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Abstract. We continue the study of t-wise independence of substitution-
permutation networks (SPNs) initiated by the recent work of Liu, Tessaro,
and Vaikuntanathan (CRYPTO 2021).

Our key technical result shows that when the S-boxes are randomly and
independently chosen and kept secret, an r-round SPN with input length
n = b ·k is 2−Θ(n)-close to t-wise independent within r = O(min{k, log t})
rounds for any t almost as large as 2b/2. Here, b is the input length of the S-
box and we assume that the underlying mixing achieves maximum branch
number. We also analyze the special case of AES parameters (with random
S-boxes), and show it is 2−128-close to pairwise independent in 7 rounds.
Central to our result is the analysis of a random walk on what we call
the layout graph, a combinatorial abstraction that captures equality and
inequality constraints among multiple SPN evaluations.

We use our technical result to show concrete security bounds for SPNs
with actual block cipher parameters and small-input S-boxes. (This is in
contrast to the large body of results on ideal-model analyses of SPNs.) For
example, for the censored-AES block cipher, namely AES with most of the
mixing layers removed, we show that 192 rounds suffice to attain 2−128-
closeness to pairwise independence. The prior such result for AES (Liu,
Tessaro and Vaikuntanathan, CRYPTO 2021) required more than 9000
rounds.

1 Introduction

The design of block ciphers like the Advanced Encryption Standard (AES) is
one of the most central topics in practical cryptography. Our confidence in their
security stems from decades of cryptanalysis, spanning a wide range of attacks
including linear [38] and differential [4] cryptanalysis, higher-order [33], trun-
cated [31] and impossible [30] differential attacks, interpolation [25] and algebraic
attacks [13], integral cryptanalysis [32], biclique attacks [5], and so on. These
attacks have so far failed to make a dent in the conjectured security of AES
as a (fixed-parameter) pseudorandom permutation. Nonetheless, we remain very
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far from rigorously justifying that security actually holds. Crucially, the design
methodology behind most block ciphers iterates a very weak round function (too
weak to achieve any meaningful security notion). It is not clear whether it is even
possible to formulate a meaningful non-tautological assumption that implies the
security of a block cipher within the classical framework of provable security.

t-wise independent ciphers. Facing the above limitations, this paper con-
tinues a line of work justifying the security of block ciphers against restricted
classes of attacks, with a focus on substitution permutation networks (SPNs), an
important class of block ciphers that includes AES. In particular, we build on
top of recent work by Liu, Tessaro, and Vaikuntanathan (LTV) [37] that studies
the t-wise independence of SPNs as a “catch-all” security property that prevents
all t-input statistical attacks. (The notion was already studied earlier [7,24] for
less standard block cipher constructions.)

We take a quantitative angle where, for a given t, we aim to know the small-
est ε = ε(r) for which an r-round SPN is ε(r)-close to a t-wise independent
permutation. The case t = 2 already implies, for a small enough ε, security
against linear [38] and differential [4] attacks, which have (on their own) been
the subject of hundreds of works. Similarly, security against degree-d higher-
order differential attacks [33] follows when t = 2d.

The results from [37] suffer however from two major limitations, which we
aim to address here: First, they only prove pairwise independence of SPNs.
Second, for AES-like parameters, their pairwise-independence bound effectively
requires thousands of rounds to achieve meaningful security matching practical
expectations. (Concretely, more than 9000.1)

Our Contributions, in a Nutshell. In this work, we study the t-wise indepen-
dence of SPNs when the S-boxes are randomly chosen, independent, and secret,
and thus act as the actual secret keys. Unlike a number of recent works in the
random S-box model (e.g., [10,18,40]), which assume the S-box inputs to be
as large as the security parameter, here we target a scenario with small-input
S-boxes (e.g., 8 bits, as in AES), which presents a unique challenge. Random
S-box SPNs were for instance also studied by Baignères and Vaudenay [3], who
quantified the linear and differential probabilities in the limit as the number of
rounds goes to infinity. Here, instead, we prove concrete bounds for the stronger
property of t-wise independence. A summary of our results is given in Table 1.

While it is interesting to study random S-boxes in their own right, as they
have been used in actual ciphers (e.g., GOST [41] and AES variants [45]), we
really want to derive conclusions for block ciphers with fixed S-boxes (as [37]
did) from our results. An optimistic interpretation of our results is that random,
secret, S-boxes yield a good heuristic approximation of the behavior of SPNs
with a concrete S-box (e.g., the inversion map x �→ x2b−1 as in AES). But we
also offer a more pragmatic interpretation, based on the fact that a random S-box
can be approximated by the sequential composition of an actual S-box (where
a key is XORed prior to each call). Our analyses in the random S-box model

1 LTV prove that 6r-round AES is 2r−1(0.472)r-close to pairwise independent, which
becomes smaller than 2−128 for r ≥ 1528.
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Table 1. Results for the t-wise independence of SPN∗ and AES∗. Here, b is the
length of the input to the S-box (the word length or block size), and k is the width for
SPN∗ (equivalently, the number of parallel S-box invocations). All of the SPN∗ results
assume a linear mixing layer with maximum branch number. The AES∗ result uses the
AES mixing layer, k = 16, b = 8.

Rounds t Closeness Theorem

SPN∗ 2 O(1) 2−Ω(kb) Theorem 2

2 2(0.499−1/(4k))b 2−b Theorem 3

O(k) 2(0.499−1/(4k))b 2−Ω(kb) Theorem 3 + [28,39]

O(log t) 20.499b 2−Ω(kb) Theorem 4

AES∗ 7 2 2−128 Theorem 6

censored AES 192 2 2−128 Theorem 7

therefore carry over to a concrete block cipher which can be thought of as an
SPN with a number of mixing layers removed (what we refer to as a “censored”
SPN or SPN∗).

We now go back to our contributions in a bit more in detail.
Substitution-permutation Networks. To state our results more concretely,
recall that a substitution permutation network (SPN) with word length b, width
k, and r rounds, is defined by an invertible substitution box (or S-box) S : F → F,
where F = F2b , and an invertible mixing layer M : F

k → F
k. (One usually focuses

on linear mixing functions as we do in this paper.) Computation proceeds in r
rounds, given input vector x(in) = y(0) ∈ F

k and round keys k(0), . . . ,k(r) ∈ F
k.

For i = 1, . . . , r + 1 we compute

x(i) =
[
S

(
y(i−1)[1] + k(i−1)[1]

)
, . . . , S

(
y(i−1)[k] + k(i−1)[k]

)]
.

y(i) = Mx(i)

The final output is y(out) = x(r+1). See Fig. 1 for an illustration. (Note that
in this representation, the final operation is the application of S-boxes, with no
further mixing. This differs from some of the literature; however, the difference
is inconsequential to our results.) In an actual block cipher, one would compute
the round keys from a short key via a suitable key-scheduling algorithm, but
here we follow the convention from prior works of using independent keys for
the analysis.

Typical choices for the above parameters are those from AES, where k = 16
and b = 8, and one should think of these when assessing whether a result is
meaningful.

t-wise Independence for Random S-Boxes. The bulk of our results will be
concerned with the analysis of SPNs in a model where the S-boxes are ideal, i.e.,
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Fig. 1. Illustration of a 3-round SPN.

randomly chosen and secret. In other words, we replace the step

x(i)[j] ← S(y(i−1)[j] ⊕ k(i−1)[j])

for i = 1, . . . , r + 1 and j = 1, . . . , k with

x(i)[j] ← S
(i−1)
j (y(i−1)[j])

where S
(i−1)
j is a uniformly chosen random permutation on F. Here, we can think

of the S-box descriptions as part of a longer key, and following the notation
from [3], we refer to this variant as SPN∗.

Formally, we measure the proximity to t-wise independence by picking t arbi-
trary distinct input vectors and obtain the t output vectors processed by the
r-round SPN∗ construction. We then give an upper bound on the statistical dis-
tance of these output vectors from t uniformly sampled, but distinct, vectors.
As observed in [37], such a distance bound also gives explicit concrete bounds
for the linear and differential probabilities. (In particular, our result gives con-
crete bounds for such quantities, as opposed to [3] which only shows eventual
convergence to a particular probability as the number of rounds goes to infinity.)

Layouts and Random Walks. At the core of our results is the formaliza-
tion of the concept of a layout, which allows us to reduce the question of t-wise
independence to the analysis of a random walk which is entirely defined by the
mixing layer M . Concretely, if we are given a t-tuple of vectors (y1, . . . ,yt),
and map them to (x1, . . . ,xt) by applying the same k random S-boxes to each
of the vectors, we observe that the mapping respects equality and inequality
constraints. For example, if yi[j] = yi′ [j] for i �= i′, then xi[j] = xi′ [j]. Inequal-
ities are also similarly preserved. A t-wise layout I is, formally, a description
of equality/inequality constraints among t k-dimensional vectors over F. Cru-
cially, applying random S-boxes to any t-tuple (y1, . . . ,yt) satisfying the layout
I results in a t-tuple picked uniformly at random from the set of all t-tuples that
satisfy the same layout I. For the special case of t = 2, a layout is equivalent to
an activity pattern formulated and studied in the AES literature [1].

This means in particular that the evaluation of an r-round SPN∗ on t inputs
corresponds to taking r random steps on the layout graph. We start with an
arbitrary layout I0, and step i = 1, . . . , r consists of:
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– Picking a random t-tuple (x(i)
1 , . . . ,x(i)

t ) that lies in layout Ii−1;
– Compute y(i)

j = Mx(i)
j for all j = 1, . . . , t; and

– Set Ii to be the (unique) layout satisfied by (y(i)
1 , . . . ,y(i)

t ).

