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Abstract. GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA) 
is a clinical Magnetic Resonance Imaging (MRI) reconstruction method. The 
kernel size in GRAPPA directly controls the image quality and the optimal ker-
nel size can be manually selected through comparing multiple reconstructed 
images. However, the optimal kernel size is often impractical to be manually 
selected in clinical settings. To resolve this issue, we propose an automated 
kernel size selection method utilizing grid search, which maintains GRAPPA's 
transparent and interpretable nature in a linear interpolation process. This strat-
egy redefines kernel size selection as an exhaustive search problem and tests all 
potential kernel sizes within a predefined hyperparameter space. Experimental 
results, evaluated through both qualitative and quantitative metrics, demonstrate 
the effectiveness of our method in consistently identifying the optimal kernel 
size. The proposed approach significantly enhances the efficiency and utility of 
GRAPPA reconstruction for ensuring high image quality pivotal in accurate 
clinical diagnoses and treatment plans.  
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1 Introduction 

GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA) [1] is a re-
nowned method utilized in clinical imaging, specifically within the field of Magnetic 
Resonance Imaging (MRI). One of the distinguishing features of GRAPPA is its use 
of Autocalibration Signals (ACS) data, which enables the system to estimate interpo-
lation coefficients. This characteristic eliminates the necessity for external training 
data, making GRAPPA an efficient and self-sufficient method for accelerating imag-
ing speed. When comparing GRAPPA to deep learning-based MRI reconstruction 
methods [3], a significant advantage becomes apparent: GRAPPA employs a linear 
interpolator, making it transparent and interpretable. This transparency ensures that 
GRAPPA's workings can be thoroughly analyzed, providing a clear understanding of 
how the imaging results are achieved. Consequently, GRAPPA's use in clinical MRI 
continues to be a preferred choice for many practitioners due to its blend of efficien-
cy, autonomy, and interpretability. 
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While GRAPPA offers several advantages, it also presents certain challenges, par-
ticularly related to kernel size optimization [2]. Generally, kernel size, which directly 
influences the quality of the reconstructed image, is manually optimized in GRAPPA. 
However, in practical, fast-paced clinical settings, manual selection and adjustment of 
the kernel size are often infeasible, leading to a potential compromise in the quality of 
the reconstructed images. This limitation underscores the need for an automated ap-
proach to kernel size selection. By automatically searching for the optimal kernel size, 
the imaging process could become more streamlined and efficient. Moreover, it would 
ensure consistently high image quality, vital for accurate clinical diagnoses and treat-
ment plans, making the overall process more suited to the demanding needs of clinical 
applications. 

In the context of GRAPPA's image reconstruction process, the selection of the op-
timal kernel size, which directly impacts the resultant image quality, can be redefined 
as a search problem. Considering GRAPPA's linear and transparent nature, the meth-
od used to find the optimal kernel size should similarly be interpretable. In this re-
gard, grid search as a straightforward and exhaustive exploration of all combinations 
of predefined hyperparameters may be a suitable choice. Its simplicity lies in system-
atically testing all potential kernel sizes until the best one is identified, contributing 
significantly to achieving optimal image quality. Through its simple principle of test-
ing all combinations in a predefined hyperparameter grid, grid search could be an 
efficient solution for automatic kernel size selection in GRAPPA, especially consider-
ing its linear and interpretable nature. This shift from manual selection to automated 
kernel size determination via grid search can substantially improve the efficacy and 
convenience of GRAPPA in clinical settings. 

In this study, we introduce an innovative approach for automatic kernel size selec-
tion in the GRAPPA imaging method. Our proposed method is designed with a focus 
on achieving the highest possible quality in reconstructed images, therefore signifi-
cantly enhancing the effectiveness and utility of GRAPPA in clinical imaging applica-
tions. The structure of the paper is as follows: the first part provides an introduction, 
setting the context and presenting the problem at hand. This is followed by the second 
part, where we discuss related works and the current landscape of solutions. The third 
section delves into the details of our proposed method for automatic kernel size selec-
tion. In the fourth section, we present the experimental results that demonstrate the 
efficacy of our proposed method, followed by the fifth and final section which pro-
vides a conclusion, summarizing our findings and their implications for GRAPPA 
imaging and potentially highlighting future avenues for further research. 

