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Abstract. A large number of works prove lower bounds on space-time
trade-offs in preprocessing attacks, i.e., trade-offs between the size of the
advice and the time needed to break a scheme given such advice. We con-
tend that the question of how much time is needed to produce this advice
is equally important, and often highly non-trivial. However, this ques-
tion has received significantly less attention. In this paper, we present
lower bounds on the complexity of preprocessing attacks that depend
on both offline and online time. As in the case of space-time trade-offs,
we focus in particular on settings with ideal primitives, where both the
offline and online time-complexities are approximated by the number of
queries to the given primitive. We give generic results that highlight the
benefits of salting to generically increase the offline costs of preprocessing
attacks. The majority of our paper presents several results focusing on
salted hash functions. In particular, we provide a fairly involved analy-
sis of the pre-image- and collision-resistance security of the (two-block)
Merkle-Damg̊ard construction in our model.

1 Introduction

Preprocessing attacks leverage a suitably pre-computed advice string that only
depends on some underlying primitive (e.g., a hash function, a block cipher, or
an elliptic curve) to break a scheme using fewer resources than the best attack
without such advice. For example, Hellman’s [14] seminal work shows that, for a
given permutation π : [N ] Ñ [N ], one can compute a suitable S-bit advice that
allows inverting the permutation on any point in time T « N{S.

A number of works, starting from [5,6,9,10,21], prove lower bounds that
establish inherent trade-offs between the size of the advice and the online time
needed to break the scheme (often referred to as “space-time trade-offs”). A
question that has received less attention, however, concerns the study of trade-
offs between the offline time needed to compute the advice and the online time.
To the best of our knowledge, the only such result, due to Corrigan-Gibbs and
Kogan [7], focuses on the discrete logarithm problem in the generic-group model.

Initiating a more comprehensive and grounded study of such offline-online
time trade-offs is the main goal of this paper. As in prior works on space-time
trade-offs, we focus on proving lower bounds relying on ideal primitives, thus
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approximating time with query-complexity. In addition to providing a generic
overview of how salting makes preprocessing attacks expensive, we revisit under
a new lens the recent works [2,3,6,12] on preprocessing attacks against salted
hash functions and the Merkle-Damg̊ard construction.

Why does time-complexity matter? One main reason to study preprocess-
ing attacks is to model non-uniform security. In this case, it is indeed irrelevant
how long it takes to compute a good advice string since its mere existence suf-
fices for an attack, although such an attack may well never be explicitly found.
This perspective has emerged from the debate around the use of non-uniformity
in security [4,16], although often the issue can be bypassed entirely via cleverer
uniform reductions, as in e.g. [11]. The importance of non-uniform attacks in
practice has also been a source of debate [19].

Here, we are concerned with a more practical and less formal perspective
where preprocessing is used in practical, explicit attacks for one of two reasons:

1. An attack needs to run very quickly in the online stage (e.g., must succeed
before a time-out occurs in an Internet protocol) but can afford to run much
slower in an offline stage. For instance, Adrian et al. [1] use offline computation
to break 512-bit finite-field discrete logs in less than a minute of online time,
hence compromising legacy versions of the Diffie-Hellman handshake.

2. The advice is computed once and for all and is re-used to attack multiple
instances. This is the scenario of Rainbow Tables [18], which leverage Hellman-
type trade-offs to speed up attacks against unsalted password hashes.

In both cases, it is imperative that the offline time remains within a feasible
range.

When is preprocessing worth it? Different preprocessing attacks exhibit
very different offline-online time trade-offs. The main goal is to ensure that,
thanks to preprocessing, the online complexity of an attack is better than the
best preprocessing-free attack. For example, in Rainbow Tables, for a password
dictionary of size N , the preprocessing takes time T1 « N to produce advice of
size S, for which the online complexity is then T2 « N{S. The online complexity
bests the optimal online-only attacks, which is Ω(N); moreover, the preprocess-
ing time is optimal since the sum of the offline and online time cannot beat the
complexity of the best online only attack.

A more interesting example is finding collisions in the salted Merkle-Damg̊ard
(MD) construction, as studied in a line of recent works [2,3,12]. Given a (random)
compression function h : [N ]ˆ [M ] Ñ [N ], the offline phase of the optimal attack
for two-block collisions finds S collisions of the form h(ai,mi) “ h(ai,m

′
i) for

m ‰ m′ and salts a1, . . . , aS , for which offline time T1 « S ¨ √
N is necessary.

Then, the online phase, given the salt a, uses time T2 “ N{S to find m such
that h(a,m) “ ai for some i, which yields a collision m‖mi, m‖m′

i. This attack
achieves the trade-off T1 ˆ T2 “ N3{2, and the online time beats the näıve
Birthday attack whenever T1 “ Ω(N). It is not clear, however, whether the
trade-off is optimal, and this is indeed one of the questions we are addressing
below.
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Our contributions. This paper initiates an in-depth investigation of the time-
complexity of preprocessing attacks, and we focus primarily on salted construc-
tions using hash functions, which is where the most interesting technical ques-
tions emerge. In particular:

– Generic salting. We propose a generic technique to analyze the common
practice of salting to mitigate the effects of preprocessing attacks. We consider
a model where every call to the underlying primitive is salted. Qualitatively,
our result implies that in most settings, to beat the best online-only attack,
one needs to invest an offline effort proportional to compromising the primi-
tive on every salt.

– Concrete bounds for random oracles. Our generic technique can be com-
bined with a recent work by Jaeger and Tessaro [15] to provide concrete
quantitative upper bounds on the advantage of an offline-online adversary.
These bounds are not always optimal, and we prove more refined bounds. We
exemplify this situation by studying the pre-image-resistance and collision-
resistance of a salted random oracle.

– Merkle Damg̊ard construction. The technical bulk of this paper studies
the salted Merkle-Damg̊ard (MD) construction with a random ideal compres-
sion function. Here, salting achieves a more limited effect and still allows
for non-trivial trade-offs between the offline and online complexity of an
attack. We deliver quantitative upper bounds on the advantage of break-
ing pre-image-resistance and collision-resistance of the two-block salted MD
for offline-online adversaries.

Salting defeats preprocessing. We start with a result that generically jus-
tifies the practice of salting cryptographic primitives to defeat preprocessing
attacks. Such results were proved for space-time-complexity in [6], but we give
an analogue result for offline-online query-complexity.

Concretely, we assume that we have a scheme Πg that relies on a random
function g : [M ] Ñ [N ], and that the advantage in breaking Πg, as a function
of the number of queries to g, is a well understood quantity. (In particular, here
we assume that the security depends only on the number of queries to g.) Now,
we replace g(¨) with a salted hash function h(a, ¨), where h : [S] ˆ [M ] Ñ [N ].
We aim to quantify security for an attacker A which, during an offline phase,
is allowed to issue T1 queries to h(¨, ¨). Then, after learning the random salt
a Ð$ [S], A attacks Πh(a,¨). In this online stage, A can issue T2 queries to h(¨, ¨).

We show that if (roughly) T ˚ queries to g are needed to break Πg in the worst
case with very high probability, then for the attacker A to succeed with high
probability as well, T1 ě S¨T ˚{2 or T2 ě T ˚{2 must hold. In other words, the only
way to beat the best online-only attack is to invest an amount of preprocessing
equivalent to that of breaking the scheme for every choice of the salt. At the
core of this proof is a simple argument that shows how to build an adversary B
against Πg, achieving the same advantage as A, with expected query-complexity
T1{S ` T2.
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Quantitative bounds for salted random oracles. The above generic
result holds for adversaries achieving high advantage. Overall, we would like to
go one step further to obtain quantitative precise upper bounds on the advantage
of A as a function of T1 and T2 and to characterize the whole advantage curve. As
our first result, we combine the above reduction to an adversary with expected
query-complexity with the work by Jaeger and Tessaro [15]. This allows us to
show that any adversary attempting to break pre-image-resistance of a random
oracle with a s-bit salt and n-bit outputs succeeds with probability at most

T1

S ¨ N
` T2

N
,

where N “ 2n, S “ 2s and, once again, T1 and T2 are the offline- and online-
query-complexity. This bound ends up being nearly exact in that there are offline-
and online-only attacks achieving each of the two terms.

Unfortunately, the same approach via [15] yields only suboptimal bounds for
other properties, such as the collision resistance of a salted random oracle. Here,
we give a direct proof that shows a bound of order

T1

S ¨ √
N

` T 2
2

N
.

This proof is of independent interest, and uses a compression argument to bound
the number of salts for which a collision is found in the preprocessing stage.
And indeed, the first term is matched by an attack that finds collisions for
Ω(�T1{√N�) salts, issuing

√
N queries for each of these salts.

Trade-offs for Merkle-Damg̊ard. Our first set of results aims to show that
salting prevents offline-online trade-offs–the best attack is either fully offline or
fully online. However, we show that this is not true if we cannot afford to salt
each call to a primitive. We focus in particular on the salted Merkle-Damg̊ard
(MD) construction [8,17], which has also been central to a recent wave of works
in the context of space-time trade-offs [2,3,12]. Here, we are given a compression
function h : {0, 1}nˆ{0, 1}� Ñ {0, 1}n and a message M that consists of B blocks
M1, . . . , MB P {0, 1}�. To hash M , one sets the initial value y0 to equal the salt
a and computes the final hash yB by iterating

yi Ð h(yi´1,Mi) .

