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FATIGUE PREDICTION FOR REPETITIVE LIFTING 

ABSTRACT 

In this study, the fatigue progression and optimal motion 
trajectory during repetitive lifting task is predicted by using a 10 
degrees of freedom (DOFs) two-dimensional (2D) digital human 
model and a three-compartment controller (3CC) fatigue model. 
The numerical analysis is further validated by conducting an 
experiment under similar conditions. The human is modeled 
using Denavit-Hartenberg (DH) representation. The task is 
mathematically formulated as a nonlinear optimization problem 
where the dynamic effort of the joints is minimized subjected to 
physical and task specific constraints. A sequential quadratic 
programming method is used for the optimization process. The 
design variables include control points of (1) quartic B-splines 
of the joint angle profiles; and (2) the three compartment sizes 
profiles for the six physical joints of interest - spine, shoulder, 
elbow, hip, knee, and ankle. Both numerical and experimental 
liftings are performed with a 15.2 kg box as external load. The 
simulation reports the human joint torque profiles and the 
progression of joint fatigue. The joint torque profiles show 
periodic trends. A maximum of 17 cycles are predicted before the 
repetitive lifting task fails, which also reasonably agrees with 
that of the experimental results (16 cycles). This formulation is 
also a generalized one, hence it can be used for other repetitive 
motion studies as well. 

Keywords: Repetitive lifting, motion planning, fatigue 
model, and inverse dynamics optimization. 
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1. INTRODUCTION

Joint fatigue during a repetitive lifting task can greatly
reduce the available muscle force capacity. Since fatigue is the 
cumulative result of various physiological and neurological 
processes occurring simultaneously, it is very hard to single out 
the contribution of any one phenomenon. This makes any 
fatigue-related force loss computation quite challenging [2, 5]. 
Software that can predict subject specific lifting strategies while 
taking the different weights associated with each lifting into 
consideration are paramount to prevent work related injury over 
time. 

For the past few decades, researchers have developed 
various prediction models for lifting motion simulation based on 
kinematics and physics [4]. Also, optimization-based motion 
prediction algorithm development has made a significant 
progress during this time [12, 14-21]. These studies use gradient-
based sequential quadratic programming (SQP) to solve the 
constrained nonlinear motion prediction optimization problems. 
Since gradient-based iterative optimization methods are still the 
most efficient methods for solving nonlinear problems, those 
predictions can be fairly accurate when the effect of fatigue 
during the task is not considered. However, the major limitation 
of these methods is the inability to correctly predict the fatigue 
progression during any repetitive task. To increase the accuracy 
of these predictions, the contribution of fatigue must be 
contemplated. Yet, apart from a couple of studies [1, 10], adding 
the contribution of fatigue in posture or motion prediction studies 
have seen little light. Any major work is yet to be published that 
incorporates the fatigue due to repetitive lifting. 
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To successfully study the contribution of fatigue, a rigorous 

mathematical modelling of the fatigue progression in human 
joints needs to be done. Fatigue models are mostly based upon 
analytical or experimental methods; hence it is quite complicated 
to incorporate those into numerical studies. Hence, apart from 
the preliminary work by Pereira that includes the fatigue study 
during elbow joint motion, little further study [7, 9] involving a 
complex model such as the full-body motion has been 
conducted. In our previous study [1], we have proposed a novel 
method to study the fatigue progression during a box-carrying 
posture task, but no motion is predicted. 

 
 This work aims to bridge that gap and extends our previous 

collaborative fatigue prediction study from a box-carrying task 
to a repetitive lifting motion prediction. The study aims to predict 
and validate the fatigue progression during this task. To predict 
the fatigue progression and optimal lifting strategy, an inverse 
dynamics optimization formulation is proposed. The lifting task 
is set up as a nonlinear programming (NLP) optimization 
problem. Dynamic effort is used as the objective function during 
the task, which is minimized using the SQP algorithm [8]. The 
optimization and experimental results are presented, and a valid 
comparison is established. 