2 Related Work 

Functioning as a linear parallel MRI reconfiguration, GRAPPA [1] addresses the 
inverse issue by resolving a set of linear equations. Additionally, GRAPPA recon-
struction can be depicted as 

              (1) 
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In the formula, the weights used in the linear combination are shown by n(j, b, l, m). 
Nb represents the number of blocks and A represents the acceleration factor in the 
reconstruction. Index l and b count through the individual coils and individual recon-
struction blocks respectively [4]. The initial regression evaluation in GRAPPA can be 
substituted with other linear or nonlinear techniques to approximate the linear or non-
linear correlation [5-9] between the undersampled points and their adjacent captured 
points. A more precise calculation of the missing k-space data can be achieved, sur-
passing the original GRAPPA technique. As a result, reduced artifacts and an en-
hanced signal-to-noise ratio (SNR) in the reconfigured images can be secured. 

As per machine learning theory, the generalization error is broken down into three 
components: 

                                      (2) 
, which represent bias, variance, and noise, respectively. Variance tends to increase as 
a larger number of features are employed to learn a linear or nonlinear mapping from 
raw to reconstructed data. The quality of the reconstruction may be subject to the 
Bias-Variance Tradeoff (BVT) [10] when a linear or kernel-based learning approach 
is utilized. Owing to BVT, concurrently reducing bias and variance poses a challenge. 
Ensemble methods are commonly adopted to lessen variance while maintaining low 
bias, thereby enhancing quality and stability. Diversity, an essential element for a 
successful ensemble method, signifies the difference among multiple individual 
learners. A collective result derived from a group of diverse learners is theoretically 
assured to accomplish a T-factor error reduction, given that the learners are independ-
ent [11], where T represents the ensemble size. Ensemble learning is not a single al-
gorithm, but it accomplishes the learning task by creating and merging multiple di-
verse learning methods, striving for stable and accurate results. These multiple learn-
ing methods are viewed as the individual base or component learners, which can be 
assembled into homogeneous or heterogeneous ensembles. In the context of MRI 
reconstruction, diversity can be observed in the different sets of parameters used by a 
reconstruction method or the distinct reconstruction strategies. To search for the best 
reconstruction quality, a search algorithm is needed with optimal kernel size selection. 

3 Proposed Method 

3.1 Influence of Kernel Sizes on Image Quality 

We assume each interpolator is a learner in machine learning and needs to be trained 
using original ACS data. Since multiple interpolators use different kernel sizes for 
convolution, they are trained with multiple different views, respectively. As shown in 
the figure below, a small and a large kernel containing small and larger numbers of 
neighboring k-space data points are used by these two interpolators for interpolating 
the target k-space signals. Each neighboring k-space data point represents one feature 
for interpolating the target signal: 6 features (6 black dots) for the small kernel (small 
view) and 16 features (16 black dots) for the large kernel (large view). Each view 
represents a feature set. In the calibration step of GRAPPA, two learners trained from 
these two views have different generalization performance, so that one learner is more 
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accurate and another one less accurate. This observation is also consistent with Refer-
ence [2], which showed that the optimal view (optimal kernel size) needs to be manu-
ally observed and selected. 

Fig. 1. Different kernel sizes for interpolating missing k-space data in the GRAPPA 
method. A larger kernel size contains more parameters in the interpolation process 
while a smaller kernel size includes fewer parameters in the interpolation. BVT is 
applied to different kernel sizes. An optimal kernel size is searched for to obtain an 
optimal quality of a reconstructed image.

In the interpolator size determination process, overfitting (interpolation size is too 
large) and underfitting (interpolation size is too small) problems may appear. For 
different k-space datasets, the optimal interpolator sizes have also deviated, so manual 
determination case-by-case is also time-consuming and infeasible in clinical settings. 
Quantitatively determining an interpolator’s accuracy (e.g., using quantitative metrics 
like NMSE, SSIM, or PSNR) for the whole k-space is difficult without using the fully 
sampled k-space data. The proposed method cannot determine an interpolator’s abso-
lute value of accuracy but try to use the difference between two interpolators’ accura-
cy for reducing the underfitting and overfitting issues.

3.2 Analysis of Kernel Size in GRAPPA Reconstruction

The association between acquired and unacquired k-space data can be divided into 
two categories: linear and nonlinear relationships. Commonly used in clinical rou-
tines, GRAPPA [1] operates as a linear relationship approach that establishes a linear 
correlation within auto-calibration signals (ACS), followed by utilizing this correla-
tion to recover missing data in peripheral k-space. The linear shift-invariant property
enhances the interpretability of GRAPPA, surpassing that of nonlinear relationship
techniques. Thus, the impact of reconfiguration parameters, such as the size of the 
interpolation kernel on the quality of the image, can be quickly discerned. Deep learn-
ing uses nonlinear relationship strategies that offer intricate associations between 
acquired and unacquired k-space data. These strategies excel over their linear coun-

y
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terparts by reducing artifacts and noise. The interpretability of intricate networks, 
however, remains elusive despite their high accuracy, a result of the accuracy-
interpretability trade-off [10] in machine learning theory. Unstable image reconstruc-
tion [13] might also occur during deep learning-based MRI reconfiguration, and it 
becomes challenging to determine the factors responsible for inconsistent perfor-
mance. Alterations within the training and testing domains can potentially impede 
generalization performance, consequently impairing image quality [8]. The ability to 
have consistent and interpretable MRI reconfigurations could assure medical practi-
tioners and patients of the reliability of learning-based medical imaging methodolo-
gies [12]. The resilience of reconstruction when employing the low acceleration factor 
typically surpasses that of reconstruction using the high acceleration factor.

