technical reasons,
the bound on w produced by his method does not match the bound in [17]. In comparison, our method is not
only a generalization of [17] to rectangular matrices, but also an improvement. As a result, our bounds are better
than the bounds in [24].

2 Technical Overview

2.1 Overview of previous work. For positive integers a, b, ¢, the a X b X ¢ matrix multiplication tensor (a, b, c)
is a tensor over the variable sets {; }ic|a).je[n]s Uik } i) ke(c)> 12ki frelc),ic[a) defined as the tensor computing the
ax c product matrix {zx; } pe[e),ic[q) Of an a x b matrix {z;}ic(q] jep) and a bx c matrix {y;x}jcp) keld .1 Specifically,

TFor integer n > 0, the notation [n] denotes {1,...,n}.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

3793



Downloaded 07/18/24 to 128.31.39.156 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

(a, b, c) can be written as the following trilinear form

(a,b,c) = Z Z Z LijYjhPhi-

i€la] j€[b] k€[]

It is not hard to check that (a,b,c) ® (d,e, f) = (ad,be,cf). For a tensor T, let R(T") denote the tensor rank of
T and the matrix multiplication exponent w is defined as

= inf log, R .
wi= inf  log, R((g,¢,9))
It is hard to directly bound the tensor rank of {(g,q,q) in general, so current approaches to bounding w utilize
Schonhage’s asymptotic sum inequality [29], which states that if one can bound the asymptotic rank of a direct
sum of matrix multiplication tensors, where the asymptotic rank R(T') of a tensor T is defined as

R(T) == lim R(T®")Y/™,

n—oo

then one can get a bound on w. More specifically, we recall the asymptotic sum inequality as follows.

THEOREM 2.1 (Asymptotic sum inequality [29]). For positive integers r > m and a;,b;, ¢; for i € [m], if

E<é<aiv bi, Cz>> <7

i=1
then w < 37 where T € [2/3,1] is the solution to the equation

m

Z(ai . bi . Ci)T =T.

i=1

Schénhage’s asymptotic sum inequality gave rise to the following approach to bounding w: start with a tensor
T whose asymptotic rank R(T) is easy to bound. Consider T®" for some n sufficiently large and we want to
transform 7T®" into a direct sum of matrix multiplication tensors whose asymptotic rank is upper bounded by
the asymptotic rank of R(T®") = R(T)"™. The common ways of doing such transformation is via zeroing-out, i.e.,
setting some variables in T®" to zero, or the more general degeneration, whose definition is deferred to Section 3.
Then we can apply the asymptotic sum inequality to get a bound on w. Observe that if T7®" can be degenerated
into @, (a;, b;, ¢;), then for a fixed 7, we want to maximize the value of >, (a; - b; - ¢;)7. This gives a notion
of the “matrix multiplication value” of a tensor T' that we want to maximize. Then notice that a lower bound on
the value of T®" would directly imply an upper bound on w via the asymptotic sum inequality. It still remains
unknown how to get the best possible bound on w via a tensor power T®", but the laser method provides one
way to give a nontrivial bound.

Laser method. Let T be a tensor over three sets of variables X, Y, Z. For positive integers sx, sy, sz, let
X = Uie[sx] XY = l_lje[5y] Y; and Z = Uke[sz] Z, be partitions of the X-, Y-, Z-variable sets into sx, sy, sz
parts respectively. Then T can be written as a sum of subtensors > T; j.k, where T; ; 1. denotes the subtensor
of T restricted to variables X;, Y}, Z.

Suppose for now that each subtensor 7; ;1 is a matrix multiplication tensor. If T"is a direct sum of matrix
multiplication tensors, then we can apply Schonhage’s asymptotic sum inequality [29] to obtain a bound on w.
However, T is a sum of Tj ; 1, not necessarily a direct sum.

The laser method [32] is devised to overcome this issue. First, we take the n-th tensor power of T for some
large n, which is a tensor over variables X" Y" Z":

¢ = N > Y Tik,

I€[sx]™ JE[sy]™ KE[sz]|™

4,3,k

where
Trgx =Tn,0,k @10k, @ @17, 7, K,
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We will refer to these three sets of variables as X-variables, Y-variables and Z-variables respectively. Because each
T; j x is a matrix multiplication tensor and the tensor products of several T; ; x’s will still be matrix multiplication
tensors, T7 ; k is a matrix multiplication tensor for any I € [sx|",J € [sy]|", K € [sz]|". For any I € [sx]", let
X7 denote Xy, x Xy, x --- x X1, , which is a subset of X"™. Similarly we define Y; and Zk. It is not difficult to
see that T ; i is exactly the subtensor of T®" when restricted to X;,Y;, Zx. We call such subsets X;,Y;, Zk
variable blocks.

The goal of the laser method is to select some of the variable blocks X;,Y; or Zx and zero out all of the
variables in these blocks, i.e. “zero out the blocks”, so that the remaining tensor is a direct sum of 17 j k’s.

The laser method specifies a distribution « over triples (i, j, k) where i € [sx],j € [sy],k € [sz], so that for
each T7 j ik that we want to keep in the direct sum, we require that

(2.1) {t € ]| (I, Je, Ki) = (i.5,k)}| = a(i, j, k) - n.

If a subtensor Ty j i satisfies (2.1), we say that it is consistent with the distribution a.

The distribution « induces the marginal distributions ax, ay,az on the X-, Y-, Z-variables over the indices
[sx],[sv], [sz] respectively as follows. Let ax, ay, az be the marginal distributions of « on the three dimensions
respectively, i.e.,

ax(@)= Y ali,jk) Vi€ [sx],

jE[sy],k€[sz]

ay(j)= > ali,gk) Vi€ lsyl],
i€[sx],k€[sz]
az(k)= > ali,jk) Vk€[sz].

i€[sx],j€[sy]

In the laser method, we zero out all X-variable blocks X that are not consistent with ax (X7 is consistent with
ax if {t € [n] : I = i}| = ax (i) - n for every ¢ € [sx]). We similarly zero out all Y-variable blocks Y that are
not consistent with oy and Z-variable blocks Zx that are not consistent with «.

At this stage, a subtensor T ;i remains if X;,Y; and Zk all remain. Thus, all remaining 17 ; k’s are
consistent with some distribution o’ that induces the same marginal distributions ax, ay,az, though o’ might
be different from a. The final stages of the laser method aim to keep a collection of independent subtensors
T 7, and zero out the subtensors 17 ; x that are consistent with a distribution o’ # «, using techniques such as
hashing and greedy procedures. Eventually, the laser method obtains multiple independent copies of the tensor
isomorphic to:

T = ® Ti%ixéi,j,k)-vL'
i3,k
The Coppersmith-Winograd tensor CW,. Prior works [13, 15, 33, 23, 4, 17| that obtained the best

bounds on w used the Coppersmith-Winograd tensor CW, and its powers as the starting tensor 1" in the laser
method. The Coppersmith-Winograd tensor CW, for a nonnegative integer ¢ is defined as

q

CWy = 20Y02¢+1 + ToYq+120 + Tgt1Yo20 + Z(Scoyizi + xiYozi + TiYizo).
i=1

Observe that
q

Z(x()yizi + Yoz + xzyzZO) = <1a 17 Q> + <Qa 17 1> + (17 q, 1>a
i=1
so CW,, is the sum of six matrix multiplication tensors where the other three are copies of (1,1,1). Next, we
describe the leveled partitions of CW, and CW;@ZZ that are crucial to our analysis. For simplicity, we denote
0 . ®2¢7!
T = cwez

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

3795



Downloaded 07/18/24 to 128.31.39.156 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

For T = CW,, its variable sets are partitioned into three parts

XO=xPuxPuxiV = {aeyu{ar, ... 20} U{zgar},
1 1 1

YO =y oy v = (o} U{.. o yed U {yge s

ZW =z uzP 0z = {0y u{a, ... 2gl U{zgn )

Notice that under this partition, a constituent tensor Ti(;)k is nonzero if and only if i + 5 + k = 2.

For T = CVV;@ZP1 with variable sets X (©), V() Z() the above partition on 7)) directly induces a partition
on the variable sets X Y 7Z® where each part of the partition is indexed by a {0, 1, 2}-sequence of length
2¢=1. Specifically, this gives the partition

X(Z) — I—l XA(I) ®XA(1) ®X(1)
11 12

o N 2£ 1
(14d2,esine—1)€{0,1,2}25 71

for X-variables and analogous partitions for Y- and Z-variables.

One can use the laser method on these partitions. However, this would not yield an improved bound on w
from what one would get just by analyzing T1). The reason behind the improvement obtained by analyzing
higher powers of CW, comes from the fact that we can consider the following coarsening of the above partition
where the parts corresponding to sequences with the same sum are “merged” into a single part. More specifically,
we have

2
XO=]]x  where x{:= || xVeoxMe. . ox

lob— 1
PPN - £—1
(i1,i2,.-r150—1)€{0,1,2}?

> ir=i

We refer to this specific partition of T as the level-¢ partition. Note that we can also view this partition as
obtained from coarsening the level-(¢ — 1) partition, i.e.,

xP= || x{PVexth.
0<i' <i
0<i’ i—i'<2°

We can partition the variable sets Y(© and Z(®) similarly. Then we use T( ) .k to denote the subtensor of T

restricted to the variable subsets X ® Y(é) Z, ) and note that T( )k is nonzero if and only if i + j + k = 2¢. We

call Ti(’?, i & level-£ constituent tensor, Xi( ), j(e), Z,gé)

{ is clear from context.
For ¢ > 1, some level-¢ constituent tensors T( )k are no longer matrix multiplication tensors, so each

independent copy of T = ), ik ( (7?’ )®a(w k)n may also no longer be a matrix multlphcatlon tensor. To
resolve this issue, prior works [13, 15, 33, 23, 4] use the laser method recursively to analyze T; j ;’s that are not
matrix multiplication tensors.

The work of [17]. Consider the analysis on the tensor T® of the laser method. In previous approaches

prior to the work of Duan, Wu and Zhou [17], one would first apply the laser method on T® to obtain multiple

level-¢ variable blocks, and we omit the superscript (¢) when

copies of T = @), ;. (T, é)k)@)a(l’j’k)'n which consists of level-¢ constituent tensors T(Z) ', and do not share level-£

variable blocks. Then for each T( )k that is not a matrix multiplication tensor, one would recursively apply the
laser method to obtain multlple copies of some other tensors that are independent over level-(¢ — 1) variable
blocks.

Recall that for a level-¢ constituent tensor T

into | |, X -1 g X(Z 2 Ly Y -1 g Y(Z ,1) and | |, Z e Y& Igz k,) respectively In the first recursive step,
when applying the laser method on T(

i )k, we take the n’-th tensor power (T( ) ) fT( ) i for some large n’ and
specify a distribution 8 over triples ((¢',¢ — '), (j',5 — 7)), (K',k — k")) where 0 < <i, 0 <j <4, 0<K <k,

(Z)k, we can partition its variable set Xi(z), Yj(e), Z,(f) recursively
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Zcro out level-3 blocks inconsistent with a Zmo out level-3 blocks inconsistent with a

Zero out level-3 blocks inconsistent with 0

Hash level-3 blocks
Global -

Hash level-3 blocks

Hash level-3 blocks

[Zero out level-2 blocks inconsistent with ﬂ] [Zero out level-1 blocks inconsistent with 7]
[Level—3 independent copies of TJ + +
[Level-z independent copies of T} [Level-l independent copies of T}

[Zero out level-2 blocks inconsistent with ’3] Hash level-2 blocks h 4
+ H
A,

ash level-2 blocks
Level-2 Hash level-2 blocks [Zero out level-1 blocks inconsistent with 'y]

[Leve1—2 independent copies of T’J [Level-l independent copies of Tj

.................................. PPN rorrorrorrors srrrersererrers NSNS SO

A4

[Zcro out level-1 blocks inconsistent with '\]
Hash level-1 blocks Hash level-1 blocks
Level-1
Hash level-1 blocks
\ 4

[Level—l independent copies of T”J [Level—l independent copies of T”J

A
[Level-l independent copies of T]

[Level—l independent copies of T”J

(a) [33, 15, 23, 4] (b) [17] (c) This work

Figure 1: High-level comparison between this work and prior works on (CWSM)@". Here, « is a distribution over
level-3 constituent tensors, § is a collection of distributions over level-2 constituent tensors, and + is a collection
of distributions over level-1 constituent tensors.

and zero out all variables blocks that are not consistent with the marginal distributions induced by 3. Therefore,
in T ik only a subset of the level-(¢ — 1) variable blocks survive the above zeroing-out.

Now suppose we can move the above zeroing-out step earlier, say before we have independent copies of T
when we first apply the laser method on 7), then instead of keeping independent copies of T, we only need
to keep a subtensor 7" of it, where 7' is T after applying the above zeroing-out step. This leads to one of the
key observations in [17]: we do not need to have copies of 7' that are fully independent over the level-¢ variable
blocks. Instead, any two copies can share the same level-¢ variable block as long as they do not share the same
level-(¢£—1) variable blocks that would survive the first zeroing-out in the recursive application of the laser method
on the level-¢ constituent tensors. As a result, we can potentially keep more independent copies of 7", because of
the relaxed constraints, and each copy 7’ would still be essentially as good as T for the purpose of the analysis
because we are merely moving a later zeroing-out earlier. Because we are keeping more copies, by the asymptotic
sum inequality, we will achieve a better bound for w.

As illustrated in Fig. 1, consider (CW?4)®" and suppose «, 3, are (collections of) distributions over level-3,
level-2, level-1 constituent tensors respectively. In subfigure (a), works prior to [17] including [33, 4, 23] zero out
level-3 blocks according to o and obtain level-3-independent? copies of 7’ before zeroing out level-2 blocks. As
shown in subfigure (b), Duan et al. [17] moved the step of zeroing out level-2 blocks according to /5 earlier and
only obtained level-2-independence as opposed to level-3-independence.

?We say several subtensors of CW?N are level-l-independent if they do not share any level-¢ variable block, and thus they are
also independent.
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It is not obvious how one can accomplish the above modification. Duan et al. [17] considered the notion of
split distributions, which roughly measures how a level-¢ block “splits” into level-(¢ — 1) blocks with respect to the
recursive leveled partition. By observing the split distribution of a level-£ block, one gains some partial information
about the level-(¢ — 1) blocks that allows the modification of zeroing out level-(¢ — 1) blocks inconsistent with g
earlier. Ideally, one would hope to achieve this modification symmetrically over the X-, Y-, and Z-variables, i.e.,
allow the sharing of level-¢ variable blocks in all three dimensions, but the method in [17] did not achieve that.
Instead, their technique works when the multiple copies of 7 only share the same level-¢ Z-variable block while
each X- and Y-variable block needs to be contained in a unique level-¢ subtensor. (More generally, their technique
works when level-£ variable blocks are shared in exactly one of X-, Y-, Z-variables). In order to set up the tensor
satisfying the required constraints, they need to zero out the Z-variable blocks asymmetrically with respect to
the X- and Y-variables. It still remains an open question whether the techniques in [17] can be symmetrized over
the three dimensions.

Another technical detail is that the obtained independent copies of tensors in [17] are not all necessarily full
copies of T’. That is, some variables of the independent tensors are zeroed out. This creates independent copies of
T’ but with some “holes”. Because of the asymmetry of their method, such holes can only appear in Z-variables.
In order to overcome this issue, they showed that, as long as the fraction of holes is small, and all holes are in
Z-variables, one can degenerate a small number of independent copies of 7’ with holes to a full copy of T. Prior
to their work, Schonhage [29] also studied this problem of degenerating multiple independent copies of a tensor
with holes to a full copy of the tensor. Schénhage’s method applied to the case when two of the three dimensions
can have holes, but it focuses only on matrix multiplication tensors.

2.2 Our improvements.

Complete split distribution. We take the observation of [17] one step further. The high-level idea is the
following: instead of keeping copies of T that are independent over level-(¢ — 1) variable blocks, we keep copies
of it that are independent over level-1 variable blocks. For £ > 1, this should give more degrees of freedom and
enable us to keep more copies of 7. As illustrated in Fig. 1 (c), we directly move the step of zeroing out level-1
blocks according to v earlier and obtain level-1 independence as opposed in level-2 independence in [17].

To implement the above idea, we utilize the notion of complete split distributions, which can be viewed as an
extension of the notion of split distributions used in [17]. Recall that in [17], a level-¢ split distribution measures
how a level-¢ variable block splits into level-(¢ — 1) blocks. A level-¢ complete split distribution measures how a
level-¢ block splits into level-1 variable blocks. Specifically, a level-1 block sequence of length 2¢=1 . n in T can
be viewed as n consecutive chunks of {0, 1,2}-sequences each of length 2¢=1 and we consider the proportion of
cach of these 32" possible types of chunks in the n chunks. A level-¢ complete split distribution is a distribution
on these 32 types of chunks, and a level-1 block sequence (and its corresponding level-1 variable block) is said
to be consistent with a level-¢ complete split distribution if the proportion of each type of chunks matches the
corresponding probability specified in the complete split distribution.

Let Bx, By, Bz be three level-£ complete split distributions, and let 7; ;, be a level-¢ constituent tensor.
We will consider the tensor TZ‘X; ..[Bx, By, Bz], which is obtained from T(%” by zeroing out all level-1 X-, Y-
Z-variable blocks that are not consistent with Sx, Sy, 8z respectively. We call this “enforcing the complete spht
distributions”. In our recursive steps, we will analyze Tl‘g;"k [Bx, By, Bz] instead of T®j”

Enforcing split distributions in all three dimensions. Dual et al. [17] only enforce their split distribution
in one of the dimensions (the Z variables). In our method, we need to enforce complete split distributions in all
three dimensions. Here we explain why.