 
2. METHOD 
 

In this section, the human model design, fatigue model 
integration and the experimental setup is discussed. 
 
2.1 Human model 

 
This study considers a 10-DOF 2D digital human model. 

The first three DOFs are global DOFs and refer to the movement 
of the whole body at hip joint in the global reference frame as 
indicated by the zero subscript in Figure 1. The DH approach is 
used to construct the model [1]. Furthermore, the positive 
direction of each physical joint rotation is also marked. The 
equations of motion (EOM) of the digital human are set up using 
the recursive Lagrangian dynamics formulation [1]. The system's 
dynamics equation can be written as: 

𝜏𝜏𝑖𝑖 = 𝑡𝑡𝑡𝑡 �∂𝐀𝐀i
∂𝑞𝑞𝑖𝑖

𝐃𝐃𝑖𝑖� − 𝐠𝐠T 𝜕𝜕𝐀𝐀𝑖𝑖
𝜕𝜕𝑞𝑞𝑖𝑖

𝐄𝐄𝑖𝑖 − 𝐟𝐟𝑘𝑘T
𝜕𝜕𝐀𝐀𝑖𝑖
𝜕𝜕𝑞𝑞𝑖𝑖

𝐅𝐅𝑖𝑖 − 𝐆𝐆𝑖𝑖T𝐀𝐀𝑖𝑖−1𝐳𝐳0                   (1) 
 
where the first term is inertia and Coriolis torque, the second 
term is the torque due to gravity, the third term is the torque due 
to external forces, and the fourth term is the torque due to 
external moments in equation (1). Here, 𝐟𝐟𝑘𝑘 =
[𝑓𝑓𝑘𝑘𝑘𝑘 𝑓𝑓𝑘𝑘𝑘𝑘 𝑓𝑓𝑘𝑘𝑘𝑘 0]T is the external force applied on link k. For 
a detailed derivation of the EOM please refer to [14, 15]. 
 

      

FIGURE 1: THE 2D HUMAN MODEL 

 
2.2 Fatigue model 

 
The three-compartment controller (3CC) fatigue model 

consisting of resting, active and fatigued compartments [11, 13] 
is used to study the repetitive fatigue progression. Figure 2 shows 
the schematic of this system and the flow between the 
compartments which is governed mathematically by the first 
order differential equations given by (2-4). 

 
d𝑀𝑀𝑅𝑅𝑅𝑅(𝑡𝑡)

dt
= −𝐶𝐶𝑖𝑖(𝑡𝑡) + 𝑅𝑅𝑖𝑖 × 𝑀𝑀𝐹𝐹𝐹𝐹(𝑡𝑡)                                              (2) 

d𝑀𝑀𝐴𝐴𝐴𝐴(𝑡𝑡)
dt

= 𝐶𝐶𝑖𝑖(𝑡𝑡) − 𝐹𝐹𝑖𝑖 × 𝑀𝑀𝐴𝐴𝐴𝐴(𝑡𝑡)                                                  (3) 
d𝑀𝑀𝐹𝐹𝐹𝐹(𝑡𝑡)

dt
= 𝐹𝐹𝑖𝑖 × 𝑀𝑀𝐴𝐴𝐴𝐴(𝑡𝑡) − 𝑅𝑅𝑖𝑖 × 𝑀𝑀𝐹𝐹𝐹𝐹(𝑡𝑡)                                       (4) 

 
where 𝑀𝑀𝑅𝑅𝑅𝑅(𝑡𝑡),𝑀𝑀𝐴𝐴𝐴𝐴(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀𝐹𝐹𝐹𝐹(𝑡𝑡) represents the resting, active 
and fatigued compartment sizes at time instant 𝑡𝑡. The fatigue (𝐹𝐹𝑖𝑖) 
and recovery (𝑅𝑅𝑖𝑖) coefficients for the joints of interest can be 
found in [13]. 𝐶𝐶𝑖𝑖(𝑡𝑡) is a bidirectional, time-varying torque 
activation-deactivation drive for the ith joint at time instant t 
which relates 𝑀𝑀𝐴𝐴𝐴𝐴(𝑡𝑡) and 𝑀𝑀𝑅𝑅𝑅𝑅(𝑡𝑡). The values of 𝐶𝐶𝑖𝑖(𝑡𝑡) satisfy the 
conditions given by equations (5-7). 
 