3.3 Grid Search for Optimal Kernel Size

GRAPPA is a renowned parallel MRI reconstruction technique, where the kernel size 
plays a pivotal role in determining the quality of the reconstruction of missing k-space 
data. Optimizing this parameter is crucial, and one efficient and systematic approach 
to do this is through the utilization of the grid search method [14,15]. Grid search is a 
hyperparameter tuning technique that offers an exhaustive search over a manually 
specified subset of hyperparameter values. In the context of GRAPPA, we aim to 
identify the optimal kernel size that will lead to the best possible reconstruction of the 
missing k-space data. To initiate this process, we first establish a set of possible ker-
nel sizes that can be adjusted and scrutinized. The range and increments of this set 
must be chosen carefully, bearing in mind that a larger range or smaller increments 
will result in a more comprehensive search but will also demand more computational 
resources. Once this predefined set of kernel sizes is established, we proceed with the 
iterative process of k-space reconstruction. For each kernel size in the set, the 
GRAPPA algorithm is employed to perform a reconstruction of an undersampled k-
space. The kernel size essentially determines how many neighboring k-space lines are 
used to estimate the missing k-space data. The choice of kernel size is a critical bal-
ance – a smaller kernel might lead to a less accurate estimation due to limited data, 
while a larger kernel could introduce errors due to the assumption of linearity over a 
larger region. One reconstruction with a selected kernel size can be shown in Figure 
2.

Fig. 2. One reconstruction using a selected kernel size by GRAPPA. ACS data are 
used as the target or labeled data in this training process of the reconstruction. Once 
the reconstruction is completed, its performance metrics are evaluated in comparison
to the reference image with full sampling. Missing k-space data are interpolated using 
the estimated kernel coefficients. Next reconstruction selects another kernel size from 
the pre-defined set and repeats the three steps above. Note that only ACS data are 
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used for grid search because ACS data represent the real acquired data from a MRI 
scanner. 
 

Following the reconstruction process in Fig. 2, the performance of each reconstruc-
tion is then evaluated. This evaluation involves objective quantitative metrics that 
assess the quality of the reconstruction against a known ground truth or a fully sam-
pled data set. We used the fully sampled k-space-based reconstruction as the ground 
truth for evaluating all reconstructed images by different kernel sizes. In this case, we 
leveraged metrics such as the Normalized Mean Square Error (NMSE), Structural 
Similarity Index Measure (SSIM), and Peak Signal-to-Noise Ratio (PSNR). NMSE 
provides a measurement of the overall error in the reconstruction. SSIM, on the other 
hand, assesses the perceived change in structural information, offering insight into the 
visibility of the artifacts, while PSNR measures the peak noise error. Each of these 
metrics brings a unique perspective to the evaluation, and together, they provide a 
comprehensive understanding of the reconstruction performance. Upon completion of 
this evaluation for each kernel size in the predefined set, we find ourselves in a posi-
tion to select the kernel size that yields the best performance. This optimal kernel size 
is typically chosen based on a compromise among the NMSE, SSIM, and PSNR val-
ues, as the perfect balance between these metrics often leads to the most satisfactory 
reconstruction results. 

The proposed grid search method provides a systematic and robust approach to 
identifying the optimal kernel size for the GRAPPA algorithm. This technique takes 
advantage of the benefits of exhaustive search and cross-validation to yield a kernel 
size that enhances the reconstruction quality of missing k-space data. However, it's 
important to remember that while this method may provide the best solution within 
the predefined range, it might not be the absolute optimal solution. Regular refine-
ments and reconsiderations of the range of kernel sizes, as well as advancements in 
algorithmic design and hardware capabilities, may lead to further optimization of the 
GRAPPA algorithm. 
 
3.4 The Effects of Search Space on Reconstruction Quality 

Grid search isn't without its limitations. In some cases, grid search may fail to identify 
the best optimal kernel size due to inadequacies in the pre-established set of kernel 
sizes or the increments chosen. If these predetermined choices do not encapsulate the 
true optimal value, the grid search will, quite understandably, be unable to locate it. 
To counteract this drawback and bolster the reconstruction performance, one of the 
first steps could be to refine the search space. This might involve either broadening 
the range of possible kernel sizes under consideration or reducing the increment steps 
between the values in the search grid. Tuning these aspects would permit a more de-
tailed exploration of potential kernel sizes and increase the probability of stumbling 
upon the optimal value. 