First of all, when analyzing a level-¢ constituent tensor Tg"k, [17] only consider split distributions, instead of
complete split distributions. Every level-(¢ — 1) block sequence in T e " can be viewed as a length-(2n) sequence
on {0,1,...,271}. If we split the sequence to chunks of length 2, we obtain a length-n sequence of pairs in
{0,1,...,271}2. The split distribution used in [17] essentially specifies the proportion of each type of pairs, and
they zero out all level-(¢ — 1) variable blocks that are not consistent with the specified proportions.

Similar to what we discussed earlier, when enforcing the split distribution on the tensor TZ@?, o (or
1281?,7 j—j' k—ks), the constraint becomes a constraint that enforces the proportion of each level-(¢ — 1) variable
block in the level-(¢ — 1) variable blocks in T®", - Since there is only one level-(¢ — 1) block in Tfm, o either

the whole tensor T@ iy satisfies the constralnts or it does not. Thus, the constraints of the split distribution do
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not carry over to further recursion levels.
When analyzing each constituent tensor T® , Duan et al. [17] aim to obtain some “symmetrized value” of

T; j k. similar to previous works [13, 15, 33, 237 4]. As a result, when analyzing T?;”k, they apply their method
multiple times to enforce a split distribution on each of the three possible dimensions, i.e., they can choose to
share X-, Y-, or Z-variables depending on which application of their method it is. Still, the constraints of the
split distribution do not carry over to the next recursion level as discussed in the previous paragraph. Thus, in
their analysis, holes only appear in one of the dimensions.

However, when enforcing a complete split distribution, the constraints carry over to further recursion levels:
say in the analysis for 7; ; ;. in some application of the method in the current level, we choose to enforce a complete
split distribution on Z-variables. This constraint still has an effect on the next level. However, in the analysis
at the next level, we can choose to enforce a complete split distribution on Y-variables instead. This creates
constraints on the complete split distribution in two dimensions. In general, these constraints can appear in all
three dimensions, and therefore, we need to handle holes in all three dimensions.

A technical issue. A technical issue arises if we enforce complete split distributions in three dimensions.
We consider a simplified scenario where the support of the distribution £ has size 1 to explain the issue. In other
words, we aim to zero out Tf%"k into independent copies of (Ty i @ Ti—ir j—jr k—k )&™ for some ¢, 7/, k’. In this
simplified scenario, if we do not enforce complete split distributions, we could rewrite (Tj/ ;o 1 @ Ti—ir j— j/ e ) 8"
equivalently as T, ", K ®Tl®f Gt ke k by simply permuting the indices, and then recursively analyze T ik and
I’i??,)j_j,7 ke’ separately. Now with complete split distribution, this step becomes problematic. Suppose we are
able to obtain independent copies of

Ti= Ty jp @Ticirj—jr —i) " [Bx, By, Bzl

for some Bx, By, Bz. Then in order to recursively analyze 77, we instead need a tensor

7= (17 B0 549, ;LW)@(T?;z/,j_j.k_k,[ ©.50. 547

for some level-(¢ — 1) complete split distributions B( Y , (ZL), E(R), v, ﬁ Z

Let us discuss how the above level-(¢ — 1) complete split distributions are related to Sx, 8y, Bz. To give
some intuition, in each length-2¢ chunk of a level-1 block sequence in 77, the first half-chunk belongs to some
Ty jr k, and the second half-chunk belongs to some T;_s j_js k—i. In T2, we permute the indices so that all the
first half-chunks belonging to some Ty j/ s are put together in the first half of the resulting sequence, and all the
second half-chunks belonging to some T;_; ;_;/ —is are put together in the second half of the resulting sequence.
If we enforce a level-¢ complete split distribution Sx on a level 1 block sequence Ie {0, 1,2}2271 in 71, what
would the permuted sequence look like? Let 01,09 € {0,1 2}2 denote two length-2=2 chunks and let o o oy
denote their concatenation. Since I is consistent with Bx, I contains Bx (01 0 02) - n chunks o7 o 09 for every
01,02. For each of these chunks, o1 gets permuted to the first half of the permuted level-1 block sequence in 75,
and o9 gets permuted to the second half of the permuted level-1 block sequence in 75. Summing over all o1, o3,
it is not difficult to verify that

:Zﬂx(m 0 02), (R) Zﬁx 010 09).

In this sense, ﬂg(L) and BE(R) can be viewed as two marginal distributions of Sx. This similarly holds for Y and Z.

One set of constraints we can add to make ,B;L) and 655) always the two marginal distributions of By is

Bx = BE(L) X ﬁ&R), namely we enforce Sx to be the joint distribution of (independently distributed) Bg‘) and Bg(R).

Similarly we can add the constraints Sy = 5§,L) X ﬂ}(,R) and 8z = (ZL) X ﬁ(ZR).

However, even with these constraints, 7; might not necessarily be equivalent to 75. By the above reasoning,
every level-1 block sequence in 7; is permuted into a level-1 block sequence in T3, but not all block sequences in
T2 can be obtained this way. Intuitively, this is because joint distributions can determine marginal distributions,

which means that, for instance, BE(L) X BE(R) can determine both 5% and B(R) The other way is not true, and
there could be multiple joint distributions whose marginals satisfy B pr ) and B&R).
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By a careful calculation, one can still show that the proportion of X-, Y-, Z-variables in 75 that are not in
T; is at most a 1 — 27°V) fraction of those in 75. These variables become holes. Unfortunately, the methods in
previous works [29, 17] do not apply, as they are unable to fix holes that are present in all three dimensions (X-,
Y-, Z-variables).

Next, we discuss how we fix the technical issue.

Intuition of the fix. The first step towards resolving this issue is to decrease the fraction of holes in all
three dimensions, from 1 —27°(N) all the way down to 2~%). Then we describe a generic method adapted from
[16] for fixing holes in all three dimensions as long as the fractions of holes are small.

For the first step, we slightly relax the condition for zeroing out variables in 7; and 75. Let € > 0 be an

arbitrary constant. For any T; ; 1, we use Tl®j”k [Bx, By, Bz,¢e] to denote Tl‘%"k but we zero out all level-1 X-, Y-,

Z-variables, where the proportion of each chunk in {0, 1, 2}2£—1 in their level-1 block sequence differs at most
€ from the corresponding probability in Sx, By, Bz respectively. That is, we allow some small flexibility when
zeroing out variables. Then, let

7-1/ = (E',j’,k' X /I’if'i’,jfj’,kfk’)®n|: g(L) X /B&R), X(/L) X Bng) (ZL) X B(ZR)y 5j|7

and recall . : . - - n
To = (T80, (88 87, 8571) @ (T3 1w (857, 877, 8571,

Intuitively, we allow more flexibility in 7; than that in 73, so that more variables remain in 7; compared to
T2, and the fraction of holes should become smaller. The idea for proving this is to use concentration bounds:

(L) p(L) (L)
X

if we pick a uniformly random level-1 X-variable block from Tfi?,’k, [ﬁ By s By ] and another uniformly

random level-1 X-variable block from Ti(gi?’,jfj’,kfk’ [ﬁ&R), 61(/}%), B(ZR)} , then with very high probability (1—27%(),
the combination (interleaving the length 2¢~2 chunks between their level-1 block sequences) of them satisfies
6%) X E&R), up to € additive error. Then the fraction of holes is 2~%("). Similar reasons also apply to Y- and
Z-variables.

Fixing the holes in all three dimensions. Suppose we have many “broken” copies of some tensor 7T, in
each of which a small fraction of variables (holes) are missing. The goal of this step is to degenerate these broken
tensors into one without holes. Schonhage [29] solved this problem for matrix multiplication tensors with holes
in only X- and Y-variables, but not Z, via an elegant linear transformation. Duan et al. [17] introduced another
method for so-called standard form tensors, which are quite general and are able to capture tensor products of
constituent tensors, but can only deal with holes in a single dimension. Duan [16] developed a method utilizing
an elegant recursive approach for fixing holes in all three dimensions, but only for matrix multiplication tensors.

We generalize the method of [16] so that it can fix holes in all three dimensions simultaneously, while
supporting a broad class of tensors similar to [17]. The only additional requirement compared to [17] is that
the fraction of holes is below O(1/log N), where N is the number of variables in the tensor T'. This requirement
is satisfied via the previous step of the fix.

Next, we provide some intuition of the recursive hole-fixing approach. Assume T is supported on variable sets
X,Y, Z, and the fraction of holes in every copy of T does not exceed ¢ < 1. We first take one broken copy of T,
which we call Thele, and let X (@) Y0 Z() denote the set of holes in Thepe; let XM == X\ X©O) vy .= y\ y(©),
zW =7 \Z (0) represent the set of non-hole variables. We can further divide 7" into the sum of eight subtensors:

T= E : T|X(ar>7Y(b),Z(C) = Thote + E : T‘xw,wbxzuw
a,b,ce{0,1} a,b,ce{0,1}
1e{a,b,c}

where T'|x/ y,z denotes the subtensor of T' over subsets of variables X’ C X, Y’ CY, and Z' C Z. We directly
use the broken copy Tl for the first term, and recurse into seven subproblems to produce the other terms. In
each subproblem, at least one of the variable sets is X7, Y7 or Z;, which is ¢ times the size of X, Y, or Z. As
long as c¢ is very small, the number of broken copies of T" used in this recursive algorithm is affordable.
Rectangular matrix multiplication. In the analysis for square matrix multiplication, we could lower
bound the “symmetrized value” of every constituent tensor 7j;, which captures the asymptotic ability of

Tl@;”k ® ngi ® T,?Zj to degenerate into matrix multiplication tensors. The reason why we could symmetrize
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the constituent tensors is that we want to obtain square matrix multiplication tensors (a,a,a) for some a,
which is symmetric about all three dimensions. The situation is different when we consider rectangular matrix
multiplications, where we produce matrix multiplication tensors of the form (a, a”, a) to bound w(1, x, 1). Thus, we
no longer treat the analysis of each constituent tensor 7; ;1 as an individual subproblem, because the proportion
of T; j k, Tj ki, and Ty ; ; could be different. Hence, it is natural to adopt the framework introduced by Le Gall [22]
(and further used in [25]) for rectangular matrix multiplication: we directly apply the laser method on a tensor

consisting of multiple constituent tensors, e.g., on T = ®i’ ik Tgak(” ’k)'", rather than doing this for every term
®a(i,j,k)n
ik separately.

Difficulty of applying the refined laser method. Another natural attempt would be to combine our
techniques with the refined laser method introduced in [4], which aims to reduce the “penalty term” that arises
when we deal with the block triples inconsistent with the selected distribution a but consistent with the marginals
of . Alman and Vassilevska W. [4] pick a collection of disjoint level-¢ block triples X;Y;Zx consistent with the
chosen distribution «, which we call the “wanted” triples. Then, they zero out a wanted triple with probability 1—p
and keep it with probability p. Any “unwanted” triple XYy Zxs only remains with probability p3, since three
involved variable blocks come from three different wanted triples and are zeroed out independently; in contrast,
every wanted triple has probability p to remain. The gap between p and p® makes it a nontrivial improvement
beyond the older method (increasing the modulus of hashing, see, e.g., [15, 33, 23]), which produces a gap between
p and p?.

However, a difficulty arises when the refined laser method is combined with the asymmetric hashing technique
in [17] and this paper. Since we allow, e.g., level-¢ Z-variable blocks to be shared, we can no longer zero out all
three blocks X7,Y;, Zx when we decide to give up on this triple, as Zx might be utilized by other wanted triples.
If we only zero out X and Y} simultaneously, the probability of remaining becomes p (for a wanted triple) versus
p? (for an unwanted triple), which results in the same bound as the older approach.

3 Preliminaries

3.1 Tensors and tensor operations.
Tensors. A tensor T' over variable sets X = {z1,...,2x|}, Y ={y1,...,yv|}, Z = {z1,..., 22} and field

I is a trilinear form
|X] Y] |Z]

T= Z Z Zai,j,k * XY 2k,

i=1 j=1 k=1

where all a; 1, are from F. XY, Z are also called the support of the tensor. If all a; ; , € {0, 1}, the tensor T' can
be considered as over any field IF, which is the case for all tensors involved in this paper.
In the following, assume T is a tensor over X = {z1,..., x|}, Y = {y1,.. -, Yy} Z = {21,..., 2z} and T"

4 A /! / A / / ! ! ! :
is a tensor over X' ={,.... 2y, }, Y ={v1,. ..,y }, 2" =A{21,.. ., 2[5}, written as
x| 1Yl 12] IX'1Y'] 2]
! 1,1 !
T = E E E Qi jk - TiYj 2k, T = E E g bijk - T3Y;j 2,
i=1 j=1k=1 i=1 j=1k=1

Tensor operations. Recall the following tensor operations between two tensors T and T”:

e The sum T + T’ is only defined when both tensors are supported on the same sets (X,Y, 7)) = (X', Y', Z'),
given by
IX] Y| |Z]

T+T = Z Z Z(ai,j.,k + bijik) - TiY; 2k

i=1 j=1 k=1

e The direct sum T @ T’ equals the sum T + T” over disjoint unions X LU X', Y UY’, and Z U Z', i.e., we
first relabel the variables so that 7' and T” have disjoint supports, and then take their sum. If T and 7" are
supported on disjoint variable sets, their sum is the same as their direct sum, in which case we say T and
T’ are independent. We write T®" =T & T @ --- ® T to denote the sum of n independent copies of T'.

n copies
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e The tensor product, a.k.a. the Kronecker product, is defined as the tensor

IX| Y] 1Z] 1X'] Y] 2]

TeT =33 % > > > aijk-bugw - (@iah) - ©5y5) - (25 2)

i=1 j=1k=14'=1j'=1k'=1

over variable sets X x X/, Y x Y’ and Z x Z'. We write T®" =T T ® --- ® T to denote the n-th tensor
—_—

n times

power of T.

e We say T and T’ are isomorphic, denoted by T = T, if | X| = |X'|, |Y]| = |Y’|, |Z| = |Z'|, and there are
permutations wx,my, w7 over [|X|],[|Y]], [|Z]] respectively, such that a; ;= b gy for all i, j, k.
In other words, both tensors are equivalent up to a relabeling of the variables.

wx (1),7y (§),mz (

3.2 Tensor rank. Given a tensor T over X,Y, Z, the tensor rank R(T) is defined to be the minimum integer
r > 0 such that T can be written as

r [1X] Y] 12|

T:E E At T4 g bej - Y4 E Cek 2k |,
=1 \ i=1 J=1 k=1

where the above sum is called the rank decomposition of T
Given two tensors T, T”, the tensor rank satisfies the following property with respect to tensor operations.

e R(T+T') < R(T)+ R(T").
e R(TT') < R(T)+ R(T").
e R(I®T') < R(T)- R(T").

The asymptotic rank R(T) of T is defined as

R(T) := lim (R(T®™))"™.

n—o0

Due to the third item above and Fekete’s lemma, the asymptotic rank is well-defined and upper bounded by
R(T®™)Y/™ for any fixed integer m > 0.

3.3 Degenerations, restrictions, zero-outs. Let T be a tensor over X,Y,Z and T’ be a tensor over
X', Y',Z'. Both T and T’ are tensors over a field F.

Degeneration. Let F[A] be the ring of polynomials of the formal variable A. We say that 7" is a degeneration
of T, written as T > T", if there exists F[A]-linear maps

¢x t spang(y (X) — spangy (X'),
¢y : spang(y (V) — spangy (Y7),
¢z + spang(y)(Z) — spangy (Z'),

and d € N such that
IX| Y] |Z]

T =X SN g dxen) - dv (yy) - 2(21) | + O,

i=1 j=1 k=1

It is not hard to check that if 7/ > T, then R(T") < R(T).
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Restriction. Restriction is a special type of degeneration that considers the case where the maps ¢x, ¢y, ¢z
are F-linear maps. More specifically, T” is a restriction of T if there exist F-linear maps

¢x : spang(X) — spang(X'),
¢y : spang(Y) — spang(Y’),
b : spang(Z) — spang(Z'),

such that
x| Y] |Z]

= Z Z Zai,j,k ox (i) - oy (y5) - 7z (zk).
i=1 j=1k=1
It is not hard to see that since the maps ¢x, ¢y, ¢z are linear transformations, we have R(T’") < R(T) and
consequently R(T") < R(T).
Zero-out. In the laser method, we only consider a limited type of restriction called zero-outs, namely the
maps ¢x, Py, Pz set some variables to zero. More specifically, we choose subsets X' C X, Y’ CY, Z/ C Z and

define the maps as
z; Ifx; € X,
X;) =
ox (1) {0 otherwise,

and similarly for ¢y, ¢z. The resulting tensor

X1 1Yl 12]

Zzzal,jk} ¢X -Tz) ¢Y(yj) (bZ Zk Z Z Z A5k LilYj 2k

i=1 j=1k=1 v, €X' y; €Y' 2, €Z’

is called a zero-out of T'. Throughout this paper, we use the notation 7" = T'|x/ y+,z/ to denote such a tensor 1"
obtained as a zero-out of T' and we say that the variables in X \ X', Y\ Y’, Z\ Z’ are zeroed out. In this case,
we also call T” the subtensor of T over X', Y', Z'.

3.4 Matrix multiplication tensors. For positive integers a, b, ¢, the a X b X ¢ matrix multiplication tensor
(a,b,c) is a tensor over the variable sets {%i;}ic[a),jes], {¥ik}jcblbelds 12 ticla) ke[ defined as the tensor
computing the a x ¢ product matrix {z; }ic[a],ke[¢] Of an a X b matrix {x;; }ic[q),jep) and bx c matrix {y;z } i), kelc-
Specifically, (a, b, c) can be written as the trilinear form

CL b, C Z Z Z LijYjkki-

i€la] je[b] ke[c]

It is not hard to check that {a,b,c) ® (d,e, f) = (ad, be, cf).