Here, we focus on the case of messages of length at most two, which, as in the case
of space-time trade-offs [2], already captures many of the challenges. (In fact,
we believe that going beyond requires significantly new techniques than those
we explore in this paper.) For pre-image-resistance, we prove a bound (which we
show to be tight) of the form (when ignoring constant factors and lower-order
terms)

T2

N
` T1T2

N2
` T 2

1

N3
.

The most interesting term is the middle one: it is leading, e.g., for T1 “ N6{5
and T2 “ N4{5, and suggests an inherent trade-off between offline and online
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query-complexities. Indeed, this advantage is (roughly) matched by an actual
attack that first evaluates h(ai,M) on N distinct M ’s for T1{N different salts
a1, . . . , aT1{N . Then, upon learning the value y to invert on, as well as the salt
a, the online adversary spends its T2 queries looking for M P {0, 1}n such that
h(a,M) “ ai for some i P [T1{N ], succeeding with probability Ω(T1T2{N). Then,
given it succeeds, the attacker knows N evaluations of h(ai, ¨) and is thus likely
able to find M ′ P {0, 1}n such that h(ai,M

′) “ y. Hence, (M,M ′) is a pre-image
of y.

Collision-resistance of MD. Our most involved result is the analysis of the
collision-resistance of the two-block MD construction, which in particular relies
on a number of sophisticated compression arguments and results in a bound
that we know to be only partially tight. Ignoring lower order terms and constant
factors, we show a bound of order

T 2
2

N
` T1T2

N3{2 ` T1

N5{4 ` T 2
1

N7{3 .

Here, we show matching attacks for all terms except the last one. This (potential)
lack of tightness of the last term is due to our combinatorial analysis of a special
type of offline-only attack. Namely, an offline attacker could repeatedly attempt
to find a special type of collision called a diamond for a (potential) salt a, namely,
four (distinct) queries h(a, x1) “ y1, h(a, x2) “ y2, h(y1, x′

1) “ z1, h(y2, x′
2) “ z2

such that z1 “ z2. If the attacker finds a diamond for k salts, then in the online
phase it wins with probability k{N (with no further query). Therefore, this boils
down to proving a tail inequality on the number of salts for which a diamond
is found with T1 queries. This is challenging since in the regime T1 " N the
combinatorics of random functions are not very well understood. The challenge
stems from the fact that the “outer” queries h(y1, x′

1) “ z1 and h(y2, x′
2) “ z2

in one diamond could, individually, be part of diamonds for different salts. Our
proof uses compression arguments to provide a suitable tail bound, but we leave
it as an open problem to improve our analysis (or show it is tight).

Combining space and time. In conclusion, we observe that our approach is
entirely dual to that of space-time trade-offs. The latter completely ignores the
issue of time to produce advice, whereas we completely ignore the issue of advice
size. The obvious question is whether both can be combined, and we currently
lack good techniques to combine space and query-complexity.

Relationship with Multi-Instance Security. We note that a remark in [7]
observed that a lower bound against multiple-discrete-log algorithms also yields
lower bounds on the preprocessing time for discrete-log algorithms with prepro-
cessing (observation attributed to Dan Bernstein). We can extend this approach
to relate the advantage of an offline-online adversary with the advantage of an
adversary playing a multi-instance game. However, we find that this does not
give tight bounds for the advantage of offline-online adversaries that succeed
with small (sub-constant) probability. In the full version [13], we illustrate this
via an example.
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2 Preliminaries

Let N “ {0, 1, 2, . . .} denote the set of all natural numbers and Ną0 “ N \ {0}.
For N P Ną0, let [N ] “ {1, 2, . . . , N}. For a set X, let |X| be its size and X`
denote one or more elements of X. For a set S and r P Ną0 such that r ď |S|, we
denote using

(
S
r

)
the set of subsets of S with r elements. We denote Fcs(D,R) the

set of all functions mapping elements in D to the elements of R. Security notions
are defined via games; for an example see Fig. 2. The probability that a game G
outputs true is denoted using Pr [G].

We let x Ð$ D denote sampling x according to the distribution D. If D is a
set, we overload notation and let x Ð$ D denote uniformly sampling from the
elements of D. For a bit-string s we use |s| to denote the number of bits in s.
For a random variable X, we use E [X] to denote its expectation.

Merkle-Damg̊ard. We recall the Merkle-Damg̊ard hashing mechanism. For
n, � P Ną0, let h : {0, 1}n ˆ ({0, 1}�)` Ñ {0, 1}n be a compression function. We
recursively define Merkle-Damg̊ard (MD) hashing MDh : {0, 1}n ˆ ({0, 1}�)` Ñ
{0, 1}n as

MDh(a,M) “ h(a,M)

for a P {0, 1}n,M P {0, 1}� and

MDh(a, (M1,M2, . . . , MB)) “ h(MDh(a, (M1,M2, . . . , MB´1)),MB)

for a P {0, 1}n and M1, . . . , MB P {0, 1}�. We refer to a as the salt.

The compression lemma. The compression lemma states that it is impossible
to compress a random element in set X to a string shorter than log |X | bits long,
even relative to a random string.

Proposition 1 (E.g., [9]). Let Encode be a randomized map from X to Y and
let Decode be a randomized map from Y to X such that

Pr
x Ð$ X

[Decode(Encode(x)) “ x] ě ε.

Then, log |Y| ě log |X | ´ log(1{ε).

Markov’s inequality. We use Markov’s inequality multiple times in this
paper. We state it here for the sake of completeness.

Proposition 2. Let X be a non-negative random variable and a ą 0. Then

Pr [X ě a] ď E [X]
a

.

3 Offline-Online Trade-offs and the Role of Salting

We present some basic facts about offline-online trade-offs and discuss the role of
salting. To do this, we define a notational framework that captures the generality
of our statements.
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3.1 A General Framework for Offline-Online Attacks

Games. We formalize security guarantees in cryptography using games, which
we also use for security proofs. A game G describes an environment an adver-
sary A can interact with, and the combination of G and A results in a random
experiment G(A) (we refer to this as A “playing” the game G) which produces
a Boolean output. We also denote this output as G(A).

Games with ideal primitives. We are interested in a special class of games
that depend on an ideal primitive, such as a random oracle, random permutation,
ideal cipher, etc. We model this via a distribution I on a set of functions. For
example, a random oracle with (finite) domain D and range R would be modeled
by the uniform distribution on Fcs(D,R).1 Similarly, an ideal cipher with key
space K and domain X can be modeled as a uniformly chosen function e from
the set Fcs(K ˆ X ˆ {´1, 1},X) such that e(k, ¨, 1) is a permutation on X for all
k P K, and e(k, ¨, ´1) is its inverse. We can also model a variant of the generic-
group model (GGM) [20] by looking at the uniform distribution of functions
f P Fcs(Zp ˆ X ˆ X,X ˆ X), where |X| “ p, and

π(x, l1, l2) “ (φ(x), φ(φ´1(l1) ` φ´1(l2))) ,

where φ : Zp Ñ X is a bijective function.

Games with primitives. An oracle game Gπ is one where both the adversary
A and the game procedures are given access to an oracle π, from an understood
set of possible functions π, which we refer to as compatible with the game G. We
denote by Gπ(Aπ) both the experiment where A plays the game, and is given
access to the same π as the game as well as the random variable denoting the
output. We say that an (oracle) game G is compatible with an ideal primitive I,
if the range of I is a subset of the compatible oracles for G. We write specifically

AdvG
I(A) “ Pr [Gπ(Aπ)] (1)

where π Ð$ I. One could define a more general notion that permits other advan-
tage formats (e.g., to model distinguishing notions). This is straightforward, and
outside the scope of this paper.

Defining offline-online attacks. With the above formalism, given an oracle
game G, we introduce a new oracle game pre-G, which enhances the original
game to model offline-online attacks. Both games preserve compatibility with
any oracle. In particular, an adversary A is split into two parts, the offline
adversary A1 and the online adversary A2. Initially, in the offline stage, A1 is
given access solely to the game oracle π. At the end of this stage, A1 outputs a
state st. Then, in the online stage, adversary A2 is initialized with state st and
run in the game G. Both A2 and G are given access to the oracle π. Crucially,

1 As usual, one must be more precise when formally defining a random oracle with
D “ {0, 1}˚, but we remain intentionally informal on this front; all of our examples
can be assumed to work on a finite domain.
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Game pre-Gπ(A “ (A1, A2))

st Ð Aπ
1

Return Gπ(Aπ
2 (st))

Game s-pre-Gπ(A “ (A1, A2))

st Ð Aπ
1

a Ð$ {0, 1}s

Return Gπa(Aπ
2 (st, a))

Fig. 1. Offline-Online security games for an original game G. Left: the unsalted case.
Right: the salted case. Here, π is meant to be sampled from a salted ideal primitive Is,
and πa(¨) “ π(a, ¨), i.e., the primitive with salt fixed to a.

the game G might give A2 additional oracles plus additional initialization values,
etc., which are not available in the offline stage. (This is formalized in Fig. 1 on
the left). We colloquially refer to A “ (A1,A2) as an offline-online adversary.
Further, we say that A is a (T1, T2)-adversary if A1 makes at most T1 queries
and A2 makes at most T2 queries. (Note that A2 could make additional game-
dependent queries, which we would specify separately if necessary.) We overload
notation and define advantage in terms of (T1, T2) as follows.

