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Abstract

The online manipulation-resilient testing model, proposed by Kalemaj, Raskhodnikova and Varma
(ITCS 2022 and Theory of Computing 2023), studies property testing in situations where access
to the input degrades continuously and adversarially. Specifically, after each query made by the
tester is answered, the adversary can intervene and either erase or corrupt t data points. In this
work, we investigate a more nuanced version of the online model in order to overcome old and new
impossibility results for the original model. We start by presenting an optimal tester for linearity and
a lower bound for low-degree testing of Boolean functions in the original model. We overcome the
lower bound by allowing batch queries, where the tester gets a group of queries answered between
manipulations of the data. Our batch size is small enough so that function values for a single batch
on their own give no information about whether the function is of low degree. Finally, to overcome
the impossibility results of Kalemaj et al. for sortedness and the Lipschitz property of sequences, we
extend the model to include t < 1, i.e., adversaries that make less than one erasure per query. For
sortedness, we characterize the rate of erasures for which online testing can be performed, exhibiting
a sharp transition from optimal query complexity to impossibility of testability (with any number of
queries). Our online tester works for a general class of local properties of sequences. One feature of
our results is that we get new (and in some cases, simpler) optimal algorithms for several properties
in the standard property testing model.
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11:2 Property Testing with Online Adversaries

1 Introduction

The online manipulation-resilient testing model, proposed by Kalemaj, Raskhodnikova and
Varma [38], studies property testing in contexts where access to the input is controlled by
an adversary and degrades over time. Their motivation includes situations where access to
data is restricted because of privacy or is misrepresented by someone trying to cover fraud
while having to release some data in response to subpoenas. Another motivation is testing
properties of a massive ever-changing object, where probing the object affects it. For example,
a navigation app might adjust its estimate of which routes are congested in response to
queries. Such situations are plentiful in data analysis of modern social and transportation
networks.

Modeling access to data as degrading adversarially allows the algorithm designer to ensure
that algorithms work in situations where the degradation to access is too complicated to
model accurately or where it is desirable to avoid relying on distributional assumptions in the
algorithm analyses. The general goal is to understand what properties of the input can be
gleaned without any distributional assumptions, and even in extremely adversarial regimes,
where access to the data or the data itself is manipulated by an adversary in response to the
algorithm’s actions during its execution. From the theoretical point of view, this investigation
sheds light on the structure of witnesses for different properties.

In the online manipulation-resilient testing model of [38], after each query to the input
object is answered, the adversary can manipulate (i.e., erase or corrupt) a fixed number of
input values. The input is represented by a function f on an arbitrary finite domain. The
algorithm accesses it by specifying a query point x in the domain and receiving the answer
to the query from the oracle that represents the current state of the manipulated input.
In addition to allowing us to design fast testers that overcome old and new lower bounds,
studying batch queries is motivated by a connection to Maker-Breaker games, discussed later
(in Section 1.3).

In this work, we investigate a more nuanced version of the online manipulation-resilient
testing model. We allow the adversary to either make changes at a fixed rate (as in the
model of [38]) or accumulate the number of allowed manipulations in order to utilize them
at any subsequent step. We also study arbitrary rates of erasures in addition to integer rates
investigated by [38], e.g., allowing the adversary to manipulate one point after every other
query. Finally, we also study batch queries, where the tester gets a group of queries answered
between manipulations of the data.

We give online testers for several well studied properties. For Boolean functions on the
domain {0, 1}n, we investigate linearity and, more generally, the class of functions of low
degree over F2, that is, of degree at most d for specified d. (Note that low-degree testing
is equivalent to testing Reed-Muller codes.) For linearity, our online tester has optimal
query complexity. For the degree-d property, we present a lower bound that nearly matches
the upper bound in the concurrent work of Minzer and Zheng [45] and then show how to
overcome the lower bound by using batch queries. Finally, we consider local properties of
functions f : [n] → R. (We use [n] to represent {1, 2, . . . , n}). Kalemaj et al. proved that
two important properties in that class – sortedness and the Lipschitz property – are not
testable with any number of queries when the adversary erases one point per query. To
overcome this impossibility result, we consider adversaries that make less than one erasure
per query. For sortedness, we characterize the rate of erasures for which online testing can
be performed, exhibiting a sharp transition from optimal query complexity to impossibility
of testability. Our online tester works for general local properties. Moreover, we show how
to obtain optimal erasure rate with batches of size 2.
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Our online testers avoid querying manipulated data by heavily relying on randomness: the
marginal distribution of each query is nearly uniform on a large subset of the domain. This
ensures that each query is unlikely to be a point previously manipulated by the adversary
(for any adversarial strategy). Consequently, we can separately analyze the probabilities
of two important events: selecting a set of queries that exhibit a violation of the property
(i.e., a witness) and querying data modified by the adversary. When selecting a witness
is significantly more likely than encountering a modification, the tester is likely to find a
witness that has not been tampered with. This approach allows us to design online testers
that are resilient to both erasures and corruptions.

1.1 Our Results and Techniques
We study two types of functions: Boolean functions f : {0, 1}n → {0, 1} and real-valued
functions f : [n]→ R, i.e., sequences. The testing algorithm gets oracle access to the input
function via one of the specified online adversarial oracles. Initially, the oracle is identical
to the input function. The oracles (formally defined in Section 2.1) vary in how they are
allowed to modify the input. The main distinctions are erasures vs. arbitrary corruptions
(of input values) and when modifications can occur. In the model of [38], the adversary
gets a parameter t ∈ N and is allowed to modify t function values after answering each
query. We call such an adversary t-online fixed-rate. We extend the definition to t ∈ R+

and also consider t-online budget-managing adversaries that get allocated t modifications
after answering each query, but can use their allocation at any subsequent time step in the
computation. (See Definition 2.1). Budget-managing adversaries are at least as powerful
as fixed-rate adversaries. But, for some of the properties we study, we are able to match
hardness results for (weaker) fixed-rate adversaries with algorithms that work even in the
presence of (stronger) budget-managing adversaries.

In addition to the corruption rate t, our algorithms get the proximity parameter ϵ ∈ (0, 1),
as in the standard property testing model, and have to distinguish functions that have the
specified property from functions that differ in at least an ϵ fraction of the domain from any
function with the property. See Section 2.1 and Definition 2.4 for formal definitions.

We start our investigation with Boolean functions on the Boolean cube. The properties
we study are linearity and, more generally, of being a polynomial of degree at most d for a
given d ∈ N.

1.1.1 Linearity Testing
Introduced in the pioneering work of [20], linearity testing has been extensively investigated;
see, e.g., [9, 10, 29, 7, 8, 66, 65, 62, 34, 16, 61, 63, 64, 39, 38] and the survey in [56]. A function
f : {0, 1}n → {0, 1} is called linear if f(x1) + f(x2) = f(x1 ⊕ x2) for all x1, x2 ∈ {0, 1}n

,

where addition is mod 2, and ⊕ denotes bitwise XOR. We present an optimal tester for
linearity that is resilient to online erasures, as well as online corruptions, even when the
adversary is budget-managing.
▶ Theorem 1.1 (Optimal online linearity tester). There exists a constant c > 0 such that
for all n ∈ N, ϵ ∈ (0, 1/2], and t satisfying t log2 t ≤ c · ϵ2.52n/2, there exists an ϵ-tester for
linearity of functions f : {0, 1}n → {0, 1} that works in the presence of a t-online erasure (or
corruption) budget-managing adversary and makes O (max {1/ϵ, log t}) queries. In the case
of erasure adversary, the tester has 1-sided error.

In contrast, the linearity tester from [38] works for a smaller range of t (specifically,
t ≤ c0 · ϵ5/42n/4 for some constant c0) and makes O

(
min

( 1
ϵ log t

ϵ , t
ϵ

))
queries.

ITCS 2024



11:4 Property Testing with Online Adversaries

The linearity tester in Theorem 1.1 has optimal query complexity both for fixed-rate
and budget-managing adversaries, in the case of erasures (and, consequently, in the more
challenging setting with corruptions). This follows from the known query lower bounds of
Ω (1/ϵ) with no erasures and Ω(log t) for fixed-rate adversarial erasures [38, Theorem 1.4]).