Following from the recursive approach introduced by Strassen in [31], for any integer ¢ > 2, if R({(g,q,q)) <r
then one can use the rank decomposition of (g, ¢, ¢) to design an arithmetic circuit of size O(n'°%4(")) to multiply
two n X n matrices. This motivates the definition of the matriz multiplication exponent w as follows:

= inf 1 R .
wi= iof og,(R((¢,9,9)))
Namely, for every € > 0, there exists an arithmetic circuit of size O(n®*¢) that computes the multiplication of
two n X n matrices. Since (g, ¢, ¢)®™ = (¢", ¢", ¢"), equivalently w can be written in terms of the asymptotic rank
of (¢,q,9) as ~
w = log,(R({¢,9,9)))-

In this paper, we also consider the arithmetic complexity of multiplying rectangular matrices of sizes n® x n
and n® x n® where a,b,c € R>g. We define the quantity w(a, b, ¢) similar to w as

w(a.b,c) = log, (R((g",q",q)) )

where ¢ > 2 is a positive integer. This means that for any € > 0, there exists an arithmetic circuit of
size O(n®(®9)+€) that computes the multiplication of an n® x n® matrix with an n® x n° matrix. In this
paper, we focus on bounds for the values of the form w(1,x,1) for k > 0. We remark that it is known that
w(l,1,k) =w(l, k1) = w(k,1,1).

b
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3.5 Schoénhage’s asymptotic sum inequality. By the above definition of w, it is clear that if one can bound
the asymptotic rank of matrix multiplication tensors, then one would get an upper bound on w. In fact, Schénhage
showed in [29] that one can obtain an upper bound on w if one can bound the asymptotic rank of a direct sum
of matrix multiplication tensors. Specifically, we recall Shénhage’s asymptotic sum inequality as follows.

THEOREM 3.1 (Asymptotic sum inequality [29]). For positive integers r > m and a;,b;, ¢; for i € [m], if

E(é@u bi, Ci>) <,

i=1
then w < 37 where T € [2/3,1] is the solution to the equation

m

Z(ai . bl . Ci)T =T

i=1
Analogously, the asymptotic sum inequality can also be used to obtain bounds on the rectangular matrix

multiplication as follows.

THEOREM 3.2 (Asymptotic sum inequality for w(a,b,c) [29]). Let t, ¢ > 0 be positive integers and a,b,c > 0 ,

then .
t- qw(a,luc) < E(@@a? C]b, qc>> .

i=1

3.6 The Coppersmith-Winograd tensor. For a nonnegative integer ¢ > 0, the Coppersmith-Winograd
tensor CW,, over the variables X = {zo,...,2q41}, Y ={y0,---,Yg+1}: Z = {70, ..., 2441} is defined as

q
CWy 1= 20Yo2¢+1 + ToYg+120 + Tq+1Y020 + Z(Jfoyizi + @Yoz + TiYizo)-
i—1

Observe that . . .
D woyizi+ Y wiyozi+ Y wivizo = (1,1,¢) + (¢.1,1) + (1,¢,1),
=1 i=1 i=1

so CW, is the sum of six matrix multiplication tensors where the other three are copies of (1,1,1). It is known
from Coppersmith and Winograd [13] that R(CW,) < g + 2.

3.7 Base leveled partition of CW,. We will consider the 2¢=1_th tensor power of CW, for £ > 1. For

convenience, we use the notation 7 := CW?ZZ_l. There is a natural partitioning of the variables of CW,
introduced in [13] and consequently used in all following works including [33, 4, 23, 17]. We now describe the
leveled partition of 7).

Level-1 partition. For T(!) = CW,, its variable sets XM y®) zM are partitioned into three parts

XO=xPuxPuxiV = {aeyu{ar, ... 20} U{zgsr},
v = Yo(l) U Y1(1) U Yz(l) ={vot U{y1,- - yg} U{yg1}s
zM = Z(gl) U ZF) U Zél) ={zo}U{z1,...,2¢} U{zg11}.

We use TZ(;),C to denote the subtensor TW|x, y, 7, and we call Tf?k a level-1 constituent tensor. Then notice that

under the above partition, the constituent tensor Ti(i.)k is nonzero if and only if i + j + k = 2. In particular, we
can write CW, as a sum of constituent tensors as follows

W=cw,= Y 1

ig ke
i,5,k>0
i+ j+k=2
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Level-¢ partition. For 7 = CVV;@%_1 with variable sets X(© Y (® 7Z®)  the above level-1 partition on

T™) directly induces a partition on the variable sets X (@ Y9 Z(®) where each part of the partition is indexed
by a {0, 1,2}-sequence of length 2¢~1. Specifically, this gives the partition

X0 = || Xz(ll) ®X€(:) ®---@xW

o . lo0—1
(112, rige—1)€{0,1,2}2° 7"

for X-variables and analogous partitions for Y- and Z-variables.

In order to obtain an improvement by analyzing higher tensor powers of CW,, we need to consider the
following coarsening of the induced partition where the parts corresponding to sequences with the same sum are
“merged” into a single part. More specifically, we have

2
0 _ @) o ._ Mo xM g (1)
X©® = |_|X . where X" = L] B X X @ X
(%1,22,...,%2@,1)6{0,1,2}2'
> ie=i

We refer to this above coarsened partition of 79 as the level-¢ partition. Note that we can also view this partition
as obtained from coarsening the level-(¢£ — 1) partition, i.e.,

XO0- ] x0TV exty,
0<i'<i
0<i’ i—i'<2*
We can partition the variable sets Y(©) and Z() similarly.

Under the level-¢ partition, we use T (e )k to denote the subtensor T/ and note that T j)k, is

|X<e) RECRC
nonzero if and only if i + j + k = 2¢. So we have

R D D
i,5,k>0
i+j+k=2"

We call each T( ) @ level-£ constituent tensor, X, @ Y(é) Z, () Jevel-¢ variable blocks, and we omit the superscript
(¢) when ¢ is clear from context.

3.8 Leveled partition for large tensor powers of CW,. In the laser method, we consider a large tensor

power of CW,, in the form (T())®" = (CW,)®™2 " We set N :=n - 2/~! and note that the leveled partition
of T induces a partition on (T%)®". We recall some basic terminology and notations with respect to the
leveled-partition of (7¢)®".

Level-1 partition of (CW,)®N. In level-1, we view (CW,)®V as the tensor (T))®"N and consider the
partition induced by the level-1 partition on T(*). Each level-1 X-variable block X ; is indexed by a sequence

I= (fl, . ,fN) of length N in {0, 1,2}". The variable block X7 is defined as
e (D) o (1)
XI._le ® ®szv’

where X}tl) for t € [N] is the level-1 partition of T(W). We call X; a level-1 variable block and I its level-1
index sequence. The level-1 Y- and Z-variable blocks Y; and Z are defined similarly for level-1 index sequences

j, K e {0,1,2}. Then notice that X;,Y;, Zy form a nonzero subtensor of (T(l))®N if I, + J, + K, = 2 for all
t € [N]. So we can write (T(M))®V as a sum of subtensors

1,J,Ke{0,1,2}~ e
Li+J,+K,=2 Vte[N]

For convenience, we use X;Y;Z to denote the subtensor (T(l))®N|Xf’yj,Zk and we call X;Y;Z; a level-1 triple.
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Level-¢ partition of (CW,)®V. In level-£, we view (CW,)®" as the tensor (7Y)®" where n = N/2~!
and consider the partition induced by the level-¢ partition on 7). Each level-1 X-variable block X is indexed
by a sequence I € {0,1,...,2°}" of length n. The variable block X7 is defined as

Xr=X2® -0X

where X (0 < i < 2) is the i-th part in the level-¢ partition of T(Y). We call X; a level-£ variable block and I
its level-f index sequence. The level-¢ Y- and Z-variable blocks Y; and Zy are defined similarly for level-¢ index
sequences J, K € {0,1,...,2°}". Similarly, the level-¢ variable blocks X7,Y, Zx form a nonzero subtensor of
(TE)®" when I; 4 J; + K; = 2¢ for all t € [n]. So we can write

(T(Z))®” = Z (T(e))®n|XI,YJ,ZK'
1,J,Ke{0,1,24}"
Ii+Ji+K:=2° Vte[N]

For convenience, we use the notation X;Y;Z to denote the subtensor (T(l))®n|XI,YJ7ZK and we call such X;Y;Zk
a level-£ triple.
In addition, note that since the level-¢ partition of T is a coarsening of the partition induced by the

level-1 partition of T(M)| a level-1 variable block X 7 is contained in a level-£ variable block X7 if the sequence
0— ~

I' =(13,...,1)) formed by taking I = 2?211 I(y_1y.0e-14; satisfies I} = I for all t € [n]. Namely, if taking the

sum of consecutive length-2¢~1 subsequences in I yields the sequence I, then X; is contained in X;. In this case,

we use the notation I € I and X; e X1

3.9 Distributions and entropy. In this paper, we only consider distributions with a finite support. Let a
be a distribution supported on a set S, we have a(s) > 0 for all s € S and ) g a(s) = 1. The entropy of «,
denoted as H(«), is defined as

H(a) = — Z a(s)loga(s),
afs%io

where the log has base 2. We will frequently use the following well-known combinatorial fact.

LEMMA 3.1. Let « be a distribution over the set [s] = {1,...,s}. Let N > 0 be a positive integer, then we have

N _ oN(H(a)£o(1))
a(l)N,...,a(s)N

For two distributions o and 8 over the sets S and S’ respectively, we define the joint distribution « x § as
the distribution over S x 8" = {(s,s') | s € S,s’ € S’} such that

(ax B)(s,8) =a(s)-B(s).

When S and S’ are sets of integer sequences, we will instead define o x 3 as a distribution over all integer sequences
that can be obtained by concatenating one sequence in S and one sequence in S’, such that

(@ x B)(sos’) =a(s)-B(s),

where s o s’ denotes the concatenation of s and s’.

3.10 Complete split distributions. Motivated by the leveled partition of tensor powers of CW,, we define
the notion of complete split distributions to characterize the level-1 variable blocks contained in level-¢ variable
blocks.

DEFINITION 3.1 (Complete Split Distribution). A complete split distribution for a level-¢ constituent tensor T; j i
with i + j + k = 2¢ is a distribution on all length 2°=1 sequences (21, B ,Ezeq) € {0,1, 2}2271.
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For a level-1 index sequence Ie {0,1, 2}2#1'”, we say that it is consistent with a complete split distribution

B if the proportion of any index sequence (21,12, ...,%-1) in
~ 2271
(it-1)2014p) ey | £ € 0]
equals (i1, %2, ...,15-1). Namely, for every (i1,...,19:-1) € {0, 1,2}2271, we have

22—1

‘{t S [n] (j(t—1)~2£—1+p)p:1 = (%1, e ,%22—1)}‘ = ﬂ(%l, %2, “e ,%22—1) *n.

Notice that any level-1 index sequence Ie {0,1, 2}2[_1'” defines a complete split distribution by computing
the proportions of each type of length-2—! consecutive chunks present in I. More specifically, we have the
following definition.

DEFINITION 3.2. Given a level-1 index sequence I € {071,2}25_1'", its complete split distribution over
(i1, ... ige—1) € {0,1,2}2 " is defined as

<plt(7) (... i) = - Ht € n]

22—1

(S A R W } ’

Given a subset S C [n], we can define the complete split distribution over (%1, e ,%214—1) e {0,1, 2}2571 given by I
restricted to the subset S as

2[—1

L A A 1 S 2 2
spht([, S) (21, .. .,2215—1) = E . ‘{t es ' (I(t71)~2@—1+p)p:1 = (7,1, S ,222—1)}’.

Given two complete split distributions 81 and B over the length-2¢=1 index sequences {0,1,2}2 ", the Lo
distances between (51 and (5 is defined to be

181 = B2lloe = max = [Bi(0) = B2(0)]-

oe{0,1,2>"""
For any constant ¢ > 0 and a fixed complete split distribution [, we say that a level-1 index sequence

Ie {0, 1,2}2/{71'" is consistent with 3 up to ¢ error if ||sp|it(f) — Blloc < e. When the ¢ is clear from context, we
say that I is approximately consistent with g if it is consistent with S up to € error.

DEFINITION 3.3. For a level-f constituent tensor T; ; i, an integer exponent N, a constant € > 0, and three
complete split distributions Bx, By, Bz for the X-, Y-, Z-variables respectively, we define

QN —
175 318x, By, Bz, €] = Z XiY;Z.
. . QN
level-1 triple X;Y;Zy in TiJJC
I approximately consistent with Sx
J approximately consistent with By

K approximately consistent with Sz

It is a subtensor of Ti‘%]\,i over all level-1 X -, Y -, Z-variable blocks that are approzimately consistent with Bx, By,

Bz, respectively. When € = 0, we will simplify the notation to Tf;]\,i Bx, By, Bzl

3.11 Salem-Spencer sets. In the hashing step of the laser method, we make use of the existence of a large
dense subset of Zjs that avoids 3-term arithmetic progressions. We recall the following past result.

THEOREM 3.3 ([28, 7]). For every positive integer M > 0, there exists a subset B C Zys of size

|B| > M - 670(\/10g]VI) _ leo(l)

that contains no nontrivial 3-term arithmetic progressions. Specifically, any a,b,c € B satisfy a+b = 2¢ (mod M)
if and only if a =b=c.
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4 Algorithm Outline

In the following, we will use k > 0 to denote that we want to obtain an upper bound on w(1, &, 1).

In this section, we give the outline of our algorithm, which accepts CW?N as its input for a large enough IV,
and degenerates it into a collection of independent matrix multiplication tensors of the same size (m, m”, m). By
the asymptotic sum inequality (Theorem 3.2), this will give an upper bound on w(1, &, 1).

4.1 Algorithm framework. The following notion of interface tensor acts as an interface of our algorithm
between different levels. In general, each level of our algorithm takes an interface tensor as input (except the first
level, which takes a large tensor power of CW,), and degenerates it into independent copies of an interface tensor.

DEFINITION 4.1 (Interface tensor). For a positive integer £ > 1 and any constant 0 < e < 1, a level-¢ e-interface
tensor T* with parameter list

{(nt, it, Jt, ki, BX,t» 5Y,t7 5Z,t)}te[s]
is defined as

S

T* = ® Ti?,?tt,kt [ﬂX,h ﬂY,h BZ,D E]a

t=1

where iy + ji + ki = 2° for every t € [s] (i.e., T}, j, k, 15 a level-£ constituent tensor) and Bx.t, By, Bz are level-f
complete split distributions for X-, Y-, Z-variables respectively. We call each Tff’?t‘ ke [Bx.ts By,t, Bz, €] a term of
T*. When e =0, we will simply call T* a level-£ interface tensor.

Note that the same (i, j;, ki) can appear multiple times in the parameter list, with potentially different
Nk, Bx.t, Byt, Bzt Also note that the tensor product of two level-¢ e-interface tensors is also a level-¢ e-interface
tensor, whose parameter list is the concatenation of the parameter lists of the two level-¢ e-interface tensors.

The framework of our algorithm is as follows. First, we apply the global stage algorithm described in Section 5

on input (CVV;@’22 )®" to degenerate it into independent copies of a level-£* ey«-interface tensor. Then we apply
the constituent tensor stage algorithm described in Section 6 for £ = ¢*,¢* —1,...,2 to obtain the tensor product
between a matrix multiplication tensor and independent copies of a level-1 e;-interface tensor. More specifically,
the constituent tensor stage algorithm takes as input a level-¢ g;-interface tensor and outputs the tensor product
between a matrix multiplication tensor and independent copies of a level-(¢ — 1) €y_;-interface tensor, so we can
keep applying the constituent tensor stage algorithm on each level-(¢ — 1) interface tensors that was outputted
previously until we get a tensor product between a matrix multiplication tensor and independent copies of a
level-1 e;-interface tensor. Finally, we show that each level-1 e;-interface tensor can be easily degenerated into
a matrix multiplication tensor, so we obtain independent copies of matrix multiplication tensors of dimension
(m,m" m).

4.2 Algorithm outline. We first give a high-level outline of each step of the global stage algorithm. The
constituent tensor stage algorithm will share similar high-level ideas.

The algorithm takes in (CW?QLI)@n as input and outputs level-1-independent level-¢ interface tensors as a
degeneration of the input (for simplicity, we consider the £ = 0 case in this outline). In the algorithm, we define
the notion of compatibility between level-1 blocks and level-£ triples with respect to some specified complete split
distributions, so that if all level-1 blocks in the remaining tensor are compatible with ezactly one level-£ triple,
then the subtensors over each remaining triple are level-1-independent. So the goal of the algorithm is to zero out
some level-¢ and level-1 variable blocks such that each remaining level-1 block is compatible with a unique level-¢
triple. The structure of the algorithm is similar to the global stage algorithm in [17] with the main modification
being the generalization from split distributions to complete split distributions.

P
On input (CWS@2 1)®n, we first view the tensor as the tensor product of three terms, where each term is called

a region, i.e., we write (CW§2271)®TL as ®r€[3] (CW;@QPI)@AT% for some Ay, A, A3 >0 and Ay + As + A3 = 1.
Recall that we are only able to allow the sharing of level-¢ variable blocks in one of X-, Y-, Z-dimensions, so each
region will allow the sharing of level-£ variable blocks in different dimensions and we will perform the subsequent
steps on the three regions separately. This step helps balance the number of remaining variable blocks in the
three dimensions due to the asymmetric nature of the subsequent procedure.
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From now on, we describe the procedure on the first region where we allow the sharing of level-¢ Z-variable

blocks. We perform the same procedure up to rotation of the three dimensions on the other two regions separately.

1.

Zero out according to «. For a distribution « over the level-¢ constituent subtensors and its induced
marginals ax,ay,az in the X- Y- Z-dimensions, we zero out level-/ X-, Y-, Z-variable blocks that are
not consistent with ax, ay, az respectively.

. Asymmetric hashing. We use pairwise independent hash functions that hash level-¢ index sequences to

the set {0,...,M — 1} for some M which partitions the level-¢ variable blocks into buckets based on its
hash value. Within each bucket, we do asymmetric cleanup so that every level-¢ X-variable block X; or
Y -variable block Y is contained in a unique level-¢ triple X;Y;Z, while a level-¢ Z-variable block Zg
could be contained in multiple level-¢ triples.