AdvG
I(T1, T2) “ max

(T1,T2)-adversaries A
AdvG

I(A) . (2)

Some basic facts. The following elementary fact, while straightforward, estab-
lishes some important baselines for when offline-online attacks are interesting. It
relies on the basic observation that one can consider A1 and A2 to be a single
online adversary.

Lemma 1. Let G be a game compatible with the ideal primitive I. For any
(T1, T2)-adversary A, there exists an adversary B such that

Advpre-G
I (A) “ AdvG

I(B) .

Here, B makes T1 ` T2 queries to the primitive, and its time-complexity is the
sum of the time-complexities of A1 and A2. Further, for any game-dependent
type of query, B makes the same number of queries as A2.

For an ideal primitive I, we let Q(I) be an upper bound on the number of
queries needed by an adversary, given oracle access to π Ð$ I, to reconstruct π
with probability 1. Then, the following also holds true and formalizes the fact
that one can simulate an offline-online adversary by having the offline adversary
first reconstruct π and then store it in st.

Lemma 2. Let I be a primitive that is compatible with game G. For all offline-
online adversaries A, there exists a (Q(I), 0)-adversary B such that

Advpre-G
I (A) “ Advpre-G

I (B)
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Note that the adversary B could be much less efficient than A; however, in many
cases, we will study games that only target information-theoretic security, and
time-complexity will not matter. It also näıvely follows that there always exists
an optimal adversary that is a (Q(I), 0)-adversary.

Which games are interesting? Some games are more interesting than others
in the context of offline-online trade-offs, and the above two lemmas already
provide some guidance.

Consider the problem of inverting a random permutation π : {0, 1}n Ñ
{0, 1}n. It is well known that the best adversary takes time Ω(N) queries, where
N “ 2n, to invert with constant probability. Then, Lemma 1 implies that any
(T1, T2)-offline adversary needs T1 ` T2 “ Ω(N) to invert with constant prob-
ability. Thus, to get T2 “ o(N) and beat the näıve inversion attack in the
online phase, we need T1 “ Ω(N). Further, we already have an (N, 0)-adversary
by Lemma 2, so we cannot really expect interesting trade-offs. The question
becomes interesting only if we limit the state size between A1 and A2, which is
exactly what is considered by prior works on space-time trade-offs.

This is in contrast to the setting of the discrete logarithm problem with
preprocessing [7]. There, for a group of order p, by combining Lemma 1 with
the well-known result by Shoup [20], we get that T1 ` T2 “ Ω(

√
p). Lemma 2

guarantees only a (p, 0) attacker, so we can expect that T2 “ o(
√

p) while still
having T1 “ o(p). And indeed, one can achieve the trade-off T1 ¨ T2 ě p, as
indicated in [7].

3.2 The Power of Salting

A special case of interest is that of salting, where the cryptographic primitive I
permits an additional input–called a salt–that is chosen in the online phase of
an attack.

Generic salting. Let I be an ideal primitive, whose range is a subset of
Fcs(D,R). We define its s-bit salted version, denoted Is, as the ideal primitive
with range Fcs({0, 1}s ˆ D,R); sampling a function π : {0, 1}s ˆ D Ñ R occurs
by first sampling 2s independent copies πa Ð$ I for each a P {0, 1}s and then
letting

π(a, x) “ πa(x) ,

for all a P {0, 1}s and x P D.
For any game G compatible with an ideal primitive I, we can now define

an s-bit salted version of the game, s-pre-G, that is compatible with Is. This
is given on the right of Fig. 1. Essentially, we now sample a primitive π Ð$ Is

to which the adversary A is given access. However, in the online phase, the
games themselves have access only to πa for a randomly sampled salt a, which
is revealed to only the adversary A2.

From salted to unsalted games. The following theorem relates the advan-
tage of an offline-online adversary for the salted game with that of an adversary
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for the original game. We provide an interpretation below (and use this lemma
quantitatively in Sect. 4).

Theorem 1. Let G be a game compatible with an ideal primitive I. Let A “
(A1,A2) be a (T1, T2) offline-online adversary. Then, there exists an adversary
B playing G such that

Advs-pre-G
Is

(A) “ AdvG
I(B) .

The adversary B makes a number of queries, expressed as a random variable T
with expectation E [T ] ď T1{2s ` T2.

Proof. Given access to π in the range of I, the adversary B samples a random
salt a from {0, 1}s and then samples πa′ Ð$ I for a′ ‰ a. It then simulates an
execution of A “ (A1,A2) in s-pre-G as follows: it answers the ideal-primitive
query of A for salt a using oracle queries to π, and those for salt a′ ‰ a using the
local evaluation of πa′ . It is immediate that B perfectly simulates the execution
of s-pre-G to A. Therefore, A wins if and only if B does and the claim about
advantages follows.

Observe that B queries its ideal primitive, sampled from I only when it
receives an ideal object query from A that is prefixed by the actual salt a. Since
it is not given access to a when simulating A1, its queries are independent of
a, and each of them is indeed on salt a with probability 1{2s. In contrast, A2

makes queries after learning a, and therefore, those queries are on salt a with
probability upper bounded by one. By linearity of expectation, the total number
of queries T to π “ πa made by B satisfies E [T ] ď T1{|S| ` T2, as we intended
to show. ��

Salting generically defeats preprocessing attacks. We illustrate one
first main application of Theorem 1, i.e., the fact that salting generically defeats
preprocessing in a qualitative sense. Here, “qualitative” means that we only
look at the power of attacks that achieve large advantage. Subsequent sec-
tions (Sects. 4 and 5) take a more quantitative angle on this, studying the whole
advantage curve.

We now say that a game G compatible with I is (T ˚, ε)-hard if AdvG
I(A) ď ε

for all T ˚-query A˚. We say that game G is (T ˚, ε)-expected-hard if the same
holds for all adversaries running in expected time at most T ˚. The following fact
is helpful.

Lemma 3. If G is (T ˚, 0.4)-hard, then it is (T ˚{2, 0.9)-expected-hard.

Proof. By contradiction, let A run in expected time at most T ˚{2, and
AdvG

I(A) ą 0.9. Then, build B that runs A for T ˚ queries and then aborts
with some default answer if A did not finish running. Let T be the running time
of A. Then, for π Ð$ I,

Pr [Gπ(Bπ)] “ Pr [Gπ(Aπ) ^ T ď T ˚]
ě Pr [Gπ(Aπ)] ´ Pr [T ą T ˚] ą 0.9 ´ 0.5 “ 0.4 ,

where we used Markov’s inequality and the fact that E [T ] ď T ˚{2. ��
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Now, say that s-pre-G is (T1, T2, ε)-hard if for all (T1, T2)-adversaries A, we
have that Advs-pre-G

I (A) ď ε. Then, Lemma 3 and Theorem 1 yield the following
corollary.

Corollary 1. If G is (T ˚, 0.4)-hard, then s-pre-G is (T1, T2, 0.9)-hard for any
T1, T2 such that T1{2s ` T2 ď T ˚{2.

This means that if a (T1, T2)-adversary is to achieve advantage larger than
0.9 in s-pre-G, then T1 ě 2sT ˚{4 or T2 ě T ˚{4. In other words, in order to
win s-pre-G with an advantage larger than 0.9, an attacker needs to either use
online time which is (almost) as large as that of the best online attack achieving
advantage 0.4 or run 2s times that amount of time in the offline stage.

Moving on. We can easily revisit the remainder of this paper using what we
saw in this section. First of all, our conclusion about salting applies only to large
advantage adversaries since otherwise we cannot prove an analogue of Lemma 3.
Section 4 examines tight exact bounds on the advantage of (T1, T2)-adversaries
that hold for each choice of T1 and T2. Second, this conclusion applies only to
the case where G salts every call to the primitive. In Sect. 5, we characterize the
pre-image- and the collision-resistance of the salted MD construction against
offline-online attacks and show that salting, while still useful, has a more limited
effect.

4 Offline-Online Security of Salted Random Oracles

In this section, we study the security of salted monolithic random oracles against
offline-online adversaries. Specifically, we consider the security properties of pre-
image-resistance and collision-resistance. Our analysis begins by applying Theo-
rem 1 in conjunction with [15, Theorem 1] to derive advantage upper bounds for
offline-online adversaries against these properties. This approach already yields
a tight bound for pre-image-resistance, but not for collision-resistance. We then
use a non-generic technique to prove a tight bound for the latter.

4.1 Pre-image-resistance of a Salted Random Oracle

Oracle game PRh in Fig. 2 formalizes the preimage-resistance of oracle h, which
has co-domain {0, 1}n. In the game the adversary is given as input y, which is
randomly sampled from {0, 1}n. It has oracle access to h and wins if it manages
to output x such that h(x) “ y.