𝐼𝐼𝐼𝐼 𝑀𝑀𝐴𝐴𝐴𝐴(𝑡𝑡) < 𝑇𝑇𝑇𝑇𝑖𝑖(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀𝑅𝑅𝑅𝑅(𝑡𝑡) > 𝑇𝑇𝑇𝑇𝑖𝑖(𝑡𝑡) −𝑀𝑀𝐴𝐴𝐴𝐴(𝑡𝑡), 
        𝐶𝐶𝑖𝑖(𝑡𝑡) =  𝐿𝐿𝐷𝐷𝐷𝐷 × [𝑇𝑇𝑇𝑇𝑖𝑖(𝑡𝑡) −𝑀𝑀𝐴𝐴𝐴𝐴(𝑡𝑡)]                                     (5) 
 
𝐼𝐼𝐼𝐼 𝑀𝑀𝐴𝐴𝐴𝐴(𝑡𝑡) < 𝑇𝑇𝑇𝑇𝑖𝑖(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀𝑅𝑅𝑅𝑅(𝑡𝑡) < 𝑇𝑇𝑇𝑇𝑖𝑖(𝑡𝑡) −𝑀𝑀𝐴𝐴𝐴𝐴(𝑡𝑡), 
        𝐶𝐶𝑖𝑖(𝑡𝑡) =  𝐿𝐿𝐷𝐷𝐷𝐷 × 𝑀𝑀𝑅𝑅𝑅𝑅(𝑡𝑡)                                                       (6) 
 
𝐼𝐼𝐼𝐼 𝑀𝑀𝐴𝐴𝐴𝐴(𝑡𝑡) ≥ 𝑇𝑇𝑇𝑇𝑖𝑖(𝑡𝑡), 
        𝐶𝐶𝑖𝑖(𝑡𝑡) =  𝐿𝐿𝑅𝑅𝑅𝑅 × [𝑇𝑇𝑇𝑇𝑖𝑖(𝑡𝑡) −𝑀𝑀𝐴𝐴𝐴𝐴(𝑡𝑡)]                                     (7) 
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where 𝐿𝐿𝐷𝐷𝐷𝐷 denotes the force development factor and 𝐿𝐿𝑅𝑅𝑅𝑅  denotes 
the relaxation factor. 𝑇𝑇𝑇𝑇𝑖𝑖(𝑡𝑡) represents the target load for each 
joint at time instant t which is calculated using equation (8). 

𝑇𝑇𝑇𝑇𝑖𝑖(𝑡𝑡) = �

𝜏𝜏𝑖𝑖(𝑡𝑡)
𝜏𝜏𝑖𝑖
𝑈𝑈 ,     𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑣𝑣𝑣𝑣 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝜏𝜏𝑖𝑖(𝑡𝑡)
𝜏𝜏𝑖𝑖
𝐿𝐿 ,     𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑣𝑣𝑣𝑣 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

                      (8) 

where 𝜏𝜏𝑖𝑖𝑈𝑈 and 𝜏𝜏𝑖𝑖𝐿𝐿 denotes the maximum allowable torque for the 
ith physical joint of interest during joint extension or flexion. 
 

 
 

 

 

 

 

 

FIGURE 2: THREE-COMPARTMENT FATIGUE MODEL [13] 
 
2.3 Repetitive lifting experiment 
 

The sole participant of this pilot study is a 33-year-old 
healthy adult male, with a height of 1.69 m and a weight of 67.3 
kg. An Xsens Awinda inertial motion capture system (Movella 
Inc., Henderson, Nevada, USA) running at 60 Hz is used to 
record the participant’s motion data, while two Bertec force 
plates (Bertec Inc., Columbus, Ohio, USA) capture ground 
reaction forces and moments at 1000 Hz. 