. Compatibility zero-out I. We define a notion of compatibility with respect to the complete split

distributions between level-1 blocks and level-£ triples for a set of specified level-£ complete split distributions
{Bxi5.ks By i g kes Bz’i»jvk}i-‘,—jﬁ-k:ﬂ for the X-, Y-, Z-blocks. We zero out all the level-1 X- or Y-blocks that
are not consistent with {ﬁXﬁi,j,k}Hj-s-k:% {6Y>i7j,k}i+j+k=2€ respectively (we can only do this because every
level-¢ X-variable block X or Y-variable block Y7 is contained in a unique level-¢ triple). We zero out all
the level-1 Z-blocks that are incompatible with any level-¢ triples.

Compatibility zero-out II: unique triple. After the compatibility zero-out I, every level-1 block is
compatible with at least 1 level-£ triple and we want every level-1 block to be compatible with exactly one
level-¢ triple. So in this step, we zero out level-1 Z-blocks that are compatible with more than one level-¢
triples. Note that the level-1 blocks zeroed out in this step will become holes.

. Usefulness zero-out. Now that each remaining level-1 Z-block Z; is contained in exactly one level-£

triple X;Y;Z, we can define the notion of whether a level-1 block is useful for the level-£ triple containing
it as whether it is consistent with the complete split distributions {£z.i j x }i4;+x=2¢. Note that we can only
do this now because previously we do not have the property that every level-1 Z-block is in a unique level-£
triple. In this step we zero out the level-1 blocks that are not useful for the level-£ triple containing it.

. Fixing holes. Now we have obtained level-1-independent level-¢ interface tensors with holes. We use the

following result which will be proved in Section 7 to fix the holes.
COROLLARY 4.1 (Fixing holes in interface tensors). Let T be a level-€ interface tensor with parameter list
{(7%57 it7 jta kt7 ﬂX,fm BY,ty BZ,t)}tG[s] .

Let N =2¢-1. Zte[s] ng. Suppose T1, ..., T, are broken copies of T where < ﬁ fraction of level-1 X-, Y-
and Z-blocks are holes. If r > 2C1N/108 N for some large enough constant Cy > 0, the direct sum ®._, T
can degenerate into an unbroken copy of T .

5 Global Stage

In the global stage, we take as input the tensor CW?N for N = n-2¢ and output independent copies of a level-£*
interface tensor, where the output will be a degeneration of the input. For the rest of this section, we will use ¢
to denote ¢* for convenience.

Given a, which is a distribution over {(i,7,k) € Z2, | i + j + k = 2°}, and Bx.i .k, Bv.i.jks 82,5,k Which are

level-¢ complete split distributions, we define the following quantities:

e ax is the marginal distribution of a on the X-dimension, i.e., ax(i) = >, a(i,j, k) for any i. We also

similarly define avy and az.

e D is the set of distributions whose marginal distributions on the three dimensions are a x, ay, az respectively,

and let the penalty term P, := max, cp H(a') — H(a) > 0.

e For every k, a(+,+,k) = Zi>07j>0 a(i, j, k); for every j, a(+,7,+) == Z¢>0,k>o a(i, j,k); and for every 1,

a(i, +,4) =2 im0 k>0 Qi 4, k).
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e Forevery k, Bz ) = m 250,450 6 5, k) - Bzi 5k, and By, j+ and Bx; + ; are defined similarly.
@ Bxunn = >k clis g k) - Bx i and By and Bz, .. are defined similarly.

® Az = D kim0 or jmo Q0 k) - H(Bzjk) + Do o+, +,k) - H(Bz. k), and Ax and \y are defined

similarly.

In the following proposition, we will have a("), (r) ik 6(r)7j Kt ﬁZ ik for every r € [3]. For every r € [3], we

use superscript (r) on variables to denote that they are computed using values of o, ﬂg)i ik ,6’)(2 ik ﬁ(Zri ke

PROPOSITION 5.1. (CW?QKA)@” can be degenerated into

9(A1E1+Az Ex+As Bs)n—o(n)

independent copies of a level-£ interface tensor with parameter list

AL o™ (G i (r) (r) (r)
{ (TL Ay -l (i, 4, k), 0, 5, K, /BX,,‘J‘,;W /Byﬂ',j’kv Z,Lj,lc) }re[B], i k=2t
where

¢ 0< A1, Ap, A3 <1, A1+ As+ A3 =15
e o) for every r € [3] is a distribution over {(i,j, k) € Ziyli+j+k= 20}
e For every W € {X,Y, Z}, B‘(,;’)Lj’k forr € [3],i+j+ k=21 is a level-t complete split distribution;
. By = min{ H(a{') - PO, HWY) = PO HBY, L) =20,

By = min{H(agf)) ~ PO H@P) - PO HBE. . )~ AP }

By = min{ H(a{)) - PO, H(0l) - PO, HEL, . ) - 2P }.

REMARK 5.1. Note that without loss of generality, we can assume that, for every r,i,j, k, and every L €

{0.1,2)77,
gg,)i,o,k(L) = (ZT,z,o,k@*L)’ 5(27;2),]‘,1@@) = %,j,k@*L), Q,j,o( )= 5)(”0(# L),
where 2 denotes the length-(2°=1) wector whose coordinates are all 2, and

BO L) =00f S L4, By (L) —mfZLHég, BY) (L) =04 S L £k,
t t

because otherwise, the level-¢ interface tensor will be the zero tensor and the lemma will follow trivially.
Next, we show Theorem 5.1, which is a corollary of Proposition 5.1.

THEOREM 5.1. For any ¢ > 0, 2°(") independent copies of (CW?zz_l)‘g’” can be degenerated into

2(A1E1+A2E2+A3E3—01/5(1))"1—0(")

independent copies of a level-f e-interface tensor with parameter list
i N GYT .. (r) (r)
{(n Ao (Za.jvk))7/7],kaﬁxﬂ"j’kvﬁyﬂ‘,j’k’ﬁz i,k re[8] it i+ h=2e

where the constraints are the same as those in Proposition 5.1.3

301/5(1) denotes a function f(¢) where f(¢) — 0 as € — 0. We also use 0 ,.(n) to denote o0 /.(1) - n.
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Here, the differences with Proposition 5.1 are the followings:

. . . . ®2¢-1\®n
e The input becomes multiple independent copies of (CWq ) .

e The output tensor becomes independent copies of some level-¢ e-interface tensor, instead of level-¢ interface
tensor in Proposition 5.1.

e There is a small 2°1/=(") factor loss in the number of independent copies of the level-¢ e-interface tensor we
can keep.

The high-level idea of the proof is the following: for each copy of (CW?2871)®TL in the input, we apply
Proposition 5.1 where the target complete split distributions are slightly different in each application (up to
¢ in Lo, distance with some specified complete split distributions). Finally, we merge the level-¢ interface tensors
into a level-¢ e-interface tensor.

Proof of Theorem 5.1. Let

(r) }
{ Woidk [ e (3),We{X,Y, 2} i+j+hk=2¢

be a set of level-¢ complete split distributions whose L., distance with

(4
Wotdok J e 3], We XY, 2} itj+h=2¢

is at most £. Furthermore, we require that all entries of 5‘(/;7)1.7 ok are integral multiples of m Let D be
the collection of such sets of complete split distributions. For every Wi, j, k, there are O(n) choices for the value
of each entry in 5‘(,[% ; x» and the total number of entries is 327 = O(1) as £ is a constant. Thus, the number of

(t) is bounded by poly(n) = 2°(") and tly the number of {87 ;| i
Ewijx s (,)vun ed by poly(n) , and consequently the number o Wildoh § W e (X2 it ot (i.e.,
the size of D) is also bounded by 2°(™). Also, it is not difficult to verify that the level-¢ e-interface tensor with
parameter list

52 {( ) AT -l .’ '7 k ’ .a .7 ka (T) Pk (T) j, k> (T) ] )}
( ) n «Q (7’ J ) 2N ﬁX,Z,j,’C Y,i,j,k /BZ,Z,j,k rE[3]itj+k=2¢
is the sum of all level-¢ interface tensors with parameter lists
AL oM (G - (r) (r) (r)
(53) {(TL Ar (67 (Za]7k)a2a]7k7§X7i’j7k7 Y,i,j,k’£Z7i,j,k) }T’G[B],i+j+k:2z

over all such {§§;>”k} e D.

Let E1, Es, E5 be defined as in Proposition 5.1 applied to complete split distributions {ﬂl(,g)i j k}, and let
Ei, EY, E% be defined as in Proposition 5.1 but applied to some complete split distributions {Eg)i ; k} €D. By
Proposition 5.1, each copy of (CW?2[71)®TL can be degenerated into 2(41Fi+A2E+4s F3)n—o(n) jpdependent copies
of the level-¢ interface tensor with parameter list as in (5.3).

It is not difficult to see that A1 E; + AsEs + A3FE3 is continuous with respect to {BI(,‘T,)Z j’k}, and because
the L., distance between {51(,;)1.].,6} and {fl(/;)ijk} is at most ¢, we get that A1F{ + A El + AzE}, >
A1Ey + AsEy + AsE3 — 01 /.(1).

Thus, 2°(") independent copies of (CW?QZA)@” can be degenerated into 2(A1E1+A2E2+A3E5—01/:(1))n—o(n)
independent copies of a direct sum of all level-¢ interface tensor with parameter list
. o (r) () (r)
{ (n CA, - a(?’)(Z, 3, k), 1,4, k, fX,i,j,k:’ EY,z‘,j,kv Z,i,j,k) }re[B],iJerrk:Q’f

over all such {f‘(,;)i j k} € 15, and because a direct sum of some tensors can be degenerated into the sum of these

tensors, the theorem follows. 0

The remainder of this section aims to show and analyze an algorithm that proves Proposition 5.1.
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5.1 Dividing into regions. Similar to [17], we consider
(CWE2 18" = (CW2 BN g (oW )P g (awE ) B

for Ay, A, A3 > 0 and Ay + As + A3 = 1. We call each of the three factors of the above tensor product a region.
For r € [3], we denote the r-th region as

T = (w2 @A,

The idea is to apply asymmetric hashing on the three regions separately. We will use asymmetric hashing
that shares level-¢ Z-blocks in the first region, Y-blocks in the second region, and X-blocks in the third region.
Each region will be degenerated into independent copies of a level-¢ interface tensor and the output will be the
tensor product of the independent copies of the three level-£ interface tensors from the three regions. Thus we
can analyze each region independently and we only give the detailed analysis on the first region as the analysis
for the other two regions follow by symmetry.

From now on, we will describe the analysis on 7 in which the level-¢ Z-variable blocks are shared and we
will omit the superscript (1) on all variables for conciseness.

5.2 Asymmetric hashing. Recall that « is a distribution on {(i,,k) € Z3, | i + j + k = 2°}, i.e., it can be
viewed as a distribution on level-£ constituent tensors. Recall that o induces marginal distributions ax, ay, az.
We first zero out X-, Y-, Z-blocks that are not consistent with the marginals ax, ay, az respectively. Let Npx
be the number of remaining level-¢ X-blocks, and it is not difficult to see that

(54) Ngpx = 2H(ax)-A1n:|:o(n).

Similarly, let Ngy and Ny be the number of remaining Y- and Z-blocks, and we have

— oH(ay)-Ainto(n) — 9H(az)-Ainto(n)
(5'5) NBY 2 5 NBZ 2 .

Let N, be the number of remaining block triples that are consistent with a. We have
(56) Na — 2H(a)A1nio(n) .

Finally, let Noy.ay,a, be the number of remaining block triples X;Y;Zk.

CramMm 5.1. N, — 9(H()+Pa)-Arnto(n)

ax,xy,xz

Proof. Recall that P, = max,ep H(a') — H(a) where D is the set of distributions whose marginal distributions
on the three dimensions are ax, oy, az respectively.

As we zeroed out X-, Y-, Z-blocks based on ax, ay, az respectively, all remaining block triples are consistent
with one of the distributions o/ € D. Additionally, (i, j, k) - A1 - n must be an integer for every i, j, k. Let us
denote the set of distributions satisfying such properties as D’.

Thus, Nay,ay,az = ogep 20 AmEem) = Ag |D’| = poly(n), we have that

Nax ayiog = 2(maxa/€D/ H(a'))~A1n:|:o(n).
When n approaches oo, the difference between max, e pr H (') and max, e p H(a') will approach 0, as the entropy
function H is continuous. Thus,

N — 2(maxa/eD H(a'))-Ainto(n) _ 2(H(o¢)+P(,)-A1n:|:o(n) ) ]

ax,xy,&xz

Let M € [My,2My] be a prime number for some integer My. The value of Mj is yet to be fixed, but we first
require that

N, N,
(5.7) My > 8- max{ exovos oxovos }
BX BY
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One additional term that lower bounds M, will be mentioned later.
We independently pick uniformly random elements bg, {w:}y € {0,...,M — 1}, and define the following
hash functions hx,hy,hz : {0,...,2°}" = {0,..., M — 1}

hx(I) = by + <Z wy - It> mod M,

t=1

hy (J) = by + <w0 +) wy Jt> mod M,

t=1
1 n
hz(K)Zbo—‘r* wo—i—Zwt-(Qe—Kt) mod M.
2 t=1

Let B be a Salem-Spencer subset of {0, ..., M — 1} that has size M*'=°() and does not contain any nontrivial
3-term arithmetic progressions (modulo M). Then we zero out all blocks X; with hx (I) ¢ B, Y; with hy (J) ¢ B,
and ZK with hz(K) ¢ B.

For every block triple X;Y;Zx in T, we have that X; +Y; + Z; = 2¢ for every t € [n]. Therefore, it is not
difficult to verify that hx (I) + hy (J) = 2hz(K) (mod M). In order for hx (1), hy (J),hz(K) € B, we must have
hx(I) = hy(J) = hz(K) = b for some b, because B does not contain any nontrivial 3-term arithmetic progression
(modulo M). We say that triples X;Y;Zxk with hx(I) = hy (J) = hz(K) = b are contained in bucket b.

For every bucket b, if it contains two level-¢ triples X;Y;Zx and X;Y; Zk: that share the same X-block,
then we zero out X;. Similarly, if a bucket contains two level-£ triples X;Y;Zk and X Y;Zg, that share the
same level-¢ Y-block, then we zero out Y;. We repeatedly perform the previous zeroing-outs so that eventually,
all remaining triples in the same bucket do not share X- or Y-blocks. As each level-¢ block triple in 7 must
belong to some bucket, we get that all remaining triples do not share X- or Y-blocks, i.e., each level-£ block X
or Yy is in a unique level-¢ block triple. For every level-¢ block X; (or Y;), we check whether the unique triple
containing it is consistent with the distribution «; if not, we zero out X; (or Y;). We call the tensor after this
Step ﬂlaslv

Cram 5.2 (Implicit in [13], see also [17]). For a block triple X;Y;Zx € T, and for every b € {0,..., M — 1},
1
Pr[hx(f) = hy(J) = hz(K) = b| = .

Furthermore, for two different block triples X;Y;Zi, XY Zr € T that share the same X -block, and for every
bed{0,...,.M —1},

_ L

=3

This also holds analogously for different block triples that share the same Y -block or Z-block.

Prlhxc (D) = hy (J') = hz (K') = b | hx (1) = hy (J) = hz(K) = ]

CLAIM 5.3. For every b € B and for every level-€ block triple X;Y;Z € T that is consistent with «, the probability
that XY Zk remains in Thasn conditioned on hx(I) = hy (J) = hz(K) =b is > %.

Proof. The only way that X;Y;Zk does not remain in Thasn conditioned on hx (I) = hy (J) = hz(K) = b is when
some other block triples that share the same X-block or the same Y-block are hashed to the same bucket b.
Right before the hashing step, the total number of block triples remaining is Nq ay,a5, and the number of

X-blocks is Npx. By symmetry, each X-block is in the same number of block triples, which is W Thus,
the total number of block triples that share the same X-block as X;Y;Zk is % — 1. For each of them,

the probability that they are hashed to the same bucket b with X;Y;Zk is ﬁ by Claim 5.2. Therefore, by union
bound, the probability that any of them is hashed to the same bucket with X;Y;Zx is at most

Nax,ay,az Nax,ay,az Eq.<(5.7) 1

M - Ngx — M- Npx - 8"
Similarly, the probability that any block triple that shares the same level-¢ Y-block is mapped to the same
bucket as X;Y;Zk is at most é. By union bound, the probability that X;Y;Zk will be zeroed out is < %. 0
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CLAIM 5.4. The expected number of level-f block triples in Thash @S at least
Na . M()_l_o(l).

Proof. For every level-¢ block triple X;Y;Zx € T that is consistent with a, and for every b € B, the probability
that hx(I) = hy(J) =hz(K)=10bis ﬁ by Claim 5.2. Also, by Claim 5.3, X;Y;Z will remain in Tp,e, with
probability > 2 W

Summing over all block triples X;Y;Zk and all b € B, we get that the expected number of block triples in

Thash 1s at least

3 1 10
Na"B"ZW:Na'Mol (1).

|

5.3 Compatibility zero-out I. Recall that {Sx.;k,Bv,ijk> B2k}
distributions for the X-, Y-, Z-blocks.
Let

itjkeot Are level-¢ complete split

S =t e ] | I =1,y = j, Ko = K},

and X«
SU =t e ]| Ko =k}

If clear from the context, we will drop the superscript (I, J, K) or (K).

Recall that in Tpasn, every level-£ block X is in a unique block triple X;Y;Zk. For every level-1 block
X; € X1, we will zero out X; if split(f7 Sijk) # Bx,ijk for any 4,7,k (recall the definition of spIit(f,Si’j,k) in
Definition 3.2). Similarly, every level-¢ block Y} is in a unique block triple, and we zero out every Y; € Y; where
Sp“t(J, Si,j,k) # 5Y,i,j,k for any i,j, k.