We aim to upper bound the advantage of offline-online adversaries A
against pre-image-resistance of salted random oracles. Let Hs,�,n be the uni-
form distribution over Fcs({0, 1}s ˆ {0, 1}�, {0, 1}n). The quantity of interest is
Advs-pre-PR

Hs,�,n
(T1, T2). Using Theorem 1 and [15, Theorem 1], we get the following

corollary.
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Corollary 2. Let T1, T2, n, s, � P Ną0. Then

Advs-pre-PR
Hs,�,n

(T1, T2) ď 5
(

T1

2s`n
` T2

2n

)
.

Proof. We fix the adversary (T1, T2)-adversary A that maximizes Advs-pre-PR
Hs,�,n

(T1, T2). From Theorem 1 we have that there exists an adversary B that makes
at most T queries to its h oracle, where E [T ] ď T1{2s ` T2 and

Advs-pre-PR
Hs,�,n

(A) “ AdvPR
Hs,�,n

(B) .

Game PRh(B)

x Ð$ {0, 1}˚

y Ð h(x)
x′ Ð Bh(y)
If h(x′) “ y:

Return true
Return false

Game CRh(A)

(M, M ′) Ð Ah

If M ‰ M ′ and h(M) “ h(M ′)
Return true

Return false

Fig. 2. Left: Oracle Game PRh for preimage-resistance of oracle h. Right: Oracle Game
CRh for collision-resistance of oracle h.

Using Theorem 1 in [15], we can show that AdvPR
Hs,�,n

(B) ď 5E[T ]
2n , which completes

the proof.

Tightness. We remark that this bound is tight up to constant factors. To see
the tightness of the term T2{2n, consider the online-only adversary that simply
makes k distinct queries with the salt a. It fails only if all the queries have answer
different from y, which happens with probability (1 ´ 1{2n)T2 ď e´T2{2n

. Since
e´x ď 1 ´ x{2 for x ď 1.5, for T2 ď 2n, e´T2{2n ď 1 ´ T2{2n`1. This means the
adversary succeeds with probability at least T2{2n`1, meaning the second term
in the bound is tight up to constant factors.

To see why the first term is tight, consider the adversary A1 which makes 2n

queries on different inputs for k “ T1{2n different salts (where T1 is a multiple
of 2n). In the online phase, it simply checks whether it had made a query with
salt a, that had output y; if so it returns the query input.

Let the set of k salts A1 had made queries on be S. For each salt in S, the
probability that A1 had not made query with that salt that had answer y is at
most (1´1{2n)2

n ď 1{e. So, for each salt in S with probability at least (1´1{e),
A1 had made a query that had answer y. Now A wins if the a sampled is in S,
and A1 has made a query with salt a that had answer y; this probability is at
least (1´1{e)k{2s since a is sampled at random. Since k “ T1{2n, it follows that
the second term in the bound is tight as well.
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4.2 Collision-Resistance of a Salted Random Oracle

Oracle game CRh in Fig. 2 formalizes the collision-resistance of oracle h. In the
game the adversary has oracle access to h and wins if it manages to output
M,M ′ such that M ‰ M ′ and h(M) “ h(M ′).

We aim to upper bound the advantage of offline-online adversaries A against
collision-resistance of salted random oracles. Let Hs,�,n be the uniform dis-
tribution over Fcs({0, 1}s ˆ {0, 1}�, {0, 1}n). We seek to tightly upper bound
Advs-pre-CR

Hs,�,n
(T1, T2). Using Theorem 1 and [15, Theorem 1] we get the following

corollary.

Corollary 3. Let T1, T2, n, s, � P Ną0. Then

Advs-pre-CR
Hs,�,n

(T1, T2) ď 5
√

2
(

T1

2s`n{2 ` T2

2n{2

)
.

Proof. We fix the adversary (T1, T2)-adversary A that maximizes Advs-pre-CR
Hs,�,n

(T1, T2). From Theorem 1 we have that there exists an adversary B such that it
makes at most T queries to its h oracle, where E [T ] ď T1{2s ` T2, and

Advs-pre-PR
Hs,�,n

(A) ď AdvPR
Hs,�,n

(B) .

Using [15, Theorem 1], we can show that AdvCR
Hs,�,n

(B) ď 5
√

2E[T ]2

2n , which con-
cludes the proof.

Tight bound. The bound in Corollary 3 is suboptimal. In Theorem 2, we obtain
a better bound for Advs-pre-CR

Hs,�,n
(T1, T2).

Theorem 2. Let n, s, �, T1, T2 P Ną0. Let Hs,�,n be the uniform distribution on
Fcs({0, 1}s ˆ {0, 1}�, {0, 1}n). Then, we have that

Advs-pre-CR
Hs,�,n

(T1, T2) ď
(
T2
2

)

2n
` T2T1

2s`n
` eT1

2s`n{2 ` n

2s`1
` 1

2n
.

Tightness. We argue that this bound is tight up to constant factors. Initially,
observe that for T2 ě 2n{2, the right side becomes greater than one, and the
bound always holds. For T2 ď 2n{2, we have that T1T2

2n`s ď eT1
2s`n{2 . Therefore, the

term T1T2
2n`s is never the dominant term in the bound, and it suffices to show

attacks that achieve advantage of the order (T2
2 )
2n and eT1

2s`n{2 to show that this
bound is tight. A birthday style attack with T2 queries achieves advantage of

the order (T2
2 )
2n . Finally, we prove the following theorem to show that term eT1

2s`n{2
is tight up to constant factors.

Theorem 3. Let T1, s, n, � P Ną0 such that n is a multiple of 2 and T1 is
a multiple of 2n{2`1. Let Hs,�,n be the uniform distribution over Fcs({0, 1}s ˆ
{0, 1}�, {0, 1}n). Then there exists a (T1, 0)-adversary A such that

Advs-pre-CR
Hs,�,n

(A) ě (1 ´ 1{e)T1

2s`n{2`1
.
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We defer the formal proof of this theorem to the full version [13]. We next prove
Theorem 2.

Proof. Let A “ (A1,A2) be the (T1, T2)-offline-online adversary that maximizes
Advs-pre-CR

Hs,�,n
(T1, T2). We can treat A as deterministic by fixing its randomness

that maximizes its advantage.
We seek to upper bound the probability that the adversary A finds a one-

block collision for the randomly chosen salt a that it gets as input in its online
phase. We can assume without loss of generality that if A outputs a collision,
it must have made the relevant queries either in the offline or the online phase.
This is without loss of generality because if A does not make one of these queries,
we can construct a (T1, T2 ` 2)-offline-online adversary A′ that does whatever A
does, and at the end of its online phase, makes the two relevant queries if not
made earlier after A outputs M,M ′. The term T2 would then be replaced by
T2 ` 2 in our bounds; for ease of readability, we omit this.

Also, without loss of generality we can assume that no query across the offline
and online phases is repeated because the adversary can simply remember the
query answer since we do not restrict its memory or the amount of advice it can
pass on from offline to the online phase.

We define the following three events.

1. onecollon: A2 makes two queries h(a,M) “ z, h(a,M ′) “ z for some M ‰ M ′

2. onecolloffon: A1 makes a query h(a,M) “ z, and A2 makes a query whose
answer is z

3. onecolloff : A1 makes two queries h(a,M) “ z, h(a,M ′) “ z for some M ‰ M ′

Observe that if none of onecollon, onecolloffon, onecolloff happen, A cannot find a
collision. We have that

Pr
[
s-pre-CRh

Hs,�,n
(A)

]
ď Pr [onecollon] ` Pr [onecolloffon] ` Pr [onecollon] . (3)

We upper bound the probability of these three events one by one.

Upper bounding Pr [onecollon]. This event happens only if A2 makes two
queries that collide. The probability of any two queries of A2 colliding is 1{2n.
Using a union bound over all pairs of queries of A2, we have

Pr [onecollon] ď
(
T2
2

)

2n
. (4)

Upper bounding Pr [onecolloffon]. Observe that onecolloffon happens only if there
is an online query that has the same answer as one of the offline queries that had
input salt a. There are a total of T1 offline queries, and a is random. Therefore,
the expected number of offline queries with salt a is T1{2s. We have that
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Pr [onecolloffon] ď
T1∑

k“0

Pr [There are k offline queries with salt a]
kT2

2n

“ E [Number of offline queries with salt a]
T2

2n

“ T1T2

2s`n
. (5)

Upper bounding Pr [onecolloff ]. The main challenge of this proof is proving an
upper bound on Pr [onecolloff ]. We do it as follows: we define an event off-oneblk-k
since there are k different salts for which a one-block collision has been found in
the offline phase. We have that for any k,

Pr [onecolloff ] ď Pr
[
onecolloff

∣
∣ �off-oneblk-k

] ` Pr [off-oneblk-k] . (6)

Since onecolloff happens if for the salt a that is chosen uniformly at random
from {0, 1}s, A1 had queried h(a,M), h(a,M ′) that have the same answer, we
have that Pr

[
onecolloff

∣
∣ �off-oneblk-k

] ď k{2s. We upper bound Pr [off-oneblk-k]
using a compression argument.

The encoding procedure encodes the random oracle h as follows.