Our online linearity tester improves on the tester in [38] both in terms of query complexity
and in terms of simplicity of the tester. The classical linearity test of [20] looks for witnesses of
nonlinearity consisting of three points x1, x2 and x1⊕x2 that satisfy f(x1)+f(x2) ̸= f(x1⊕x2).
Kalemaj et al. generalized it to witnesses consisting of any even number of points and their
XOR. Let XorTestk denote the test that picks k points uniformly at random and checks if
these points and their XOR form a witness of nonlinarity. We improve upon the soundness
analysis of this test and use it to get an optimal online-erasure-resilient linearity tester.
Specifically, in Lemma 3.1, we show that XorTestk rejects every function that is ϵ-far from
linearity with probability proportional to kϵ (as long as kϵ is at most a small constant). It
implies that XorTestk can be used in the standard linearity testing setting (without erasures)
to obtain another optimal O(1/ϵ)-query tester: XorTestk can be repeated O(1/(kϵ)) times
to obtain constant probability of error. To the best of our knowledge, only testers based on
the BLR test (i.e., XorTest2) have been analyzed in the standard linearity testing setting.

Another important ingredient in the analysis of our online linearity tester is bounding
the probability of seeing an erasure. A good bound for this event ensures that our tester is
resilient to corruptions (not just erasures). It also allows us to obtain a clean online tester
that is based on multiple simulations of XorTestk, where each simulation initially samples
2k points to fool the adversary and then selects a random subset of size k for the XOR as
the final query. In contrast, the online linearity tester of [38] is more complicated: it relies
on work investment strategy.

1.1.2 Low-Degree Testing

Low-degree testing, equivalent to local testing of Reed-Muller codes, is a natural generalization
of linearity testing. It has been investigated, e.g., in [5, 4, 31, 29, 30, 60, 58, 1, 2, 47, 46,
41, 61, 63, 37, 19, 33, 59, 24, 40, 38]. For a d ∈ N, let Pd denote the set of all polynomials
p : {0, 1}n → {0, 1} of degree at most d over F2, that is, functions p(x) that can be represented
as a sum of monomials1 of the form

∏
i∈S x[i], where x = (x[1], . . . , x[n]) is a vector of n bits

and |S| ≤ d. In the standard property testing model, Pd can be ϵ-tested with O(1/ϵ + 2d)
queries by repeating the following test of Alon et al. [1]: select d + 1 points in {0, 1}n

uniformly at random, query all of their linear combinations f , and accept iff the sum of
the returned values is 0. This tester was analyzed by Alon et al. [1], with an asymptotic
improvement by Bhattacharyya et al. [19], and the matching lower bound of Ω(1/ϵ + 2d) on
query complexity was proved in [1].

As d grows, the test of Alon et al. becomes more structured: the number of points queried
is exponential in the number of points selected at random. This makes it hard to adapt to
the online model, since the adversary can predict and erase the points needed by the tester.
We show that there is an underlying reason for this difficulty: low-degree testing for d > 1 is
strictly harder than testing linearity in terms of the dependence on t, the rate of erasures.

1 To be consistent with previous work, we allow S = ∅. The property P1 is affinity, and linear functions
(discussed in Section 1.1.1) are affine with the additional requirement that the constant in the polynomial
representation is 0.
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▶ Theorem 1.2 (Lower bound for low-degree testing). Fix an integer d > 1. Let Pd be the set
of polynomials of degree at most d over F2. There exists n0 = n0(d), such that for all n ≥ n0
and ϵ ∈ (0, 1/3], every ϵ-tester of functions f : {0, 1}n → {0, 1} for property Pd that works in
the presence of a t-online fixed-rate erasure adversary must make Ω

(
logd t

)
queries.

Our lower bound is nearly tight in terms of the dependence on t and d: in a concurrent
work, Minzer and Zheng [45] show that Pd can be tested with O

(
1
ϵ log3d+3 t

ϵ

)
queries with

t-online fixed-rate erasure adversaries. Thus, the query complexity of Pd is logΘ(d) t (for
constant ϵ).

To prove our lower bound, we define an extended representation Extd(x) for each vector
x ∈ Fn

2 , where each entry of Extd(x) is an evaluation of a monomial of degree at most d on
input x. We consider the adversarial strategy of erasing function values on all points whose
extended representations are in the span of the extended representations of previous queries.
We use [12, Lemma 1.4] (or, equivalently, [43, Theorem 1.5]) to demonstrate that when the
number of queries is, roughly, at most

(log t
d

)
, the adversary can successfully execute this

strategy. Finally, we apply Yao’s minimax principle to show that in this case no online tester
can distinguish random polynomials of degree d from random functions.

We overcome the lower bound by allowing batch queries, where the tester gets a group
of b queries answered between manipulations of the data. The original model corresponds
to b = 1. Since the test of Alon et al. makes 2d+1 queries, it can be used directly in an
online tester with batch size b = 2d+1, achieving query complexity O( 1

ϵ + 2d), the same as in
the offline regime (see the full version [15] for more details). It is natural to ask for which
batch sizes we can achieve overhead polynomial in d log t over the offline query complexity.
We show how to do it for b = 2d−1, i.e., with the batch size equal to one quarter of the
points needed for the smallest witness of not satisfying Pd. In particular, for quadraticity, it
corresponds to batches of size b = 2, a natural extension of testing linearity with batches of
size 1.

▶ Theorem 1.3. There exists a constant c > 0 such that for all n, d ∈ N, ϵ ∈ (0, 1/2), and
t satisfying d < n/4 and t log7 t ≤ c · ϵ2.52−12d2n/4, there exists an ϵ-tester for property Pd

of functions f : {0, 1}n → {0, 1} that works in the presence of a (2d−1, t)-online erasure
budget-managing adversary and makes O

(
1/ϵ + 23d (d + log t)3

)
queries.

Our online low-degree tester is a natural generalization of our linearity tester and of the
tester of [1]. The witnesses we consider generalize the (d + 1)-dimensional cubes formed by
the points queried by the tester of [1] to chains of cubes (see Figure 1).

We show chains of cubes are viable witnesses as they are a special case of k-local
characterizations defined in the seminal work of Kaufman and Sudan [42] on algebraic
property testing. In addition, our chains-of-cubes test shares important features with the test
of Alon et al. This allows us to show, by generalizing an argument from [19], that for small
values of ϵ, the probability of seeing a violation increases linearly in the size of the witness.

To test with a chain of cubes, the tester first declares d− 1 directions that form a linear
subspace A. Then, intuitively, it runs our online linearity tester, replacing each query x

with a batch query x + A (all points in this affine subspace). To analyze erasure resilience,
whenever the adversary erases point x, we allow it to erase the entire space x + A for free.
This allows us to analyze the probability of seeing an erasure over the quotient group Fn

2 /A,
which is isomorphic to Fn−d+1

2 , essentially reducing the analysis to that of the online linearity
tester (because, over this space, each query and erasure are of a single point).

ITCS 2024
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1.1.3 Testing Local Properties
Next we investigate properties of sequences, represented by functions f : [n]→ R. Kalemaj
et al. showed that two fundamental properties of sequences, sortedness and the Lipschitz
property, are not testable with any number of queries in the presence of a fixed-rate adversary
making t = 1 erasures per query. Are these properties testable in models with fewer erasures
than queries?

We explore this question in depth. The answer is generally positive, but differs between
the two adversarial manipulation models we study: fixed-rate and budget-managing. Our
results are optimal, and the query complexity in many regimes matches that of the standard
(offline) property testing model. Our online testers work in the general framework of local
properties [13].

Before stating our results, we define sortedness, the Lipschitz property, and the general
class of local properties. A sequence f : [n]→ R is sorted if f(x) ≤ f(y) for all x < y, where
x, y ∈ [n]. Sortedness is one of the most investigated properties in the context of property
testing (see [28, 27, 53, 18, 22, 11, 51] and the survey in [54]). A sequence f : [n] → R
is Lipschitz if |f(x + 1) − f(x)| ≤ 1 for all x ∈ [n − 1]. The Lipschitz property has been
studied in [36, 22, 25, 17, 3, 21] and has applications to data privacy. Both sortedness and
the Lipschitz property belong to the class of local properties, defined by [13]. A property
P of sequences f : [n]→ R is local2 if there exists a family F of forbidden pairs (a, b) ∈ R2

such that

f ∈ P ⇔ ∀i ∈ [n− 1] ∀(a, b) ∈ F : (f(i), f(i + 1)) ̸= (a, b).