The convergence of this walk to the distribution over layouts induced by a uni-
formly sampled t-tuple of distinct vectors directly yields t-wise independence of
the r-round SPN∗. For the case t = 2, this random walk was also described in [3]
without any explicit convergence guarantees, which we provide here.

We provide a careful analysis of this random walk by first characterizing the
transition probability of going from a layout I to a layout J and then derive an
upper bound on the distance from the stationary distribution after one single
step, provided we start from a nice enough layout, i.e., one that does not induce
too many collisions. Then, very roughly, one shows that a nice layout is reached
in one round with very high probability. We use this analysis to derive a number
of theorems, which all assume that the mixing layer achieves maximum branch
number, i.e., for all x ∈ F

k \ {0}, we have wt(x) + wt(Mx) ≥ k + 1, where wt(·)
denotes Hamming weight, i.e., the number of non-zero components.

Our first two theorems give the smallest ε depending on whether t is small
or large.

Theorem 2. 2-round SPN∗ is ε-close to t-wise independent, for ε =
t2·2k+1

(2b)k/(2t) + t · (
8·t3
2b

)k/2.

Theorem 3. For any α ∈ (0, 1], 2-round SPN∗ is ε-close to t-wise inde-
pendent, where ε = t2

α·2b + t · ( (2t)2−α

(2b)1−α

)k.

A standard goal is to make ε equal 2−Ω(k·b), as n = k ·b is the input length of the
SPN, and the first theorem implies that for small constant t = O(1), we achieve
distance 2−Ω(n) already after two rounds. In contrast, by picking the suitable
α, the second theorem allows t to become almost as large as 2b/2 (concretely,
we require t < 2(0.499−1/(4k))b, which is as large as 14 for AES-like parameters),
but only gives ε = 2−Ω(b). However, one can then amplify this using existing
amplification results [28,39] to achieve ε = 2−Ω(bk) after 2k rounds.

We also show an alternative theorem that also yields ε = 2−Ω(bk), but this
time using O(log t) rounds, instead of O(k). This follows from the following.

Theorem 4. Let t = 2r. Then, r-round SPN∗ is ε-close to 2r-wise inde-

pendent for ε = t·2 11
4

1−2− k
4

· (
8·t2
2b

)k/4 if k > 4.

The Case of AES. The specific case of AES is interesting because its mixing
layer does not achieve the maximal branch number. One could in fact extend
some of our techniques above to a more relaxed branch number. However, we give
a more precise analysis of a variant of AES with random S-boxes which, unlike
the above SPN∗, uses the actual AES mixing layer (alternating the ShiftRows
and MixColumn operations). It also sets k = 16 and b = 8. We refer to this
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variant as AES∗. We show that AES∗ is 2−128-close to pairwise independent
already for seven rounds. To achieve these results, we combine experimental
computations with our random walk framework. We note that this result could
have been obtained computationally also using results from [3], in particular
their description of the random walk on layouts for the special case of AES∗

and t = 2. (Their description is however not sufficient to yield the results in the
other sections of this paper, nor do they actually carry out the computation, or
target a security property as strong as pairwise-independence.)

Concrete S-Boxes and Censored SPNs. For the special case of pairwise
independence, one can easily transform our results for random S-boxes into
results for concrete S-boxes if we are willing to replace the application of a single
random S-box S

(i)
j with the repeated application of the AES S-box (namely, the

patched inversion function over F) alternated with the addition of a key value
prior to each S-box call. We refer to the resulting cipher as censored SPN (or
censored AES), because it is equivalent to an SPN where a fraction of mixing
layers have been removed (i.e., “censored”). We give a censored variant of AES
which is 2−128-close to pairwise independent after 192 rounds. We conjecture
that 192-round of AES itself is also 2−128-close to pairwise independent, i.e., the
censoring mixing layers never increases security.

This should be contrasted with [37], which shows that AES is 2−128-close to
pairwise independent after (more than) 9000 rounds.

1.1 Related Work: The “Large” S-Box Model

A number of works [10,18,40] have considered SPNs with random S-boxes when
the input length b is large (i.e., it can be thought of as the security parameter),
and aims to prove an r-round SPN to be a (strong) pseudorandom permutation.
Miles and Viola [40] deal with secret S-boxes (as we do here), whereas [10,18]
consider a single public S-box (accessible as a random oracle) which is then
keyed within the construction. (But clearly, this implies an analysis in a model
where the S-box is secret.) These works fit within the bigger scope of a long line
of works [2,6,8,9,11,12,15,16,19–23,35,36,44]) analyzing block cipher construc-
tions in ideal models. A recent paper by Dodis, Karthikeyan, and Wichs [17]
then suggests conjectures under which these large S-box analyses could imply
security in the small S-box regime (for full pseudorandomness).

While the result is not explicitly stated, one can, in fact, apply the toolkit
from [10], which in turn relies on the H-coefficient method [43], to show that a
1-round SPN is ε-close to t-wise independent for ε = O(kt2/2b). For b = 8 and
k = 16, one might hope to achieve ε = 1/2 for t = 2 (and in turn, this can
be boosted using [39]), but the involved constants prevent that. In addition, we
observe that this bound has the unnatural feature that it degrades as a function
of the width parameter k, which is exactly what we show not to be the case.
Our results adopt completely different techniques, that rely on the analysis of
random walks on the layout graph, and indeed also indicate an improvement of
the achievable ε as k grows, as intuition would suggest.
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While (almost) t-wise independent permutations can be constructed in many
other ways (see, e.g. [29]), that is not the point of this paper. Our goal is to ana-
lyze natural constructions, in this case following the substitution-permutation
paradigm, which are provably almost t-wise independent and plausibly pseudo-
random.

1.2 Technical Overview

In this overview, we briefly explain how our technique works in the special case of
2-wise (or pairwise) independence of SPN∗ (i.e., SPN with random S-boxes). A
more detailed analysis of the pairwise setting can be found in Sect. 4. The more
involved analysis of the general t-wise setting follows the same framework, and
is presented in Sect. 5. Concrete bounds for censored AES are given in Sect. 6.

Differences and Layouts. As we only consider two inputs, we can follow the
standard differential cryptanalysis approach of working with differences. For
any input difference x(in)

Δ = x(in)
1 −x(in)

2 , we need to show that the corresponding
distribution of the output difference y(out)

Δ = y(out)
1 − y(out)

2 is close to uniform.
We consider a two-round SPN∗, so we can define analogously differences x(1)

Δ ,
y(1)

Δ , x(2)
Δ , y(2)

Δ , and y(out)
Δ . See Fig. 2 for an illustration.

Let I(0) denote the layout of (x(in)
1 ,x(in)

2 ). In the pairwise setting, the layout
can be defined as a subset I(0) ⊆ [k] including the coordinates where x(in)

1 ,x(in)
2

collide, or, equivalently, I(0) consists of all the coordinates where x(in)
Δ is zero. In

general, we say I ⊆ [k] is the layout of x ∈ F
k, or x is in layout I, if I consists

precisely of the zero coordinates of x. That is,

x in I means ∀i ∈ [k], i ∈ I ⇐⇒ x[i] = 0.

Due to the randomness of the S-boxes, x(1)
Δ is distributed uniformly among all

vectors in layout I(0). Similarly, if we let I(1) (resp. I(2)) denote the layout of y(1)
Δ

(resp. y(2)
Δ ), then x(2)

Δ (resp. y(out)
Δ ) is distributed uniformly among all vectors in

layout I(1) (resp. I(2)).
It is easy to show that if I(2) is close to the distribution on layouts induced by

a random (non-zero) vector, then the distribution of y(out)
Δ is close to uniform.

Thus the heart of the analysis is to understand how the distribution of I(r)

depends on that of I(r−1). Evidently, this depends on the characteristics of the
linear mixing layer. In particular, we show the following lemma.

Lemma 3 (informal). If I(r−1) is nice in the sense that |I(r−1)| ≤ k/2,
then I(r) is 2−Ω(kb)-close in variation distance to the layout of a random
vector.

The Blueprint. We now use the above lemma to prove that 2-round SPN∗ is
close to 2-wise independent using the following blueprint. All the error terms in
the analysis have magnitude 2−Ω(kb).
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Fig. 2. Illustration of a 2-round SPN∗ Network. Each S-box is a uniformly random
permutation from F to F. These S-boxes form the key of the SPN∗ network.

In the first round: If I(0) is nice, then I(1) is statistically close to the layout
of a random vector by Lemma 3 above, so I(1) is nice with high probability.
If I(0) is not nice, then we claim that I(1) must be nice due to the fact that
the linear mixing matrix M has maximal branch number. Recall that this
guarantees wt(x) + wt(Mx) ≥ k + 1 for all 0 �= x ∈ F

k. Thus, if I(0) is not
nice, I(1) must be nice. In either case, I(1) is very likely to be nice.

In the second round: Since I(1) is very likely to be nice, I(2) is close to the
layout of a random vector again by Lemma 3, which implies that y(out)

Δ is
close to uniform.

Our analysis of the t-wise setting in Sect. 5 follows the same high-level framework,
which requires in particular generalizing the notion of a layout and its niceness.

Proof Sketch of Lemma 3. The rest of this overview provides a proof sketch of
the lemma. The transition probability from I(r−1) to I(r) can be written as

Pr
[
I(r) = J

∣∣ I(r−1) = I
]

= Pr
x inI

[Mx in J ] =
#{x s.t. x in I ∧ Mx in J}

#{x s.t. x in I} .