1. It runs Ah
1 and initializes a list L to the empty list and a set S to the empty

set.
2. For every query h(a,M) made by A1, it does the following:

(a) Let z “ h(a,M). If there was exactly one earlier query by A1 of the form
(a,M ′) for some M ′ ‰ M that had answer z, and |S| ă 2k, it adds the
index of the query h(a,M ′) and the current query to S.

(b) Otherwise, it adds h(a,M) to L.
3. It appends the evaluation of h on the points not queried by A1 to L in the

lexicographical order of the inputs.
4. If |S| ă 2k it outputs H; otherwise, it outputs L,S.

The decoding procedure works as follows.

1. If the encoding is H, it aborts.
2. It runs Ah

1 .
3. For every query h(a,M) made by A1, it does the following:

(a) If the index of the query is in S, and there is an earlier query h(a,M ′)
for some M ′ by A1 such that its index is in S, answer this query with
h(a,M ′).

(b) Otherwise, it removes the element in front of L and answers with that.
4. It populates h on the points not queried by A1 in the lexicographical order

by the remaining entries of L

Correctness of decoding: For adversary A1 that causes the event off-oneblk-k to
happen, the encoding algorithm will never return H because by the definition
of off-oneblk-k there will be at least k different salts ai for which A1 queries
h(ai,Mi) “ zi, h(ai,M

′
i) “ zi; meaning the size of S will be 2k. For such an
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adversary A it is easy to verify the decoding algorithm will always produce
the correct output because for the answers of h that were not added to L, the
decoding algorithm recovers them using the set of indices S. Therefore, we have
that

Pr [ Decoding is correct ] ě Pr [off-oneblk-k] .

The size of the output space of the encoding algorithm is upper bounded by(
T1
2k

) ¨ (2n)2
s`�´k. The size of the input space is (2n)2

s`�

. From the compression
lemma (Proposition 1), we have that

Pr [off-oneblk-k] ď Pr [ Decoding is correct ] ď
(
T1
2k

)

2kn
.

We k “ max
(

eT1
2n{2 , n{2)

. If max
(

eT1
2n{2 , n{2) “ eT1

2n{2 , then k ě n{2. Therefore,

(
T1
2k

)

2nk
ď

(
eT1

2n{2(2k)

)2k

ď
(

1
2

)n

.

If max
(

eT1
2n{2 , n{2) “ n{2, then k ě eT1

2n{2 . Therefore,

(
T1
2k

)

2nk
ď

(
eT1

2n{2(2k)

)2k

ď
(

1
2

)n

.

Therefore, for k “ max
(

eT1
2n{2 , n{2)

, Pr [off-oneblk-k] ď 1{2n. Therefore, from (6)
we have

Pr [onecolloff ] ď eT1

2s`n{2 ` n

2s`1
` 1

2n
. (7)

Plugging (4), (5) and (7) into (3) gives us that

Advs-pre-CR
Hs,�,n

(A) ď
(
T2
2

)

2n
` T1T2

2n`s
` eT1

2s`n{2 ` n

2s`1
` 1

2n
.

��

5 Offline-Online Security of Two-Block Merkle-Damg̊ard

In previous sections, we focused on proving security guarantees against offline-
online attacks on constructions where every query to the ideal primitive is salted.
Here, we will see an example of a construction (Merkle Damg̊ard) where only the
first query to the underlying primitive (random oracle) is salted. Specifically, we
will study the pre-image-resistance and collision-resistance for two-block Merkle-
Damg̊ard.

The main takeaway from this section is that for primitives that are not salted
for every call, we can have parameter regimes where a term of the form T1T2
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dominates the bound, meaning that in these regimes there are trade-offs between
the number of offline and online queries for the advantage to be close to one.
This contrasts with what we saw earlier in Sect. 3.2. There we demonstrated that
for constructions that salt every query to the ideal primitive, an adversary must
have either online time close to the online time of the best online-only attack
that attains an advantage close to one, or offline time close to the best offline-
only attack that attains an advantage close to one to achieve an advantage close
to one.

5.1 Pre-image-resistance of Two-Block Merkle-Damg̊ard

In this section we study the offline-online attacks against the pre-image-
resistance of the two-block Merkle-Damgaard (MD) construction. Pre-image-
resistance of two-block Merkle-Damg̊ard is formalized in the game 2-PR-MDh

n in
Fig. 3. A salt a and a value y are sampled uniformly at random from {0, 1}n and
given as input to A. A can make queries to h and wins if it outputs a message
M that is one or two blocks long whose MD evaluation with a is y.

Game 2-PR-MDh
n(A)

a Ð$ {0, 1}n

y Ð$ {0, 1}n

M Ð Ah(a, y)
If |M | P {�, 2�} and MDh(a, M) “ y

Return true
Return false

Fig. 3. Oracle game 2-PR-MDh
n formalizing the pre-image-resistance of the two-block

MD construction.

Let Hn,�,n be the uniform distribution over Fcs({0, 1}n ˆ{0, 1}�, {0, 1}n). We
are interested in proving an upper bound on Advpre-2-PR-MD

Hn,�,n
(T1, T2). We prove

the following theorem.

Theorem 4. Let T1, T2, n, � P Ną0. Let Hn,�,n be the uniform distribution over
Fcs({0, 1}n ˆ {0, 1}�, {0, 1}n). Then

Advpre-2-PR-MD
Hn,�,n

(T1, T2) ď 2T2 ` 1
2n

` T1T2 ` nT1 ` T1

22n
` 4eT 2

1

23n
.

Offline-online trade-offs. Note that in the regime T1 “ 2n(1`ε), T2 “
2n(1´ε) for 0 ă ε ă 1{2, the term T1T2{22n dominates the bound, meaning
there is an offline-online query trade-off in that regime.

Tightness. We show that this bound is tight up to factors of n. Observe that
the dominant terms are of the order T2{2n, T1T2{22n, and T 2

1 {23n. We briefly
describe how we show this.
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The tightness of T2{2n follows easily – the online only attack simply makes T2

queries with the given salt. The advantage of this attack is at least (1´1{e)T2{2n

for T2 ď 2n, as argued in the tightness discussion for pre-image-resistance of the
salted random oracle.

The following theorem proves that the term T1T2{22n is tight.

Theorem 5. Let T1, T2, n, � P Ną0 such that T1 is a multiple of 2n, T1T2 ď 22n.
Let Hn,�,n be the uniform distribution over Fcs({0, 1}n ˆ {0, 1}�, {0, 1}n). Then
there exists a (T1, T2)-adversary such that

Adv2-PR-MD
Hn,�,n

(A) ě T1T2(1 ´ 2{e)
22n`1

.

We defer the proof of this theorem to the full version [13].
The following theorem proves that the term T 2

1 {23n is tight.

Theorem 6. Let T1, n, � P Ną0 such that T1 is a multiple of 2n`1, T1 ď 23n{2.
Let Hn,�,n be the uniform distribution over Fcs({0, 1}n ˆ {0, 1}�, {0, 1}n). Then
there exists a (T1, 0)-adversary such that

Adv2-PR-MD
Hn,�,n

(A) ě T 2
1 (1 ´ 2{e)

23n`4
.

We defer the proof of this theorem to the full version [13].

Game H(A “ (A1, A2))

h Ð$ Fcs({0, 1}n ˆ {0, 1}�, {0, 1}n)
win Ð false
oneblkinv, twoblkinv Ð false
τ Ð [], a, y Ð ⊥
st Ð AH

1

a Ð$ {0, 1}n

y Ð$ {0, 1}n

If DM : ((a, M), y) P τ :
win Ð true
oneblkinv Ð true

If DM, M ′, z :
((a, M), z), ((z, M ′), y) P τ :
win Ð true
twoblkinv Ð true

AH

2 (st, a, y)
Return win

Oracle H(a′, M ′)

τ Ð τ Y {((a′, M ′), h(a′, M ′))}
If DM ′ : ((a, M ′), y) P τ :

win Ð true
oneblkinv Ð true

If DM ′, M ′′, z :
((a, M ′), z), ((z, M ′′), y) P τ :
win Ð true
twoblkinv Ð true

Return h(a′, M ′)

Fig. 4. H using in the analysis of pre-image-resistance of two-block MD. The events
introduced in this game are marked in red. (Color figure online)
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Proof (Theorem 4). Let A be the (T1, T2)-adversary that maximizes
Adv2-PR-MD

Hn,�,n
(T1, T2). Without loss of generality A is deterministic and does not

repeat any queries. We also assume without loss of generality that A makes all
the queries needed to compute the MD evaluation of the messages it outputs.

We can formulate an alternate version of the game for pre-image-resistance
of MD in game H in Fig. 4. Note that whenever A wins 2-PR-MDh

n, it has to win
H because from our assumption that A makes all the queries needed to compute
the MD evaluation of the messages it outputs, it follows that at least one of the
following happens.

– A makes a query h(a,M ′) “ y – meaning it has found a one-block message
M ′ whose MD evaluation with salt a is y.

– A queries h(a,M ′) “ z and h(z,M ′′) “ y – meaning it has found a two-block
message (M ′,M ′′) whose MD evaluation with salt a is y.

