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ABSTRACT

In this study, the fatigue progression and optimal motion
trajectory during repetitive lifting task is predicted by using a 10
degrees of freedom (DOFs) two-dimensional (2D) digital human
model and a three-compartment controller (3CC) fatigue model.
The numerical analysis is further validated by conducting an
experiment under similar conditions. The human is modeled
using Denavit-Hartenberg (DH) representation. The task is
mathematically formulated as a nonlinear optimization problem
where the dynamic effort of the joints is minimized subjected to
physical and task specific constraints. A sequential quadratic
programming method is used for the optimization process. The
design variables include control points of (1) quartic B-splines
of the joint angle profiles; and (2) the three compartment sizes
profiles for the six physical joints of interest - spine, shoulder,
elbow, hip, knee, and ankle. Both numerical and experimental
liftings are performed with a 15.2 kg box as external load. The
simulation reports the human joint torque profiles and the
progression of joint fatigue. The joint torque profiles show
periodic trends. A maximum of 17 cycles are predicted before the
repetitive lifting task fails, which also reasonably agrees with
that of the experimental results (16 cycles). This formulation is
also a generalized one, hence it can be used for other repetitive
motion studies as well.
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1. INTRODUCTION

Joint fatigue during a repetitive lifting task can greatly
reduce the available muscle force capacity. Since fatigue is the
cumulative result of various physiological and neurological
processes occurring simultaneously, it is very hard to single out
the contribution of any one phenomenon. This makes any
fatigue-related force loss computation quite challenging [2, 5].
Software that can predict subject specific lifting strategies while
taking the different weights associated with each lifting into
consideration are paramount to prevent work related injury over
time.

For the past few decades, researchers have developed
various prediction models for lifting motion simulation based on
kinematics and physics [4]. Also, optimization-based motion
prediction algorithm development has made a significant
progress during this time [12, 14-21]. These studies use gradient-
based sequential quadratic programming (SQP) to solve the
constrained nonlinear motion prediction optimization problems.
Since gradient-based iterative optimization methods are still the
most efficient methods for solving nonlinear problems, those
predictions can be fairly accurate when the effect of fatigue
during the task is not considered. However, the major limitation
of these methods is the inability to correctly predict the fatigue
progression during any repetitive task. To increase the accuracy
of these predictions, the contribution of fatigue must be
contemplated. Yet, apart from a couple of studies [1, 10], adding
the contribution of fatigue in posture or motion prediction studies
have seen little light. Any major work is yet to be published that
incorporates the fatigue due to repetitive lifting.
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To successfully study the contribution of fatigue, a rigorous
mathematical modelling of the fatigue progression in human
joints needs to be done. Fatigue models are mostly based upon
analytical or experimental methods; hence it is quite complicated
to incorporate those into numerical studies. Hence, apart from
the preliminary work by Pereira that includes the fatigue study
during elbow joint motion, little further study [7, 9] involving a
complex model such as the full-body motion has been
conducted. In our previous study [1], we have proposed a novel
method to study the fatigue progression during a box-carrying
posture task, but no motion is predicted.

This work aims to bridge that gap and extends our previous
collaborative fatigue prediction study from a box-carrying task
to a repetitive lifting motion prediction. The study aims to predict
and validate the fatigue progression during this task. To predict
the fatigue progression and optimal lifting strategy, an inverse
dynamics optimization formulation is proposed. The lifting task
is set up as a nonlinear programming (NLP) optimization
problem. Dynamic effort is used as the objective function during
the task, which is minimized using the SQP algorithm [8]. The
optimization and experimental results are presented, and a valid
comparison is established.

2. METHOD

In this section, the human model design, fatigue model
integration and the experimental setup is discussed.