Then we say that P is characterized by the family F . Sortedness is characterized by
F = {(a, b) : a > b}; that is, a sequence is sorted if and only if it does not contain a pair
of consecutive elements with decreasing values. The Lipschitz property is characterized by
F = {(a, b) : |a− b| > 1}.

Results for batch size b = 1. We give tight bounds on the rate of erasures and corruptions
online algorithms can handle in the presence of budget-managing adversaries.

▶ Theorem 1.4 (Testing local properties in presence of budget-managing adversary with batch
size 1). There exist absolute constants 0 < c < C satisfying the following. For all ϵ > 0 and
n ≥ C/ϵ:
1. For every local property P of sequences f : [n] → R, and every t ≤ cϵ, there exists an

ϵ-tester for P that works in the presence of a t-online erasure budget-managing adversary
and makes O

( log(ϵn)
ϵ

)
queries.

2. For every t ≥ Cϵ, there is no ϵ-tester for sortedness of sequences f : [n]→ R that works
in the presence of a t-online erasure budget-managing adversary (with any number of
queries).

Both of these results hold (with the same parameters) if erasures are replaced with corruptions.
In the case of erasure adversary, the tester has one-sided error.

The positive result in Item 1 of Theorem 1.4 matches the query complexity of the offline
optimal tester from [13] while also attaining optimal resilience guarantees.

Theorem 1.4 highlights a dramatic phase transition in the threshold regime where t = Θ(ϵ):
when t = ω(ϵ), sortedness is not testable at all; whereas when t = o(ϵ), it is testable (and in
fact, all local properties are testable) with offline-optimal query complexity!

2 This class of properties is called 2-local in [13], where more general k-local properties are defined as
characterized by families of forbidden k-tuples. For simplicity and clarity of exposition, we focus on
2-local properties, but our results easily generalize to k-local properties (with increased batch sizes).
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For fixed-rate adversaries, the threshold rate is arbitrarily close to 1. The negative result
is established in [38]; the positive result is stated in Proposition 6.5 and proved in Section 6.

Results for batch size b = 2. For batch size one, we have seen that the threshold rate
for sortedness in the presence of a budget-managing adversary is Θ(ϵ), i.e., less than one.
Batches of size two result in a dramatically different picture: we can tolerate as many as
Ω̃(n) erasures or corruptions between consecutive batches while maintaining optimal query
complexity!

▶ Theorem 1.5. There exists c > 0 satisfying the following. Let ϵ > 0 and n ∈ N. For
every local property P of sequences f : [n]→ R, and every t ≤ cϵ2n

log2 ϵn
, there exists an ϵ-tester

for P with batch size b = 2 that works in the presence of a t-online erasure (or corruption)
budget-managing adversary and makes O

( log(ϵn)
ϵ

)
queries. In the case of erasures, the tester

has one-sided error.

Technical overview: Pair tester for local properties. Our main technical contribution
here shows that a simple and generic pair tester (see Algorithm 5 and Lemma 6.2), which
queries f on pairs of the form (x, x + 2i) ∈ [n]2, works for all local properties of sequences
in the offline property testing model, with query complexity of O

( log(ϵn)
ϵ

)
. This matches

known lower bounds on the query complexity of sortedness [23, 11]. Our upper bound is the
same as that obtained in [13], but the new (pair) tester is simpler and has the additional
feature of being resilient to online manipulations. Notably, there exist pair testers which
obtain this query complexity for specific classes of local properties; see, e.g., the work of
Chakrabarty, Dixit, Jha, and Seshadhri [21] on bounded derivative properties. Our work
generalizes this result to all local properties of sequences. The proof proposes and analyzes a
randomly-shifted variant of Ben-Eliezer’s generic tester for local properties [13], and shows
that this more structured tester can be simulated by a pair tester.

We show that the pair tester is online erasure-resilient (and corruption-resilient) in a
strong sense: with good probability it never queries previously manipulated elements. The
analysis distinguishes between two types of erasures: ones that happen after the first element
of a pair is queried, but before the second element; and all other erasures. Roughly speaking,
the sharp distinction in the erasure thresholds between batch size b = 1 and b = 2 exists since
the first type of erasures, which is only available to the adversary when b = 1, is substantially
more effective than the second type in disrupting the tester.

1.2 Related Work on Erasures and Corruptions in Property Testing
Erasure-resilient testing was first investigated by Dixit et al. [26] in an offline model. In
the model of Dixit et al., also studied in [57, 55, 14, 52, 44, 49], the adversary performs all
erasures to the function before the execution of the algorithm.

As discussed, the online testing model was defined in [38]. In addition to the results already
mentioned, [38] gave an online ϵ-tester for quadraticity of functions f : {0, 1}n → {0, 1} that
has query complexity O(1/ϵ) for constant erasure rate t. The dependence on t in the query
complexity was doubly exponential, and it was left open to obtain a quadraticity tester
that can deal with corruptions. In a concurrent work, Minzer and Zheng [45] improve the
quadraticity tester and vastly generalize it to deal with all low-degree properties Pd over
general fields Fq. Their tester works in the presence of t-online fixed-rate erasure adversaries
and makes O

(
1
ϵ log3d+3 t

ϵ

)
queries when q is a prime and qO(1) · O

(
1
ϵ log3d+3q t

ϵ

)
queries

when q is a prime power.

ITCS 2024
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Testing in dynamic environments. Another related line of work is on property testing in
dynamic environments (see, e.g., [32, 48]), which considers settings where the tested object
undergoes changes independent of the actions taken by the tester. The (adversarial) online
testing model extends the study of dynamic settings to regimes where the data in the object,
or the access to the data, may change continuously in response to the actions of the tester.

1.3 Connection to Maker-Breaker Games
Positional games are a central and widely investigated topic in the modern combinatorics
literature; see, e.g., the standard textbooks on this topic [6, 35]. Property testing in the online
erasure model is closely related to positional games, and in particular to the most prominent
and well studied example of positional games: Maker-Breaker games. Even though Kalemaj
et al. described their quadraticity tester as a game, they did not discuss the connection to
the Maker-Breaker literature.

A Maker-Breaker game is defined by a finite set X of board elements and a familyW ⊆ 2X

of winning sets. In an (s : t) Maker-Breaker game, two players, called Maker and Breaker,
take turns in claiming previously unclaimed elements of X. On each turn, Maker claims s

board elements, whereas Breaker claims t elements. Maker wins the game if she manages to
claim all elements of some winning set; otherwise, Breaker wins.

In online testing, the algorithm plays the role of Maker and the adversary is Breaker. The
set X is the domain of the function, and the winning sets are witnesses, i.e., tuples of points
that demonstrate that the function does not have the property. A big complication is that the
tester does not know in advance which sets are in W . A prerequisite for designing an online
tester is being able to identify the general structure of the sets inW and a winning strategy for
Maker. For example, Kalemaj et al. build their tester for quadraticity by identifying a winning
strategy for a game whereW consists of “cubes” of the form (x, y, z, x+y, x+z, y+z, x+y+z).
Our low-degree tester (for the special case of quadraticity) uses more intricate winning sets;
see the discussion of patterns in Section 5.

Note that the original online model corresponds to (1 : t) Maker-Breaker games, whereas
the version with batches of size b corresponds to general (b : t) Maker-Breaker games. This
provides additional motivation to study batches. Going in the other direction, we hope that
online testing inspires new research on Maker-Breaker games. A lot of the current literature
on positional games focuses on the case where the board is a complete graph and the winning
sets are graph-related (e.g., cliques). Examples from online property testing may motivate
new research on Maker-Breaker games with emphasis on other types of boards, such as the
hypercube.

2 Preliminaries

Notation. We use [n] to represent {1, 2, . . . , n} and log to denote logarithm base 2. We
denote by Pd the class of Boolean functions f : {0, 1}n → {0, 1} of degree at most d over F2.