In either of these cases the flag win is set in H, meaning A wins the game.
Therefore,

Adv2-PR-MD
Hn,�,n

(A) ď Pr [H(A)] .

Note that win is set to true H only if one of oneblkinv, twoblkinv is set to true. It
follows that

Pr [H(A)] “ Pr [A sets win] ď Pr [oneblkinv] ` Pr [twoblkinv] .

We show that

Pr [oneblkinv] ď T2

2n
` T1

22n
,

and

Pr [twoblkinv] ď T2 ` 1
2n

` T1T2 ` nT1

22n
` 4eT 2

1

23n
.

Putting it all together would give us the theorem.
We next upper bound Pr [oneblkinv] ,Pr [twoblkinv].
Towards upper bounding Pr [oneblkinv], we define the two following events:

1. oneblkinvoff : A1 makes a query with input salt a and output y
2. oneblkinvon: A2 makes a query which has output y

It is easy to see that if oneblkinv happens, then at least one of oneblkinvoff ,
oneblkinvon has to happen. Therefore

Pr [oneblkinv] ď Pr [oneblkinvoff ] ` Pr [oneblkinvon] .

We first upper bound Pr [oneblkinvon]. Each query by A2 has answer y with
probability 1{2n. Using a union bound over all queries of A2, we have that

Pr [oneblkinvon] ď T2{2n .
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We next upper bound Pr [oneblkinvoff ]. Consider the set of (s, y) pairs such that
there is a query by A1 with input salt s and answer y. There are at most T1 such
pairs. Note that, oneblkinvoff happens only if (a, y) which is sampled uniformly
at random, is among those at most T1 pairs. Hence,

Pr [oneblkinvoff ] ď T1{22n .

Putting this together, we have the required bound on Pr [oneblkinv].
We next upper bound Pr [twoblkinv]. We define the three following events.

1. twoblkinvoff : A1 makes queries h(a,M) “ z and h(z,M ′) “ y for some
M,M ′, z

2. twoblkinvoffon: A1 makes a query h(z,M) “ y and A2 makes a query
h(a,M ′) “ z for some M,M ′, z

3. twoblkinvon: A2 makes a query with answer y

It is easy to see that if twoblkinv happens then at least one of twoblkinvoff ,
twoblkinvoffon, twoblkinvon has to happen. Therefore,

Pr [twoblkinv] ď Pr [twoblkinvoff ] ` Pr [twoblkinvoffon] ` Pr [twoblkinvon] . (8)

We upper bound these probabilities one by one starting with Pr [twoblkinvon].
Observe that every query by A2 has probability 1{2n of having answer y. Using
a union bound over all queries of A2, it follows that

Pr [twoblkinvon] ď T2

2n
. (9)

We next upper bound Pr [twoblkinvoffon]. Observe that this event happens only
if A2 makes a query that has answer z such that A1 made a query with salt z
that had answer y. Therefore, using total probability

Pr [twoblkinvoffon] ď
T1∑

k“1

Pr [A1 made k queries with answer y]
kT2

2n

“ T2

2n

T1∑

k“1

E [Number of queries of A1 with answer y]

“ T2T1

22n
. (10)

The last equality follows since each query of A1 has answer y with probability
1{2n.

Finally, we upper bound Pr [twoblkinvoff ]. For this we initially take a short
detour and define the event (m ` 1)-col as the event that A1 has made m ` 1
distinct random oracle queries, all of which have the same answer. We claim that

Pr
[
twoblkinvoff

∣
∣ �(m ` 1)-col

] ď mT1

22n
.
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This is because if (m ` 1)-col does not happen, there can be at most mT1 pairs
of queries such that the answer of the one query of the pair is the input of the
other query (as otherwise there would be a m ` 1-multi-collision since there are
T1 queries made by A1). Now, twoblkinvoff happens only if (a, y) that is sampled
uniformly at random is such that one of these at most mT1 pairs have a as the
salt for one query and y as the answer of the other query. This happens with
probability at most mT1

22n .
Finally, we upper bound Pr [(m ` 1)-col]. For any subset of m ` 1 queries

made by A1, the probability that they have the same answer is 1{2nm. Using a
union bound over all possible m ` 1 sized subsets of the queries of A1, we have
that

Pr [(m ` 1)-col] ď
(

T1
m`1

)

2nm
.

We let m “ max
(
n, 4eT1

2n

)
. If n ď 4eT1

2n , we have that m “ 4eT1
2n ě n. Therefore,

Pr [(m ` 1)-col] ď
(

T1
m`1

)

2mn
ď

(
eT1

(m ` 1)2n

)m`1

2n ď
(

1
4

)m

2n ď
(

1
2

)n

.

Otherwise, if n ą 4eT1
2n , we have that m “ n ą 4eT1

2n . Therefore,

Pr [(m ` 1)-col] ď
(

T1
m`1

)

2nm
ď

(
eT1

(m ` 1)2n

)m`1

2n ď
(

1
4

)m`1

2n ď
(

1
2

)n

.

Therefore, we have that for m “ max
(
n, 4eT1

2n

)
, Pr [(m ` 1)-col] ď 1{2n. Hence

Pr [twoblkinvoff ] ď nT1

22n
` 4eT 2

1

23n
` 1

2n
. (11)

Plugging (9) to (11) into (8) gives us the required bound for Pr [twoblkinv] and
concludes the proof. ��

5.2 Collision-Resistance of Two-Block Merkle-Damg̊ard

In this section, we study the collision-resistance of two-block Merkle-
Damg̊ard (MD) against offline-online adversaries. Collision-resistance of two-
block MD is formalized by the oracle game 2-CR-MDh

n in Fig. 5. In this game
a salt a is picked at random from {0, 1}n that is given to the adversary
A. The adversary A has oracle access to h, and wins if it can output two
messages M,M ′ that are distinct; both at most 2 blocks long, and satisfy
MDh(a,M) “ MDh(a,M ′).

The game pre-2-CR-MDh
n captures the collision-resistance of 2-block MD

against offline-online adversaries. We prove the following upper bound on
Advpre-2-CR-MD,n

Hn,�,n
.
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Theorem 7. Let T1, T2, s, �, n P Ną0. Let Hn,�,n be the uniform distribution on
Fcs({0, 1}n ˆ {0, 1}�, {0, 1}n).

Advpre-2-CR-MD
Hs,�,n

(A) ď 2T 2
2 ` nT2{2 ` 3n2{2 ` 99n{2 ` 33

2n

`
(

T1T2

23n{2

)
(n2 ` 5n ` 83)

`
(

T1

25n{4

)
(53n ` 14n1{2 ` 56n1{3 ` 342) ` 468

(
T 2
1

27n{3

)
.

Offline-online trade-offs. Note that, in the regime of parameters T1 “
2n(1`ε), T2 “ 2n(1{2´ε) for 0 ă ε ă 1{6, the term T1T2{23n{2 dominates the
bound, i.e., there is a trade-off between the number of offline and online queries
in that regime.

Game 2-CR-MDh
n(A)

a Ð$ {0, 1}n

(M, M ′) Ð Ah(a)
If |M |, |M ′| P {�, 2�} and M ‰ M ′ and MDh(a, M) “ MDh(a, M ′)

Return true
Return false

Fig. 5. Oracle game 2-CR-MDh
n formalizing collision-resistance of two-block MD.

Tightness of the bound. We show that the first three terms in the above
bound are tight by giving matching attacks. We could not find an attack match-
ing the last term in the bound and leave improving it or showing it tight to be
future research.

We briefly describe how we show the other terms to be tight. The first term
is dominated by T 2

2 {2n – we can show that this is tight up to constant factors
using the birthday attack, which achieves advantage of the order T 2

2 {2n.
In the second term, ignoring constants and powers of n, the dominant factor

is T1T2
23n{2 . We prove this theorem to show that it is tight.

Theorem 8. Let T1, T2, n, � P Ną0 such that n is a multiple of 2, T1 is a mul-
tiple of 2n{2`1, and T1T2 ď 23n{2. Let Hn,�,n be the uniform distribution over
Fcs({0, 1}n ˆ {0, 1}�, {0, 1}n). There exists a (T1, T2) adversary A such that

Advpre-2-CR-MD
Hn,�,n

(A) ě (1 ´ 2{e)T1T2

23n{2`3
.

The proof of this theorem is in the full version [13].
In the third term, ignoring constants and powers of n, the dominant factor

is T1
25n{4 . We give an attack that achieves advantage of the order T 2

1
25n{2 . While

T 2
1

25n{2 ď T1
25n{4 for T1 ď 25n{4, observe that both of them become one at T1 “ 25n{4.

Formally, we prove the following theorem.
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Theorem 9. Let T1, T2, n, � P Ną0 such that n is a multiple of 2, and T1 is
a multiple of 2n{2`1. Let Hn,�,n be the uniform distribution over Fcs({0, 1}n ˆ
{0, 1}�, {0, 1}n). There exists a (T1, T2) adversary A such that

Advpre-2-CR-MD
Hn,�,n

(A) ě (1 ´ 2{e)T 2
1

25n{2`6
.

The proof of this theorem is in the full version.
We now proceed to prove Theorem 7.