Define an indicator function 1M where 1M (x,y) = 1 if and only if Mx = y.
Then

Pr
[
I(r) = J

∣∣ I(r−1) = I
]

=

∑
x inI

∑
y inJ 1M (x,y)∑
x inI 1

. (1)

To compute the numerator, it turns out that it is convenient to relax the notion
of being in a layout. In particular, we say that x satisfies layout I as follows:

x SAT I means ∀i ∈ [k], i ∈ I =⇒ x[i] = 0.

In particular, if x is in layout I, it satisfies layout I, but not vice versa.
Note that if M has the maximal branch number, then one can show that

∑
x SATI

∑
y SATJ

1M (x,y) =

{
(2b)k−|I|−|J| if |I| + |J | ≤ k ,

1 if |I| + |J | > k .
(2)
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Also, note that ∑
x SATI

∑
y SATJ

1
(2b)k

= (2b)k−|I|−|J| (3)

is very close to (2), off by at most 1 for any I and J . In order to express the
numerator of (1) in closed form, we first note that (2) and (3) should remain
close if the sum operator is replaced by

∑
x inI

∑
y inJ . That is

∑
x inI

∑
y inJ

(
1M (x,y) − 1

(2b)k

)
= O(22k).

This can be verified by the inclusion-exclusion principle (details in Sect. 4.1).
Plugging it in (1) gives a good bound on the transition probability

Pr
[
I(r) = J

∣∣ I(r−1) = I
]
=

∑
x inI

∑
y inJ

1
(2b)k

+ O(2k)

∑
x inI 1

=

=Pry[y inJ]︷ ︸︸ ︷∑
y inJ

1
(2b)k

+

err︷ ︸︸ ︷
O(22k)

(2b − 1)k−|I| .

The error term is of the order of 2−Ω(kb) if I is nice (i.e., |I| ≤ k/2). The
transition probability is close to

∑
y inJ

1
(2b)k , which is the probability that a

random vector lies in J . This can then be turned into a bound on the statistical
distance to conclude the proof of the lemma.

2 Preliminaries

For any positive integer n, let [n] denote the set {1, 2, . . . , n}. We will use bold-
face letters such as x to denote vectors and will denote the ith coordinate of such
a vector by x[i]. For an integer b ≥ 1, we let F2b denote the finite field of size 2b.
We also denote a finite field by F when the field size is clear from the context.

2.1 Substitution-Permutation Networks (SPN)

A Substitution-Permutation Network (SPN) is parameterized by the number of
rounds, denoted by r; the word length, denoted by b; the width parameter,
denoted by k; the linear mixing permutation, a full rank matrix M : (F2b)k →
(F2b)k; and an S-box permutation S : F2b → F2b . All these parameters are
public. The network is a keyed permutation over F

k
2b , so every input (output)

vector is bk-bit long. The key is a tuple of r+1 (meant to be uniformly random)
vectors k0,k1, . . . ,kr ∈ (F2b)k. The “independent round keys” assumption here
is very common and rooted in the model of Markov Ciphers from the seminal
works of Lai, Massey, and Murphy [34], Nyberg [42] and follow-ups. We follow
the convention that the number of rounds is the same as the number of mixing
layers. In Fig. 1, we give an illustration of a 3-round SPN.
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SPN with Random Secret S-boxes (SPN ∗). Much of this work will deal with SPN
networks where each S-box is chosen independently at random from the set of
all permutations on F := F2b , and kept secret. In this case, the set of S-boxes
acts as the key, and there is no reason to have a separate addition of round keys.
Thus, the key of the network consists of k(r + 1) permutations S

(i)
j : F → F (for

0 ≤ i ≤ r, 1 ≤ j ≤ k).
Given input x(in) = y(0) ∈ F

k and the key, the output y(out) = x(r+1) ∈ F
k

is determined by alternating the following two steps, as illustrated in Fig. 2. For
consistency, we let y(0) be another name for x(in) and let x(r+1) be another name
for y(out).

Substitution Step-i (0 ≤ i ≤ r) For 1 ≤ j ≤ k, let x(i+1)[j] = Si,j(y(i)[j]),
Permutation Step-i (1 ≤ i ≤ r) Let y(i) = Mx(i).

We call x(i) and y(i) the intermediate values of the i-th round. Then the
input x(in), also called y(0), is in “the 0-th round”. This gets fed into the substi-
tution step-0 which produces x(1). Permutation step-i is inside the i-th round.
Substitution step-i is the boundary between the i-th round and the (i + 1)-th
round. The output y(out), also called x(r+1), is in “the (r + 1)-th round”.

Branch number. We use the definition of the branch number of a matrix that
quantifies how well the linear layer “mixes” its input.

Definition 1. The branch number of a matrix M ∈ (F2b)k×k is defined to be

br(M) = min0 �=α∈(F2b )k(wt(α) + wt(Mα))

where wt denotes the Hamming weight.

Having the maximal branch number (namely, k + 1) is considered a desirable
feature for mixing functions [14,27].

Summary of notations. The intermediate states in an SPN (or SPN∗) network
are denoted by boldface letters x or y. The notation x(r) (resp. y(r)) is used
to denote the state at round r; and x(r)[s] denotes the sth coordinate of x(r).
When dealing with multiple inputs, we let the subscript denote which input
we are referring to: i.e., x(r)

i denotes round-r state of the ith input. We let
x(r)

1:t = (x(r)
i )i∈[t] = (x(r)

1 , . . . ,x(r)
t ) be a shorthand for a tuple of vectors.

3 Layouts

This section introduces layout, a key notion of this paper. In the pairwise setting,
layout is similar to the notions of an activity pattern [26] or support [3] of an
input that have been formulated in the literature in the context of differential
and linear cryptanalysis. Our notion considers the generalized setting and deals
with t-tuples of inputs for an arbitrary t.
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Motivation. Given t inputs x(in)
1 , . . . ,x(in)

t to an SPN∗ network, we want to char-
acterize the joint distribution of the outputs y(out)

1 , . . . ,y(out)
t when all the S-

boxes are i.i.d. uniform. The evaluation of the SPN∗ on these t inputs is essen-
tially a Markov chain. The dependency between the intermediate values can be
illustrated by the following Bayesian network.

x(in)
1:t x(1)

1:t y(1)
1:t x(2)

1:t y(2)
1:t

· · ·

Here x(r)
1:t denotes the tuple of t vectors (x(r)

1 , . . . ,x(r)
t ), and so does y(r)

1:t .
The tuple y(r)

1:t depends deterministically on x(r)
1:t via the permutation step.

The substitution step is more interesting. The randomness of the substitution
step-r consists of k S-boxes S

(r)
1 , . . . , S

(r)
k . Each S-box S

(r)
s is applied to the corre-

sponding coordinate for all inputs, namely, y(r)
i [s] for all i ∈ [t]. The substitution

step erases most information, but some are preserved. In particular,

– y(r)
i [s] = y(r)

j [s] if and only if x(r+1)
i [s] = x(r+1)

j [s].

And it is not hard to verify that this is the only information preserved. In
particular, the distribution of x(r+1)

1:t is uniform among all tuples that satisfy

∀i, j ∈ [t], ∀s ∈ [k], x(r+1)
i [s] = x(r+1)

j [s] ⇐⇒ y(r)
i [s] = y(r)

j [s].

To capture and formalize these constraints, we introduce the notion of a layout
below. The layout of t vectors x1:t should specify whether xi[s] = xj [s], for any
i, j ∈ [t], s ∈ [k].

Definition 2 (layouts). A t-wise layout I is defined as I = (Ii,j)1≤i<j≤t.
Each Ii,j is a subset of [k]. For a tuple of t vectors x1:t = (x1, . . . ,xt) ∈ (Fk)t,
we say that the tuple is in a layout I, denoted by x1:t in I, if

∀1 ≤ i < j ≤ t, ∀s ∈ [k], s ∈ Ii,j ⇐⇒ xi[s] = xj [s].

We say I is the layout of x1:t, denoted by layout(x1:t) = I, if x1:t is in layout I.
We also define a weaker notion: say x1:t satisfies a layout I, denoted by

x1:t SAT I, if and only if

∀1 ≤ i < j ≤ t, ∀s ∈ [k], s ∈ Ii,j =⇒ xi[s] = xj [s].

Given another layout J = (Ji,j)1≤i<j≤t, we say J is stricter or equal to I,
denoted by J ⊇ I or I ⊆ J , if

∀1 ≤ i < j ≤ t, Ji,j ⊇ Ii,j .

Example 1. Consider the 3-wise layout I = (I1,2, I1,3, I2,3) = ({1}, {2}, {3}).
Then, the tuple of vectors x1 = [a, b, c′], x2 = [a, b′, c], and x3 = [a′, b, c] lay in
the layout I a long as a �= a′, b �= b′, c �= c′.
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Note that not all layouts are “valid”. For example,

I = (I1,2, I1,3, I2,3) = ({1}, ∅, {1}).

is not the layout of any 3-tuple. Because 1 ∈ I1,2 means the first two vectors agree
on coordinate 1, and 1 ∈ I2,3 means the last two vectors agree on coordinate 1,
by transitivity, these imply 1 ∈ I1,3. We say a layout I is valid if for all s ∈ [k]
and for all i < i′ < i′′, if any two of Ii,i′ , Ii,i′′ , Ii′,i′′ contain s, so does the third
one.