To determine the participant’s maximum load carrying 
capacity, an empty box externally measuring 0.33 m × 0.33 m × 
0.27 m is loaded with increasing weights. After each addition the 
subject is asked to determine whether they are comfortable 
lifting it from the ground to pelvis height and then replacing it 
once. The maximum combined lifting capacity determined this 
way is 15.2 kg. 

For the data collection, the subject is asked to stand 
symmetrically with their toes just behind the leading edge of the 
force plates. The box is placed centrally at a distance the subject 
self-determined to be comfortable for lifting from. They are then 
instructed to lift the box up to pelvis height and lower it to its 
initial position without releasing it, and then repeat the process 
till exhaustion. An experimenter provides continuous guidance 
to help the subject achieve near consistent lift heights. 

The synchronized collected data is processed in Visual3D 
(C-Motion Inc., Boyds, Maryland, USA) to calculate the joint 
angle profiles. 
 
 
 

 
3. OPTIMIZATION FORMULATION 

 
In this section, the elements of the constrained optimization 

formulation are discussed for a single cycle of the repetitive box 
lifting task. Note that, each lifting cycle is considered as a two-
phased motion study, where the first half of the total time is spent 
on lifting the box up to a specified location (0.000, 1.088, 0.417), 
meter, and the remaining half time is used to bring the box back 
down to its original location (0.000, 0.070, 0.418), meter. 

 
3.1 Design variables 
 

Since the motion optimization is carried out in joint space, 
the joint angle profiles are considered as a part of the design 
variables set. From the three-compartment controller (3CC) 
fatigue model, the resting compartment size profiles, the active 
compartment size profiles, and the fatigued compartment size 
profiles are also considered as the design variables to study the 
fatigue progression during the repetitive lifting task. A recursive 
quartic B-spline interpolation is used to transform these time-
dependent parameters from a continuous-time domain to a 
discrete-time domain. This way, the spline control points can 
become the design variables, which makes imposing constraints 
easier. The complete design variables set can then be expressed 
by equation (9). 

 
𝐱𝐱 = �𝐏𝐏𝑞𝑞𝑖𝑖

𝑇𝑇 𝐏𝐏𝑀𝑀𝑅𝑅𝑅𝑅
𝑇𝑇 𝐏𝐏𝑀𝑀𝐴𝐴𝐴𝐴

𝑇𝑇 𝐏𝐏𝑀𝑀𝐹𝐹𝐹𝐹
𝑇𝑇 �𝑇𝑇                                              (9) 

 
The initial guess for all the joint angles, active, resting and 
fatigue compartment sizes are set to zero, but the resting 
compartment sizes are set to 1. The duration for each cycle is set 
as 3.0 seconds. The optimization problem is solved using 
SNOPT software which uses a sequential quadratic 
programming (SQP) algorithm. 

 
3.2 Objective function 

 
The goal of this study is to minimize the dynamic effort of all the 
physical joints, mathematically given by the expression shown 
in equation (10). 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚         ∫ ∑ �𝑤𝑤𝜏𝜏( 𝜏𝜏𝑖𝑖
 

𝜏𝜏𝑖𝑖
𝑈𝑈−𝜏𝜏𝑖𝑖

𝐿𝐿)2 + 𝑤𝑤𝑎𝑎 �
𝑎𝑎𝑖𝑖

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
�
2
�10

𝑖𝑖 = 4 𝑑𝑑𝑑𝑑𝑇𝑇
0          (10) 

where T denotes the total duration of each lifting cycle, i denotes 
the physical joints considered for the motion study, 𝜏𝜏𝑖𝑖  denotes 
the ith joint torque, 𝜏𝜏𝑖𝑖𝑈𝑈 and 𝜏𝜏𝑖𝑖𝐿𝐿 are upper and lower limits of the 
joint torques,  𝑤𝑤𝜏𝜏𝑖𝑖 denote the weights associated with the ith joint 
torque, 𝛼𝛼𝑖𝑖 denote the local angular accelerations of the physical 
joints and 𝑤𝑤𝛼𝛼𝑖𝑖  denote the weights associated with local angular 
accelerations. The weights were all set to 1. 
 
