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Abstract— Considering the non-affine-in-control system gov-
erning the motion of a spherical particle trapped inside an opti-
cal tweezer, this paper investigates the problem of stabilization
of the particle position at the origin through a control Lyapunov
function (CLF) framework. The proposed CLF framework
enables nonlinear optimization-based closed-loop control of
position of tiny beads using optical tweezers and serves as a
first step towards design of effective control algorithms for
nanomanipulation of biomolecules. After deriving necessary
and sufficient conditions for having smooth uniform CLFs for
the optical tweezer control system under study, we present a
static nonlinear programming problem (NLP) for generation
of robustly stabilizing feedback control inputs. Furthermore,
the NLP can be solved in real-time with no need for running
computationally demanding algorithms. Numerical simulations
demonstrate the effectiveness of the proposed control frame-
work in the presence of external disturbances and initial bead
positions that are located far away from the laser beam.

I. INTRODUCTION

Since their introduction by Ashkin [1], optical tweezers
(see Figure 1 for its principle of operation) have become
one of the primary methods of choice for single-molecule
noncontact manipulation studies such as investigation of
protein/RNA folding/unfolding and design of molecular mo-
tors [2], [3].

One of the enabling factors for dexterous manipulation
of target molecules via optical tweezers is the utilization
of properly designed control algorithms for positioning of
micro/nano-objects (see, e.g., [4]-[11]). However, there are
a few challenges that exacerbate the design of closed-loop
controllers for optical tweezer-based nanomanipulation. For
instance, failure of the optical trapping when particles are
located far away from the laser beam, existence of spatially
varying and unknown trapping stiffness, and the optical
trap Brownian motion, which is induced by thermal noise
disturbances, are among these difficulties.

The control Lyapunov function (CLF) framework, thanks
to its formal guarantees of stability/safety and the capabil-
ity of accommodating unmodeled dynamics and parametric
uncertainties, appears to be an appealing choice for design
of closed-loop control algorithms in optical tweezer-based
nanomanipulation tasks. Indeed, CLF-based controllers have
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Fig. 1: Schematic of a typical optical tweezer system. The
optical tweezer principle of operation is based on utilizing
a concentrated laser beam to capture and control individual
dielectric particles within a liquid environment. This laser
beam, which passes through a microscope objective with a
high numerical aperture, serves the dual purpose of trapping
and observing the desired particles. By concentrating several
milliwatts of laser power at the focal point, trapping forces
on the scale of piconewtons can be generated.

been burgeoning in many robotics and autonomous systems
applications (see, e.g., [12]-[14]). However, the bulk of these
CLF-based closed-loop control applications have concen-
trated on control-affine systems. Furthermore, a difficulty
associated with this framework (especially for non-affine-in-
control systems) is the construction of proper CLFs, where
one has to rely on computationally expensive and approxi-
mate methods such as the sum-of-squares (SOS) program-
ming (see, e.g., [15]) or Zubov’s method (see, e.g., [16]).
It is of no surprise that the CLF framework to date has not
been utilized for closed-loop control of optical tweezer-based
nanomanipulation tasks.

Prior Literature and Its Gaps. There have been quite a few
closed-loop control algorithms proposed for optical tweezer-
based nanomanipulation tasks such as a globally asymp-
totically stabilizing (GAS) control law based on saturation
analysis [4], [6], a sliding mode control scheme with adaptive
observers [7], a controller with adaptive neural networks [8],
a visual servo proportional control law [9], [10], and a
Chetaev control framework for protein unfolding [11], to
name a few. Given the proliferation of optimization-based



Variable Value Variable Value
m 5.5 x 10719 mg Tp 1 pm
Ba 0.01 pNs/um R 0.675 um
as 22 pN/um? oy 10 pN/um
R 0.674 pm Rinax 0.3893 pm

TABLE I: The optical tweezer simulation parameters.

nonlinear controllers such as MPC-based (see, e.g., [17]),
optimal decision strategy (ODS)-based (see, e.g., [18], [19]),
and CLF-based (see, e.g., [20]) control schemes, which can
directly account for stability and safety of the controlled
system, such a framework is still missing for control of
optical tweezers.