We can not perform the same zeroing out for Z-variables, because in Tnasn each level-f Z-block is not in a
unique block triple and S; ;  is not well-defined just given the Z-block. Instead, for every level-1 block Z € Zk,

we zero out Zy if split(K, Sy« k) # Bz.44x for any k, where

_ 1 .o
62,*,*,]@ = - Z Oé(l,j,k‘) 'BZ%J‘JC

Zi-i—j:%_k Ot(l,j, k) =2t —k

is the average complete split distribution for constituent tensors whose third coordinate is k.

We call the tensor after the previous zeroing-outs Tcomp-

Next, we are ready to define the notion of compatibility. The notion is adapted from [17], which is a crucial
ingredient in their analysis (and ours).

DEFINITION 5.1 (Compatibility). For some I,J, K, a level-1 block Zy € Zy is compatible with a level-C triple
XY 7k if

1. For every (i, j,k) € Z3, with i+ j+k =2i =0 or j = 0, split(K, Si j.x) = Bz.i.j.k-
2. For every indexr k € {0,1,...,2¢}, spIit(K, Seik) =Bz -

CLAIM 5.5. In Teomp, for every level-1 block triple X;Y ;Z . and the level-£ block triple X1Y;Z that contains it,
Z . 15 compatible with X;Y Zy.

Proof. First of all, Ttem 2 is clearly satisfied, because we zeroed out every K with split(K, S. . 1) # Bz« for
any k. Next, we show that Item 1 is also satisfied.
Recall that we zeroed out all X; where split(/,S; jx) # Bx.ijk for any i,j, k. Let (i,j,k) € Z3>0 where

i+j+k=2%and j =0. As X;Y;Zp remains in Teomp, spllt(I S” k) = ﬁX” . Because ] =0, J; =0 for every

t S SZ] ks Wthh lmphes that (J(t 1) 26-141, J(t 1) 26=149, « . Jt ob— 1) — O AS I —+ J + K — 2 fOr every t we
have that
(K(tfl).zl—url, K(tfl).zzfur% ey Kt.2271) = 5— (j(tfl)'2£71+17 j(t71)~2@*1+2a ey ft_ﬂ,l)
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for every t € S;;i. Thus, for every L € {071,2}2[’_1, the proportion of L appearing in (j—(t_l),gé—l_;’_l,

f(t—1)~2’5*1+27 ey ft.géfl) over t € S;; is exactly the proportion of - L appearing in (K(t_l),gi—l_;’_l,
K(t—1y9t-142, -~ » Ky9e-1). In other words, split(K, S; ;1) (L) = split(Z, S; ;1)(2 — L) = Bx,ijk(2 — L). By
Remark 5.1, this implies that spIit(IA(7 Siik) = B%ijk-

We can show that split(K,S; j x) = Bz, with i = 0 similarly. O

5.4 Compatibility zero-out II: unique triple. In this step, we zero out level-1 Z-blocks that are compatible
with more than one level-¢ triples. To do so, we check if each level-1 Z-block Z is compatible with multiple
level-¢ triples. If so, we zero it out and it becomes a “hole”. Note that after this step, each remaining level-1
Z-block Z; € Zk is compatible with a unique level-f triple (X7, Y, Zk) containing it.

5.5 Usefulness zero-out. Next, we further zero out some level-1 Z-blocks using the following definition of
usefulness.

DEFINITION 5.2 (Usefulness). For a level-1 block Z and a level-£ triple X1Y;Zy containing it, if for all (3,7, k)
we have split(f(, Sijk) = Bz ks then we say that Z g is useful for X;Y;Zk.

For each Z, it appears in a unique triple X;Y;Zg by the previous zeroing out. Furthermore, if Zy is not
useful for this triple, we zero out Z . We call the current tensor Tiseful-
If there is no hole, then the subtensor of the remaining tensor over X;Y;Zk is isomorphic to

®A1-a(i,j,k)-
T = Q@ T Bk By Bz ),

ij+h=2"

i.e., it is the level-£ interface tensor with parameter list

{(Ar-ali, 5, k) i g, ks Bx i, B Bzigk) by jy pmoe-
More formally:

CLAM 5.6. For any level-¢ block triple X;Y;Zk contained in Teomp (07 equivalently, Thasn), the subtensor of
Tusetul restricted to blocks Xi,Yy, Zx is a subtensor of T*, where the missing variables in this subtensor are
exactly those in level-1 blocks Z; that are compatible with multiple level-€ triples in Teomp-

Proof. Initially,

_ ®Ar-a(i,jk)n
EaSh|XIYJZK = ® Ti’j;k :

i+j+k=2¢

To show Tuseful| x,y, 7, 1 a subtensor of 7%, it suffices to show that the level-1 X-blocks (Y-blocks or Z-
blocks resp.) remaining in Tuseful|x,y,z, have the property that split(1,S;.j.6) = Bx.ijn (split(J, Sijx) = Byijk
or split(K, S; jx) = Bz .k resp.) for every i,j, k. This is true because we enforced these constraints on X- and
Y-blocks in the compatibility zeroing-out step, and enforced the constraints on Z-blocks by zeroing out Z; that
is not useful for the unique level-¢ triple that contains it. Furthermore, these are the only constraints we have
on the level-1 X- and Y-blocks, so the set of X- and Y-variables in Tysefull XY, 725 18 the same as that in 7*. It
remains to analyze which level-1 Z-blocks are missing in 7ysefull X1V Zre

There are three constraints we enforced on level-1 Z-blocks:

1. In the compatibility zeroing-out, we enforced that for every index k € {0,1,...,2}, spIit(IA(,S*7*7k) =
/BZ,*,*,k:~

2. In the unique triple zeroing-out, we zeroed out Zy that is compatible with multiple level-£ triples.

3. In the unique triple zeroing-out, we zeroed out Z that is not useful for the unique level-¢ triple X;Y;Zg
that contains it. Thus, we will have that split(K7 Sijk) = Bz, jk for every 4,5,k if Z; remains.
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The third constraint implies the first constraint, because if the third constraint holds, then for every k,

split(K, S, ) = > ali,j,k)-split(K, S k)

Zz’,j OZ(Z,], ) i+j=2—k
1 N _
= Z Oé(l j ) Z O‘(Za.%k) ! BZ,i,j,k = ﬂZ,*,*,k-
2y P =2tk

Therefore, we can ignore the first condition. As a result, the set of level-1 Z-blocks not in Tyseful| XY,z Put in
T* are exactly those that are compatible with multiple block triples in Tcomp- 0

Also, note that for different remaining block triples X;Y; Zx, Tusetul| x,v, 2, are level-1l-independent, i.e., they
do not share the same level-1 blocks. This is because X; and Y are already in unique level-£ triples in Tyash;
for every level-1 block Z, Claim 5.5 shows that Zj is compatible with every level-£ triple X;Y;Zk containing
it, and then we zeroed out Z that are compatible with multiple triples. Thus, every remaining Zz in Tyseful iS
contained a unique level-£ triple as well. As a result, we can write

(58) 7:15er1 = @ 7:158fu1|X1YJZK

X1YjZKk remaining

as a direct sum of broken copies of T*.

5.6 Fixing holes. Next, we analyze the fraction of holes in the broken copies of 7* contained in Tiseru. TO
do so, we define the following notion of typicalness, which will then be used to define the quantity peomp:

DEFINITION 5.3 (Typicalness). A level-1 Z-block Zy in some level- Z-block Zk is typical if split(K, Sy i) =

@Z w e for every k. When Zy is consistent with az, this condition can be equivalently written as split(K, [Ain]) =

DIariaE)

B xxx, where we recall that Bz ... = Z” v iy 3, k) - Bz g

PariaE)

DEFINITION 5.4 (Peomp). For fixed Zy and Zx where Zy € Zi and Zy is typical, peomp 15 the probability that
a uniformly random block triple X;Y;Zy consistent with « is compatible with K.

By symmetry, this probability is the same for different Z; and Zyx where Z; € Zy and Zj is typical, so
Peomp 1s well-defined. Since holes only arise when some Z is compatible with multiple triples, the value of pcomp
is closely related to the fraction of holes, and is given by the following claim.

CLAIM 5.7. The value of Pecomp 15
Q(Az*H(Bz,*,*,*)nLH(az))Al-n:l:o(n)

7

where we recall that

Az = S ali g k) H(Bzijw) + Y al+, +.k) - HBz 11 x),
i, k:i=0 or j=0 k
. = 1 .
al+,+k) = Y ali,jk), Bzik= PYERS) > ali,4,k) - Bz,

4,3>0 i,5>0

and
B = Y alis k) - Bz
.4,k
Proof. By symmetry, it suffices to compute the following two quantities, and pgomp Will be the ratio between
them: (1) the number of tuples (1, J, K, K') where X;Y;Zk is consistent with a, K € K, Z; is typical, and Z

is compatible with X;Y;Zk; (2) the number of (I, J, K, K’) where X;Y;Zk is consistent with «, K € K, and Zy
is typical.
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We first compute the second quantity. First, the number of typical Z is 28 (B2« Avno(n)  Each of these
Z - uniquely determines a level-f block Zg. Also, for each Zx, the number of block triples X;Y;Zk consistent
No — o(H(a)—H(az)) Arno(n) Therefore, the second quantity is

with o is Noz

(5.9) O(H(Bz v v )+ H(a)=H(az))-Arnto(n)

Next, we compute the first quantity, which is the number of (I, J, K, K ) where X;Y;Zk is consistent with «,
K e K, Z is typical, and Z is compatible with X;Y;Zk. By Item 2 in Definition 5.1, if Z is compatible with
any level-¢ block triple, then it is typical. Thus, we can drop the condition that Z is typical, and equivalently
count the number of (1, J, K, k) where XY, Zx is consistent with o, K € K, and Z is compatible with X;Y;Z.

First, the number of block triples X;Y;Zx consistent with « is N,. Then, for each such block triple, we count
the number of Z, € Zk that is compatible with it. If we fix some X7Y;Zf, then we also have fixed the values
of S;jx for all 4, j, k. Then we can rewrite the condition for Z; being compatible with X;Y;Zx equivalently as
follows:

DEFINITION 5.5 (Compatibility’). For level-l triple X;Y;Zy consistent with o, a level-1 block Zy € Zk is
compatible with X;Y;Zy if

o For every {(i,j,k) € Z2y | i+j+k=2" i=0 orj=0}, split(K, S; j 1) = Bz.ijk. (This is exactly Item 1
in Definition 5.1).

o Forevery k, let S 1 k=~ 505k Then split(K, Siin) =Bzt 1k

Ttem 1 and the second condition above imply the original condition split(f(, S k) = Bzawr in Item 2,
because

N 1 5
Split(K, S*’*,k,) = Z a(i>j7 k) : Split(K, S’i,j’k)

Zi,jzo (i, j, k) 550

1 L, ] I 2 .. . A
= m Z CY('M]» k) . SPht(K, Si,j,k) + Z 04(17]’ k) . Sp|lt(K, Si,j,k)
4,j >0 yJs i,j>0 i=0 or j=0

1 .. B ..
= S ali k) split(RLSe )+ Sl k) - Bragw

25065, k) 750 i=0 or j=0

1 _
- == Z Ck(i,j, k) : ﬁZHrHr,k + Z Ol(i,j, k) : BZ,i,j,k
Zi,jZO O‘(Z’]’ k) i,7>0 i=0 or j=0
1

== > i,4.k) Bzijk = Bz

Zi,jzo (i, j, k) 550

Similarly, Item 1 and Item 2 together imply the second condition in Definition 5.5. Therefore, Definition 5.5 is
an equivalent definition of compatibility. R

In Definition 5.5, there are constraints on the complete split distributions of K on some disjoint subsets of
[Ain]. Therefore, we can count the number of valid subsequences of K for each of these subsets of indices,
and multiply them together. For every (i,j, k) € Z3, where i + j + k = 2¢ while i = 0 or j = 0, we
require that spIit(K,Si7j7k) = Bzijk, so the number of possibilities of K on the subset of indices Sijk is
2H (Bz,i.5.k) 1Sk, klF0(n) — 2H(BZM‘J€)'O‘(i’jvk)‘AI”io(").7 For every k, we require that split(K, S + k) = Bzt ks
so the number of possibilities of K on S j is 27z k) 1ScklFo(n) = oH Bz 4 0)-a(t, k) Ainto(n) - OQyerall,

the number of possible compatible K , multiplied by the number of block triples X;Y;Zk, is

(5,10) N, - H 2H(BZ,i,j,k)'Ot(i7j,k)'A1niO(n) . H2H(EZ,+,7,1€)-(x(+,+,k)~A1nio(n) — 9(H(a)+Az) - Ainto(n)

ik k
i=0 or j=0
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Finally, as mentioned, pcomp is the ratio between (5.10) and (5.9), so

Peomp = (2(H(a)+)\z)~A1nio(n))/(2(H(BZ,*.*,*)+H(a)—H(az))~A1~nio(n)> — 9(Az—H(Bz.+.+..)+H(az)) A1 nEo(n)

as desired. O

CLAIM 5.8. For every b € B, every level-£ block triple X;1Y;Zx consistent with o, and for each typical Zy € Zx,
the probability that Zy is compatible with multiple triples in Teomp 5 at most

Ng * Pcomp
Npz - My’

conditioned on hx(I) = hy(J) = hz(K) =b.

Proof. By the definition of peomp, the total number of level-£ block triples XY Zy that is compatible with Z
is [f,\'—gz “Peomp- For each XYy Zg different from XY ;Zk, the probability that X Y Zg is mapped to the same
bucket b as X;Y;Zk is ﬁ by Claim 5.2. Thus, by the union bound, the probability that any of them is mapped
to the same bucket as X;Y;Zk is upper bounded by NN—;Z “ Peomp ° ﬁ < % Furthermore, if none of them
are mapped to the same bucket as X;Y;Zk, then Z, is compatible with a unique triple X;Y;Zk in Tcomp, SO
the claim follows. O

Recall that we require My to be at least 8 - max{ N“’j\’,;;"“z, N"’j\};;”“z } Now, we add another (and final)
constraint: My > J\[“NpiB‘Z”P -80N. That is, we will set My to be
max{ 8Nax,ay7az 8Nax,o¢y,az Na 'pcomp X SON}
NBX ’ NBY ’ NBZ

_ Qmax{H(a)fPafH(ax), H(a)—Py—H(ay), H(a)Jr)\Z7H(Bz,*’*,*)}~A1~n:to(n)'

Now, for every b € B and every level-¢ block triple X;Y;Zk that is consistent with o with hx (I) = hy (J) =
hz(K) =1b,

1. by Claim 5.3, it remains in 7pas, With probability > %;

2. by Claim 5.8, linearity of expectation and Markov’s inequality, among Z € Zx that is useful for X;Y;Zx
(this implies that Z is typical, so we could apply Claim 5.8), the fraction of Z; that becomes a hole in
Tusetul is at most 10/80N = gz with probability at least 9/10.

Therefore, by the union bound, with constant probability, the subtensor of Tyseru1 over X, Yy, Zx is a copy
of 7* whose fraction of holes does not exceed 1/8N. The expected number of X;Y;Zx with hx(I) = hy(J) =
hz(K)="boverallbe Bis N, - M1 50 overall, Tigerul contains N, - M 1701 copies of T* whose fraction
of holes is 1/8N.

By Corollary 4.1, we can degenerate them into N, - M ~'=°() unbroken copies of 7*.

)®A1-n

5.7 Summary. So far, we have degenerated (CVVZ@QLL1 into > N, - M 1=0() copies of a level-¢ interface

tensor 7* with parameter list
A oW - (1) 1) 1)
{(n Al « (Z’]7k)727-7’k’BX,i,j,k’BY,i,j,k’ﬁZ,i,j,k)}i+j+k:2z'

By plugging in the bounds of N, and My, we see that the number of copies we obtained (in the first region) is

2A1n~min{H(a<Xl))—P((J>,H(a(;))—P(il),H(E(Z{)*)*,*)—)\(Zl)}—o(n).

By symmetry, we can apply the same method to the second and third region, where for the second region
we perform asymmetric hashing that shares Y-variable blocks, and for the third region we perform asymmetric
hashing that shares X-blocks. Taking the tensor product of these results returned by our method on the three
regions concludes the proof.
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6 Constituent Stage

In the constituent stage for level-£ for some ¢ > 1, the input is an s-term level-£ e-interface tensor with parameters

{(ntvitvjta ktvﬁX,hBY,tvﬁZ,t)}tE[s]
that meet the following constraints:

1. For every t € [s], if i1 + 49 + - - - + ige—1 # 4y, then ﬁX,t(%la i2,...,19¢-1) = 0. Similar constraints hold for By
and (7.

2. For every t € [s] with j, = 0, and every i1, s, ..., 51,
ﬁX,t(%]_,%Q, e 7%22—1) == BZ,t(2 - %1, 2 - 22, ey 2 - %2£71>.
Similar relations hold between Sx; and By,; where k; = 0 and between Sy and Bz, where i, = 0.

Additionally, we let n =", ny and N = 2¢=1 . n. The goal of this stage is to degenerate the input to the tensor
product between a matrix multiplication tensor and multiple independent copies of a level-(¢ — 1) &’-interface
tensor for some &’ > 0.

Before we apply the laser method, let us handle the terms ¢ € [s] in the level-¢ e-interface tensor where i; = 0,
j¢: = 0 or k; = 0, which are already matrix multiplication tensors. The proof idea of the following theorem is
similar to the proof idea of a result in [33], who showed the version of the following theorem without complete
split distributions.

THEOREM 6.1. If k; = 0, then
Ti(??;kt [BX,t; BY,ta ﬁZ,ta 8] = <17 M7 1>7

where

Similar results hold when iy =0 or j; = 0.