2.1 Online Testing
We model access to the input with a sequence {Oi}i∈N of oracles, where Oi is used to answer
the i-th query (or, more generally, the i-th batch of queries). Oracle O1 gives access to the
original input (e.g., when the input is a function f , we have O1 ≡ f). Subsequent oracles
are objects of the same type as the input (e.g., functions with the same domain and range).
Each such oracle is obtained by the adversary by modifying the previous oracle to include a
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growing number of erasures/corruptions as i increases. We use Dist(O,O′) for the Hamming
distance between the two oracles (i.e., the number of queries for which they give different
answers). We let t ∈ R≥0 denote the number of erasures (or corruptions) per query (or a
batch of queries).

▶ Definition 2.1 (Fixed-rate and budget-managing adversaries). Fix a parameter t > 0. A
sequence3 of oracles O = {Oi}i∈N is induced by a t-online fixed-rate adversary if O1 is equal
to the input and, for all i ∈ N,

Dist(Oi,Oi+1) ≤ ⌊(i + 1) · t⌋ − ⌊i · t⌋ .

A sequence of oracles O = {Oi}i∈N is induced by a t-online budget-managing adversary if
O1 is equal to the input and, for all i ∈ N,

Dist(O1,Oi+1) ≤ i · t.

Note that a budget-managing adversary has more power: an oracle sequence that can be
induced by a t-online fixed-rate adversary can also be induced by a t-online budget managing
adversary.

▶ Definition 2.2 (Batch-b adversary). Fix b ∈ N. A batch-b adversary uses oracle O1 to
answer the first b queries and, more generally, oracle Oi to answer the i-th batch of b queries.
By default (if b is not specified), we assume b = 1.

Our complexity measure is always the total number of queries, regardless of the batch size b.
Finally, we consider two types of manipulations to the input: erasures and corruptions.

▶ Definition 2.3 (Erasure and corruption adversaries). Let ⊥ represent the erasure symbol. A
sequence of oracles O = {Oi}i∈N is induced by an erasure adversary if for all i ∈ N and data
points x,

Oi+1(x) ∈ {Oi(x),⊥}.

A corruption adversary can change answers to anything in the range, i.e., Oi can be any
valid input for the computational task at hand.

A property P denotes a set of objects (typically, a set of functions). Intuitively, it
represents the set of positive instances for the testing problem. The (relative Hamming)
distance between a function f and a property P , denoted dist(f,P), is the smallest fraction
of function values of f that must be changed to obtain a function in P. Given a proximity
parameter ϵ ∈ (0, 1), we say that f is ϵ-far from P if dist(f,P) ≥ ϵ. An online tester is
given a proximity parameter ϵ and, in addition, one or two parameters that characterize its
adversary: the rate of erasures (or corruptions) t and (optionally) the batch size b.

▶ Definition 2.4 (Online ϵ-tester). Fix ϵ ∈ (0, 1). An online ϵ-tester T for a property P that
works in the presence of a specified adversary (e.g., t-online batch-b erasure budget-managing
adversary) is given access to to an input function f via a sequence of oracles O = {Oi}i∈N
induced by that type of adversary. For all adversarial strategies of the specified type,
1. if f ∈ P, then T accepts with probability at least 2/3, and
2. if f is ϵ-far from P, then T rejects with probability at least 2/3,

3 Our algorithms only access a finite subsequence of this sequence.

ITCS 2024



11:10 Property Testing with Online Adversaries

where the probability is taken over the random coins of the tester. If T works in the presence
of an erasure (resp., corruption) adversary, we refer to it as an online-erasure-resilient (resp.,
online-corruption-resilient) tester.

If T always accepts all functions f ∈ P, then it has 1-sided error. If T chooses its queries
in advance, before observing any outputs from the oracle, then it is nonadaptive.

To ease notation, we use O(x) for the oracle’s answer to query x (omitting the timestamp i).
If x was queried multiple times, O(x) denotes the first answer given by the oracle.

3 Linearity Testing

This section is dedicated to proving Theorem 1.1. We first analyze an offline tester which we
later simulate as a part of our main algorithm. Since it uses Fourier analysis, here we use the
standard notation switch for the value returned by a Boolean function (see, e.g., [50]), where
true is denoted by -1 and false is denoted by 1. As a result, the input function is of the form
f : {0, 1}n → {−1, 1}, and it is linear if f(x1) · f(x2) = f(x1 ⊕ x2) for all x1, x2 ∈ {0, 1}n

.

3.1 An Offline Linearity Test
We first define XorTestk, introduced by [38], which naturally extends the BLR test.

Algorithm 1 XorTestk.

Input : Even integer parameter k ≥ 2 and query access to a function
f : {0, 1}n → {−1, 1}

1 Query k points x1, . . . , xk ∈ {0, 1}n chosen uniformly at random (with replacement).
2 Query point y =

⊕
i∈[k]xi.

3 Accept if f(y) =
∏

i∈[k] f(xi) (equivalently, if f(y) ·
∏

i∈[k] f(xi) = 1); otherwise,
reject.

The test always accepts all linear functions, as can be shown by induction on k. The
next lemma demonstrates that XorTestk rejects functions that are ϵ-far from linear with
sufficient probability. This is a strengthened version of [38, Theorem 1.2] that bounds the
rejection probability by ϵ.

▶ Lemma 3.1. If f is ϵ-far from linear, and k ≥ 2 is even, then

Pr [XorTestk(f) rejects] ≥ 1− (1− 2ϵ)k−1

2 ≥ min
{1

4 ,
kϵ

2

}
.

Since k ≥ 2 and ϵ ∈ (0, 1/2], we get (1 − 2ϵ)k−1 ≤ 1 − 2ϵ, with the first inequality in the
lemma yielding the bound proved in [38]. However, as it is imperative to use k > 2, the
strengthened bound is crucial in obtaining an optimal online-erasure-resilient tester. In
addition, the stronger guarantee we prove suffices to obtain new optimal offline linearity
testers by repeating Algorithm 1; this can be done with any value of k from 3 to O(1/ϵ).

Proof of Lemma 3.1. The key tool used in the proof is Fourier analysis (see, e.g., [50] for
an overview of the technique and standard facts). We start by giving a couple of standard
definitions.

The character functions χS : {0, 1}n → {−1, 1}, defined as χS = (−1)
∑

i∈S
xi for S ⊆ [n],

form an orthonormal basis for the space of all real-valued functions on {0, 1}n equipped with
the inner-product ⟨g, h⟩ = E

x∼{0,1}n
[g(x)h(x)], where g, h : {0, 1}n → R. For g : {0, 1}d → R

and S ⊆ [n], the Fourier coefficient of g on S is ĝ(S) = ⟨g, χS⟩ = E
x∼{0,1}n

[g(x)χS(x)].
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Now consider a function f : {0, 1}n → {−1, 1} that is ϵ-far from linear. It is well known
that the distance from f to linearity is 1

2 −
1
2 maxS⊆[n] f̂(S). Since the distance is at least ϵ,

we get

max
S⊆[n]

f̂(S) ≤ 1− 2ϵ. (1)

As shown in [38, Equation (4)],

Pr [XorTestk(f) rejects] = E
x1,...,xk∼{0,1}n

[1
2 −

1
2

∏
i∈[k]

f(xi) · f
(
⊕k

i=1xi

) ]
= 1

2 −
1
2

∑
S⊆[n]

f̂(S)k+1. (2)

Next, we bound the sum in (2) in terms of maxS⊆[n] f̂(S) and then apply (1):∑
S⊆[n]

f̂(S)
k+1
≤ max

S⊆[n]
f̂(S)

k−1
·

∑
S⊆[n]

f̂(S)
2

= max
S⊆[n]

f̂(S)
k−1
≤ (1− 2ϵ)k−1.