2.1 Human model

This study considers a 10-DOF 2D digital human model.
The first three DOFs are global DOFs and refer to the movement
of the whole body at hip joint in the global reference frame as
indicated by the zero subscript in Figure 1. The DH approach is
used to construct the model [1]. Furthermore, the positive
direction of each physical joint rotation is also marked. The
equations of motion (EOM) of the digital human are set up using
the recursive Lagrangian dynamics formulation [1]. The system's
dynamics equation can be written as:

T =t (Z—I‘:Di) _ng_:Ei _fgg_:Fi —GjA;_17, (1)
where the first term is inertia and Coriolis torque, the second
term is the torque due to gravity, the third term is the torque due
to external forces, and the fourth term is the torque due to
external moments in equation (1). Here, f, =
[fkx fxy fiz 0]7 is the external force applied on link k. For
a detailed derivation of the EOM please refer to [14, 15].
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FIGURE 1: THE 2D HUMAN MODEL

2.2 Fatigue model

The three-compartment controller (3CC) fatigue model
consisting of resting, active and fatigued compartments [11, 13]
is used to study the repetitive fatigue progression. Figure 2 shows
the schematic of this system and the flow between the
compartments which is governed mathematically by the first
order differential equations given by (2-4).

dMpg;(t

PO = —Ci(t) + Ry X My (1) @
S4B = €(6) = Fy x My (1) (3)
D = Fy X My (£) = Ry X My () @)

where Mp;(t), My;(t) and Mg;(t) represents the resting, active
and fatigued compartment sizes at time instant t. The fatigue (F;)
and recovery (R;) coefficients for the joints of interest can be
found in [13]. C;(t) is a bidirectional, time-varying torque
activation-deactivation drive for the i joint at time instant ¢
which relates My; (t) and Mg, (t). The values of C;(t) satisfy the
conditions given by equations (5-7).

If Mg (t) < TLi(t) and Mg;(t) > TL; () — My (2),
Ci(t) = Lp; X [TLi(t) — My ()] )

If My;(t) < TLi(t) and Mg;(t) < TL;(t) — My;(t),
Ci(t) = Lp; X Mg;(t) (6)

If My;(t) = TLi(2),
Ci(t) = Lg; X [TL;(t) — My (0)] (7N
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where Lp; denotes the force development factor and Lg; denotes
the relaxation factor. TL;(t) represents the target load for each
joint at time instant # which is calculated using equation (8).
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where 7¥ and 7} denotes the maximum allowable torque for the
i’ physical joint of interest during joint extension or flexion.
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FIGURE 2: THREE-COMPARTMENT FATIGUE MODEL [13]
2.3 Repetitive lifting experiment

The sole participant of this pilot study is a 33-year-old
healthy adult male, with a height of 1.69 m and a weight of 67.3
kg. An Xsens Awinda inertial motion capture system (Movella
Inc., Henderson, Nevada, USA) running at 60 Hz is used to
record the participant’s motion data, while two Bertec force
plates (Bertec Inc., Columbus, Ohio, USA) capture ground
reaction forces and moments at 1000 Hz.

To determine the participant’s maximum load carrying
capacity, an empty box externally measuring 0.33 m x 0.33 m x
0.27 m is loaded with increasing weights. After each addition the
subject is asked to determine whether they are comfortable
lifting it from the ground to pelvis height and then replacing it
once. The maximum combined lifting capacity determined this
way is 15.2 kg.

For the data collection, the subject is asked to stand
symmetrically with their toes just behind the leading edge of the
force plates. The box is placed centrally at a distance the subject
self-determined to be comfortable for lifting from. They are then
instructed to lift the box up to pelvis height and lower it to its
initial position without releasing it, and then repeat the process
till exhaustion. An experimenter provides continuous guidance
to help the subject achieve near consistent lift heights.

The synchronized collected data is processed in Visual3D
(C-Motion Inc., Boyds, Maryland, USA) to calculate the joint
angle profiles.

3. OPTIMIZATION FORMULATION

In this section, the elements of the constrained optimization
formulation are discussed for a single cycle of the repetitive box
lifting task. Note that, each lifting cycle is considered as a two-
phased motion study, where the first half of the total time is spent
on lifting the box up to a specified location (0.000, 1.088, 0.417),
meter, and the remaining half time is used to bring the box back
down to its original location (0.000, 0.070, 0.418), meter.

3.1 Design variables

Since the motion optimization is carried out in joint space,
the joint angle profiles are considered as a part of the design
variables set. From the three-compartment controller (3CC)
fatigue model, the resting compartment size profiles, the active
compartment size profiles, and the fatigued compartment size
profiles are also considered as the design variables to study the
fatigue progression during the repetitive lifting task. A recursive
quartic B-spline interpolation is used to transform these time-
dependent parameters from a continuous-time domain to a
discrete-time domain. This way, the spline control points can
become the design variables, which makes imposing constraints
easier. The complete design variables set can then be expressed
by equation (9).