Proof. As k; = 0, there is only one Z-variable zy in the given tensor. Also, for each fixed X-variable z, there is a
unique Y-variable y so that zyzp is a term in the given tensor (this is because it is a subtensor of CW(;@N ), and
vice versa. Thus, the given tensor is isomorphic to an inner product tensor (1, M, 1) for some M > 0. It remains
to calculate the number of X-variables in the given tensor. The X-variables are distributed among several level-1
X-blocks. Fixing a complete split distribution {x,; whose Lo, distance to Sx; is within €, the number of level-1
X-blocks in Tf’?: x, that conform with {x; is

(6.11) gniH(Ex,t)Fo(n) _ oni(H(Bx,1)+o1/c(1))Fo(n)
In each of these level-1 blocks, say X;, the number of X-variables is

-1 . 4 4 £—1
S T ) _ iy S0 e ) T

q

(6.12) — g ;22_1)(ﬂx,t(%hmﬁngl)iol/s(l)) Ei:l [2,,:1]'
The product of (6.11) and (6.12) gives the number of X-variables belonging to level-1 X-blocks that are consistent
with a certain {x,; taking summation over all £x; (there are poly(n) of which) proves the lemma. d

Next, we assume that we already used Theorem 6.1 to handle terms with i, = 0, j; = 0 or k; = 0, and assume
without loss of generality that we are left with the first s’ terms for some s’ < s.

For a triple of level-£ complete split distributions (8x, Sy, Bz) associated with the tensor power of the
constituent tensor T}, j, k,, we define a distribution vy on {0,...,271}2 as follows:

’}/)((lx,rx) = E ﬂx(il,ig,...,i2z—1).
(11,2250 ytg0—1 )t
i1+ tige—2=lx,
toe—2 gt —1=Tx
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It describes how every level-¢ index i; splits into two level-(¢ — 1) indices. We similarly define vy and vz.

Let a be a distribution on possible combinations of (Ix,ly,lz) such that the marginals of « are consistent
with ’yx(lx,i — lx), ’yy(ly,j — ly), ’yz(lz,k' — lz) MOI‘GOVGI', let BX,i/,j’,k/7 ﬁyﬂ‘/,j/’k/, 5Z,i’,j/,k’ be level—(é — 1)
complete split distributions. We then define the following quantities:

e D is the set of distributions whose marginal distributions on the three dimensions are consistent with
vx(Ix,i—1x), vv(ly,j —ly), vz(lz, k — lz) respectively, and let the penalty term P, := max, ep H(a') —
H(a) > 0.

o For every k', a(+,+, k') = >, ¢ o (@, ', k'); for every j', a(+, 5", 4) = > o0 pso (i, 5/, K'); and for
every i/v a(i/a +7 Jr) = Zj’>0,k’>0 a(i/Vj/ﬂ k/)

e For every k', a(<, <, k') = 3", _; o, (i, j', K'); for every j, a(<,j', <) =32, pey, @@, 5, K'); and
a(', j' k).

-/ -/ — -/
for every i/, a(i', <, <) = <okt <k, @000,

7 ) 1 a7 el
o Forevery k', Bz+ 11 = P e Y0 150 a(i',j', k") - Bz, jo .k, while By« j + and Bx 4 + 4+ are defined
similarly.

o \; = Z (@', 5" k") + alic =i, je — §' ke = K')) - H(Bz,ir jo )

i/,j',k’:4'=0 or j'=0
+ Z (+, +, k") + a(<, <, ks — k')) “H(Bz t .k —k), while A\x and \y are defined similarly.

In the following proposition, we will use the above definitions for different ¢ € [s'] and r € [3]. We will use

t in the subscripts and (r) in the superscripts on variables to denote that they are computed using values of

K T T ks T i T
o B BV By ABG i o Yt B har s Yira d ABG s g Yirir -

PROPOSITION 6.1. An s'-term level-£ e-interface tensor with parameters
{(ne, 3¢, ¢, ke, Bxes Byt Bz,t) beels']
fore >0, i, 4, ke > 0V t € [¢'] can be degenerated into
9(E1+Ex+Es)—o(n)—o1/:(n)
independent copies of a level-(¢ — 1) interface tensor with parameter list
{(me- 40 (@760 + ) = e = 3k = )3 KB By B )}

Jortels], re3, i+ +k =21 0<i <iy, 0< 5 <ji, 0 <K < ki, where

e 0< Ar1,A10,Ar3<1and Ae1+ Ao+ Arz =1 for every t € [§'];

e For every t, and for every W € {X,Y, Z}, At7161(/‘1,)t + At725$)t + At,3ﬂ‘(,[3/?t = Bw (B‘(/‘?t are intermediate
variables that will be used later);

o For every W € {X,Y,Z}, r € [3] and i' +j§ + k' = 2071, B{(/Ir/,)t,z",j',k' is a level-(¢ — 1) complete split
distribution;

o For every W € {X,Y,Z}, t € [s'] and r € [3],

61(/17;,)t: Z (r)( 5K (ﬁl(/lc,)t,i’,j/,k’Xﬁl(/lc?t,it—i’,jt—j’,kt—k’);

.57k’

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

3820



Downloaded 07/18/24 to 128.31.39.156 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

o Fi = min{ Z Ay -ny (H(fyg(l’)t) — Pc(it)), Z Apy-ny -
te[s'] tels’]
Z At,l s Mg
tels’]
te[s’]
Z At,z st
te[s’]
E; = min{ Z Atz g (H(v(y?’i) - Po(tst)), Z A
te(s’]

te[s’]
5 e (20 - 20)
te[s’]

Given Proposition 6.1, we obtain the following theorem, whose proof is essentially the same as that of
Theorem 5.1.

(
(
By mm{ > e (MO~ PE). 5 o (10D 25
(
(

THEOREM 6.2. 2°(") independent copies of s'-term level-{ 3c-interface tensor with parameters

{(nta it7jt7 kta 5X,t7 BY,t; ﬂZ,t)}te[s’]
fore > 0,it,jt,kt >0V t € [s] can be degenerated into

2(E1+E2+E3)—0(")—01/s(")
independent copies of a level-(¢ — 1) e-interface tensor with parameter list
{ (nt . At,r : (az(fr) (i/aj/7 k/) + Oéi(ET) (Zt - il?jt - j/7 kt - k/))vilajlv kl? ﬁg?7)157i/,j/7k/7 ﬂ(;/:)t’i/’j/,k/a (27:271'/7_7'/,]4) }

forte[s'],re 3], i+ +k =271, 0<4 <iy, 0< 5 <ji, 0< k' < ky, where the constraints are the same as
those in Proposition 6.1.

Proof. Similar to Theorem 5.1, for every set of complete split distributions {§§/Vr)t i gk Wit j ke that is at

most € away in Lo, distance from {5%),@1‘/,]'/,1«}W,tmi’,j’,k’ , we take an independent copy of the input interface
tensor, and degenerate it to independent copies of the output interface tensor with the specified complete split
distributions. Let

613) &= > oI K (g X ET i) (YW ELX,Y, 2} r e 3], t e [$)

51 Al ’
i',3".k

and Ew = At71§1(/11,7)t+At72§‘(,[2,?t+At73§‘(/‘?}?t be determined by the considered complete split distributions {&{w, e, .k }-
According to Proposition 6.1, an e-interface tensor 7 with parameter list {(n¢,it, jt, ke, Ex65 Evies E2,t) brelsr) can
degenerate to 2F1HF2+Es—0(n)=01/:(n) copies of the target interface tensor. Summing up a copy of the outcome
tensor for each {f%t’i/’j,yk/ Yot it ok will give the output e-interface tensor, so we can get 281 +F2+Fs—o(n)=01/c(n)
independent copies of the output tensor in total.

It remains to show that 7T is a subtensor of the input interface tensor, i.e., a 3e-interface tensor with parameters

{(ne,dt, 3 kes Bxty Byt Bzt) he[sr).  On the right-hand side of (6.13), the two complete split distributions

have at most ¢ distance from ,B‘(,‘T/)t ik and ﬂl(,;,)t iv—it jo—' ke—kts SO their product has < 2e distance* from

4The distance is at most 2¢ for the following reason: first, we change ﬁ‘(;)t iR to f‘(/yt ik which introduces an additive &
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g,)t g % BW,t,zt i1 ji—j' ke—kes Since the coefficients ol (i, 5, k) sum up to 1, we know that the left-hand side

Ew (r) has at most 2¢ distance from B w, s well, and the same holds between {w,; and Bw,. Thus the e-interface
tensor with complete split distributions {¢ Wt}Wt is contained in the 3e-interface tensor with {Bw.}w, as a
subtensor. Then we conclude the proof. 0

The remainder of this section aims to prove Proposition 6.1.

6.1 Dividing into regions. For each of the s’ terms, say the ¢-th term, we pick three real numbers
Ap1,Ar2, Ay g > 0 where A, 1 + Ao + A3 = 1, that aims to divide the t-th term in the input level-¢ e-interface
tensor into three regions of sizes A; 1n, A¢on: and Ay 3ny respectively. We also pick three different complete split

distributions Bga, 5&2,)15’ ﬂg?;, with the constraint
(6.14) Bg(l,)tAt,l + ﬁﬁ?}Am + BE?}At,g = Bx.t-

We also pick 6 and B(Zz for r € [3] with similar constraints. Similar to Remark 5.1, we assume without loss of

generality that, for every t,r and every L € {0, 1, 2}22_1,
(L) =85/ 2~ L)ifjo=0, BS)(L)=pV,E~L)itii=0, BY,(L)=p%2~L)ifk =0
where 2 denotes the length-(2¢~1) vector whose coordinates are all 2, and

(L _oleLﬁézt, AL _oleLﬁégt, SIL) _oleLﬁékt

For any level-1 X-block, if the portion of it in the r-th region of the ¢-th term is not e-approximate consistent
with Bg&, we zero it out. We similarly handle level-1 Y-blocks and Z-blocks. It is not hard to see the following.

CLAIM 6.1. After the previous zeroing-out, we obtain a tensor that is isomorphic to

3 s’
®A¢,rny (r)
® Timjmkt [ Xt’BYt’ Zt7 ]

r=1t=1

Proof. We only need to show that for a fixed ¢,

At r r
(6.15) T | (Bxe, By Bzere) & QT 1B, BV, By €]

r=1

by performing the above zeroing-out rule, i.e., zeroing out every level-1 X-block whose portion in the r-th region
is not e-approximate consistent with 5§?)t7 and doing similarly for Y- and Z-blocks. Suppose some level-1 X-block

belongs to the right-hand side and has complete split distributions fg{l)t, Xl, g?)t in three regions respectively,

each of Wthh is at most € away from 5;1, X, t, Bxi (3) in L, distance. Then, its average complete split distribution

Exe=A § +A { +A3§ has at most dlstance from fBx ¢, which means that the considered level-1 X-block
also belong to the left- hand s1de It is the same for Y- and Z-blocks, so the right-hand side of (6.15) is a subtensor
of the left-hand side, i.e., Eq. (6.15) holds, which further implies the claim. |

In the following, we will focus on the first region r = 1, in which we will apply asymmetric hashing that allows
the sharing of Z-blocks. Let

’
S

®At, t 1 1 1
T = Tit,jt,litn [ g(,)tvﬂ(}/z" (Zl)‘7 gl.
t=1

We will omit the superscript (1) on all variables for conciseness.

error (as the right hand side in Eq. (6.13) is a weighted average of the entries of £Wt g, /)3 then we change BWt il i ek

to SWt pmi e ke which introduces another additive ¢ error.
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6.2 Asymmetric hashing. Next, we apply hashing similarly to the global stage. For every t € [s], recall
that oy is a distribution on {(¢', 5/, k") € Z3, : i’ + j' + k' = 2°~'}. Additionally, the marginal distributions of
a¢(i',j', k') on the three dimensions are the same as vx (i, it — '), Yyt (', je — J'), vz (K, ke — k'), respectively.

Each level-(£ — 1) index sequence is partitioned into s’ parts, where each part corresponds to one term in 7.
The t¢-th part is a length-(2n;) {0, ..., 2 '}-sequence, which can also be viewed as a length-(n;) {0,...,2/=1}2-
sequence by combining pairs of adjacent numbers. If the t-th part of a level-(¢ — 1) X-index sequence is not
consistent with the distribution vx; for any ¢, we zero out the corresponding level-(¢ — 1) X-block. We similarly
handle the Y- and Z-blocks.

Let Npx be the number of remaining level-(¢ — 1) X-blocks, and it is not difficult to see that

(616) Npx = 2Zt H('\/X,t)'At,lnt:l:O(’l’L)'

Similarly, let Ngy and Nz be the number of remaining Y- and Z-blocks, and we have

(6.17) Npy = 22 HOva) Avineto(n) - oo o 935 H(vz,0)-Avaneto(n)

Let N, be the number of remaining block triples that are consistent with {a}+ec[s. We have

(618) Na — QZt H(!lt)AAt,lnf,:to(n).

Finally, let N,

ax,xy,&xz

be the number of remaining level-(¢ — 1) block triples X;Y;Zk.

CLAIM 6.2. Nuy ay.a, = 22H@)F o) Avaniton) “yhere we recall that Py = maxy ep, H(ay) — H(ay) in

which Dy is the set of distributions sharing the same marginals as ay.

Proof. Fixing a series of distributions o € D; (¢t = 1,2,...,s’), the number of level-(¢ — 1) block triples consistent
with {4} }1es) equals

227: H()-Ag,1ni£o(n) < 2Zt max.sep, H(ay')-A¢inito(n) < 2Zt(H(at)—i-Pa,t)'At)lnt:l:o(n).

Taking summation over all poly(n) = 2°(™ series of distributions {a}}iepsn will prove the claim. ]

Let M € [My,2My] be a prime number for some integer My. Similar as before, the value of My is yet to be
fixed, but we first require that

N, N,
6.19 My > 8 - max{ —exexes Jexay.os }
(6.19) 0= { Npx Npy
We independently pick uniformly random elements bo, {w,}2%, € {0,..., M — 1}, and define the following
hash functions hx,hy,hz : {0,...,2¢713" = {0,..., M —1}:

2n
hx (I) = by + (Z w, - Ip) mod M,
p=1
2n

hy (J) = by + (wo +) w,- Jp> mod M,

p=1

2n
1 _
hz(K):b0+2<’wo +p§1wp~(25 1—Kp)> mod M.

Next, for a Salem-Spencer subset B of {0,...,M — 1} that has size M2 we zero out all level-(¢ — 1)
blocks X; with hx(I) ¢ B, Y; with hy(J) ¢ B, and Zx with hz(K) ¢ B. Then all remaining block triples are
contained in a bucket b for some b € B.

For every bucket b, if it contains two level-(¢—1) triples X;Y;Zx and X ;Y Zk+ that share the same X-block,
then we zero out X;. We similarly handle Y-blocks. We repeatedly perform the previous zeroing-outs so that all
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remaining triples do not share X- or Y-blocks. For every level-(£ — 1) block X (or Yj), we check whether the
unique triple containing it is consistent with {a;}sc[s; if not, we zero out Xy (or Y;). We call the tensor after
this step Thash-

The following claims, which are analogous to the claims in Section 5, still hold, and we omit their proofs to
conciseness.

CrLAamM 6.3 (Implicit in [13], see also [17]). For a level-(¢ — 1) block triple X;Y;Zx € T, and for every
be{0,....,.M —1},
1
Pr[hx(f) = hy () = hz(K) = b| = .
Furthermore, for two different block triples XY ;Zy, XYy Zyr € T that share the same X -block, and for every
be{0,...,.M —1},

_ L
=3
This also holds analogously for different block triples that share the same Y -block or Z-block.

Pr [hX(I) = hy(J)) = hy(K') = b | hx(I) = hy (J) = hy(K) = b]

CLAIM 6.4. For every b € B and for every level-(€ —1) block triple X;Y;Zx € T that is consistent with {ov }ie[s),
the probability that XY Zx remains in Thasn conditioned on hx(I) = hy (J) = hz(K) =b is > %.

CLAIM 6.5. The expected number of level-(£ — 1) block triples in Thash s at least Ny - Moflfo(l).

6.3 Compatibility zero-out I. Recall that for every W € {X,Y, Z} and i’ + j' + k' = 27%, By jrpr is a
level-(¢ — 1) complete split distribution, and they satisfy

(6.20) Pw,t = Z (i, 5 k) - (Bwieir gk X BWitie—it o —gt e —k')-
i/’j/’k/
Let
St(IZ,J],Kk), = {p is in the t-th term | I, = i', J, = ', K, = k'},
and
St(f,)*,k’ := {p is in the ¢-th term | K, = k'},  Sp .. = {p is in the ¢t-th term}.

If clear from the context, we will drop the superscript (I, J, K) or (K).
Recall that in Tpaen, every level—(ﬂA— 1) block X7 is in a unique block triple X;Y;Zk. For every level-1 block
X; € X1, we will zero out X if split(1, Sy i jo 1) # Bx,t,irjo 4 for any t,i', j', k’. Similarly, every level-¢ block Y
is in a unique block triple, and we zero out every Y; € Y; where split(J, Syir j 1) # By,t.ir jo & for any ¢,4', j', k'
For every level-1 block Z € Zg, we zero out Zy if split(K, Sy . k) # Bz,ts4 4 for any t,k’, where

Zi"%]‘/:QZ*lfk’ (O‘(ilaj/7 K') + alic — ', 5e — 5, ke — k/)) Bz
Zi/J’,j/:QZ—l,k/ (Oé(i/,j/, k/) + a(lt - 7;/7jt - j/7 kt - k/)> '

We call the tensor after the previous zeroing-outs Tcomp-
Next, we define the notion of compatibility.