3.3 Constraints 
 

Both time-dependent and time-independent constraints are 
considered for the optimization formulation of each cycle of the 
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repetitive task. For the entire time interval, 10 time-dependent 
constraints are considered. They are: 

(1) joint angle limits,  
(2) joint torque limits,  
(3) foot contacting position,  
(4) zero-moment point (ZMP) location,  
(5) box forward position,  
(6) collision avoidance,  
(7) monotonically changing wrist velocity,  
(8) the differential equations for resting, active and fatigued 
compartment sizes, 
(9) unit summation condition and  
(10) residual capacity condition. 
 
In addition to these 10 constraints, 3 more time-independent 

constraints are also applied. They are: 
(11) initial and final box locations,  
(12) static conditions at the beginning, mid-time, and the end 
of the motion, and  
(13) the initial, quarter-time, half-time, three-quarters-time, 
and the final joint angles of the six physical joints of interest. 

 
Note that the time-dependent constraints are calculated 

sequentially in the optimization process at every time 
discretization point. In contrast, optimization calculates the time-
independent constraints at a specific time. 

 
The optimization formulation for a single cycle of the 

repetitive task discussed in subsections 3.1-3.3 is repeated until 
SNOPT fails to find an optimal solution for the current cycle. 
The fatigue compartment size is set to zero at the start of only 
the first cycle of the optimization process. While simulating the 
process for the repetitive task, starting with the second cycle, the 
time-independent compartment size continuity constraints given 
in equations (11-13) are imposed.  
 
𝑀𝑀𝑅𝑅𝑅𝑅_𝑘𝑘(0) = 𝑀𝑀𝑅𝑅𝑅𝑅_(𝑘𝑘−1)(𝑇𝑇)                                                       (11) 
𝑀𝑀𝐴𝐴𝐴𝐴_𝑘𝑘(0) = 𝑀𝑀𝐴𝐴𝐴𝐴_(𝑘𝑘−1)(𝑇𝑇)                                                       (12) 
𝑀𝑀𝐹𝐹𝐹𝐹_𝑘𝑘(0) = 𝑀𝑀𝐹𝐹𝐹𝐹_(𝑘𝑘−1)(𝑇𝑇)                                                       (13) 
 
Also, to ensure a general increase in fatigue compartment size 
across all six physical joints of interest, the derivatives of the 
final compartment sizes from the optimal result of the previous 
cycle are also set equal to the derivatives of the initial 
compartment sizes of the current cycle. 
 
𝑀̇𝑀𝑅𝑅𝑅𝑅_𝑘𝑘(0) = 𝑀̇𝑀𝑅𝑅𝑅𝑅_(𝑘𝑘−1)(𝑇𝑇)                                                       (14) 
𝑀̇𝑀𝐴𝐴𝐴𝐴_𝑘𝑘(0) = 𝑀̇𝑀𝐴𝐴𝐴𝐴_(𝑘𝑘−1)(𝑇𝑇)                                                       (15) 
𝑀̇𝑀𝐹𝐹𝐹𝐹_𝑘𝑘(0) = 𝑀̇𝑀𝐹𝐹𝐹𝐹_(𝑘𝑘−1)(𝑇𝑇)                                                       (16) 
 

An additional constraint given by equation (17) ensures the 
continuity between joint angles from one cycle to the next.  

 
𝑞𝑞𝑖𝑖_𝑘𝑘(0) = 𝑞𝑞𝑖𝑖_(𝑘𝑘−1)(𝑇𝑇)                                                     (17) 

The subscripts 𝑘𝑘  and (𝑘𝑘 − 1) denote the parameters in equations 
(11-17) at initial and final times of the kth and (k-1)th cycle, 
respectively with 𝑘𝑘 = 2, 3, 4, … ,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. 
 