T
X=[P"§i PI?V;Ri Pﬂ?’;Ai PI"I’;Fi] )

The initial guess for all the joint angles, active, resting and
fatigue compartment sizes are set to zero, but the resting
compartment sizes are set to 1. The duration for each cycle is set
as 3.0 seconds. The optimization problem is solved using
SNOPT software which uses a sequential quadratic
programming (SQP) algorithm.

3.2 Objective function

The goal of this study is to minimize the dynamic effort of all the
physical joints, mathematically given by the expression shown
in equation (10).

T 510 4w (2) a0y
fo 2124 WT(TLU_TLL) + Wqa max (
where T denotes the total duration of each lifting cycle, i denotes
the physical joints considered for the motion study, 7; denotes
the i joint torque, T/ and t/ are upper and lower limits of the
joint torques, w,, denote the weights associated with the i joint
torque, a; denote the local angular accelerations of the physical
joints and wg, denote the weights associated with local angular

accelerations. The weights were all set to 1.

minimize

3.3 Constraints

Both time-dependent and time-independent constraints are
considered for the optimization formulation of each cycle of the
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repetitive task. For the entire time interval, 10 time-dependent
constraints are considered. They are:

(1) joint angle limits,

(2) joint torque limits,

(3) foot contacting position,

(4) zero-moment point (ZMP) location,

(5) box forward position,

(6) collision avoidance,

(7) monotonically changing wrist velocity,

(8) the differential equations for resting, active and fatigued

compartment sizes,

(9) unit summation condition and

(10) residual capacity condition.

In addition to these 10 constraints, 3 more time-independent
constraints are also applied. They are:

(11) initial and final box locations,

(12) static conditions at the beginning, mid-time, and the end

of the motion, and

(13) the initial, quarter-time, half-time, three-quarters-time,

and the final joint angles of the six physical joints of interest.

Note that the time-dependent constraints are calculated
sequentially in the optimization process at every time
discretization point. In contrast, optimization calculates the time-
independent constraints at a specific time.

The optimization formulation for a single cycle of the
repetitive task discussed in subsections 3.1-3.3 is repeated until
SNOPT fails to find an optimal solution for the current cycle.
The fatigue compartment size is set to zero at the start of only
the first cycle of the optimization process. While simulating the
process for the repetitive task, starting with the second cycle, the
time-independent compartment size continuity constraints given
in equations (11-13) are imposed.

Mpg; 1 (0) = Mp; (x—1)(T) (11)
My; 1 (0) = My;_x—1)(T) (12)
Mp; 1 (0) = Mg;_ —1)(T) (13)

Also, to ensure a general increase in fatigue compartment size
across all six physical joints of interest, the derivatives of the
final compartment sizes from the optimal result of the previous
cycle are also set equal to the derivatives of the initial
compartment sizes of the current cycle.

MRi_k 0) = MRi_(k—l) (T) (14)
MAi,k(O) = MAi,(k—l) ) (15)
Mp; 1 (0) = Mg;_ 5—1)(T) (16)

An additional constraint given by equation (17) ensures the
continuity between joint angles from one cycle to the next.

qi 1(0) = q;_ k-1)(T) (17)

The subscripts k and (k — 1) denote the parameters in equations
(11-17) at initial and final times of the k" and (k-1)" cycle,
respectively with k = 2, 3,4, ..., niter.

4. RESULTS

The optimal motion and the fatigue progression is predicted
using the optimization formulation described in section 3 for a
1.69 m tall subject who weighs about 67.3 kg while he
repetitively lifts a 15.2 Kg box. A maximum of 17 cycles are
predicted before the repetitive task fails. The simulation is run
on a laptop with an 11th Gen Intel Core i19-11900H processor
clocked at 2.50 GHz base speed, which features 8 cores, 16
logical processors and 32 GB RAM. The joint limits, foot
contacting position, initial and final box locations, residual
capacity, collision avoidance, compartment size continuity and
unit summation constraints are active during the optimization
process.
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FIGURE 3: SIMULATION SNAPSHOTS

First, Figure 3 illustrates snapshots of the predicted 2D
human lifting motion from the simulation at the initial, quarter-
time, half-time, three-quarters-time, and the final time instant.
Furthermore, the torque profiles for the same joint motions are
shown in Figure 4. Finally, the fatigue progression status for the
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six physical joints of interest is shown in Figure 5 which is
characterized by the three compartment size profiles. In all these
figures, the first three cycles are marked by the gray dashed lines.