BZ,t,*,*,k’ =

DEFINITION 6.1 (Compatibility). For some I,J, K, a level-1 block Zy € Zk is compatible with a level-(¢ — 1)
triple X;1Y;Zk if

1. For every t and every (i, 7', k') € Z%o N[0,4¢] x [0, 5] x [0, k¢] with i’ +7" +k =21 i' =0 or j' = 0, there
is split(K, Se,ir jo k) = Bz,,ir o -
2. For every t and every index k' € {0,1,...,min{2¢~! k:}}, split(IA(,St)*7*7k,) = Btk

CLAIM 6.6. In Teomp, for every remaining level-1 block triple X;Y;Z . and the level-(¢ — 1) block triple X;Y;Zx
that contains it, Zy is compatible with X1Y;Z.

The proof of this claim is the same as Claim 5.5.
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6.4 Compatibility zero-out II: unique triple. In this step, we zero out all level-1 Z-block Z; that are
compatible with more than one level-(¢ — 1) triples and they become holes. After this step, each remaining level-1
Z-block Zy, € Zk is compatible with a unique level-(£ — 1) triple X;Y;Zk containing it.

6.5 Usefulness zero-out. Next, we further zero out some level-1 Z-blocks using the following definition of
usefulness.

DEFINITION 6.2 (Usefulness). For a level-1 block Zy and a level-(¢ — 1) triple X;Y;Zk containing it, if for all
t,4',§' k" we have split(K, St ji ) = Bzt jr.ar» then we say that Zy is useful for X[V Zx.

For each Zp, it appears in a unique triple X;Y;Z by the previous zeroing out. Furthermore, if Z; is not
useful for this trlple, we zero out Z. We call the current tensor Tyseful-
Ideally, we want the subtensor of Tygerur Over each triple X;Y;Zk to be isomorphic to

®Ae,1- (i (7,5 kK ) fae(ie =1 je—5" ke —k")) me
® ® T/ Gtk [ﬁth,] k' BYtz,] k' Bth,] k:]
€[s’] i'+j/+k'=2¢-1

However, there will be two types of holes. The first type of holes is caused by the fact that some level-1 subtensors
are already missing in the input tensor because we enforced complete split distributions Bx ¢, Sy, 8z on it; the
second type of holes is caused by zeroing out Zj that are compatible with multiple level-(£ — 1) triples. In the
next section, we will analyze and fix these two types of holes.

6.6 Fixing holes. First, we analyze the fraction of holes that are caused by the complete split distributions
enforced in the input. To do so, we focus on a fixed triple X;Y;Zk and the subtensor 7* we desire. Then we
take a random level-1 block that is not zeroed out in 7*, and upper bound the probability that this level-1 block
is zeroed out in the input level-£ e-interface tensor. By symmetry, it suffices to focus on X-blocks.

Fix any (i1, ...,150-1), let us analyze the fraction of its occurrences in a random level-1 X-block in 7*. For
every t € [s'], and for every 4,5’ k', we first focus on the level-¢ positions in the ¢-th term where (i, ji, k¢) is
split into (¢, j',k") and (i —4',5; — 7',k — k') (thus, there are A1 - o (i, j', k') - ny such positions). Among
these positions, we want to analyze the number of positions that correspond to the level-1 chunk (%1, e ,%2[—1).
Therefore, the first half-chunk, which corresponds to (i’, j/, k'), should be (iy, . . . ,45¢-2), and the second half-chunk,
which corresponds to (i, — ', j; — 5, k; — k'), should be (igc— 211, .. Jige1).

There are Ay 1 - (au (¢, 5", k") +ou (i — 7', 5o — §', ke — K')) - ny level-(€ — 1) positions corresponding to (i, j', k'),
and among them, A1 - o (¢, j', k') - ny are in odd positions. By definition of 7, the fraction of (i1, ..., lge—2)
in these Ay 1 - (e (¢, ', k') + o (ie — 7', 50 — j', ke — K)) - my positions is Bx ¢ 7k (%1, . ,%22—2), and if we take a
random level-1 X-block in 7*, the fraction of (i1,...,iy—2) among the odd positions corresponding to (i, j’, k')
is Bx.t,ir 5kt (%1, .. .,%Qefz) + o(1) with 1 — 1/ poly(n) probability, by concentration bounds. Furthermore, the
subset of positions in these A;1 - a(¢',j',k’") - ny positions is also random. Similarly, with 1 — 1/poly(n)
probability, the fraction of (ige-21,...,i-1) in the even positions corresponding to (i; — ', j; — 5, ki — k')
is Bx.t,ir 4o k! (%2@2“, ... ip-1) £ 0(1), and the positions are also random Applying concentration bounds again
we get that the fraction of level-£ positions corresponding to (i1, . .., ige-1) among positions that split into (¢', j, k' )
and (Zt — i/,jt — j/, kt — ]{1/) is

Bt g e (11, ylige=2) * BX iy —it o — gt e (lt=241, - - Gge=1) £ 0(1).
Summing over all ¢/, j’, k', we get that with probability 1 — 1/ poly(n), the fraction of level-¢ positions with
(21, .. 29e-1) is
> onli § k) B gk (i1, yize-2) - BX i =it ot ko -kt (iae-241, - e ) £ 0(1)
il,j/7k/

(by Eq. (6.20)) = Bx.t(i1,...,09e-1) £ o(1).

The o(1) term can become less than e, and the 1—1/ poly(n) probability can be bounded by 1—1/n? for sufficiently
large n. Therefore, a random level-1 X-block appears in 7 with probability at least 1 —1/n?. This means that the
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fraction of holes caused by the complete split distributions enforced in the input is 1 — 1/n? for the X-dimension.
By symmetry, the same also holds for the Y- and Z-dimensions.

Next, we focus on holes caused by zeroing out Z that are compatible with multiple level-(¢ — 1) triples. The
analysis will be similar to Section 5.6.

First, notice that for every level-1 Z-block Z that appears in the input of the constituent stage, its complete
split distribution £z in the ¢-th term must be within ¢ L-distance to the given parameter 8z;. Then we define
Deomp as follows:

DEFINITION 6.3 (Pcomp). For fived Zy and Zx where Zy € Zk and K has level-¢ complete split distributions
{8z, iels), we define piom, (€2t bie[s)) as the probability that a uniformly random block triple X1Y;Zx consistent

with {a }iefs) is compatible with Z .. We further define peomp = « niax Plomp ({2t Hers)-
ZtStels’] "
1€z, =Bzl o <e Vit

By symmetry between level-£ positions, this probability pzomp({f Zt)te[s]) is the same for different K that
have the same complete split distributions, so pZ,,, and peomp is well-defined.
Cram 6.7. The value of piom, ({2t} eefs)) is at most

92 ters) Azt =H(Ez,0)+H (vz2,0)) Ae,1-nuFo(n)

where we recall that
Azp = Z (ar(@, 3" k) + aulie =i 5e = 5 ke = K')) - H(Bz,1,i0 47 1)
i’,5' k" :4'=0 or j'=0

+) (el + k) +au(< < ke = K)) - H(Bz o ki)

Y
and
a(+,+, k') = Z a(i ' K),  au(<, <, K) = Z (i, §' k).
/>0, />0 i <ig, §' <ju
Furthermore,
(6.21) Peomp < 2Ztg[5/]()\Z,t_H(BZ,t)+H(’YZ,t)+Ol/E(1)>At,1'nt+0(n).

Proof. Similar to before, it suffices to compute the following two quantities, and p,,,,({£z,:}¢) will be the ratio
between them:

(1) the number of tuples (I, J, K, K) where XY Zy is consistent with {av }res), K € K, K has complete split
distributions {{z}:, and Z is compatible with X;Y;Zx;

(2) the number of (I, J, K, K) where X7Y;Zk is consistent with {a }res), K € K, and K has complete split
distributions {£z,}+.

We first compute the second quantity. First, the number of Z; with the desired complete split distributions
{€z.1}¢ 18 22 H(€z.1)- Avaimito(n)  Fach of these Z  uniquely determines a level-(¢—1) block Zx. Also, for each Z,
the number of block triples X;Y;Zx consistent with {a }e[s is KX;Z = 22 (H(at)=H(vz,)) Arinedo(n) - Therefore,
the second quantity is

(6.22) 932 (H(Ez,0)+H (o) = H(yz,t))-Ar,1-meto(n)

Then, we compute the first quantity, which does not exceed the number of (I, J, K, K ) where X;Y;Zk is
consistent with {ov}sefss K € K, and Z is compatible with X;Y;Zx. (We dropped the condition of having
correct level-¢ complete split distributions {£z,}; and got an overestimation.)

First, the number of block triples X;Y;Zx consistent with {c };e[s) is No. Then, for each such block triple,
we count the number of Z; € Zg that is compatible with it. If we fix some X;Y;Zg, then we also have fixed
the values of Sy ; j, for all ¢,4, j, k. Then it is not difficult to see that the following condition is equivalent to the
condition for Z being compatible with X7Y;Z:
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DEFINITION 6.4 (Compatibility’). For level-(¢ — 1) triple X;Y;Zy consistent with {ai}icls), a level-1 block
Zy € Zi is compatible with XY ;Zx if

e For every t and every (i',5', k') € Z%O N[0,4¢] x [0, 5] x [0, k¢] with i’ + 5" +k =271 i’ =0 or j/ = 0, there
18 split(f(7 Stirjrkt) = Bzt g k- (This is exactly Item 1 in Definition 6.1).

o For every t,k, let Sy ik = Ujso jso Stk Then split(K, Sy 1) = Bz 4 k-

In this definition, there are constraints on the complete split distributions of K on some disjoint subsets of
level-(¢ — 1) positions, i.e., subsets of [2 > At}lnt]. Therefore, we can count the number of valid subsequences

of K for each of these subsets of indices, and multiply them together to get the number of valid K. For every t
and every (i/,j/, k') € Z2, N [0,4,] x [0, je] X [0, k] where &’ + j' + k' = 2°~! with i’ = 0 or j” = 0, we require that
split(f(, St g k) = Bz, k', 50 the number of possibilities of K on the subset of indices St o e 18

2H(5Z,t,i’,j’,k’)"St,i’,j’,k’ |£o(n) _ 2H(Bz,t,i/,j/,k/)'(at (i',5" k) ra(ie—i g —j ke —k')) A, 1niFo(n) )

For every t, k, we require that split(K, St k) = Bz,t,+,+,k', so the number of possibilities of K on St 4k 18

9H Bzt y, o w) |8 o) — 9H Bz oy k) (e (K ) o (<< ke —k)) - Ag 1naEo(n)

Overall, the number of possible compatible K , multiplied by the number of block triples X;Y;Zk, is
Na . H 2H(/§z,t,i/,j/,k/)'(Ctt(ilyj/7k/)+04t (it_i/7jt —jl7kt—k/))'At,1nti0(n)

t,i',5" k'
i'=0 or j'=0

(6.23) . H QH (i, o+ ) (k)b (<,< ke —K'))- Ar e to(n)
£k’
— 92 (H(a)+Az,0)-Ar,aneto(n)
Finally, as mentioned, pZ,,,,,({{z,:}+) is the ratio between (6.23) and (6.22), so

Doy (b)) S 25 R HH DA st
as desired. The bound (6.21) on peomp follows as the L., distance between {£7,}: and {2} is at most e. a

The proof of the following claim is essentially the same as that of Claim 5.8.

CLAIM 6.8. For every b € B, every level-({ — 1) block triple X;Y;Zy consistent with {c}iefs), and for each
typical Zy € Zk, the probability that Zz is compatible with multiple triples in Teomp s at most

Na * Pcomp
Npz - My’
conditioned on hx(I) = hy(J) = hz(K) =b.
Recall that we require My to be at least 8 - max{ N‘”j\',;‘:’“z, N“’J(\};;”“’Z } Now, we add another (and final)

constraint: My > M’J'Vpi;;’m" -n2. That is, we will set My to be
max{ 8Nax.ay,az 8Naxayaz Na - Peomp . nz}

Npx ' Ngy = Npz
< gmax{3>, (H(cwt)=Pa,t—H(yx,:))At,1me5 224 (H(ar) = Pa,s—H(yv,t))As,ine, 20, (H(ow)+Az,0—H(Bz,1))As,1-me }Ho(n)

Similar to before, for every b € B and every level-(£—1) block triple XY Zf that is consistent with {;}e(s
and hx(I) = hy(J) = hz(K) = b, with constant probability, it remains in Thasn and the fraction of holes caused
by enforcing that each Zg is compatible with a unique triple is 1/n?. Additionally, as discussed earlier, the
fraction of holes caused by the input complete split distribution constraints are also 1/n?. Overall, we expect to
get N, - M~1=°(1) copies of T* whose fraction of holes is O(1/n?).

By Corollary 4.1, we can degenerate them into N, - M ~'~°(1) unbroken copies of 7* because O(1/n?) < SLN
for sufficiently large n.
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6.7 Summary. In the analysis, we have degenerated ®f/:1 ﬂ?i‘;?‘[ g(l)t,ﬁ(;)t,ﬁ(zlz,g} into > N, - Mo_l_o(l)
copies of a level-(¢ — 1) interface tensor T7* with parameter list

{(At,l s Ny - (af‘l)(i/mj/a k/) + agl)(lt - i/7jt - j/7 kt - k/))a

g g (1) (1) (1)
2 I K B g Py g Bag g te[s/] 40+ k=261

By plugging in the bounds of N, and My, we see that the number of copies we obtained (in the first region) is

2min{zt€[s/] A (HOE) =Py Siepn Aane (HOE)=PL)), Sieper Avane (HEBE)-2T)) F=o1/e(m)—o(n)

We conclude the proof by applying the same method to the second and third region, where for the second region
we perform asymmetric hashing that shares Y-variable blocks, and for the third region we perform asymmetric
hashing that shares X-blocks, and taking the tensor product of these returned results.

7 Fixing Holes

In this section, we show (by generalizing a result by Duan [16]) that we can degenerate a direct sum of some
broken copies of an interface tensor into an unbroken copy of the same tensor as long as we only have a small
fraction of holes in the X-, Y-, Z-dimensions. Since our result of fixing holes in all X-, Y- Z-variables might be
of independent interest, we present our result in a more general setting.

Let us first describe the setup of this section. We consider a partitioned tensor T on variable sets
X ={z1,...,ony}, Y = {y1,--suny }, Z = {21,...,2n,} of size |X| = Nx, |Y| = Ny, |Z| = Nz with
partitions X = uzﬂi)l( X, Y = |_|j1\/iy1 Yy, Z = |_|,1€\/I:Z1 Zy, into equal-size parts | X;| = mx for all i € [Mx], |Y;| = my
for all j € [My], and |Z;| = mz for all k € [Mg]. (We use the notation X; to represent both the part itself
and the set of elements in this part.) Let Px = {X; | i € [Mx]} denote the set of parts in the partition of X,
and similarly let Py, Pz denote the set of parts in the partition of Y and Z respectively. Note that by definition
NX = MX -mx, Ny = My -my, NZ = Mz-mz and |le = Mx, |Py| = My, |Pz| = Mz.

We consider the broken copies of T' where some of the X-, Y- and Z-parts are missing which we call the holes.
(Equivalently, the variables in a part are either all present or all missing.) More specifically, we say that Tjle is

a broken copy of T with holes P)(?) C Mx, P)(/O) C My, Péo) C M5 when

(7.24) Thole = T| X\

y Xt Y\uYtEP;(/O) Y:, Z\L ) Lt

Xt€P§(0 Zy EP(ZO
is obtained from T via zeroing out the variables in the parts P)((O ) C Px, PS(,O) C Py, Pg)) C Pz. For simplicity,
we define the notation

Tllpy,py,p, = T|
” x, Py, Pz LlXtePXXt’l—lYtEPth’l—'Ztepz Zy

to represent the subtensor of T" over the set of parts Px, Py, Pz. With this notation, Eq. (7.24) can be rewritten
as
Thote = THPX\P;(O)7 PP, Pz \PY
We call the ratios ‘P)((O) ‘/MX, PX(,O) ’/My, |P§)) ‘/MZ the fraction of holes in the X-, Y-, Z-dimension respectively.
We will show that we can degenerate sub-polynomially many broken copies of T with small fraction of holes
in all three dimensions into an unbroken copy of T if T satisfies the following property.

PROPERTY 7.1. There ezists a subset G C Sy X Sy, X Sy, of permutations over the variables of T where Sy
denotes the symmetric group on [N], such that G satisfies the following:

1. Every (wx,my,nz) € G preserves the partitions. Specifically, it permutes any part into some entire part,
i.e., for every part Xy € Px, there exists Xy € Px such that nx(X;) = {nx(z) | z € X;} = Xyp.
Similar conditions hold for Y- and Z-parts. Hence, wx, Ty, Tz also induce permutations on Px,Py,Pz,
respectively.
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2. Every (mx,my,7z) € G preserves the tensor structure of T. Formally, the coefficient of z; -y, - zx in T
equals the coefficient of mx (x;) - my (y;) - mz(2x) in T, for all variables x;,y;, 2.

3. A uniformly random element (wx,my,7z) € G permutes any given part to a uniform random part. Formally,
for any fivzed Xy, Xy € Px, Yo,Yo € Py, Zy, Zy € Pz, and for a uniformly random (rx,my,7z) € G, we

have
Prlmx (X)) = Xp] = o
T = = —
X\ At t My’
1
Pr[ry (V) = Y] = E7
1
P Zy) = Zy| = —.
r[mz(Z:) v] My,
We show the following.
THEOREM 7.1. LetT be a partztwned tensor deﬁned above; let Ty, ..., T, be broken copies of T', where in each T;
for i € [r], at most and fraction of X-, Y and Z-parts are holes, respectively. If T

4logMX’ 4logMy 410g]\/[
3
satisfies Property 7.1 with a set of permutations G, then there exists a constant Cy such that for r > Cy- M Tostos N
where M = max{Mx, My, Mz}, we have
T
BT
i=1

In particular, M°Y) broken copies of T with fraction of holes O(ﬁ) can degenerate into an unbroken copy of
T.