Proof. The proof of this theorem fixes the (T1, T2)-offline-online adversary A “
(A1,A2) that maximizes Advpre-2-CR-MD

Hn,�,n
(T1, T2). We can treat A as deterministic

by fixing its randomness that maximizes its advantage. Without loss of generality
we can assume that A does not repeat any query across the offline and online
phases because we have no restrictions on the memory of the adversary.

Fig. 6. The structure of the six different types of two-block MD collisions in the query
graph. The nodes in the query graph are labelled with values in {0, 1}n, and there is
an edge (a, a′) labelled with M if the adversary made a query h(a, M) “ a′. We omit
the node and edge labels for simplicity.

We rewrite the collision-resistance game for two-block MD in game H in
Fig. 7. Note that whenever A wins G2-PR-MD

n,� , from our assumption that A makes
all the queries needed to compute the MD evaluation of the messages it outputs,
at least one of the following happens.

– A makes a query h(a,M ′) “ a, meaning it has found a one-block message
M ′ whose MD evaluation with salt a is a. This is sufficient for a two-block
collision because for any M ′′ P {0, 1}�, (M ′,M ′′) and M ′′ have the same MD
evaluation with salt a.

– A makes queries h(a,M ′) “ z and h(z,M ′′) “ z; this is a two-block collision
because (M ′,M ′′) and M ′ have the same MD evaluation with salt a.

– A makes queries h(a,M ′) “ z and h(a,M ′′) “ z for M ′ ‰ M ′′; this is a
two-block collision because M ′, and M ′′ have the same MD evaluation with
salt a.
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– A makes queries h(a,M ′) “ z, h(y,M ′′) “ z and h(y,M ′′′) “ z for M ′′ ‰
M ′′′; this is a two-block collision because (M ′,M ′′) and (M ′,M ′′) have the
same MD evaluation with salt a.

– A makes queries h(a,M ′) “ y, h(y,M ′′) “ z and h(a,M ′′′) “ z; this is a
two-block collision because (M ′,M ′′) and M ′′′ have the same MD evaluation
with salt a.

– A makes queries h(a,M ′) “ y, h(y,M ′′) “ z, h(a,M ′′′) “ y′, and
h(y′,M ′′′) “ z for M ′ ‰ M ′′′ and M ′′ ‰ M ′′′′; this is a two-block colli-
sion because (M ′,M ′′) and (M ′′′,M ′′′′) have the same MD evaluation with
salt a.

If any of these occur, win is set in H, meaning A wins the game. Therefore,

Advpre-2-CR-MD
Hn,�,n

(A) ď Pr [H(A)] .

Game H(A “ (A1, A2))

h Ð$ Fcs({0, 1}n ˆ {0, 1}m, {0, 1}n)
win Ð false, τ Ð [], a Ð ⊥
sl, sos, bulb, bos, tri, dia Ð false
st Ð AH

1

a Ð$ {0, 1}n

If DM ′ : ((a, M ′), a) P τ :
win Ð true, sl Ð true

If DM ′, M ′′, z :
((a, M ′), z), ((z, M ′′), z) P τ :
win Ð true, sos Ð true

If DM ′ ‰ M ′′, z :
((a, M ′), z), ((a, M ′′), z) P τ :
win Ð true, bulb Ð true

If DM ′, M ′′ ‰ M ′′′, y, z :
((a, M ′), y), ((y, M ′′), z) P τ,
((y, M ′′′), z) P τ :
win Ð true, bos Ð true

If DM ′, M ′′, M ′′′, y, z :
((a, M ′), y), ((y, M ′′), z) P τ,
((a, M ′′′), z) P τ :
win Ð true, tri Ð true

If DM ′ ‰ M ′′′, M ′′ ‰ M ′′′′, x, y, z :
((a, M ′), x), ((a, M ′′), y) P τ,
((x, M ′′′), z), ((y, M ′′′′), z) P τ :
win Ð true, dia Ð true

AH

2 (st, a)
Return win

Oracle H(a, M)

τ Ð τ Y {((a, M), h(a, M))}
If DM ′ : ((a, M ′), a) P τ :

win Ð true, sl Ð true
If DM ′, M ′′, z :

((a, M ′), z), ((z, M ′′), z) P τ :
win Ð true, sos Ð true

If DM ′ ‰ M ′′, z :
((a, M ′), z), ((a, M ′′), z) P τ :
win Ð true, bulb Ð true

If DM ′, M ′′ ‰ M ′′′, y, z :
((a, M ′), y), ((y, M ′′), z) P τ,
((y, M ′′′), z) P τ :
win Ð true, bos Ð true

If DM ′, M ′′, M ′′′, y, z :
((a, M ′), y), ((y, M ′′), z) P τ,
((a, M ′′′), z) P τ :
win Ð true, tri Ð true

If DM ′ ‰ M ′′′, M ′′ ‰ M ′′′′, x, y, z :
((a, M ′), x), ((a, M ′′), y) P τ,
((x, M ′′′), z), ((y, M ′′′′), z) P τ :
win Ð true, dia Ð true

AH

2 (st, a)
Return h(a, M)

Fig. 7. H using in the analysis of collision-resistance of two-block MD against offline-
online adversaries. The events introduced in this game are marked in red. (Color figure
online)
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The game H defines events sl, sos, bulb, bos, tri, dia. We name the events this
way because of the following alternative view of MD collisions via the query
graph of A: the nodes of the query graph are labelled with strings from {0, 1}n,
and whenever A makes a query h(a,M) “ a′, an edge (a, a′) labelled M is
added to the graph. Finding a two block collision can be viewed as finding one
of the following structures in the query graph: self-loop, self-loop on stem, bulb,
bulb-on-stem, triangle, and diamond; Fig. 6 shows these structures.

It follows from inspection that in game H, win is set only if one of these event
among {sl, sos, bulb, bos, tri, dia} happen. Therefore, using the union bound we
have that

Pr [H(A)] “ Pr [A sets win]

ď
∑

eventP{sl,sos,bulb,bos,tri,dia}
Pr [event] (12)

Our proof is divided into these following lemmas each of which upper bound the
probability of these events.

Lemma 4

Pr [sl] ď 1
2n

` n

2n
` 2eT1

22n
` T2

2n
.

Lemma 5

Pr [sos] ď T2 ` 3 ` nT2 ` n2

2n
` 2eT1T2 ` 6enT1

22n
` 8e2T 2

1

23n
.

Lemma 6

Pr [bulb] ď
(
T2
2

)

2n
` T2T1

22n
` eT1

23n{2 ` n

2n`1
` 1

2n
.

Lemma 7

Pr [bos] ď
(
T2
2

) ` nT2{2 ` n2{2 ` 4
2n

` eT1T2 ` enT1

23n{2 ` nT1T2 ` T1T
2
2 ` 2enT1

22n

` 4e2T 2
1

25n{2 ` 4eT 2
1 T2

23n
.

Lemma 8

Pr [tri] ď
(
T2
2

) ` 18n ` 8
2n

` 3(24e)1{2T1 ` 3(8en)1{2T1

23n{2 ` 9(2)1{3eT 4{3
1

25n{3

` 2nT1T2 ` T1T2 ` T 2
2 T1 ` 12e(2)1{2T 3{2

1

22n
` 8eT 2

1 T2 ` 2T1T2

23n
.
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Lemma 9

Pr [dia] ď
(
T2
2

) ` 30n ` 16
2n

` 4eT 2
1 T2 ` 2T1T2 ` 4eT 2

1 T 2
2

23n

` nT1T2 ` T 2
2 T1 ` n2T1T2 ` nT1T

2
2

22n
` 4eT 3

1 T2

24n

` 40(en)1{3T1

24n{3 ` (8e)1{2nT1 ` 10(2e)1{2nT1

23n{2

` 240e2{3T 2
1

27n{3 ` 8(2)1{2e3{2T 2
1 ` 40(2e)1{2T 2

1

25n{2 .

Plugging all probability upper bounds into (12), rearranging terms and simplify-
ing, we get the required bound. We show these calculations in the full version [13].

We prove Lemmas 4 to 6 in Sects. 5.3 to 5.5 respectively. Due to lack of space
we defer the proofs of Lemmas 7 to 9 to the full version [13]. ��

5.3 Proof of Lemma 4

Proof (Lemma 4). We define the two following events.

1. sloff : A1 made a query h(a,M) “ a
2. slon: A2 made a query h(a,M) “ a

Notice that sl happens only if at least one of sloff or slon happens. Therefore, we
have that

Pr [sl] ď Pr [sloff ] ` Pr [slon] . (13)

We first prove an upper bound on Pr [slon]. Note that, for every query h(a,M)
made by A2, the probability that its answer is a is 1{2n. Therefore, using a union
bound over all the queries of A2, we have that

Pr [slon] ď T2{2n .