Random Walks on Layouts. Using the notion of layouts, the distribution of
x(r+1)

1:t conditioned on y(r)
1:t can be described more concisely: the substitution

step simply samples a random x(r+1)
1:t who is in the same layout as y(r)

1:t . In other
words, the substitution step is equivalent to a two-step process: first extract
the layout of y(r)

1:t , then sample a random tuple from the layout. If letting I(r)

denote the layout of y(r)
1:t (and also x(r+1)

1:t , since they are in the same layout), the
Bayesian network of the SPN∗ evaluation can also be written in the following
way:

x(in)
1:t = y(0)

1:t x(1)
1:t y(1)

1:t x(2)
1:t y(2)

1:t
· · ·

I(0) I(1) I(2)

This Bayesian network view through the lens of layouts suggests that the right
problem to study is the transition probability from I(r) to I(r+1) (induced by the
linear mixing layer). This transition probability could be easier to characterize
since the space of all layouts is much smaller than the space of all t-tuples.

All theorems in this paper follow this framework. They essentially prove
the following statement: Starting from any layout I(0), after some r rounds, the
distribution of I(r) is close to t-wise independent. To complete the framework, we
need to answer two questions: 1) What is the definition of a layout being close to
t-wise independent; and 2) How does a layout being close to t-wise independent
imply that a random tuple in the layout is close to t-wise independent?

Definition 3 (closeness to t-wise independence). Let z1, . . . , zt be sampled
uniformly at random from F

k with (resp. without) replacement. Then we say the
tuple (z1, . . . , zt) is t-wise independent with (resp. without) replacement.

Let (x1, . . . ,xt) be sampled from a distribution. We say (x1, . . . ,xt) is ε-close
to t-wise independent with (resp. without) replacement if

ΔTV

(
(x1, . . . ,xt)(z1, . . . , zt)

)
≤ ε.

Let layout I be sampled from a distribution. We say I is ε-close to t-wise
independent with (resp. without) replacement if

ΔTV

(
I, layout(z1, . . . , zt)

)
≤ ε.
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We say a keyed permutation (e.g., a SPN∗) is ε-close to t-wise independent
with (resp. without) replacement if for any t distinct input x(in)

1:t , the joint distri-
bution of the t corresponding output y(out)

1:t is ε-close to t-wise independent with
(resp. without) replacement, assuming the key is sampled properly.

The following lemma and its corollary show how the distribution of t-tuples is
related to the distribution of their layouts, and justify why this ‘layout’ analysis
suffices for our purposes of proving t-wise independence. Their proofs are deferred
to the full version of the paper.

Lemma 1. Assume I and x1:t = (x1, . . . ,xt) jointly come from a distribution
where x1:t is a random tuple in I when conditioning on I, and similarly for J
and z1:t. Then

ΔTV

(
I, J

)
= ΔTV

(
x1:t, z1:t

)
.

Corollary 1. Suppose I is sampled from a distribution and x1:t = (x1, . . . ,xt)
is sampled uniformly within layout I. Then x1:t is ε-close to t-wise independent
if and only if I is ε-close to t-wise independent.

4 Warm-Up: 2-Wise Independence of 2-Round SPN∗

In this section, we present the core idea of our new technique and demonstrate its
power by showing that a 2-round SPN∗ is 2−Θ(kb)-close to 2-wise independent.
That is, we show that for any two distinct inputs (x(in)

1 ,x(in)
2 ) (which is the same

as (y(0)
1 ,y(0)

2 )) the joint distribution of their corresponding outputs (y(out)
1 ,y(out)

2 )
(which is the same as (x(3)

1 ,x(3)
2 )) is close to 2-wise independent.

Theorem 1. 2-round SPN∗ is ε-close to 2-wise independent, where

ε ≤ 3k

(2b−1)k/2
,

if its linear mixing function has maximal branch number (see Definition 1).

The theorem will be proved in Sect. 4.2. At a high level, the proof is the combi-
nation of the following two statements.

– After the first round, the layout is nice w.h.p. That is, starting from
any pair of inputs, the intermediate layout is “nice” with overwhelmingly
high probability. A layout is nice if the number of collisions (i.e., coordinates
where the two vectors agree) is relatively small.

– If the layout is nice before the second round, the output is close
to 2-wise independent. That is, conditioning on the intermediate layout
being any nice layout, the pair of outputs will be close to 2-wise independent
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Let I(r) denote the layout of (y(r)
1 ,y(r)

2 ) and (x(r+1)
1 ,x(r+1)

2 ). Since the section
only discusses the 2-wise setting, the representation of a layout can be simplified.
A layout is represented by a subset I ⊆ [k], such that i ∈ I means the two vectors
agree on the i-th position.

As pointed out by the standard differential cryptanalysis, it would be helpful
to consider the difference between each pair of vectors

x(r)
Δ := x(r)

1 − x(r)
2 , y(r)

Δ := y(r)
1 − y(r)

2 .

Note that for each s ∈ [k]

y(r)
Δ [s] = 0 ⇐⇒ (y(r)

1 [s] = y(r)
2 [s]) ⇐⇒ s ∈ I(r).

This suggests that y(r)
Δ [s] is also “in” I(r). This can be formalized by introducing

the following simplified definition for the pairwise setting.

Definition 4. A (pairwise) layout I is a subset of [k]. For any vector xΔ and
layout I, define

xΔ SAT I ⇐⇒ (∀s ∈ [k], s ∈ I =⇒ x[s] = 0),
xΔ in I ⇐⇒ (∀s ∈ [k], s ∈ I ⇐⇒ x[s] = 0).

And we say I is the layout of xΔ, denoted by layout(xΔ) = I, if xΔ in I.

Then for any vector difference xΔ = x1 − x2, we have

xΔ SAT I ⇐⇒ (x1,x2) SAT I, xΔ in I ⇐⇒ (x1,x2) in I,

and layout(xΔ) = layout(x1,x2).
Therefore it suffices to only consider the difference vectors, since the whole

analysis can ignore the original pair of vectors.

– Permutation step: y(r)
Δ = Mx(r)

Δ .
– Substitution step: x(r+1)

Δ is a random tuple whose layout is the same as y(r)
Δ .

– Output: The pair of output vectors is ε-close to 2-wise independent if and
only if I(2) = layout(y(2)

Δ ) is ε-close to 2-wise independent (Corollary 1).

4.1 The Layout Transition Probability

This section computes the transition probability from layout I(r) to I(r+1). Their
dependency can be captured by the following Bayesian network.

I(r−1) x(r)
Δ y(r)

Δ I(r)
M
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Let trans-prob(I, J) denote the probability I(r) = J conditioning on I(r−1) = I.
Formally, trans-prob(I, J) is the probability layout(Mx) = J when the (differ-
ence) vector x is sampled uniformly from layout I. By definition

trans-prob(I, J) = Pr
x inI

[
Mx in J

]
=

#
{
x : x in I and Mx in J

}

#
{
x : x in I

} .

To simplify this expression, we introduce some new notations.
For the denominator, we define free(I) = k−|I|, which stands for the number

of “free” coordinates. Then #
{
x : x in I

}
= (2b − 1)free(I).

Denote the numerator by trans-count(I, J). Define indicator function 1M as

1M (x,y) :=

{
1 if Mx = y,

0 otherwise.

Then the numerator can be written as

trans-count(I, J) = #
{
x : x in I and Mx in J

}
=

∑
x inI

∑
y inJ

1M (x,y).

The core idea is to also consider another sum operator
∑

x SATI . For any
function f , we have ∑

x SATI

f(x) =
∑
I′⊇I

∑
x inI′

f(x).

Then by the inclusion-exclusion principle,
∑
x inI

f(x) =
∑
I′⊇I

(−1)|I′\I| ∑
x SATI′

f(x).

Consider the following sum
∑

x SATI

∑
y SATJ

1M (x,y) = #
{
x : x SAT I and Mx SAT J

}
(4)

that looks similar to trans-count(I, J). The only difference is whether to enu-
merate vectors in I, J or satisfying I, J . The value of (4) is easier to compute. It
is the number of solutions of a linear system, which must be a power of |F| = 2b.
In particular, if the matrix M has the maximal branch number, we have

∑
x SATI

∑
y SATJ

1M (x,y) =

{
(2b)free(I)+free(J)−k if free(I) + free(J) ≥ k,

1 if free(I) + free(J) < k.
(5)

Then by the inclusion-exclusion principle,

trans-count(I, J) =
∑
x inI

∑
y inJ

1M (x,y)

=
∑
I′⊇I

∑
J ′⊇J

(−1)|I′\I|+|J ′\J| ∑
x SATI′

∑
y SATJ ′

1M (x,y)

=
∑
I′⊇I

∑
J ′⊇J

(−1)|I′\I|+|J ′\J|(2b
)max(free(I′)+free(J′)−k,0)

.

(6)
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Now we are ready to present our results about the layout transition proba-
bility. They are essentially polishing (6).

Lemma 2. If M has the maximal branch number, the layout transition proba-
bility trans-prob(I, J) := Prx inI

[
Mx in J

]
is bounded by

∣∣∣∣trans-prob(I, J) − (2b − 1)free(J)

(2b)k

∣∣∣∣ ≤ 2free(I)+free(J)

(2b − 1)free(I)
.