Contributions of the Paper. By developing a CLF frame-
work for the first time in the optical tweezer control litera-
ture, this paper contributes to closed-loop control algorithm
design for optical tweezer-based nanomanipulation tasks.
Considering the non-affine-in-control nanomanipulation con-
trol system, we present necessary and sufficient conditions
that can be used for generation of smooth CLFs (Proposi-
tion 1 and Corollary 1). The obtained CLFs can be employed
for generation of robustly stabilizing feedback control inputs
via static nonlinear programming problems (NLPs). The
obtained NLPs can be solved in real-time with no need for
running computationally demanding algorithms. Numerical
simulations demonstrate the effectiveness of our CLF-based
control algorithms against one of the renowned GAS control
laws in the optical tweezer control literature [4], [6].

The rest of this paper is organized as follows. After
presenting the model of the optical tweezer control system
and formulating our control objectives in Section II, we
present our CLF control framework in Section III. Next, we
present our simulations in Section IV. Finally, we conclude
the paper in Section V with further remarks and future
research directions.

II. MODELING AND CONTROL OBJECTIVES

In this section we briefly review the dynamical model of
the optical tweezer-based nanomanipulation task under study
and present our control objectives.

A. Model

We will use the control oriented model due to Bamieh
and collaborators (see, e.g., [4], [6]), where the behavior
of tiny beads trapped in a solvent (e.g., water or glycerol)
can be described by modeling the optical tweezer force as
a nonlinear restoring spring force acting on the beads in
accordance with the experimental observations by Simmons
et al. [21]. The optical tweezer parameters are taken from [4],
[6] and provided in Table I. Additionally, following the
nanomanipulation literature (see, e.g., [9], [10]), we assume
that the gravitational force and the buoyancy force neutralize
each other.

The Trapped Particle Equation of Motion. The governing
equation of motion for a trapped bead of mass m under
the optical trapping force Fy(-), viscous drag force Fy(-),

and external disturbance force F,(-) due to factors such as
thermal noises, is given by

mi = Fy(x,) + Fa(2) + F.(¢), (D

where the relative position of the bead (i.e., x,.) is determined
by the bead lateral position (i.e., ) and the laser focus
position (i.e., z7) according to

Tp =X — T. 2)
In Equation (1), the nonlinear trapping force is given by

Fy(zy) = p(ar)(aszd — ona,), 3)

e(y) = {é

Finally, the viscous drag force Fy(-) is given by
Fa(&) = —Bai, (5)

where the viscous damping factor of a bead with radius 7,
and trapped in a fluid with viscosity 7y is determined by
Stoke’s equation Bq = 6mnsr).

where
for ly|< R

otherwise.

“4)

dF,
Trap Stiffness. The trap stiffness is given by k(z) = ——

dx
dFy  dF
(note that d—t = — due to the chain rule), where F} ()
x

Ly
is the trap force given by (3). Consequently, it follows that

dFt (S(.I}) 2
= 3 — . 6
dz, ‘ 5, st — @ (6)
. - . dF;
The right plot in Figure 2 depicts the profile of 3, - |E

versus the relative position of the bead, i.e., z,. The trgp
stiffness becomes e%lal to the Hookean constant of the
optical tweezer, i.e., —1, whenever x, = 0.

The Optical TweezerdControl System. The interplay be-
tween inertia and viscous drag dictates the dynamic behavior
of particles trapped by the optical tweezer. Owing to the
inherent scaling laws governing these forces, microscopic
particles confined within a harmonic potential and subjected
to low Reynolds number conditions (characterized by slow
motion within a viscous medium) experience a predominant
influence of viscous drag on their inertial motion (see,
e.g., [2] for further details). Consequently, assuming a low
Reynolds number regime, where viscous drag dominates
inertia, one can neglect the inertial effects and arrive at the
following non-affine-in-control control system

&= faw(x,u, Fe), x e Ryuel, F, €D, @)

where fiw, : R x U x D — R is the continuous function

Fon(sus ) o= 28 00— 0 — oo — )] + L2,
Ja %

and Y C R, D C R are some closed intervals, respectively.
Furthermore, the control input w is the laser focus position,
namely, v := xp. In (7), the control input can be any mea-
surable locally essentially bounded signal u(-) : [0,00) — U
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Fig. 2: The optical tweezer and its stiffness: (left) the important variables in the optical tweezer non-affine-in-control control
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and the disturbance F,(-) : [0,00) — D is assumed to
be Lebesgue measurable and locally essentially bounded.
Finally, the continuity of fi,,(-) implies that the trapping

radius R in (4) should satisfy B = (21)°°. The left
(6%

schematic diagram in Figure 2 demonstrateg the important
variables of the model given by (7) and (8).