Before proving Theorem 7.1, we first show the following Lemma 7.1 that will explain why we need Item 3 in
Property 7.1. The lemma essentially states that if 7" satisfies Property 7.1, then we can find a set of permutations
Tx, Ty, Tz on the partitions of X-, Y- Z-variables such that any set of parts can be permuted away from any
set of positions that we specify. Specifically, one should think under the context of degenerating a broken copy of
T with holes into some subtensor T'|x/ vy~ z/, the lemma states that we can find a set of permutations preserving
the tensor structure of T' on the variable sets such that the holes are away from the terms in T'|x/ y+ z-. Then
applying the permutation on the broken copy would give the subtensor T'|x y 7z without holes or with fewer
amount of holes.

LEMMA 7.1. Let T be a tensor satisfying the assumptions of Theorem 7.1 with G. Then there exists (mx, 7y, mz) €
G such that for any sets of parts Px, Py C Px, Py, P, C Py, Py, P}, C Py we have

4|Px| - |P|
Px| 7
4Py |- |Py|
Py|
4|Pz| - | Pyl
Pzl

|Px Nmx (Py)| <
(7.25) |Py Ny (Py)| <
|Pz Nz (Py)| <

Proof. We prove the lemma using a probabilistic argument. Consider a uniformly random element (7x, 7y, 7z) €
G. By Item 3 in Property 7.1, for any X; € Px, we have

| Px|

Pr[ﬂx(Xt) S PX] = w

By linearity of expectation

|Pxl 1P|

E[Px Nmx (POl = 3 Prlmx(X0) € Px] = = 5

X,€Py
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Thus by Markov’s inequality, have

4[Px| - |Px|

Pr||rx (X:) € Py| >
Px

1
< -.
— 4
The argument works similarly for Y and Z, so by union bound over X,Y,Z, with probability > i a random

(rx,my,mz) € G satisfies Eq. (7.25). Therefore, we can conclude that there exists such a (rx,7y,7z) € G
satisfying Eq. (7.25). |

We now proceed to prove Theorem 7.1. The main idea is to first take a broken copy of T' that covers most
of the terms in the tensor, then write the missing terms as a sum of 7 smaller subtensors which we treat as 7
subproblems, and finally recurse on each of the subproblems with smaller sizes.

Proof of Theorem 7.1. Assume Pyx, Py, Py are sets of hx, hy, hz parts of X-, Y- Z-dimension respectively, and
assume that we need to produce T'||py py,p,. The number of broken copies of T required for this purpose is
denoted as f(hx,hy,hz). Clearly, f(hx,hy,hz) = 0 when one of hx, hy,hz equals zero (because T py.py. Py,
would be an empty tensor), and we need to upper bound f(Mx, My, Mz), which is the number of broken copies
required to produce a complete copy of T'.

Take a broken copy of T, namely T}qe where P)((O ), P}(,O), Péo) are the set of

- THPX\P)((O), Py\PY), P2 \PY)
holes. Then, applying Lemma 7.1 on Px,P;O),Py,PX(/O),Pz,PéO) gives (mx,7y,mz) € SNy X Sny X Sy, such
that

[Pxl- [P 1

p(O)/‘:: ‘P P(O) ’<4. P
‘ X x Nmx (Py')| < My = log Mx |Px,
' 1
7.26 ‘P(O) ‘ — ‘P PO ’< P
( ) Y Ym’/TY( Y ) >~ IOgMY ‘ Y|7
P(O)/‘ — ‘P p(O) < Pl
‘Z ZmrX(Z)—logMZ |77

We relabel the variables in T}l according to the permutations 7y, 7y, 7z, obtaining another broken copy of T
with sets of holes 7x (P)((O)), Ty (Pi(/o)), A (Péo)). We then zero out all parts outside Py, Py, Pz. The obtained
tensor, denoted by T ., is a subtensor of the target tensor T'||py py.p,:
Tlllole = T”PX\P)?)/, Py\P)(,O)/, PZ\PéO)/ = T”P)((l)/,P)(,l)/,Pél)/’
where P)((O)/ = PxNmx (P)((O)) is the set of holes in X-parts, and P)((l)l = PX\P)((O)/; similar for Y- and Z-dimension.
Next, we write T||py.py.p, as a sum of 8 subtensors:

T\px.py.Py, = Tl o0y pay Hay + g Tl sy poy por-
” x, Py, Pz ”Px , PV P ”PXa Py Py
a,b,ce{0,1}
0e{a,b,c}

Notice that the first term T PO ay equals T}, (which we already obtained by consuming one broken
X zZ

PV P
copy Thole), and the other seven subtensors are significantly smaller than T'||p, p, p,, so we can obtain them
recursively. The fact that ’P)((l) | <|Px|= hx, Pl(/l) | <|Py|=hy, Pél) | < |Pz| = hz together with Eq. (7.26)
gives us the following recursion:

hX hY hZ
By hy. hy) <1 —= hy,h hx, ————h hx, by s ===
f(hx,hy,hz) < +f<1ogMX7 Y Z) +f( X fog My’ Z)+f( X, Y’logMZ>

hX hy hX hZ
B S h
+f(logMX’ log My’ Z) +f(logMX’ v logMZ)

h h h h h
+f{ x4 f(a e e a
log My " log Mz log Mx " log My " log Mz
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Since |Px| = Mx, |Py| = My, |Pz| = Mz, we can solve the recursion for f(Mx, My, Mz) and get

f(MX7 MY7 MZ) < 71+[1Og10g My MX—|+[lOglog My AIY]+[loglog My MZ—‘

3
S CO . MloglogM

where Cy is a sufficiently large constant and M = max{Mx, My, Mz} since the function M/ 19818 M j5 monotonic
increasing for sufficiently large M. 0

We remark that Theorem 7.1 also works for non-partitioned tensors satisfying Property 7.1 when considering
on X-, Y-, Z-variables as partitioned into size-1 parts where each part consists of a single variable.

Now let us return our attention to the context of fast matrix multiplication and show that we can fix the
holes in the interface tensors with holes obtained in our algorithm.

COROLLARY 7.1 (Restated). Let T' be a level-£ interface tensor with parameter list

{(ntaitujh kt7 6X,t7ﬁY,ta BZ,t)}tE[s]'

Let N = 2¢-1. Zte[s] ng. Suppose Ty, ..., T, are broken copies of T where < ﬁ fraction of level-1 X-, Y-
and Z-blocks are holes. If r > 261N/18 N for some large enough constant Cy > 0, the direct sum @D, T; can
degenerate into an unbroken copy of T .

Proof. Consider the level-1 partition of the X-, Y-, Z-variables in T into level-1 blocks indexed by sequences in
{0,1,2}" with length exactly N = 2¢~1. Zte[s] n; as defined in the statement. By definition, the level-1 blocks
remaining in T are consistent with the distributions Bx ¢, By, Bz over each term t € [s] in T', which means that
every level-1 block X; with index sequence Ie {0,1,2}" has the same number of 0’s, 1’s, and 2’s. This implies
that each level-1 X-variable block contains the same number of variables and the number of level-1 blocks can
be bounded by 3V. Similarly, there are < 3V level-1 Y- and Z-variable blocks and the partitions of Y- and
Z-variables into level-1 blocks are partitions into equal-sized parts.

We let the partitions of X-, Y-, Z-variables into level-1 blocks be the partitions used for Theorem 7.1, and
therefore the number of blocks My, My, Mz < 3. Then suppose we can find an appropriate G C S x| XSy | XS z|
satisfying Property 7.1 for T, then by Theorem 7.1, as the fraction of holes in every broken copy T; is at most

3
SLN < W < min{410g1MX , 4log1My, 4log1Mz} in all three dimensions, a direct sum of (SN) logloss™ = 201w W
broken copies (with sufficiently large constant Cy > 0) of T' can degenerate into an unbroken copy of T.
Thus it suffices to construct a set of permutations G C 8 x| X S)y| X 8|z that together with T satisfies

Property 7.1. Note that every X-, Y-, or Z-variable in T is indexed by a sequence in {0,1,...,q + 1}V =
({0, 1,...,q9+ 1}218_1)717 we call every 27! consecutive indices a chunk and randomly permute chunks within the
same term in T. Specifically, consider the set H = S,, X --- X S,,,. For each ¢ = (01,...,05) € H, consider
that o; permutes the n; length-2=1 chunks in the ¢-th term for ¢ € [s]. o can be regarded as a permutation
over [n], indicating the destinations of all n chunks. It also induces a permutation ¢’ € Sy over N level-1
indices. Formally, the j-th index in the i-th chunk is permuted to the j-th index in the o(¢)-th chunk, i.e.,
o' ((i—1)- 27V 4+ 4) = (0(i) = 1) - 271 + j for all i € [n] and j € [2°7!]. Further, o’ induces a permutation mx
over all X-variables, given by

X (.T(:L.17%2,‘.-,%N)) = x(ga’(l)!;o’(Z)""vgg’(N))’

where z; ; ;) represents the X-variable indexed by (i1,%2,...,in) € {0,1,...,¢ + 1}V, The permutations
Ty, Tz over Y- and Z-variables are defined similarly. Finally, G is defined as all permutations generated in the
above way, i.e., G = {(nx, 7y, 7z) induced from o € H}.

Note that G is well-defined, since for any element (mx,7y,7z) € G and any level-1 index sequence IinT
satisfying the complete split distributions {fx}+e[s), x(X};) must also satisfy the complete split distributions
{Bx.t}tels), because the permutation acts on each term individually. Now we check that G satisfies Property 7.1.
It is easy to see by definition that the set G satisfies Item 1 and Item 2 since variables in one level-1 variable block
all get permuted to the same level-1 variable block. Item 3 holds due to the symmetry of the chunks within the
same term. 0
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8 Numerical Result
Let ¢* > 0 be an integer and let N = 2¢" 1. n. Our upper bound of w(1,k,1) is formed by successively applying

Theorems 5.1, 6.1 and 6.2 to degenerate 2°(™) independent copies of CW®N (CVV@’2 -
matrix multiplication tensors of the form (a,a”,a), shown in Algorithm 1

)®n into independent

Algorithm 1: Procedure of Degeneration

Let € > 0 be a fixed constant and £* > 0 be an integer.

1. Degenerate 2°(™ independent copies of (CVVg922 71)®n
(¢ - 3% )-interface tensor Ty-, where the number of copies V4« and the parameter list of 7+ are given

in Theorem 5.1 and Proposition 5.1.

into Vp« (independent) copies of a level-£*

2. For each £ =/¢*,...,2

e Degenerate every 2°(") copies of the level-£ (¢ - 3%)-interface tensor 7y into V;_; independent
copies of the tensor product of a level-(£ — 1) (e - 3*~!)-interface tensor 7;_; and some matrix
multiplication tensor (ag, by, c¢). Here, the number of copies V;_;, the parameter list of 7;_;
and the matrix multiplication size (ay, by, ¢¢) are all given in Theorem 6.2 and Proposition 6.1.

3. The level-1 3e-interface tensor 7; can degenerate into a matrix multiplication tensor, written
(a1, b1,c1), according to Theorem 6.1.

4. So far, we have obtained V := Hﬁ;l Ve copies of (A, B,C) = ®§;1<a5, by, ce).

We first let n — oo and apply Schonhage’s asymptotic sum inequality (Theorem 3.2) on the above
degeneration, obtaining a bound on w(1, k, 1) which might depend on ¢; then, we let ¢ — 0, obtaining the
bound w(l,k,1) < w’ as long as

2&*71

(8.27) lim lim V/™. mln{A B/ C’}w /n (g+2)

e—0n—o0

\. J

Every degeneration step in Algorithm 1 requires a set of parameters, including the distribution « over
constituent tensors, the proportions of tensor powers Ap, As, A3 assigned to three regions, and others. If we
are given an assignment to the parameters, we can precisely calculate

lim lim V, L/n , lim lim al/n7 lim lim bl/n, lim lim c;/n
e—+0n—o0 e—=+0n—o0 e—=+0n—o0 e—=0n—oco0 ~
according to Theorems 5.1, 6.1 and 6.2. Plugging them into (8.27) would verify the correctness of the claimed
bound on w(1,x,1).
Optimization strategy. Finding a set of parameters that lead to the best bound of w(1, k, 1) can be modeled
as a constrained optimization problem:

minimize w’

(8.28) subject to all constraints in Theorems 5.1, 6.1 and 6.2
lim lim V1/™. min{ A4, BY/* C} “ms q+2)

e—~>0n—o0

*—1

We used sequential quadratic programming (SQP) to solve this optimization problem, which is a well-known
iterative approach for solving nonlinear constrained optimization. The software package SNOPT [19] is used for
performing SQP. Like all other optimization methods for nonlinear optimization, SQP does not guarantee finding
the global optimum or a specific convergence rate; the quality of the solution and the time performance both rely
on the initial point of the iterative process, which could be provided by the user.

For k = 1, we take the parameters from [23] which Le Gall used to analyze CW?QK ' for square matrix
multiplication, and transform it into a feasible solution to the optimization problem (8.28), which we set as the

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

3832



Downloaded 07/18/24 to 128.31.39.156 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

initial point. Specifically, Le Gall’s parameters consist of a distribution « over level-£* constituent tensors (for
the global stage) together with a split distribution «; ;j for every constituent tensor T; ;, (for the constituent
stages). We specify our parameters as follows:

e For every constituent tensor 7; ;. that appears in our interface tensors, we directly set o ;. as its split
distribution in every region, and let 417 = Ay = A3 = 1/3, which means that all three regions are symmetric
to each other.

e The distribution used in our global stage is set to « as well. Other parameters are uniquely determined by
these specified ones.

e For every constituent tensor 7T; ; ;, that contains a zero, say i = 0, we choose its complete split distributions
Bx, By, Bz that maximizes its size as an inner product tensor, i.e., maximizes H(Sy).

e Other parameters are uniquely determined by the specified ones.

It is easy to see that these parameters form a feasible solution. Furthermore, these parameters actually lead to
the same upper bound on w as Le Gall’s analysis. We start from this feasible solution and perform SQP to obtain
an upper bound for w = w(1,1,1).

For k # 1, our strategy is to start with a solution for another x nearby. For example, it is natural to
believe that a good solution for w(1,0.95,1) is similar to that for w(1,1,1). Therefore, we use our parameters
for w(1,1,1) as the initial point for optimizing the bound of w(1,0.95,1), and proceed with SQP to obtain the
bound for w(1,0.95,1). Then, we can further start with our parameters for w(1,0.95,1) to obtain parameters for
w(1,0.90,1), and so on.

Lagrange multipliers. In Theorem 5.1, we need to calculate P, = max,ep H(«¢') — H(«) where D
represents the set of distributions that share marginals with a. Although this definition of P, is not a closed form
in terms of «, we can let the max-entropy distribution amax = arg max,,cp H(a') be an optimizable variable,
and use the method of Lagrange multipliers to ensure that o’ has the largest entropy among D.

Formally, we first add linear constraints to force amax and a to have the same marginals:

(8.29) > (Omax(isg k) —a(i,j, k) =0, Vi=0,1,...,2",
jAE=2¢" —4

(8.30) > (emax(isg k) —ali,j, k) =0,  Vj=0,1,...,27,
i+k=2¢"—j

(8.31) > (omax(isd k) —a(i, 4, k) =0, VE=0,1,...,2",
i+j=2¢" —k

(8.32) > max(iy 4 k) =1,

N
(8.33) Omax (i, 7, k) >0, Vi+j+k=2".

Let Ax (i), Ay (4), Az(k),As (0 <, 7,k < 2¢) be Lagrange multipliers for (8.29), (8.30), (8.31), (8.32) respectively,
which we also treat as optimizable variables. Then the first-order optimality of H(amax) can be written as

(8.34) Ax (D) + Ay () + Az (k) + As = Inamax (i, 4, k) +1,  Vi+j+k=2".

(Note that any amax satisfying (8.34) will also satisfy strict inequalities in (8.33), thus we do not need to create
Lagrange multipliers for (8.33).) Since the entropy function H(-) is strictly concave, any amax satisfying these
constraints is guaranteed to have maximum entropy. (Conversely, the true max-entropy distribution . will
satisfy all these requirements.) We include these Lagrange multiplier constraints (8.34) in our optimization
problem (8.28).% Similarly, in Theorem 6.2, we also introduce Lagrange multiplier constraints when we need to
ensure that some distribution has maximum entropy given its marginals.

5Tn the program, we use the exponential form of (8.28): exp(Ax (i) + Ay (j) + Az (k) + Ag — 1) = amax (i, j, k), in order to avoid

numerical issues like In 0.
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Smooth the landscape. In Theorems 5.1 and 6.2, the intermediate variables named F4i, Es, F3 are
minimums of three terms. If we calculate them according to the definition, it would create a “spike” (non-
differentiable point) in the landscape, which is unfriendly for many optimizable methods including SQP. (SQP
requires all objective and constraint functions to be twice continuously differentiable.) To address this issue, we
treat E1, Fo, F3 as optimizable variables and transform the minimum into linear inequality constraints:

E = min(z,y, 2) = E<z E<y, E<:z.

Since E (any of Fy, Es, F3) is positively correlated with the number of matrix multiplication tensors we produce,
we do not need to worry that E' takes on a value smaller than min(z,y, z). The newly introduced constraints are
linear and thus have smooth landscapes. We include these auxiliary optimizable parameters and constraints in
the optimization problem (8.28). In practice, we also observe that SQP would not work well without this type of
smoothing.

Numerical results. We wrote a MATLAB [26] program to solve the optimization problem (8.28), with
the help of SNOPT [19], a software package for solving large-scale optimization problems. By running the
program for different x, we obtained various upper bounds of w(l,kx,1), as shown in Table 1. All bounds
are obtained by analyzing the fourth power® of the CW tensor with ¢ = 5. Specifically, we obtained the
important bounds w < 2.371552, o > 0.321334, and pu < 0.527661. The code and parameters are available
at https://osf.io/7wgh2/?view_only=cela6a66d9fc432d8f6da39ab6eadbbed.
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