Proof. Consider function u(x,y) = 1
(2b)k . If we view u(x,y) as the conditional

probability of y given x, then it captures the process that y is sampled uniformly
at random and is independent of x. Notice that

∑
x SATI

∑
y SATJ

u(x,y) =
∑

x SATI

∑
y SATJ

1
(2b)k

= (2b)free(I)+free(J)−k

is very similar to (5). The difference is no more than 1 for any I, J . Therefore, in
some sense, u is a very good approximation of 1M . With this intuition in mind,
we expect ∑

x inI

∑
y inJ

1M (x,y) −
∑
x inI

∑
y inJ

u(x,y) (7)

to be very small. The difference between them is bounded by∣∣∣∣trans-count(I, J) −
∑
x inI

∑
y inJ

1
(2b)k

∣∣∣∣ =
∣∣∣∣
∑
x inI

∑
y inJ

(
1M (x,y) − 1

(2b)k

)∣∣∣∣

=
∣∣∣∣
∑
I′⊇I

∑
J ′⊇J

(−1)|I′\I|+|J ′\J| ∑
x SATI′

∑
y SATJ ′

(
1M (x,y) − 1

(2b)k

)∣∣∣∣

≤
∑
I′⊇I

∑
J ′⊇J

1 = 2free(I)+free(J).

So we can approximate the transition probability by

trans-prob(I, J) =

∑
x inI

∑
y inJ

1
(2b)k

+ term (7)

∑
x inI

1
=

∑
y inJ

1
(2b)k

︸ ︷︷ ︸
approximation

+
term (7)∑

x inI 1︸ ︷︷ ︸
error

.

The approximation term is particularly nice, as it can be interpreted as the
probability that a random vector lies in layout J . It equals to

∑
y inJ

1
(2b)k

= Pr
y∈Fk

[
y in J

]
=

(2b − 1)free(J)

(2b)k
.

The absolute value of the error term is at most 2free(I)+free(J)/(2b − 1)free(I). ��
Lemma 3. Let M : F

k → F
k be a matrix with maximal branch number. For

any layout I. Let J denote the layout of I after one round of SPN. That is,
trans-prob(I, J) is the probability mass function of J . Then J is ε-close to 2-
wise independent, where ε ≤ 3k/2(2b−1)free(I).
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4.2 The Niceness of a Layout

Implied by Lemma 3, if the starting input difference is in a layout I with large
free(I), then after one round it will be very close to 2-wise independent. However,
consider the extreme case when free(I) = 1, that is, the input difference xΔ is
zero on all but one coordinate. Then after one round of SPN with maximal
branch number mixing, the difference must be non-zero on every coordinate,
which is about (k/2b) away from 2-wise independence.

So for proving 2-wise independent, a layout I with larger free(I) is “easier”
to analyze. We formalize this by defining the niceness of a layout. We say a
layout I is α-nice if |I| = k − free(I) ≤ αk.

To prove Theorem 1, we show that after one round, the layout is likely to be
nice, then after one more round, it will be close to 2-wise independent.

Lemma 4. Assume the mixing function has maximal branch number. For any
2-wise layout I, let J be sampled according to trans-prob(I, J). Then for any
α ∈ [0, 1],

Pr[J is α-nice] ≥ 1 − e · 2k

(2b − 1)αk
.

Proof. The proof starts with an upper bound on the transition probability
trans-prob(I, J) that does not depend on I.

trans-prob(I, J) =

∑
x inI

∑
y inJ 1M (x,y)

(2b − 1)free(I)

≤
∑

x SATI

∑
y SATJ 1M (x,y)

(2b − 1)free(I)
=

(2b)max(free(I)+free(J)−k,0)

(2b − 1)free(I)
.

Focus on the case that free(I)+free(J) > k, since otherwise trans-prob(I, J) = 0.

trans-prob(I, J) ≤ (2b)free(I)+free(J)−k

(2b − 1)free(I)

≤
(

2b

2b − 1

)k

· 1
(2b − 1)k−free(J)

≤ e

(2b − 1)k−free(J)
.

The last inequality holds because the mixing function has maximal branch num-
ber inherently implies k ≤ 2b.

We finish the proof by applying the union bound over all layouts J that are
not α-nice. The number of not-α-nice layouts is no more than 2k. ��
Proof (Theorem 1). Let I(0), I(1), I(2) denote the layout of the inputs, the layout
of the middle vectors, the layout of the outputs respectively.

By Lemma 4,

Pr
[
I(1) is α-nice

] ≥ 1 − e · 2k

(2b − 1)αk
.
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Conditioning on I(1) being an α-nice layout, I(2) is (3k/2(2b−1)(1−α)k)-close
to 2-wise independent, as shown by Lemma 3. Adding up all the errors, I(2) is
ε-close to 2-wise independent, where

ε ≤ 3k

2 · (2b−1)(1−α)k
+

e · 2k

(2b − 1)αk
.

Set α = 1/2 to minimize the statistical distance bound.
��

5 The General Case of t-Wise Independence

In this section, we generalize our analysis of 2-wise independence in Sect. 4 to
the t-wise setting. The high-level framework is mostly the same:

– Introducing the proper notion of nice layouts.
– Starting from any t distinct inputs (x(in)

1 , . . . ,x(in)
t ), after one round (or a few

rounds), the tuple will fall into some nice layout with high probability.
– Core lemma: For any nice layout I, if t inputs (x1, . . . ,xt) are uniformly sam-

pled from layout I, then after the linear mixing, the layout of (y1, . . . ,y1) :=
(Mx1, . . . , Mxt) is close to t-wise independent.

We define nice layouts as follows: For any t-wise layout I = {Ii,j}1≤i<j≤t,
we say I is α-nice if and only if for all 1 < j ≤ t,

∣∣∣∣
⋃
i<j

Ii,j

∣∣∣∣ < αk.

Here α ∈ [0, 1] is a parameter quantifying the niceness of the layout. An equiv-
alent definition is as follows: For any t-tuple x1:t = (x1, . . . ,xt), say xj collides
with x1:j−1 = (x1, . . . ,xj−1) on coordinate s if and only if there exists i < j
such that xi[s] = xj [s]. Then x1:t is in an α-nice layout if and only if for every
1 < j ≤ t, xj collides with x1:j−1 on at most αk coordinates.

If a t-tuple is sampled from a nice layout, it will be close to t-wise independent
after one more round, as shown by our core lemma (Lemma 5). At a high level,
the proof inductively uses the technique of its pairwise analog in Sect. 4.

Thanks to this core lemma, in order to show a r-round SPN∗ is close to t-wise
independent, it suffices to show that after the first r − 1 rounds, the tuple falls
into some nice layout with high probability. We present three different results of
this flavor. They differ in the following three criteria

– How large t can be (the core lemma supports t up to 20.499b);
– How small the statistical error is (we are aiming for 2−Θ(bk) error); and
– How many rounds are required (ideally 2 rounds).

Each of our results optimizes two of the criteria, and compromises on the third
criterion. Section 5.2 can only handle small t. Section 5.3 supports t up to 20.499b

but the statistical error is slightly larger. Section 5.4 supports large t and keeps
the statistical error 2−Θ(bk), but it requires O(log t) rounds.
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5.1 Core Lemma and Conditional Transition Probability

Lemma 5. For α ∈ [0, 1] and any α-nice t-wise layout I, if tuple (x1, . . . ,xt)
is sampled uniformly from layout I and let (y1, . . . ,yt) = (Mx1, . . . , Mxt), then
the layout of (y1, . . . ,yt) is ε-close to t-wise independence with replacement,
where

ε ≤ t ·
(2t

2b

)(1−α)k

(2t)k = t ·
( (2t)2−α

(2b)1−α

)k

and we assume the mixing function M has maximal branch number.

This section proves Lemma 5, which is the core of our analysis. The lemma
says, if the tuple is in a nice layout at the beginning of a round (must be uniform
within this layout due to the S-boxes), then the tuple will become very close to
t-wise independent after this round.

The lemma is proved by induction. Assume the lemma holds for smaller t.
Say I = {Ia,b}1≤a<b≤t is a nice layout, x1:t is sampled uniformly from layout
I and y1:t = Mx1:t, as in the lemma statement. By the definition of niceness,
x1:t−1 is sampled uniformly from a nice (t−1)-wise layout I ′ = {Ia,b}1≤a<b≤t−1.
By the induction hypothesis, layout(y1:t−1) is close to (t − 1)-wise independent.
To complete the induction, we need to show that the “conditional layout” of yt

is close to uniform. First, we need to formalize “conditional layout”.
We want to analyze the distribution of (xt,yt) conditioning on the value

of x1:t−1,y1:t−1. Let’s start with a simpler question: What is the conditional
distribution of xt? Since the tuple is sampled from layout I, any constraint in I
saying xa[i] = xt[i] (i.e., if i ∈ Ia,t) affects the conditional distribution of xt. In
more detail, the constraints on xt can be formalized as2

Ic(i) =

{
xa[i] if i ∈ Ia,t for some a < t,
⊥ otherwise.

(8)

For each i ∈ [k], if Ic(i) �= ⊥ then xt[i] must equal to Ic(i), otherwise xt[i] is
uniform in F \ {x1[i], . . . ,xt−1[i]}.

Inspired by the above discussion, we formally define conditional layouts.
When conditioning on x1:t−1 and y1:t−1 = Mx1:t−1. For any i, j ∈ [k], define

Si = {xa[i] | a < t}, Tj = {ya[j] | a < t}.

A conditional layout for xt is specified by a function Ic : [k] → F ∪ {⊥} such
that Ic(i) ∈ Si ∪ {⊥} for every i ∈ [k]. Define xt is in Ic (denoted by xt in Ic)
and xt satisfies Ic (denoted by xt SAT Ic) as

xt in Ic ⇐⇒ ∀i ∈ [k],

(
Ic(i) �= ⊥ =⇒ xt[i] = Ic(i),
Ic(i) = ⊥ =⇒ xt[i] /∈ Si

)
,

xt SAT Ic ⇐⇒ ∀i ∈ [k],
(
Ic(i) �= ⊥ =⇒ xt[i] = Ic(i)

)
.