B. Control Problem Formulation

Considering the optical tweezer control system in (7),
which is non-affine-in-control, our control objective is to
robustly stabilize the position of the bead z to the origin
by means of a robustly stabilizing feedback input u = k(x)
in the presence of measurement errors e(-) and external
disturbances F,(-). In particular, we consider

#(t) = fou (20, Kla(t) + (). (), ©)

which is the control system in (7) under the state feedback
control law u = k(x), sensor measurement error e(t), and
external disturbance F,(t).

We would like to find a robustly stabilizing feedback
(following Ledyaev and Sontag [22], [23]) that is robust with
respect to measurement errors e(-) and external disturbances
F.(-) in the sense that it drives all the states of the perturbed
system (9) to a small neighborhood of the origin.

III. CLF-BASED CONTROL ALGORITHM

In this section we present our solution to the control
problem formulated in Section II, which is based on the
notion of smooth CLFs and generation of CLF-based ro-
bustly stabilizing feedback control inputs due to Ledyaev
and Sontag (see, e.g., [22], [23]). We first provide necessary
and sufficient conditions for having smooth CLFs for optical
tweezers in Section III-A. Next, we present our CLF-based
control algorithm in Section III-B.

| versus .

A. Construction of Smooth CLFs for the Optical Tweezer
Control System

Consider the non-affine-in-control nonlinear control sys-
tem (7) with no disturbance input, i.e., when F, = 0.
A differentiable function V' : R — Ry is said to be a
smooth control Lyapunov function (CLF) for the unperturbed
optical tweezer control system (7) with F, = 0 if V()
is positive definite, proper, and infinitesimally decreasing
in the sense that there exists a positive definite continuous
function W : R — R>o and some nondecreasing function
o : R>¢ — R>g, such that

sup min  VV(2) - fiw(z, u, 0) + W(z) <0. (10)

wER\u|§U(\$|)

Remark 1: From a theoretical perspective, the constraint
|u|< o(|x|) in the definition of differentiable CLFs rules
out the possibility of unbounded control inputs u(t) near the
origin (see, e.g., [22] for further details). S

The following proposition provides a necessary and suffi-
cient condition for having differentiable CLFs for the optical
tweezer control system.

Proposition 1: Consider the optical tweezer control sys-
tem (7). Given a positive definite continuous function W :
R — Ryg, a smooth function V' : R — Ry is a
differentiable CLF satisfying (10) if and only if

av
W(x) — (o d:r‘ <0, forall z € R, (11
23
where (g := g\ﬂ/;Ral'

Proof: Considering the given function W(-), we define
the mapping G : R x R — R, (z,u) — VV(z) -
fiwz(z, u, 0) + W(x), where V(-) is some differentiable



function with derivative . Therefore,

G = (%) W pe ) W@, (2

dz Ba
where P(z — u) := asz(z — u)® — aq(x — u) and W (x)
is some positive definite and continuous function. It follows
from (10) that V(-) is a differentiable CLF for the unper-
turbed optical tweezer system if and only if
min

G(z,u) <0 for all x € R.
lu|<o(|2[)

13)
where o : R>9 — R>( is some nondecreasing function.
We consider an arbitrary z € R and the mapping H :
R — R, v — G(x,u). Considering the compact interval
I, = [-o(|z|), o(Jz|)], it can be seen that the inequality
given by (13) holds if and only if

min H(u) <0 for all x € R.

u€ly

(14)

Since H(u) is a continuous function, it attains its global
minimum on the compact interval Z, for each given = €

R. The critical points of H(-), where e 0, are uj =
u

- (ﬂ)o.s and uj =« + (ﬂ)o's, respectively. At these
. 30&3 30[3
points, we have
23, dV
H(uj,) =W(x) £ —Ray — 15
(ui2) (z) 954 Qi d (15)
o
Considering the boundary points of the interval Z,, namely,
u = -o(|z|) and u, = o(|z|), we define k.(x) :=
MP(:L’ — u,) and k(z) = WP(:C — uy).
d
Hence, we have
. . av av dv
min H(u) = W @)+ min { 67k, (@) T m(@) T .
(16)
Therefore, it immediately follows that
dv
in H(u) < W(x) — (o|—]|- 17
min H(u) < W(z) - Co| (17)