Substituting this expression into (2), we obtain the first inequality in Lemma 3.1.
To obtain the second inequality in Lemma 3.1, we show that 1− (1− 2ϵ)k−1 is at least

1/2 for large values of k and at least kϵ for small values of k ≥ 2. The bound holds trivially
for ϵ = 1/2, so from now on assume ϵ < 1/2. Let k0 ∈ R be such that (1− 2ϵ)k0−1 = 1/2. If
k ≥ k0, we have

1− (1− 2ϵ)k−1 ≥ 1− (1− 2ϵ)k0−1 = 1/2.

For the case k ∈ [2, k0), we prove by induction on k that 1− (1− 2ϵ)k−1 ≥ kϵ. For k = 2,
equality holds. For each k ∈ [3, k0), we have

1− (1− 2ϵ)k−1 =
(
1− (1− 2ϵ)k−2)

+ 2ϵ(1− 2ϵ)k−2 ≥ (k − 1)ϵ + 2ϵ · (1− 2ϵ)k0−1 = kϵ,

where for the inequality we bound the first term by the inductive hypothesis on k − 1 and
the second term using k − 2 ≤ k0 − 1. Thus, in both cases, at least one of the expressions in
the minimum is a lower bound. ◀

3.2 Online-Erasure-Resilient Linearity Tester
Our algorithm (Algorithm 2) is based on multiple simulations of XorTestk. Each simulation
starts by querying a reserve of m = 2k initial points to keep many possibilities open for
the final XorTestk query. Specifically, a reserve of 2k random points creates roughly
22k different options for the final XorTestk query4. We set m to about log t to ensure
that a significant fraction of options remains open before the final query of the XorTestk

simulation is made. There is also a small additional dependence on ϵ to overcome the fact
that the overall number of iterations depends on ϵ and, as a result, for some settings of
parameters, the probability of error in each iteration has to be proportional to ϵ. In principle,
setting m = Θ(log t + 1/ϵ) and the number of iterations, r, to Θ(1) is enough for the desired

4 In [38], the reserve is used to simulate XorTestk with different values of k. Fixing the value of k
to half of the reserve size eases our analysis (allowing us to use Lemma 3.1 with the same k) while
providing many options.
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11:12 Property Testing with Online Adversaries

query complexity, but it significantly restricts the range of parameters (e.g., it only works
when ϵ ≥ 2/n). Our choice of parameters is more subtle: besides ensuring optimal query
complexity, it enlarges the range of ϵ and t (in Theorem 1.1) for which Algorithm 2 is
applicable. To do this, we set m to a smaller value: log t + o(log t) + Θ(log(1/ϵ)), and the
number of iterations, r, depends on ϵ and m. Crucially, in each iteration, the distribution

Algorithm 2 Online-Erasure-Resilient Linearity Tester.

Input : Parameters ϵ ∈ (0, 1/2], t ∈ N; query access to f via t-erasure oracle
sequence O

1 t← max{t, 2} ; // If t < 2, replace it with t = 2.

2 m← 4
⌈

1
4
(
14 + log t + log log2 t + log 1

ϵ2

)⌉
, α← min

{ 1
4 , mϵ

4
}

and, r ←
⌈ 5

4α

⌉
.

3 repeat r times
4 Sample X = (x1, . . . , xm) ∈ ({0, 1}n)m uniformly at random.
5 Query f at points x1, . . . , xm.
6 Query f at point y = ⊕j∈Sxj , where S is a uniformly random subset of [m] of

size m
2 .

7 if O(y) ·Πj∈SO (xj) = −1 then
8 Reject ; // This implies no erasures in this iteration.
9 end

10 Accept

over the queries made by Algorithm 2 is identical to that in the XorTestk test. Indeed, as
S and X are independent, we could draw S first. Then, for each choice of S, the marginal
distribution of {xj}j∈S is uniform over ({0, 1}n)k. Finally, the last query is y =

⊕
j∈Sxj ,

resulting in the same distribution on the k + 1 queries as in XorTestk.
The second ingredient we will need is the following lemma:

▶ Lemma 3.2. For all m ≥ 10, the probability that one specific iteration of the loop in Line 3
of Algorithm 2 queries an erased point is at most 3α/25.

We next prove the main theorem of this section, deferring the proof of Lemma 3.2 to the
next section.

Proof of Theorem 1.1. We first focus on erasures, and show that Algorithm 2 satisfies
the conditions of the theorem. Clearly, it always accepts all linear functions. Now, fix an
adversarial (budget-managing) strategy and suppose that the input function is ϵ-far from
linear. By Lemma 3.1 and since k = m/2 in Algorithm 2 is even, the probability that one
iteration of the loop in Step 3 samples a witness of nonlinearity is at least α = min {1/4, mϵ/4}.

By Lemma 3.2, the probability that an erasure is seen in a specific iteration is at most
3α
25 . By a union bound, the probability of a single iteration seeing an erasure or not selecting
a witness of nonlinearity is at most 1 − α + 3α

25 = 1 − 22α
25 . Algorithm 2 errs only if this

occurs in all iterations. By independence of random choices in different iterations, the failure
probability is at most(

1− 22α

25

)r

≤
(

1− 22α

25

) 5
4α ≤ e−1.1 ≤ 1

3 ,

where we used r =
⌈ 5

4α

⌉
≥ 5

4α and 1− x ≤ e−x for all x. The query complexity is at most

r(m + 1) ≤
(

5
4α

+ 1
)

(m + 1) ≤ 4m

α
= max

{
16m,

16
ϵ

}
≤ max

{
640 · log t,

640
ϵ

}
,

where the last inequality is due to the fact that m ≤ 20(log t + 1/ϵ).
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To show that Algorithm 2 is also corruption-resilient, one may apply [38, Lemma 1.8],
which essentially says an error-resilient algorithm that has probability at most 1/3 to either
err or see a manipulation, is also corruption-resilient. For the soundness, our analysis holds
since it suffices to have one iteration that finds a witness without seeing manipulations. For
completeness, note that the algorithm can only err if it has seen a manipulation, and the
probability of seeing a manipulation at any iteration is at most 3α/25 by Lemma 3.2. Using
a union bound, the overall probability of seeing any manipulated entry during the entire
execution is at most

3α

25 · r ≤
3α

25

(
5

4α
+ 1

)
= 3

20 + 3α

25 ≤
1
3 . ◀

▶ Remark. Our tester is applicable for t ≤ poly(ϵ) · 2n/2. On the other hand, it can be easily
shown that for t = Ω (ϵ2n) testing is impossible. This follows from the fact that there exists
some constant c such that c/ϵ queries are not enough, and by then the adversary can already
manipulate all other entries. We leave it as an open question to understand for which values
of t linearity can be tested in the online setting. Such questions are investigated for other
properties in Section 6.

3.3 Probability of Seeing an Erasure
Recall that Lemma 3.1 shows that, assuming f is ϵ-far, the probability of spotting a witness
in a single iteration is at least α = min{ 1

4 , mϵ
4 }. In this section, we prove the probability of

querying an erasure is at most 3α/25 in every iteration, as stated in Lemma 3.2. We start
with an auxiliary claim, similar to an argument that appears in the proof of [38, Lemma 2.8].

▷ Claim 3.3. Fix an iteration of the loop in Step 3 of Algorithm 2. For all T ⊆ [m], let
y

T
=

⊕
j∈T xj . Then, the probability there exist two subsets T1 ̸= T2 of the set [m] with

y
T1

= y
T2

is small:

Pr
X

[
∃T1 ̸= T2 such that y

T1
= y

T2

]
≤ α

25 .

Proof. We first bound m using its setting in Algorithm 2 and the premise t · log2 t ≤
2−21 · ϵ2.52n/2 from Theorem 1.1:

m ≤ log
(

218t log2 t

ϵ2

)
≤ log

(
2−3ϵ2.52n/2

ϵ2

)
≤ log

(√
ϵ · 2n/50

)
= log (ϵ · 2n/50)

2 . (3)

Consider two distinct sets T1, T2 ⊂ [m]. W.l.o.g. there exists an element ℓ ∈ T1 \ T2. Fix
all entries in X besides xℓ. The value of y

T2
is now fixed, but over the random choice of

xℓ ∈ {0, 1}n, the vector y
T1

is uniform over {0, 1}n. Thus, Prxℓ
[y

T1
= y

T2
] = 2−n and,

consequently,

Pr
X

[y
T1

= y
T2

] = E
[

Pr
xℓ

[y
T1

= y
T2

]
]

= E[2−n] = 2−n,

where both expectations are over all entries in X besides xℓ, which are drawn independently
from xℓ. We use a union bound over all pairs of subsets T1 and T2, and then apply (3) to get

Pr
X

[
∃T1 ̸= T2 such that y

T1
= y

T2

]
≤ 22m

2n
≤ ϵ

50 ≤
α

25 .