2 Even if there exists distinct a, a′ such that i ∈ Ia,t ∩ Ia′,t, Ic is still well-defined.
Because in such case, we must have i ∈ Ia,a′ (otherwise I is not a valid layout), then
xa[i] = xa′ [i].
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We say Ic is the layout of xt, denoted by layoutc(x(t)) = Ic, if xt ∈ Ic. Define

free(Ic) := |I−1
c (⊥)| = #{i ∈ [k] s.t. Ic(i) = ⊥}

as the number of coordinates that Ic outputs ⊥. Note that, if Ic is derived from
an α-nice layout I as in (8), then

free(Ic) = k −
∣∣∣
⋃
a<t

Ia,t

∣∣∣ ≥ (1 − α)k.

Define I ′
c is stricter or equal to Ic, denoted by I ′

c ⊇ Ic, as

I ′
c ⊇ Ic ⇐⇒ ∀i ∈ [k],

(
Ic(i) �= ⊥ =⇒ I ′

c(i) = Ic(i)
)
.

Symmetrically, a conditional layout for yt is specified by a function Jc : [k] →
F∪{⊥} such that Jc(j) ∈ Tj∪{⊥} for every j ∈ [k]. We adopt the same notations
and terminology from the conditional layout of xt.

Let y∗ be sampled uniformly at random from F
k. Then

Pr
[
layoutc(y

∗) = Jc

]
=

∑
y inJc

1
2bk

=

∏
j∈[k] s.t. Jc(j)=⊥(2b − |Tj |)

2bk
. (9)

We hope layoutc(yt) is close to layoutc(y∗) by distribution. So we analyze the
transition probability from Ic to Jc. That is, if x is sampled from layout Ic, what
is the distribution of the layout of y = Mx. We found that, if free(Ic) is large
enough, the layout of y is close to the layout of random y∗ by distribution.

Lemma 6. Assume the linear mixing M has maximal branch number. Condi-
tioning on any sets S1, . . . , Sk, T1, . . . , Tk, each of size at most t − 1. For any
conditional layout Ic, if x is sampled uniformly at random from layout Ic and
let y := Mx, then the statistical distance between layoutc(y) and the conditional
layout of a random vector is no greater than

(2t − 1
2b

)free(Ic)

(2t − 1)k.

We start by bounding the transition probability. For any conditional layouts
Ic, Jc, the transition probability from Ic to Jc, denoted by trans-prob(Ic, Jc), is
the probability Mx in Jc when x is sampled from layout Ic. By definition,

trans-prob(Ic, Jc) =
trans-count(Ic, Jc)
size of layout Ic

=

∑
x inIc

∑
y inJc

1M (x,y)

∑
x inIc

1
(10)

where 1M is defined as

1M (x,y) =

{
1 if Mx = y,

0 otherwise.

We show that if free(Ic) is sufficiently large, then the transition probability
trans-prob(Ic, Jc) is close to the probability that random y∗ lies in layout Jc.
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Lemma 7. Assume the linear mixing has maximal branch number. Condition-
ing on any sets S1, . . . , Sk, T1, . . . , Tk, each of size at most t − 1. For any (con-
ditional) layouts Ic, Jc, the transition probability from Ic to Jc is bounded by

∣∣∣∣∣trans-prob(Ic, Jc) −
∑
y inJc

1
2bk

∣∣∣∣∣ ≤
(2t − 1

2b

)free(Ic)

tfree(Jc).

Proof. In the definition of transition probability (Eq. (10)), the sum is over
x in Ic, which is hard to analyze. But we know how

∑
x SATIc

and
∑

x inIc
are

closely connected. On the easy direction, we have
∑

x SATIc

≡
∑

I′
c⊇Ic

∑
x inI′

c

,
∑

y SATJc

≡
∑

J ′
c⊇Jc

∑
y inJ ′

c

.

Then by the inclusion-exclusion principle
∑
x inIc

≡
∑

I′
c⊇Ic

(−1)Δ(I′
c,Ic)

∑
x SATI′

c

,
∑
y inJc

≡
∑

J ′
c⊇Jc

(−1)Δ(J ′
c,Jc)

∑
y SATJ′

c

,

where Δ denotes the Hamming distance. Since I ′
c ⊇ Ic, the Hamming distance

can also be written as Δ(I ′
c, Ic) = free(Ic) − free(I ′

c).
We can apply the inclusion-exclusion principle to the numerator of (10),

trans-count(Ic, Jc) =
∑
x inIc

∑
y inJc

1M (x,y)

=
∑

I′
c⊇Ic

∑
J ′
c⊇Jc

(−1)Δ(I′
c,Ic)+Δ(J ′

c,Jc)
∑

x SATI′
c

∑
y SATJ ′

c

1M (x,y).

As we have observed in previous sections,
∑

x SATI′
c

∑
y SATJ ′

c
1M (x,y) is easy

to bound. Since the linear mixing has maximal branch number,

∑
x SATI′

c

∑
y SATJ ′

c

1M (x,y) =

{
(2b)free(I

′
c)+free(J′

c)−k if free(I ′
c) + free(J ′

c) ≥ k

0 or 1 otherwise.

It can be approximated by

∑
x SATI′

c

∑
y SATJ′

c

1
2bk

= (2b)free(I
′
c)+free(J ′

c)−k,

such that the absolute value of the error is no more than 1 for any I ′
c, J

′
c.

As
∑

x SATI′
c

∑
y SATJ′

c

1
2bk is a good approximation of

∑
x SATI′

c

∑
y SATJ′

c
1M

(x,y) and the inclusion-exclusion principle has small coefficients,
∑

x inI′
c

∑
y inJ ′

c
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1
2bk should also be a fairly good approximation of trans-count(Ic, Jc).

∣∣∣∣trans-count(Ic, Jc) −
∑
x inIc

∑
y inJc

1
2bk

∣∣∣∣ =
∣∣∣∣
∑
x inIc

∑
y inJc

(
1M (x,y) − 1

2bk

)∣∣∣∣

=
∣∣∣∣
∑

I′
c⊇Ic

∑
J ′
c⊇Jc

(−1)Δ(I′
c,Ic)+Δ(J ′

c,Jc)
∑

x SATI′
c

∑
y SATJ ′

c

(
1M (x,y) − 1

2bk

)∣∣∣∣

≤
∑

I′
c⊇Ic

∑
J ′
c⊇Jc

1 ≤ tfree(Ic)+free(Jc).

(11)

This can be translated into a bound on the transition probability,

∣∣∣∣∣trans-prob(Ic, Jc) −

∑
x inIc

∑
y inJc

1
2bk

∑
x inIc

1

∣∣∣∣∣ ≤ tfree(Ic)+free(Jc)∑
x inIc

1
.

In the fraction on the left-hand side, the
∑

x inIc
1 in the numerator and in the

denominator can cancel out. So
∣∣∣∣∣trans-prob(Ic, Jc) −

∑
y inJc

1
2bk

∣∣∣∣∣ ≤ tfree(Ic)+free(Jc)∑
x inIc

1

≤ tfree(Ic)+free(Jc)

(2b − (t − 1))free(Ic)
≤

(2t − 1
2b

)free(Ic)

tfree(Jc).

The last inequality assumes t ≤ 2b−1, we can assume this without loss of gener-
ality, because the lemma is trivialized otherwise. ��

Now we can prove Lemma 6, by adding up the error term over all layouts Jc.

Proof (Lemma 6). The statistical distance between the conditional layout of y
and the conditional layout of a random y∗ ∈ F

k is bounded by

∑
Jc

(2t − 1
2b

)free(Ic)

tfree(Jc) ≤
(2t − 1

2b

)free(Ic)

(2t − 1)k.

The inequality holds because

∑
Jc

tfree(Jc) =
∑

i

∑
Jc s.t.

free(Jc)=i

ti ≤
∑

i

(
k

i

)
(t − 1)k−iti = (2t − 1)k.

��
We are now ready to complete our inductive proof of the core lemma

(Lemma 5).
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Proof (Lemma 5). Let x1:t = (x1, . . . ,xt) be sampled uniformly from an α-
nice layout I. We need to show that the layout of y1:t := (Mx1, . . . , Mxt) is
statistically close to the layout of t random vectors.

Consider x(next)
1:t = (x(next)

1 , . . . ,x(next)
t ), which is obtained by applying k inde-

pendent random S-boxes on y1:t. By Corollary 1, it is equivalent to study the
statistical distance between x(next)

1:t and t random vectors. Denote this statistical
distance by ε(t). Clearly ε(1) = 0.

For t > 1, assume the lemma holds for smaller t. By our definition of niceness,
x1:t−1 is sampled from an α-nice layout I ′. By the induction hypothesis, x(next)

1:t−1 is
ε(t − 1)-close to uniform by distribution. Implied by Lemma 6, the distribution
of x(next)

t conditioning on the values of x1:t−1,y1:t−1,x
(next)
1:t−1 is very close to

uniform. The (conditional) statistical distance is at most (2t−1
2b )free(Ic)(2t − 1)k

where Ic is determined by (8). Since I is α-nice, free(Ic) ≥ (1 − α)k. Therefore,
the statistical distance between x(next)

1:t and t random vectors is bounded by

ε(t) ≤ ε(t − 1) +
(2t − 1

2b

)(1−α)k

(2t − 1)k.