Spine

Torque (N-m)
. P
(=)

o

'
w N
(=] an
(=] (=]
TR T

Wi

-350 !
0 10 20 30 40
Time (s)
Shoulder
E
Z
o
=
g
o
|—
20 30 40 50
Time (s)
Elbow
£ ) J
3 A N
[
=
g
=)
|—
20 30 40 50
Time (s)

—

[ae]
W
(=]

Torque (N-m}
S
[=)

50

Hip
20

Time (s)

M

10 0 50

Knee

Torque (N-m)
S &
[=) (=] (=]

=y
(%1}
(=]

-200

-250

L

10 20 30 40 50
Time (s)

200

150 -

Torque (N-m)
>
[=)

4]
o

Ankle

10 20 30 40 50
Time (s)

FIGURE 4: JOINT TORQUE PROFILES

©2023 by ASME



—TL,

RC4 _MR4 _MA4 —M

Spine

—TLg RCg ——Mpg —M,g _Mra‘

Knee

Compartment size
o o ©
i (o)}

o

rtment size
[a]
[e:]

ompa
o o ©
(=] %] iy o

o
o @

Compartment size
o o ©
iy

Time (s)

—TL,

Rcs _MRs _MAs _MFS‘

Shoulder

o
o =
T T

\8]
T

o

=y
T

=y
T

;8]

Time (s)

Time (s)

ch _MRQ _MAQ _Mrg‘

Ankle

0 10 20 30 40 50
Time (s)

FIGURE 5: JOINT FATIGUE PROGRESSION

5. DISCUSSION

During the first half-duration of each cycle, the shoulder
flexes, elbow flexes and the hip extends until the box is lifted to
the desired location. During the second half-duration of each
cycle, the opposite motion trend is followed by the joints. These
trends are further confirmed by the motion trajectory shown in
Figure 3. The joint torque profiles show the periodic trends as
illustrated in Figure 4. During the motion of all six physical joints
of interest, the active compartment size profiles tend to track the
general shape of the target load profiles. The resting
compartment size profiles follow the opposite direction of the
active compartment size profiles for all the joints, satisfying the
governing equations of the 3CC fatigue model where the resting
compartment supports the active compartment as necessary
throughout the duration of the entire repetitive task. This is also
consistent with the unit summation constraints. As the fatigue
compartment size profiles grow, less room is available to use
from the resting and active compartment profiles. The task is
considered to have failed when the residual capacity, RC;(t) =
My;(t) + Mg;(t) of one or more of the joints of interest falls
below the target load (Hip joint for this study).

Though the number of predicted repetitions before the task
fails is close to that of the experimental one (16 experimental
cycles as opposed to numerically predicted 17 cycles), but they
are not the same. Because, during the repetitive lifting task, the
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lifting strategy of the human subject cannot be kept constant
from cycle to cycle. This will contribute to the variations in cycle
time, speed of the lifting motion, even the final location of the
box. An average cycle time is used in the optimization
formulation, which largely contributes to the variation in the
predicted results.

6. CONCLUSION

In this study, the fatigue progression and the optimal motion
trajectory during a repetitive lifting task are predicted using an
inverse dynamics optimization formulation. SNOPT, a gradient-
based optimizer, effectively solved the complex non-linear
optimization problem. Simulation results are found to be
reasonable. The simulation results are compared to the
experimental data for the total number of cycles repeated before
failure. Furthermore, the proposed optimization formulation can
be used to predict fatigue status and optimal motion trajectory
during any type of repetitive task during the manual material
handling (MMH) process, thus enhancing the chance to reduce
work related injury. Our next goal is to update the optimization
formulation using genetic algorithm (GA) to obtain a global
optimal solution in the future.
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