The last inequality holds since ϵ ≤ min{1/2, mϵ/2} = 2α for all m ≥ 2. ◁
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We now upper bound the probability of seeing an erasure in one iteration.

Proof of Lemma 3.2. The total number of erasures performed during the execution of the
algorithm is at most tr(m + 1). We define three bad events and give upper bounds on their
probabilities.

An erasure while querying X. Let B1 be the event that O(xj) =⊥ for some point xj

sampled in this iteration, where j ∈ [m]. Each point xj is sampled uniformly from {0, 1}n,
so the probability it is erased is at most tr(m + 1)/2n. By a union bound over all m points,
recalling n ≥ 2m, we get

Pr
X

[B1] ≤ tr(m + 1)m
2n

≤ tr(m + 1)m
22m

. (4)

X induces a bad distribution of y points. Let B2 be the event that, in this iteration,
there exist two different choices of S leading to the same choice y ∈ {0, 1}n. By Claim 3.3,
Pr[B2] ≤ α

25 .

An erasure on query y. Let B3 be the event that O(y) =⊥ for y queried in this iteration.
The adversary knows X before y is queried, but there are plenty of choices for y. Conditioned
on B2, the distribution of y is uniform over

(
m

m/2
)

different choices. We use
(

m
m/2

)
≥ 2m/

√
2m,

to obtain

Pr[B3|B2] ≤ tr(m + 1)(
m

m/2
) ≤ tr(m + 1)

√
2m

2m
. (5)

In terms of the bad events, the lemma states that Pr[B1 ∪B3] ≤ 3α/25. By using a union
bound over B1 and B3 and then the law of total probability to compute Pr[B3], we get

Pr[B1 ∪B3] ≤ Pr[B1] + Pr[B3|B2] · Pr[B2] + Pr[B3|B2] Pr[B2]
≤ Pr[B1] + Pr[B3|B2]︸ ︷︷ ︸

(⋆)

+ Pr[B2].

Since Pr[B2] ≤ α
25 , it remains to show that (⋆) is at most 2α

25 , in order to complete the
proof. To do this, we combine the bounds from (4) and (5) to bound (⋆):

Pr[B1] + Pr[B3|B2] ≤ tr(m + 1)m
22m

+ tr(m + 1)
√

2m

2m
≤ trm2

2m+1 ≤
rm2ϵ2

215 log2 t
. (6)

For the second inequality, we use the fact that (m+1)m
2m + (m + 1)

√
2m ≤ m2

2 for all m ≥ 10.
For the last inequality, we use 2m ≤ 214t log2 t

ϵ2 which is derived from the value of m in
Algorithm 2. To further bound (6), we split the analysis into two cases, depending on the
value of α = min{1/4, mϵ/4}.

Case I: α = mϵ
4 . In this case, there are r =

⌈ 5
mϵ

⌉
≤ 5

mϵ + 1 iterations, which means that
rmϵ ≤ 5 + mϵ ≤ 6. Therefore,

Pr[B1] + Pr[B3|B2] ≤ (rmϵ)mϵ

215 log2 t
≤ 6mϵ

215 log2 t
≤ mϵ

50 = 2α

25 .



O. Ben-Eliezer, E. Kelman, U. Meir, and S. Raskhodnikova 11:15

Case II: α = 1
4 . For this case, note that

m ≤ 18 + log t + 2 log log t + 2 log(1/ϵ) ≤ 18 + 2.1 log t + 1.1/ϵ ≤ 11.2 ·max{2 log t, 1/ϵ},

where the second inequality uses 2 log y ≤ 1.1y for all y > 0 (with y = 1/ϵ and y = log t),
and the last inequality uses 2 log t ≥ 2 and 1/ϵ ≥ 2. It follows that

mϵ

2 log t
≤ 11.2max{2 log t, 1/ϵ}

2 log t · 1/ϵ
= 11.2

min{2 log t, 1/ϵ}
≤ 5.7.

Finally, we use r =
⌈ 5

4α

⌉
= 5 and (6) to obtain

Pr[B1] + Pr[B3|B2] ≤ r

213

(
mϵ

2 log t

)2
≤ 5 · (5.7)2

213 ≤ 1
50 = 2α

25 . ◀

4 The Lower Bound for Low-Degree Testing

In this section, we prove our lower bound for online low-degree testing stated in Theorem 1.2.

Proof of Theorem 1.2. Fix a degree d > 1. Let
(

n
≤d

)
denote

∑d
i=0

(
n
i

)
. For a vector x ∈ Fn

2 ,

define its extension Extd(x) ∈ F( n
≤d)

2 to be the vector where each entry is indexed by a set
S ⊆ [n] of at most d coordinates and Extd(x)S =

∏
i∈S xi. In other words, each entry of

Extd(x) is an evaluation of one monomial of degree at most d on input x. The extended
vector Extd(x) includes all entries xi of x (as entries indexed by singletons S = {i}). We
define projection π as the inverse of Extd, i.e., π(Extd(x)) = x.

Consider the following strategy S for a fixed-rate erasure adversary. Suppose the tester
has successfully obtained answers to k distinct queries y1, . . . , yk. Consider the linear space
in F( n

≤d)
2 spanned by Extd(y1), . . . , Extd(yk), and let Z ⊆ Fn

2 denote set of projections of its
vectors back to Fn

2 using π. Note that yi ∈ Z for i ∈ [k]. The adversary simply tries to erase
all (non-erased, non-queried) points of Z. Observe that Z is determined by the queries made
by the tester and does not depend on the input function f . We next show that |Z| is small
relative to k, and so unless k is large enough, the adversary can entirely erase Z.

▷ Claim 4.1. Let r = |Z|. Then
(⌊log r⌋

d

)
≤ k.

Proof. Consider the matrix A with rows indexed by polynomials of degree at most d and
columns indexed by vectors z ∈ Z, where the entry indexed by a polynomial p and a point z

contains the value p(z) ∈ F2. To prove the claim, we give two bounds on the rank of A.

Upper bound: rk(A) ≤ k. Let A′ be the submatrix of A with rows indexed by monomials.
Since every degree-d polynomial is a linear combination of monomials, we have rk(A) = rk(A′).
In A′, the column indexed by z is exactly the extended vector Extd(z). By definition, every
column in A′ is spanned by the k columns indexed by y1, . . . , yk, showing that rk(A′) ≤ k.

Lower bound: rk(A) ≥
(⌊log r⌋

d

)
. Let B be an arbitrary submatrix of A with only r′ ≤ r

columns, where r′ = 2a is the largest power of 2 not exceeding r. Trivially, rk(A) ≥ rk(B).
We now apply [12, Lemma 1.4] (or [43, Theorem 1.5]) to see that the dimension of the rows
of B is at least(

a

≤ d

)
≥

(
a

d

)
=

(
⌊log r⌋

d

)
.

The two inequalities together yield the claim. ◁
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Now we apply Yao’s minimax principle for the online model [38, Corollary 9.4]. It states
that to prove a lower bound q on the worst-case query complexity of online-erasure-resilient
property testing, it suffices to give an adversarial strategy S, a distribution D+ on positive
instances, and a distribution D− on instances that are negative with probability at least 6

7 ,
such that every deterministic q-query algorithm that accesses its input via an oracle using
strategy S sees the same distribution on the the query-answer histories under D+ and D−.

Let D+ be the uniform distribution over all degree d Boolean functions on {0, 1}n and
D− be the uniform distribution over all Boolean functions on {0, 1}n.