By induction on t,

ε(t) ≤
t∑

t′=2

(2t′ − 1
2b

)(1−α)k

(2t′ − 1)k ≤ t ·
(2t

2b

)(1−α)k

(2t)k.

��

5.2 2-Round SPN∗ is 2−Θ(bk)-Close to O(1)-Wise Independence

In this section, we use the core lemma (Lemma 5) to prove that a 2-round SPN∗

is 2−Θ(bk)-close to t-wise independent, for constant t.

Theorem 2. The 2-round SPN∗ is ε-close to t-wise independent, where

ε =
t2 · 2k+1

(2b)k/(2t)
+ t ·

(8 · t3

2b

)k/2

,

if the linear mixing has maximal branch number.
When t is a constant, the distance satisfies ε = 2−Θ(bk).

The proof follows the high-level framework introduced at the beginning of
Sect. 5. Lemma 8 shows that for constant t, the first-round tuple y(1)

1:t will be in
an α-nice layout with high probability. Thus, the core lemma (Lemma 5) implies
that the layout of the second-round tuple y(2)

1:t is exponentially close to t-wise
independent.

Lemma 8. For any α ∈ [0, 1] and any t-wise layout I, if tuple x1:t is sampled
uniformly from layout I, and let y1:t = Mx1:t, then J = layout(y1:t) is α-nice
with probability

Pr[J is α-nice] ≥ 1 − 2k+1 · t2

(2b)αk/t
.
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Proof. We will upper bound the probability that J is α-nice by requiring that
each pair of vectors collide in at most αk/(t− 1) coordinates. Then every vector
collides with other vectors on at most αk coordinates, which implies that the
layout of the tuple is α-nice.

The number of collisions between each pair of vectors can be bounded by
Lemma 4, which does not depend on the starting layout. The probability |Ji,j | >
αk/t is no more than e · 2k/(2b − 1)αk/t.

Pr
[
J is not α-nice

]
≤ Pr

[ ∧
1≤i<j≤t

|Ji,j | >
αk

t

]
≤ t2 · 2k+1

(2b − 1)αk/t

The last inequality is obtained by applying the union bound inequality over all(
t
2

) ≤ t2

2 pairs of vectors. ��
We are now ready to present the proof of the main theorem of this section.

Proof (Theorem 2). Lemma 8 shows that

ε1 := Pr[J is not α-nice] ≤ t2 · 2k+1

(2b − 1)αk/t
.

Conditioning on J being α-nice, consider the (conditional) distribution of
y(2)

1:t . The core lemma (Lemma 5) shows that the conditional distribution is ε2-
close to t-wise independent, for

ε2 ≤ t ·
( (2t)2−α

(2b)1−α

)k

.

In conclusion, the output tuple x(3)
1:t , alias y(out)

1:t , is (ε1 + ε2)-close to t-wise
independent. If we set α = 1

2 , the statistical distance is bounded by

ε1 + ε2 ≤ t2 · 2k+1

(2b)k/(2t)
+ t ·

(8 · t3

2b

)k/2

.

��

5.3 2-Round SPN∗ is 2−Θ(b)-Close to t-Wise independent

This section shows a similar result for larger t. In particular, we prove that
2-round SPN∗ with a maximal-branch-number mixing is 2−Θ(b)-close to t-wise
independent, for t almost up to 20.499b.

By applying the amplification result of Maurer, Pietrzak, and Renner [39],
we can reduce the error to 2−Θ(bk) by having O(k) rounds.

Theorem 3. For any α ∈ (0, 1], the 2-round SPN∗ is ε-close to t-wise indepen-
dent, where

ε =
t2

α · 2b
+ t ·

( (2t)2−α

(2b)1−α

)k

,

if the mixing function has the maximal branch number.
If t < 2(0.499−1/(4k))b, the distance is ε = 2−Θ(b) by choosing the optimal α.
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Corollary 2. Assuming t < 2(0.499−1/(4k))b, Θ(k)-round SPN∗ with maximal-
branch-number linear mixing is 2−Θ(bk)-close to t-wise independent.

The proof of this theorem is in the full version of the paper.

5.4 (log t)-Rounds SPN∗ is 2−Θ(bk)-Close to t-Wise Independent

In this section, we discuss how to achieve 2−Θ(bk)-closeness to t-wise independent,
for t up to 20.499b, at the cost of a slightly larger number of rounds.

This result is proved by induction. The base case is closeness to 2-wise inde-
pendent in 2 rounds. Assume that we have already shown ε-closeness to t-wise
independent in r rounds. As the inductive step, we will prove the closeness to
(2t − 1)-wise independent in r + 1 rounds.

As for notations, let x(in)
1:2t−1 denote 2t − 1 distinct inputs, let y(out)

1:2t−1 denote
their corresponding outputs, and let x(last)

1:2t−1,y
(last)
1:2t−1 denote the intermediate val-

ues in the last round (as illustrated in Fig. 3).

Fig. 3. Illustration of a (r + 1)-round SPN

Due to the core lemma (Lemma 5), it suffices to show that: With overwhelm-
ing probability, (x(last)

1:2t−1) lies in a α-nice layout for some α ∈ (0, 1) of our choice.
By the induction hypothesis, we know that the distribution of x(last)

1:t is ε(t)-
close to t-wise independent. If they are actually t-wise independent, then the
probability x(last)

t collides with x(last)
1:t−1 in more than αk/2 coordinates is expo-

nentially small due to Chernoff bound. The same argument also bounds the
probability that x(last)

t collides with x(last)
t+1:2t−1 in more than αk/2 coordinates.

Then the probability x(last)
t collides with the other 2t − 2 vectors in at most αk

coordinates is bounded by the union bound. Due to the symmetry and the union
bound, x(last)

1:2t−1 is α-nice with good probability. Then we can finish the induction
step by Lemma 5.

Such analysis can show ε(t)-closeness to t-wise independent in O(log t)
rounds, where ε(t) is inductively bounded by

ε(2t − 1) ≤ O(t) ·
(
ε(t) + a small term

from Chernoff bound

)
+ another small term

from Lemma 5
.

The O(t) multiplicative factor before ε(t) turns out to be problematic. It results
in a multiplicative blow-up of order tO(log t). When t = 2Θ(b), this blow-up is
about 2O(b2), which is unacceptable especially if b = Ω(k). In the actual proof
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of our result (Theorem 4), we conduct a more sophisticated analysis, though the
high-level inductive idea is the same.

Theorem 4. If k > 4, r-round SPN∗ is ε-close to 2r-wise independent for

ε =
2r+ 3

4

1 − 2− k
4

·
(22r+3

2b

)k/4

=
t · 2

11
4

1 − 2− k
4

·
(8 · t2

2b

)k/4

.

As usual, let x(r)
1:t ,y

(r)
1:t denote the intermediate values in the r-th round. We

also introduce a new notation x(r)
i,×2ρ

x(r)
i,×2ρ := x(r)

i2ρ+1:i2ρ+2ρ = (x(r)
i2ρ+1, . . . ,x

(r)
i2ρ+2ρ)

to denote 2ρ consecutive vectors. Similarly we define y(r)
i,×2ρ .

In the ρ-th round, for 0 ≤ i < j < 2r−ρ, define A
(ρ)
i,j as the event that

(
x(ρ)

i2ρ−1+1, . . . ,x
(ρ)
i2ρ−1+2ρ−1︸ ︷︷ ︸

x(ρ)
i,×2ρ−1

, x(ρ)
j2ρ−1+1, . . . ,x

(ρ)
j2ρ−1+2ρ−1︸ ︷︷ ︸

x(ρ)
j,×2ρ−1

)
(12)

is in an αρ-nice layout. For 0 ≤ i < j < 2r−ρ+1, define B
(ρ)
i,j as the event that

(
x(ρ)

i2ρ−2+1, . . . ,x
(ρ)
i2ρ−2+2ρ−2︸ ︷︷ ︸

x(ρ)
i,×2ρ−2

, x(ρ)
j2ρ−2+1, . . . ,x

(ρ)
j2ρ−2+2ρ−2︸ ︷︷ ︸

x(ρ)
j,×2ρ−2

)
(13)

is in a 1
3αρ-nice layout. The value of αρ will be fixed later.

The proof of Theorem 4 is inductive. The induction hypothesis is that with
overwhelming probability

∧
0≤i<j<2r−ρ A

(ρ)
i,j holds. Then by Lemma 5, the joint

distribution of x(ρ)
i,×2ρ−1 ,x

(ρ)
j,×2ρ−1 is close to 2ρ-wise uniform, for each 0 ≤ i <

j < 2r−ρ. Then by the following Lemma 9, they are very likely to be 1
3αρ+1-nice,

that is, B
(ρ+1)
i,j is likely to hold. To complete the induction step, we bridge the

remaining gap by proving the following statement for ρ > 2,
∧

0≤i<j<2r−ρ+1

B
(ρ)
i,j =⇒

∧
0≤i<j<2r−ρ

A
(ρ)
i,j . (14)

Lemma 9. Assume x1:t are uniformly sampled from (Fk)t, for any α > t−1
2b ,

Pr
[
layout(x1, . . . ,xt) is α-nice

] ≥ 1 − t · 2k

1 + αk
·
( t

2b

)αk

.

The proofs of statement (14) and of Lemma 9 are deferred to the full version
of the paper.
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Now we are nearly ready to prove Theorem 4. We introduce a few additional
notations. For ρ ≥ 1, define

Aρ :=
∧

0≤i<j<2r−ρ

A
(ρ)
i,j , δρ := 1 − Pr[Aρ].