The proof follows from replacing (17) in Inequality (14). ®

Remark 2: As it can be seen from Proposition 1, the
physical parameters of the optical tweezer, i.e., the trapping
radius, the environment viscous damping factor, and the trap
stiffness coefficients, directly appear in the condition given
by (11). o

One can now utilize Proposition 1 to generate a plethora
of smooth CLFs for the optical tweezer non-affine-in-control
nonlinear control system. For instance, it can be immediately
seen that the pair

1
W(z) = V(z) = —a?
(@) =lal, V(@) = 550"
in which ( is a positive constant, with 0 < ¢ < (p, satisfy
the condition given by Proposition 1 and therefore V7 (-) is
a smooth CLF for the optical tweezer control system.

(18)

It is sometimes desirable to directly control the rate of
decay of CLFs (see, e.g., [24]). The following corollary,
which is a direct result of Proposition 1, addresses the issue
of the control of the rate of decay of CLFs.

Corollary 1: Consider the statement of Proposition 1.
Moreover, consider

W) = %wx)m),

V(z) _%{exp(/ozvif’)ds) 1},

where v : R — R is any continuous function with v(x) >
0 for all 2 in R\{0} and «(0) > 0, Vj is an arbitrary positive
constant, and ¢ is a positive constant, where 0 < ¢ < (p.
Then, V (-) is a smooth CLF for the optical tweezer.

As special examples of Corollary 1, if v1(z) = |z| and
~v2(x) = o with 9 > 0 a positive constant, then

19)

$2

Vi(z) = VO{ exp(i) - 1}, and 0

Va(w) = Vo exp (767) ~ 1},

are smooth CLFs for the optical tweezer control system
corresponding to 1 (-) and 7o(-), respectively.

B. CLF-based Robust Stabilizing Feedback for the Optical
Tweezer with Constraints on Laser-Induced Heating

In this section we provide a formal CLF-based closed-loop
control synthesis method to directly address this issue.

Once a smooth CLF for the unperturbed optical tweezer
control system with no disturbance input is found, then the
feedback input w = k*(x) satisfying the steepest descent
relationship

k*(x) = argrr(lin) W(z) + VV(2) - fa(z, u, 0),
lu|<o (||

21

will be a globally asymptotically stabilizing (GAS) feedback
for the optical tweezer perturbed system (9) with sensor mea-
surement errors and external disturbances according to [22,
Theorem 7].

The following proposition, which directly utilizes the
proof of Proposition 1, removes the need for running an opti-
mization algorithm for finding the steepest descent feedback
law in (21).

Proposition 2: Assume that V(-) is a given differentiable
CLF for the optical tweezer non-affine-in-control system
given by (7). Then, the steepest descent feedback control
input satisfying (21) can be found from

k*(z) = ar%r;lin W(z) + VV(2) - fawz(z,u,0).
ue{ri(%) P to(lz))}

(22)

Proof: The proof follows in a straightforward manner
from the proof of Porposition 1. Specifically, consider any
arbitrary position x € R. Then, the feedback input u*,
which minimizes G(x,u) in (12) on the compact interval



I, = 4/—0(|x|), a(|z])], is either one of the critical points

z+ (=—)°°
30&3
Remark 3: Thanks to the special structure of the non-

affine-in-control optical tweezer nonlinear control system,
there is no need for running computationally demanding
optimization schemes for solving the NLP in (22). Indeed,
due to Proposition 2, the robust stabilizing feedback k*(x)
can be computed by checking only four values at each bead
position. o

or one of the boundary points +o(|z|). [ |

IV. SIMULATION STUDIES

In this section we present the numerical simulations that
demonstrate the effectiveness of the proposed control frame-
work in the presence of external disturbances. The optical
tweezer simulation parameters are taken from [4], [6] and
provided in Table I.

A particle trapped within an optical tweezer experiences an
external random thermal Langevin force F,(t), which acts as
an external disturbance in the control system dynamics given
by (8). This force has an average of zero, i.e., (F.(t)) =0,
and possesses a constant power spectrum equal to 43kgT,
where kp is Boltzmann’s constant and 7' represents the
absolute temperature [25]. For a bead with 1, = 1um, the
power spectrum is approximately 1.6 x 10~% pm? at room
temperature.