We show that a function f ∼ D− is 1
3 -far from Pd (set of functions of degree at most

d) with probability at least 6/7. Let g ∈ Pd, f ∼ D−, and dist(f, g) be the fraction of
domain points on which f and g differ. Then, E[dist(f, g)] = 1/2. By the Hoeffding bound,
Prf∼D− [dist(f, g) ≤ 1

3 ] ≤ e− 2n

18 . By a union bound over the 2( n
≤d) functions of degree at most

d, we get Prf∼D− [dist(f,Pd) ≥ 1
3 ] ≥ 1− 2( n

≤d) · e− 2n

18 . For large enough n, this probability is
at least 6/7.

Let A be a deterministic algorithm that makes q ≤
(⌊log t⌋−1

d

)
queries to f via the oracle

O with adversarial strategy S. By Claim 4.1, we get r ≤ t, i.e., after each query yi for i ∈ [q],
the adversary has sufficient erasure budget to erase Z. We argue that the distributions on
the histories of query answers are the same under the distributions D+ and D−. Under
both distributions, the adversary erases the same query points. Consider a query yk of A

that is not erased and suppose it is made after A successfully obtained answers a1, . . . , ak−1
to distinct queries y1, . . . , yk−1. When f ∼ D−, we have Prf∼D− [f(yk) = ak | f(y1) =
a1 ∧ · · · ∧ f(yk−1) = ak−1] = 1/2 for all a1, . . . , ak ∈ {0, 1}, since the value of f(yk) is set
uniformly and independently of values at other points. Now consider f ∼ D+, viewed as
a uniformly random coefficient vector 1f ∈ {0, 1}(

n
≤d), where each entry corresponds to

a monomial of degree at most d. For any query it holds that f(yi) = ⟨1f , Extd(yi)⟩. By
definition of S, the extension Extd(yk) is linearly independent of Extd(y1), . . . , Extd(yk−1),
which implies that for any fixed values b1, . . . bk−1 of ⟨1f , Extd(yi)⟩ , . . . , ⟨1f , Extd(yk−1)⟩, the
value of ⟨1f , Extd(yk)⟩ is still uniformly distributed.

Thus, D+ generates degree-d polynomials, D− generates functions that are 1
3 -far from Pd

with probability at least 6
7 , and the query-answer histories for any deterministic algorithm

A that makes q ≤
(⌊log t⌋−1

d

)
queries and runs against the t-online fixed-rate erasure oracle

employing strategy S are identical under D+ and D−. Consequently, Yao’s principle implies
the desired lower bound. ◀

5 Low-Degree Testing

This section is dedicated to the proof of Theorem 1.3 that gives an online tester for the
property Pd (being a polynomial of degree at most d) with batches of size b = 2d−1. All
missing proofs and details appear in the full version [15].

Our strategy is a natural extension of the one employed for linearity in Section 3.2: we
view the XorTest2 as a “linear square” (x, y, x + y, omitting the origin), and perceive the
extended test as a “chain of squares” (see the top part of Figure 1). For quadraticity and
any degree d > 2, we resort to “chains of cubes” in a similar way (see the bottom part of
Figure 1).
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Figure 1 Chains of cubes (with 0 as the first parameter). The left side shows linear subspaces
(drawn as cubes); the right side shows chains formed by two cubes. Red points overlap and cancel
each other. From top to bottom, we have witnesses for linearity (chains of squares), witnesses for
quadraticity (each vertical edge represents a batch of b = 2 points), and witnesses for Pd, where
each batch queries an affine subspace with a fixed linear component A and different translations.

5.1 Algebraic Testing Patterns
In the following, we define a testing pattern to be a mapping from a set of parameters to a
structured set of points (e.g., mapping parameters x, y to the three points x, y, x+y). Setting
a value to all parameters induces an instance of the testing pattern. To test for a low-degree
property Pd, we simply draw a random instance of some “good” pattern and check the parity
of the sum of function values on the points in the pattern. This is a generalization of the
tester of [1], which checks the parity on a random linear subspace (which is an example of a
good testing pattern).

Our notion of a “good” testing pattern is a special case of the more abstract notion of
k-local formal characterizations (see [42, Definition 2.3]), where each linear map defines a
single testing point, and the subspace V of “good answer vectors” is fixed to all answer
vectors with parity 0. In particular, a good testing pattern is also a 2-ary independent
characterization (see [42, Definition 2.5]).

▶ Definition 5.1 (Testing pattern, parameter, instance). A testing pattern is a matrix5

X ∈Mℓ×m(F2) with rows c1, . . . , cℓ, such that ℓ ≥ m, each row is unique, and rank(X) = m.
An instance of a pattern X is described by the product XM ∈Mℓ×n(F2), for some parameter
matrix M ∈Mm×n(F2). The rows of XM specify ℓ testing points y1, . . . , yℓ in Fn

2 .

5 We use Mℓ×m(F2) for the set of ℓ × m matrices with entries in F2.
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Generalizing the notation from [1], for a function f and a pattern instance XM , we
denote the sum (over F2) of the values of f on these points by

TX,f (a1, . . . , am) :=
∑
i∈[ℓ]

f(yi).

Each testing pattern induces a parity-checking tester, defined below.

Algorithm 3 An X-tester.

Input : a pattern X ∈Mℓ×m(F2) and query access to a function f : Fn
2 → F2

1 Choose a parameter matrix M ∈Mm×n(F2) uniformly at random (alternatively,
choose m row vectors a1, . . . , am ∈ Fn

2 independently and uniformly at random).
2 Query f at testing points y1, . . . , yℓ, the ℓ row vectors of the instance matrix XM .
3 Accept if TX,f (a1, . . . , am) = 0; otherwise, reject.

In the full version, we define a good testing pattern for a property P . Essentially, a good
pattern Xℓ×m for a property P characterizes P:

f ∈ P ⇐⇒ ∀a1, . . . , am : TX,f (a1, . . . , am) = 0.

5.2 Generalized Witnesses for Pd

The tester of [1], discussed in Section 1.1.2, queries a linear (d + 1)-dimensional subspace;
the variant of the tester considered in [19] uses an affine (d + 1)-dimensional subspace. Both
subspaces can be represented as cubes6. The affine version of the tester is equivalent to
X-tester where the pattern X has d + 1 parameters a1, . . . , ad+1 representing directions
and a translation parameter ad+2. The rows of pattern X are all different binary vectors
of d + 2 bits with value 1 at the last coordinate. It is easy to verify this pattern is good
for Pd. (For the tester based on a linear subspace simply delete the last column of X, which
corresponds to fixing the last parameter ad+2 to 0⃗.) For the special case of affinity (d = 1),
this pattern can be equivalently viewed as taking parameters x1, x2, x3 to testing points
{x1, x2, x3, x1 + x2 + x3} (the BLR linearity test simply fixes x3 = 0), and the generalized
witness used in Algorithm 1 can be viewed as a “chain of squares”: the second square
shares the point x1 + x2 + x3 as if it was its first parameter, and gets additional parameters
x4, x5. When we check the parity of f on all points in both squares, the intermediate point
x1 + x2 + x3 appears twice and cancels out. We are left with testing points x1, . . . , x5 and
their sum

∑
i∈[5] xi. To generalize this and test for higher degree, we consider the similar

picture with high-dimensional cubes. Alternatively, we can view this as the chain from
linearity, but each point is replaced with an entire (d− 1)-dimensional cube (see Figure 1).
Note the parameters of these patterns have two different roles, some parameters impose
the chain structure while others are used for the cubical structure. We dub these patterns
“chains of cubes”.

▶ Definition 5.2 (Chain of Cubes Pattern). For degree d and odd integer s (length of the
chain), we define the chain of cubes pattern χd,s. It takes parameters a1, . . . , ad for the cube
structure, and ad+1, . . . , ad+s for the chain, and outputs (s + 1) · 2d−1 testing points, each is
a combination of a subset of the first d parameters, and either all or exactly one of the last s

parameters.

6 We call them cubes for easy visualisation, even though most pattern instances are not parallel to the
axes.
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Formally, χd,s has “cube columns” 1, . . . , d and “chain columns” d + 1, . . . , d + s. We
index each row with i ∈ [s + 1], j ∈ {0, 1}d. In row (i, j), the first d coordinates are exactly
the vector j. The last s coordinates depend on i, where if i ∈ [s] then only column d + i has
value 1, and if i = s + 1 then all s columns have value 1.