To prove an upper bound on Pr [sloff ], we define the following event off-sl-k: A1

makes at least k different queries such that the input salt of the query is the
answer of the query. Using total probability, we have that for any k

Pr [sloff ] ď Pr
[
sloff

∣
∣ �off-sl-k

] ` Pr [off-sl-k] ` k

2n
. (14)

Note that, if the adversary A1 makes at most k different queries, such that the
input salt of the query is the answer, sloff happens only if the salt a that is
sampled uniformly at random is same as the salt for one of those at most k
queries. Therefore, Pr

[
sloff

∣
∣ �off-sl-k

] ď k{2n.
We upper bound Pr [off-sl-k] as follows. Let Bj be the indicator random

variable that indicates whether the j-th query of A1 is such that its answer
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is same as its input salt. Since A1 does not repeat queries, all the Bj ’s are
independent, and Pr [Bj ] “ 1{2n. From the definition of Bj ’s, it follows that

Pr [off-sl-k] “ Pr

⎡

⎣
T1∑

j“1

Bj ě k

⎤

⎦ .

We rewrite the term on the right as

Pr

⎡

⎣
T1∑

j“1

Bj ě k

⎤

⎦ “ Pr [DS Ď [T1], |S| “ k : @j P S,Bj “ 1] .

Using a union bound over all subsets of T1 of size k, we have

Pr [DS Ď [T1], |S| “ k : @j P S,Bj “ 1] ď
∑

SĎ[T1],|S|“k

Pr [@j P S,Bj “ 1] .

Since there are
(
T1
k

)
subsets of [T1] of size k, and all the Bj ’s are independent

and Pr [Bj “ 1] “ 1{2n, we have that

Pr [DS Ď [T1], |S| “ k : @j P S,Bj “ 1] ď
(
T1
k

)

2nk
.

Therefore

Pr [off-sl-k] ď
(
T1
k

)

2nk
ď

(
eT1

k2n

)k

.

Plugging this in (14), we have that for any k,

Pr [sloff ] ď
(

eT1

k2n

)k

` k

2n
.

We let k “ max
(
n, 2eT1

2n

)
. If n ď 2eT1

2n , we have that k “ 2eT1
2n ě n. Therefore,

(
T1
k

)

2nk
ď

(
eT1

k2n

)k

ď
(

1
2

)k

ď 1
2n

.

Otherwise if n ą 2eT1
2n , we have that k “ n ą 2eT1

2n . Therefore,
(
T1
k

)

2nk
ď

(
eT1

k2n

)k

ď
(

1
2

)k

“ 1
2n

.

Hence,

Pr [sloff ] ď 1
2n

` n

2n
` 2eT1

22n
.

Plugging this back into (13) gives us

Pr [sl] ď 1
2n

` n

2n
` 2eT1

22n
` T2

2n
.

��
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5.4 Proof of Lemma 5

Proof (Lemma 5). We first define the three following events.

1. sosoff : A1 made queries h(a,M ′) “ z and h(z,M ′′) “ z
2. sosoffon: A1 made a query h(y,M ′′) “ y and A2 made a query h(a,M ′) “ y
3. soson: A2 made a query h(z,M ′) “ z, i.e., a query whose answer is the same

as its input salt

From inspection one can verify that sos happens only if at least one of sosoff ,
soson, sosoffon happen. It follows that

Pr [sos] ď Pr [sosoff ] ` Pr [soson] ` Pr [sosoffon] . (15)

We first upper bound Pr [soson]. Note that for every query h(a,M) made by A2,
the probability that its answer is a is 1{2n. Therefore, using a union bound over
all the queries of A2, we have that

Pr [soson] ď T2{2n . (16)

We next upper bound Pr [sosoffon]. Recall that the event off-sl-k defined in the
proof of Lemma 4: A1 makes at least k different queries such that the input salt
of the query is the answer. We have that

Pr [sosoffon] ď Pr
[
sosoffon

∣
∣ �off-sl-k

] ` Pr [off-sl-k] .

In this case, sosoffon happens only if A2 makes a query whose answer is the input
salt of one of at most k such queries. Therefore, we have that for any k,

Pr [sosoffon] ď Pr [off-sl-k] ` kT2

2n
.

As seen in the proof of Lemma 4, setting k “ max
(
n, 2eT1

2n

)
makes Pr [off-sl-k] ď

1{2n. Therefore, by setting this value of k, we have that

Pr [sosoffon] ď nT2

2n
` 2eT1T2

22n
` 1

2n
. (17)

We finally upper bound Pr [sosoff ]. For this we recall (m ` 1)-col as the event
that we defined in the proof of Theorem 4. We say that (m ` 1)-col happens if
the A1 has made m ` 1 distinct random oracle queries that all have the same
answer. Using total probability, we have that for any k,m

Pr [sosoff ] ď Pr
[
sosoff

∣
∣ �off-sl-k ^ �(m ` 1)-col

] ` Pr [off-sl-k _ (m ` 1)-col]

ď Pr
[
sosoff

∣
∣ �off-sl-k ^ �(m ` 1)-col

] ` Pr [off-sl-k] ` Pr [(m ` 1)-col] .
(18)

We claim that

Pr
[
sosoff

∣
∣ �off-sl-k ^ �(m ` 1)-col

] ď mk

2n
.
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This is because if off-sl-k and (m ` 1)-col do not happen, there can be at most
k ¨ m salts a that satisfy that A1 makes a query h(a,M ′) “ z and h(z,M ′′) “ z.
The probability that the salt a that is sampled uniformly at random is among
one of those at most k ¨ m salts is at most mk

2n .
From our calculations in the proof of Theorem 4, we have that for m “

max
(
n, 4eT1

2n

)
, Pr [(m ` 1)-col] ď 1{2n. We also know that for k “ max

(
n, 2eT1

2n

)
,

Pr [off-sl-k] ď 1{2n. We set m, k to these values and obtain from (18) that

Pr [sosoff ] ď 2
2n

` n2

2n
` 6enT1

22n
` 8e2T 2

1

23n
. (19)

This is because for m “ max
(
n, 4eT1

2n

)
, k “ max

(
n, 2eT1

2n

)
,

k ¨ m ď n2 ` 6enT1{2n ` 8e2T 2
1 {22n .

Plugging (16), (17) and (19) into (15), we get that

Pr [sos] ď T2 ` 3 ` nT2 ` n2

2n
` 2eT1T2 ` 6enT1

22n
` 8e2T 2

1

23n
.

��

5.5 Proof of Lemma 6

Proof. We define the three following events.

1. bulboff : A1 made queries h(a,M) “ y, h(a,M ′) “ y for some M ‰ M ′ and y
2. bulboffon: A1 made queries h(a,M) “ y, and A2 made a query with answer y

for some M,y
3. bulbon: A2 made queries h(a,M) “ y, h(a,M ′) “ y for some M ‰ M ′ and y

Observe that bulb happens only if at least one of bulboff , bulboffon, bulbon happen.
Therefore

Pr [bulb] ď Pr [bulboff ] ` Pr [bulboffon] ` Pr [bulbon] . (20)

The rest of the proof consists of upper bounding these probabilities one by one.
We begin with Pr [bulbon]. Observe that bulbon happens only if A2 makes two
queries that have the same answer. The probability of any two queries of A
having the same answer is 1{2n. Using a union bound over all pairs of queries of
A2, we have that

Pr [bulbon] ď
(
T2
2

)

2n
. (21)
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We next upper bound Pr [bulboffon]. Let Qa be the random variable denoting the
number of queries A1 makes with salt a. Using total probability

Pr [bulboffon] “
T1∑

i“1

Pr [Qa “ k] Pr
[
bulboffon

∣
∣ Qa “ k

]

“
T1∑

i“1

Pr [Qa “ k] ¨ kT2

2n

“ T2

2n
¨ E [Qa] “ T1T2

22n
. (22)

The second equality above follows because if A1 makes k queries with salt
a, the probability that bulboffon happens is at most kT2{2n using a union bound
over all queries of A2. The final equality uses the fact that E [Qa] “ T1{2n,
because A1 makes T1 queries and a is sampled uniformly at random.

Finally, we upper bound Pr [bulboff ]. We define an event off-bulbs-k as follows:
there is a set of at least k distinct salts a1, . . . , ak such that for each ai, A1 has
made a pair of queries h(ai,Mi) “ z and h(ai,M

′
i) “ z for Mi ‰ M ′

i .
We have that for any k,

Pr [bulboff ] ď Pr
[
bulboff

∣
∣ �off-bulbs-k

] ` Pr [off-bulbs-k] . (23)

Since bulboff happens if for the salt a that is chosen uniformly at random from
{0, 1}n, A1 had queried h(a,M), h(a,M ′) that have the same answer, we have
that Pr

[
bulboff

∣
∣ �off-bulbs-k

] ď k{2n. We upper bound Pr [off-bulbs-k] using a
compression argument.

Note that the event off-bulbs-k is similar to the event off-oneblk-k we defined
in the proof of Theorem 4, the only difference being the salt length was s there
and is n here. However, Pr [off-oneblk-k] did not depend on s, hence we can
prove the same bound for Pr [off-bulbs-k]. We showed in that proof that for
k “ max

(
eT1
2n{2 , n{2)

, Pr [off-oneblk-k] ď 1{2n.
Hence from (23) we have

Pr [bulboff ] ď eT1

23n{2 ` n

2n`1
` 1

2n
. (24)

Plugging (21), (22) and (24) into (20) gives us that

Pr [bulb] ď
(
T2
2

)

2n
` T2T1

22n
` eT1

23n{2 ` n

2n`1
` 1

2n
.

��
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