We first consider a globally asymptotically stabilizing
(GAS) control law due to Bamieh and collaborators [4], [6].
This control law is given by

. P
k(z) == cutanh<)\5dgc)7

where p = 10, A = 5, and w = 0.3893 um. The control law
given by (23) is obtained from approximating the trapping
force by a hypberbolic tangent function (see [4], [6] for
further details).

Figure 3 demonstrates the bead position time-profile start-
ing from z(0) = 1pum while applying the control law
given by (23). The inner plot demonstrates the time profile
of the optical trap stiffness. As it can be seen from the
two plots, both the commanded control input x7 and the

(23)

dF,
trap stiffness |—| oscillate widely to stabilize the bead

position. Another notable issue is the sharp variation in the
control input and the trap stiffness time profiles starting from
instance t ~ 3.9 ms. The observed trap stiffness oscillations
are in accordance with the profile depicted in the left plot
in Figure 2. Specifically, an oscillatory bead relative position

L . . S g

about the origin gives rise to stiffness oscillations about —.
d
In the second set of numerical simulations, we consider

the CLF pair V(z) and W (z) given by (19) with { = (.
Furthermore, we constrain the optical trap stiffness by setting
Ko = aq, which results in op(|z|) = |z|. The stabilizing
control input is then generated by considering the NLP given
by (21). It is remarked that the NLP in (21) does not require
any knowledge of the external disturbances and is generated
by setting F, = 0.

|
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Fig. 3: Stabilization of the position of the bead with initial
position z(0) = 1 pum using the optical tweezer and under
the GAS control law provided by [4]. The bead is subject to
an external random thermal Langevin force of zero average
and a power spectrum approximately equal to 1.6 x 10~*
pum?. The inner plot depicts the time-profile of the optical
tweezer trap stiffness.
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Fig. 4: Stabilization of the position of the bead with initial
position z(0) = 1 pum using the optical tweezer and under
the proposed control law in this paper. The bead is subject to
an external random thermal Langevin force of zero average
and a power spectrum approximately equal to 1.6 x 10~*
pum?. The inner plot depicts the time-profile of the optical
tweezer trap stiffness.

Figure 4 demonstrates the bead position time-profile start-
ing from 2(0) = 1 pm while applying the control law given
by (21) with the CLF pair (19) with {( = (. The inner plot
demonstrates the time profile of the optical trap stiffness.
As it can be seen from the two plots, both the commanded

control input x7 and the trap stiffness |@\ undergo very
small oscillations while managing to drive the bead position
to a small neighborhood of the origin. Another notable fact
is the smooth behavior of the trap stiffness time profile in
comparison with the GAS control law (compare Figure 4
against Figure 3).

From a control system bandwidth requirement perspective,
the proposed CLF-based control algorithm is superior with
respect to the ad-hoc controller given by (23). As noted by
Sehgal et al. [26], there are serious limitations for control
of the position of the bead (from a bandwidth perspective)
when the applied force in optical tweezers has high frequency
content.



V. CONCLUSION

This paper examined a control system for a spherical par-
ticle within an optical tweezer and explored the challenge of
stabilizing the particle’s position. This is accomplished using
a framework based on a CLF approach, which enables the
application of nonlinear optimization-based closed-loop con-
trol, for manipulating minuscule beads with optical tweezers.
By establishing the necessary and sufficient conditions for
the existence of smooth and uniform CLFs within the con-
sidered optical tweezer control system, the paper introduced
an NLP, which was utilized to generate robustly stabilizing
feedback control inputs. Numerical simulations demonstrated
the effectiveness of the proposed control approach, even
when subjected to external disturbances and initial bead
positions positioned far from the laser beam.

Thermal effects can degrade the optical trapping perfor-
mance due to heating and damage the cells and biomolecules
under study. Additionally, increasing the trapping laser power
for faster manipulation can lead to undesirable heating effects
resulting in induction of thermal stress [27]-[29]. Future
research will include design of efficient control algorithms
for precise handling of biomolecules (e.g., protein, RNA,
and DNA molecules) at the nanoscale and benchmarking the
control algorithm performance in advanced optical tweezer
simulators such as the OTT toolbox [30]. Another research
direction emanating from this work is extending the proposed
CLF framework for solving the challenging problem of
feedback cooling of optically trapped nanoparticles in high
vacuum [31].
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