▷ Claim 5.3. The chain of cubes pattern χd,s is good for Pd+1 for all d ∈ N and all odd s.

We next show a soundness result for any pattern, and in particular for our chain of cubes
pattern, χd,s. We resort to two previously known results and combine them together. The
first is inherited by the soundness guarantee in [42] for any 2-ary local characterization.

The other is a specialized argument for affine subsapces that appears in [19]. The
argument deals with small values of ϵ (so most violating instances are such due to a single
point). We generalize this argument for any pattern, relying on two properties held by all
patterns. First, each two induced testing points, over a random instance, are independent.
Second, the tester depends on the parity of all answers to the queried points.

In the full version, we prove the following lemma.

▶ Lemma 5.4. Fix any pattern X ∈Mℓ×m(F2) with ℓ ≥ 3. For any function f that is ϵ-far
from Pd, we have

Pr
a1,...,am

[TX,f (a1, . . . , am) = 1] ≥ min
{

ℓϵ

2 ,
1

2ℓ2

}
.

5.3 Algorithm with Batches of 2d−1 Queries

Algorithm 4 Online-Erasure-Resilient Degree-d Tester.

Input : Parameters ϵ ∈ (0, 1/2] and d, t ∈ N; query access to f via t-online erasure
oracle sequence O with batch size 2d−1

1 t← max{t, 2} ; // If t < 2, replace it with t = 2.

2 m← 2
⌈
log

(
2202dt1/4(d log t)3/2

ϵ1/2

)⌉
+ 1, α← min

{
ϵℓ
2 , 1

2ℓ2

}
, r ←

⌈ 2
α

⌉
.

3 repeat r times
4 Sample V = (v1, . . . , vd−1) ∈ ({0, 1}n)d−1 uniformly at random.
5 Sample X = (x1, . . . , x2m) ∈ ({0, 1}n)2m uniformly at random.
6 for each i ∈ [2m]: batch query f at points xi +

∑
j∈T vj for all T ⊆ [d− 1].

7 Sample uniformly at random a subset of [2m] of size m, denoted S = {s1, . . . , sm}.
8 Set y = ⊕j∈Sxj and batch query f at points y +

∑
j∈T vj for all T ⊆ [d− 1].

9 if Tχd−1,m,O(v1, . . . , vd−1, xs1 , . . . , xsm) = 1 then
10 Reject ; // This implies no erasures in this iteration.
11 end
12 Accept

Our low-degree tester is based on multiple simulations of the parity-check tester with
the pattern χd−1,m, but each simulation uses additional queries to overcome the adversary,
mirroring the simulation of XorTestk in Algorithm 2. The number of iterations and the
length of the chain, m, are chosen according to the soundness guarantee of these generalized
patterns7.

7 Improving the soundness guarantee in Lemma 5.4 to Θ (min {ℓϵ, 1}) would allow a better choice m, r,
similar to Algorithm 4, and result in a better query complexity.
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6 Online Erasure-Resilient Testing of Local Sequential Properties

In this section, we establish our results on testing local properties of sequences discussed
in Section 1.1.3. Our core technical result in this section shows that a simple pair tester
(presented in Algorithm 5) can test all local properties of sequences.

For d, n ∈ N, where d < n, we define the set of all distance-d pairs in [n] by8

Dd(n) = {(x, y) ∈ [n]2 : y − x ≡ d (mod n)}.

We also define the interval [a : b] as the set of all integers {i ∈ Z : a ≤ i ≤ b}. The length of
the interval [a : b] is b−a + 1. Our algorithm relies on a fundamental notion of unrepairability
in a sequence f with respect to a property P. The notion we use is a slightly generalized
version of a notion of unrepairability for intervals originally proposed in [13].

▶ Definition 6.1 (Unrepairability). Let P be a local property of sequences f : [n] → R
characterized by the forbidden family F . For a subset S ⊆ [n], a sequence f is unrepairable
on S with respect to P if every sequence f ′ : [n] → R, where f ′(x) = f(x) for all x ∈ S,
does not satisfy P. (I.e., every f ′ that agrees with f on all entries in S contains a pattern
from F .)

Crucially, given P and query access to f , in order to know whether f is unrepairable on
S w.r.t. P , one needs to query f only on the elements of S. For our purposes, |S| ≤ 2 always
holds, and so we only need to make two queries in order to check unrepairability.

Algorithm 5 Pair tester for local properties.

Input : local property P, ϵ ∈ (0, 1); query access to f : [n]→ R (in offline model) or,
for t ∈ R and b ∈ N, via t-online erasure oracle sequence O with batch size b

1 Set ℓ = ⌊log
(

ϵn
4

)
⌋.

2 repeat 200 log(ϵn)
ϵ times

3 Sample i ∈ [0 : ℓ] uniformly at random,
4 Sample (x, y) ∈ D2i(n) uniformly at random; query f(x) and f(y).
5 if f is unrepairable on {x, y} then
6 Reject
7 end
8 Accept

We first show that the pair tester works for every local property P in the offline property
testing model. We state the following lemma, which is proved in the full version [15].

▶ Lemma 6.2 (Offline correctness of pair tester). Algorithm 5 is a nonadaptive ϵ-tester with
one-sided error probability bounded by 1/7 for every local property P in the offline testing
model (without erasures or corruptions).

The pair tester not only works in the offline setting, but it is also unlikely to see erasures
in the online setting when t is appropriately small. The next two lemmas state results of
this type for batch sizes 1 and 2, respectively.

8 Note that the definition is cyclic, in the sense that allows for pairs where x is close to n, and y is much
smaller and close to 1. The cyclic nature of the definition slightly simplifies the algorithm and analysis.
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▶ Lemma 6.3 (Pair tester, batch size 1). Fix a local property P, ϵ > 0, n ∈ N, and t ≤ ϵ/106.
The probability that Algorithm 5, when run in the online erasure model with parameters
P, ϵ, n, t and batch size b = 1, queries an erased element is at most 1/7.

▶ Lemma 6.4 (Pair tester, batch size 2). Fix a local property P, ϵ > 0, n ∈ N, and
t ≤ ϵ2n

3·105 log2(ϵn) . The probability that Algorithm 5, when run in the online erasure model
with parameters P, ϵ, n, t and batch size b = 2, queries an erased element is at most 1/7.

Note the sharp contrast between the threshold rate for b = 1 (t = Θ(ϵ)) and b = 2
(t = Θ̃(n)). The positive results of Theorems 1.4 and 1.5 follow from Lemmas 6.2, 6.3, 6.4.
The proof of the negative (impossibility) result of Theorem 1.4 is deferred to the full version.

Proof of Theorem 1.4, Part 1. For an erasure adversary, we use Lemmas 6.2 and 6.3. Con-
sider a local property P and a sequence f that is ϵ-far from P. Let A be the event that
the tester rejects, given query access to f (not to the erasure oracle). Let B be the event
that the tester encounters at least one erasure. The rejection probability of the tester in the
online setting is at least

Pr(A \B) ≥ Pr(A)− Pr(B) ≥ 6
7 −

1
7 >

2
3 ,

where the second inequality follows from Lemmas 6.2 and 6.3.
For a corruption adversary, we use the same argument combined with [38, Lemma 1.8]. ◀

Proof of Theorem 1.5. The proof (for both erasures and corruptions) is identical to the
above proof of Theorem 1.4, Part 1, except that we use Lemma 6.4 instead of Lemma 6.3. ◀

We conclude by stating our main result for fixed-rate adversaries, showing that the
threshold rate is arbitrarily close to 1. The proof appears in the full version. A matching
negative result is established in [38], see Theorems 1.5 and 1.7 there.

▶ Proposition 6.5. Fix ϵ > 0, t < 1 and a local property P of sequences f : [n]→ R, where

n ≥ C(log 1
ϵ +log 1

1−t )2

ϵ2(1−t) for a large enough constant C > 0. There exists a (one-sided error)
ϵ-tester for P that works in the presence of a t-online erasure fixed-rate adversary and has
query complexity O

(
log(ϵn)
ϵ(1−t)

)
. For a corruption adversary, the same is true without the

one-sided error guarantee.
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