 
4. RESULTS 

 
The optimal motion and the fatigue progression is predicted 
using the optimization formulation described in section 3 for a 
1.69 m tall subject who weighs about 67.3 kg while he 
repetitively lifts a 15.2 Kg box. A maximum of 17 cycles are 
predicted before the repetitive task fails. The simulation is run 
on a laptop with an 11th Gen Intel Core i9-11900H processor 
clocked at 2.50 GHz base speed, which features 8 cores, 16 
logical processors and 32 GB RAM. The joint limits, foot 
contacting position, initial and final box locations, residual 
capacity, collision avoidance, compartment size continuity and 
unit summation constraints are active during the optimization 
process. 

 
 

 
 

 
 

                       
 

FIGURE 3: SIMULATION SNAPSHOTS 
 

First, Figure 3 illustrates snapshots of the predicted 2D 
human lifting motion from the simulation at the initial, quarter-
time, half-time, three-quarters-time, and the final time instant. 
Furthermore, the torque profiles for the same joint motions are 
shown in Figure 4. Finally, the fatigue progression status for the 
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six physical joints of interest is shown in Figure 5 which is 
characterized by the three compartment size profiles. In all these 
figures, the first three cycles are marked by the gray dashed lines. 
 
 

 

 

 

 

 

 

FIGURE 4: JOINT TORQUE PROFILES 
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FIGURE 5: JOINT FATIGUE PROGRESSION 
 
 
 
5. DISCUSSION 

 
During the first half-duration of each cycle, the shoulder 

flexes, elbow flexes and the hip extends until the box is lifted to 
the desired location. During the second half-duration of each 
cycle, the opposite motion trend is followed by the joints. These 
trends are further confirmed by the motion trajectory shown in 
Figure 3.  The joint torque profiles show the periodic trends as 
illustrated in Figure 4. During the motion of all six physical joints 
of interest, the active compartment size profiles tend to track the 
general shape of the target load profiles. The resting 
compartment size profiles follow the opposite direction of the 
active compartment size profiles for all the joints, satisfying the 
governing equations of the 3CC fatigue model where the resting 
compartment supports the active compartment as necessary 
throughout the duration of the entire repetitive task. This is also 
consistent with the unit summation constraints. As the fatigue 
compartment size profiles grow, less room is available to use 
from the resting and active compartment profiles. The task is 
considered to have failed when the residual capacity, 𝑅𝑅𝑅𝑅𝑖𝑖(𝑡𝑡)  =
 𝑀𝑀𝐴𝐴𝐴𝐴(𝑡𝑡)  + 𝑀𝑀𝑅𝑅𝑅𝑅(𝑡𝑡) of one or more of the joints of interest falls 
below the target load (Hip joint for this study). 

Though the number of predicted repetitions before the task 
fails is close to that of the experimental one (16 experimental 
cycles as opposed to numerically predicted 17 cycles), but they 
are not the same. Because, during the repetitive lifting task, the 
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lifting strategy of the human subject cannot be kept constant 
from cycle to cycle. This will contribute to the variations in cycle 
time, speed of the lifting motion, even the final location of the 
box. An average cycle time is used in the optimization 
formulation, which largely contributes to the variation in the 
predicted results.  

 

6. CONCLUSION 
 
In this study, the fatigue progression and the optimal motion 

trajectory during a repetitive lifting task are predicted using an 
inverse dynamics optimization formulation. SNOPT, a gradient-
based optimizer, effectively solved the complex non-linear 
optimization problem. Simulation results are found to be 
reasonable. The simulation results are compared to the 
experimental data for the total number of cycles repeated before 
failure. Furthermore, the proposed optimization formulation can 
be used to predict fatigue status and optimal motion trajectory 
during any type of repetitive task during the manual material 
handling (MMH) process, thus enhancing the chance to reduce 
work related injury. Our next goal is to update the optimization 
formulation using genetic algorithm (GA) to obtain a global 
optimal solution in the future. 
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