Define ερ,i,j as the statistical distance between the uniform distribution and
the distribution of x(ρ+1)

i,×2ρ−1 ,x
(ρ+1)
j,×2ρ−1 (the vectors in the definition of B

(ρ+1)
i,j )

conditioning on event Aρ. Lemma 5 shows that

ερ,i,j ≤ 2ρ ·
(2ρ+1

2b

)(1−αρ)k

(2ρ+1)k.

for all ρ ≥ 2. Define ερ =
∑

0≤i<j<2r−ρ ερ,i,j .
Note that εr = εr,1,2 is the statistical distance between the 2r output vectors

and uniform, conditioning on Ar. So r-round SPN∗ is (δr + εr)-close to 2r-wise
independent.

Proof (Theorem 4). For each 2 < ρ ≤ r, conditional on Aρ−1, the (conditional)
distribution of x(ρ)

i,×2ρ−2 ,x
(ρ)
j,×2ρ−2 is ερ−1,i,j-close to uniform. Then by Lemma 9

Pr
[
¬B

(ρ)
i,j

∣∣∣ Aρ−1

]
≤ ερ−1,i,j + 2ρ−1 · 2k ·

(2ρ−1

2b

) 1
3αρk

.

By the union bound,

Pr
[
¬

∧
0≤i<j<2r−ρ+1

B
(ρ)
i,j

∣∣∣ Aρ−1

]
≤ ερ−1 +

(2r−ρ+1)2

2
· 2ρ−1 · 2k ·

(2ρ−1

2b

) 1
3αρk

.

By (14), the left-hand side is lower bounded by Pr
[¬Aρ

∣∣ Aρ−1

]
. And we know

Pr
[
¬Aρ

∣∣∣ Aρ−1

]
≥ Pr

[
¬Aρ ∧ Aρ−1

]
≥ δρ − δρ−1.

So

δρ ≤ δρ−1 + ερ−1 +
(2r−ρ+1)2

2
2ρ−1 · 2k ·

(2ρ−1

2b

) 1
3αρk

.

For the base case ρ = 2, Lemma 4 directly bounds the probability of B
(2)
i,j by

e·2k

(2b−1)
1
3 α2k

. Then by the union bound

δ2 ≤ Pr
[
¬

∧
i,j

B
(2)
i,j

]
≤ (2r)2

2
e · 2k

(2b − 1)
1
3α2k

.

As the final goal is to bound δr +εr, we are interested in how δρ +ερ depends
on δρ−1 + ερ−1,

(δρ + ερ) − (δρ−1 + ερ−1)

≤ (2r−ρ)2

2
2ρ ·

(2ρ+1

2b

)(1−αρ)k

(2ρ+1)k +
(2r−ρ+1)2

2
2ρ−1 · 2k ·

(2ρ−1

2b

) 1
3αρk

= 22r−ρ−1

((2ρ+1

2b

)(1−αρ)k

(2ρ+1)k + 2k+1 ·
(2ρ−1

2b

) 1
3αρk

)
. (15)
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Table 2. Statistical (TV) distance from pairwise independence of the r-round AES∗

given two inputs that differ in exactly one coordinate. This corresponds to starting
from a layout I with Hamming weight 1, e.g. I = {1, . . . , k − 1}.

Number of rounds r log2(TV distance from 2-wise ind.)

3 −23.4275

4 −48.9916

5 −117.1745

6 −126.3073

7 −141.2575

The value of αρ should be chosen so that (15) is minimized. Note that

Right-hand side of (15) ≈
(2ρ

2b

)−αρk(22ρ

2b

)k

+
(2ρ

2b

) 1
3αρk

so (15) is minimized when α ≈ 3
4

b−2ρ
b−ρ , and the minimum value is about

(
22ρ

2b

)k/4

.
If we tune the value of αρ, we get

(δρ + ερ) − (δρ−1 + ερ−1) ≤ 22r−ρ · 2
1
2kρ− 1

4kb+ 3
4k+ 3

4 = 22r−ρ+ 3
4 ·

(22ρ+3

2b

)k/4

.

We defer the analysis of the base case to the full version.

δr + εr ≤ δ2 + ε2 +
r∑

ρ=3

22r−ρ+ 3
4 ·

(22ρ+3

2b

)k/4

≤ 2r+ 3
4

1 − 2− k
4

·
(22r+3

2b

)k/4

.

��

6 Pairwise Independence of AES∗ and Censored AES

In this section, we obtain concrete bounds on the pairwise independence of (1)
an SPN cipher with random, independent S-boxes and the actual AES mixing
(we refer to this as AES∗) as well as (2) a “censored” version of the actual AES
block cipher (with the actual AES S-box, but some mixing layers removed). We
will use partially computational methods for our theorems. The source code for
our computations is available at https://github.com/AnPelec/t-wise-ind-SPN.

6.1 Pairwise Independence of AES∗

We can represent the evaluation of AES∗ as a Markov chain over 216 −1 layouts.
Our goal is to describe this random walk exactly, and then use numerical calcu-
lations to infer an upper bound on the statistical distance of an output pair after
a certain number of rounds. To compute the transition probabilities, we start
with an exact version of Lemma 2. A similar lemma was already proved in [3], by
relating the number of transitions to the number of codewords of specific weight
in an MDS code.

https://github.com/AnPelec/t-wise-ind-SPN


722 T. Liu et al.

Lemma 10. If M has the maximal branch number, the layout transition prob-
ability trans-prob(I, J) := Prx inI

[
Mx in J

]
equals

trans-prob(I, J) =
free(I)+free(J)−k−1∑

i=0

(−1)i

(
k−1+i
k−1

)

(2b − 1)k−free(J)+i
. (16)

Lemma 10 assumes however a full-branch mixing layer, which is not the case
for AES mixing. Another issue is that the number of layouts is still quite high
and poses a non-trivial computational challenge. Thankfully, we can overcome
this obstacle by representing the AES mixing layer in terms of permutations and
full-branch mixings, an observation first made by [3]. More details can be found
in the full version of this paper.

As our starting point, we numerically compute the total variation distance
from uniform after r rounds starting with a pair of inputs that differ in exactly
one 8-bit word. The results are summarized in Table 2, and are obtained by
computing the corresponding r-th power of the transition matrix of the random
walk. (This requires leveraging a number of symmetries to be computationally
feasible.)

We then derive conjectures on the maximum distance over all possible input
layouts and verify that our conjectures hold by computing the statistical distance
for all input layouts. As a result of this, we obtain the following theorems.

Theorem 5. The 3-round AES∗ is 2−23.42-close to pairwise independent.

Theorem 6. The 7-round AES∗ is 2−128-close to pairwise independent.

6.2 Censored AES

To translate our results from the random S-box setting to the AES S-box, we
replace a random S-box by consecutive applications of the AES one, namely the
patched inverse function over F28 where the input is XOR with a fresh key byte.
Note that the resulting SPN which we refer to as “censored” AES is simply AES
with several mixing layers removed.

We numerically compute the closeness to pairwise independence of the
sequential composition of AES S-boxes over F28 , where a fresh key byte is XORed
into the input prior to each call. These distances can be found in the full version
of this paper. Note that analytical bounds were obtained in [37], however here
we obtain tighter numerical bounds for our parameter settings. We defer the
implementation details to the full version of this paper.

Overall, we prove the following theorem. It considers what we (informally)
refer to as “192-round censored AES.” One should think of this as a 191-round
SPN (thus with 192 layers of S-boxes), with independent keys, using the true
AES S-box (patched inverse) and the AES mixing layer, but with a subset of
mixing layers removed. Which mixing layers remain can be inferred from the
proof below.

Theorem 7. 192-round censored AES is 2−128-close to pairwise independent.
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Proof. First off, Theorem 5 implies that 3-round AES* (that is, 4 layers of ran-
dom S-boxes) is εideal = 2−23.42-close to pairwise independent. We then replace
each random S-box with the sequential composition of c consecutive AES S-
boxes (and xoring an independent uniform key byte to each call) and show that
the resulting construction (which consists of 4c layers of S-boxes) is ε-close to
pairwise independent, for some suitable ε. This value of ε will be then amplified,
via further sequential composition. By the amplification theorem of [28,39], the
resulting 4cr-round censored AES is in particular (2r−1εr)-close to pairwise inde-
pendent. The exact constants c and r are chosen to optimize the final number
of rounds required to reach 2−128-closeness.

First of all, we pick c = 8. Indeed, according to our findings in the full ver-
sion, the 8-fold sequential composition of the S-box (with independent key bytes
XORed to each S-box input) is εsim ≤ 2−29.39-close to pairwise independent,
and hence to the behavior of a random S-box. Recall that the random S-box in
AES∗ is applied to k = 16 blocks in parallel, hence by the triangle inequality
we deduce that we can simulate 4 random S-box layers with an error of at most
16 · 4 · εsim ≤ 2−23.39.

Therefore, we conclude that this partial 32-round censored AES is ε-close to
pairwise independent for

ε ≤ εideal + 16 · 4 · εsim ≤ 2−23.42 + 2−23.39 < 2−22.39 .

Then, amplification for r = 6 repetitions gives that the 192-round censored AES
is

25 · (2−22.39)6 = 25−22.39·6 < 2−128

close to pairwise independent. ��
If one believes that the mixing layers are useful for AES to achieve pseudo-

randomness, then it is natural to expect that removing a large fraction of them
should only hurt the convergence to pairwise independence. This leads us to
conjecture that 192-round AES is 2−128-close to pairwise independent. We view
proving this conjecture formally to be an outstanding open problem.
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