Refining the search space may not always be sufficient, and the conventional grid 
search might need to be substituted with more sophisticated methods. Two such alter-
natives could be adaptive grid search [16] and random search [17]. An adaptive grid 
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search method brings a certain dynamism to the process - it identifies promising re-
gions within the grid and narrows down the search to that region, thereby improving 
the efficiency and effectiveness of the search. On the other hand, a random search 
method provides a solution to the exhaustive nature of grid search. By selecting ran-
dom combinations of hyperparameters for evaluation, it can sometimes uncover opti-
mal values that might be overlooked in a regular grid search. The influence of human 
expertise [2] can be utilized in this process. Particularly for something as specialized 
as MRI reconstruction, the experience of an MRI technologist could be invaluable. 
Their experience and intuition about the plausible range of optimal kernel sizes could 
help in defining the search space more accurately and efficiently. 

While grid search remains a powerful tool in hyperparameter tuning, its effective-
ness is dependent on various factors, such as the defined search space and the incre-
ment steps. In situations where it falls short, alternative methods like adaptive grid 
search [16] and random search [17], and the application of human expertise [2], can 
offer more nuanced and effective strategies to locate the best kernel size for the 
GRAPPA algorithm. Ultimately, the goal is to enhance the reconstruction perfor-
mance, and sometimes that means going beyond the conventional methodologies and 
embracing more flexible and sophisticated techniques. 

4 Experimental Results 

4.1 Reconstruction Datasets 

Two datasets are used to evaluate the reconstruction performance of the proposed grid 
search-based GRAPPA method. The first dataset was acquired on a GE 3T scanner 
(GE Healthcare, Waukesha, WI) with an 8-channel head coil. In the first dataset, a 
uniform water phantom was scanned using a gradient echo sequence (TE/TR = 
10/100 ms, 31.25 kHz bandwidth, matrix size = 256 × 256, FOV = 25 cm2). The third 
set of coronary brain data was acquired using a 2D gradient echo sequence (slice 
thickness = 3.0 mm, matrix size = 256 × 256, FOV = 24 × 24 cm2, and TE/TR = 
2.29/100 ms). 
 
4.2 Reconstruction Performance 

The phantom dataset was subject to undersampling by an outer reduction factor of 5, 
with the ACS lines set at 30. The block number for the interpolation kernel size was 
established at 2, and the column values varied in a range from 3 to 35, using only odd 
numbers. These 17 distinct kernel sizes facilitated the creation of a diversified search 
space for the recovery of k-space data. Subsequently, we applied the grid search to 
identify the best reconstruction quality. In Fig.3, we present the reconstructed images 
produced by using manual selection (3 columns) and automatic determination by grid 
search (17 columns), respectively. It is seen that the reconstruction generated through 
the optimal kernel size searched surpasses the reconstructions by manual selection in 
terms of quality. This method notably suppresses noise and aliasing artifacts, leading 
to clearer images. In terms of quantitative metrics, the reconstruction utilizing grid 
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search demonstrated commendable performance with an NMSE of 0.903095e-04, 
PSNR:4.358909e+01, and SSIM: 9.540220e-01. Grid search-based reconstruction 
reinforces its capacity for efficient noise and artifact suppression. For the reconstruc-
tion using 3 columns manually selected, NMSE:1.221693e-03, PSNR:3.655454e+01, 
and SSIM: 7.769426e-01. 
 

 
Fig. 3. Phantom reconstruction using the optimal kernel size by grid search. For each 
reconstruction, the k-space data is recovered by using an interpolation kernel size. For 
the kernel sizes, the block number is set as 2, and column numbers range from 3 to 
35. Manually selected column number 3 is used to show the reconstructed phantom 
images. Optimal kernel size is identified in the grid search process and it is used to 
reconstruct missing k-space data and final image. 
 
Moreover, Figure 4 portrays the NMSE values generated from individual reconstruc-
tions based on all columns (indicated by the green curve). A bias-variance trade-off 
can be observed with a “U” shape. When less parameters are used in a smaller kernel 
size and more parameters are used in a larger kernel size, NMSE errors are high. On 
the bottom of the “U” shape, optimal kernel size (in this dataset, the kernel size of 2 
blocks by 17 columns is optimal) can be obtained. 
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Fig. 4. Bias-variance tradeoff curve for the GRAPPA reconstructions using different 
columns ranging from 9 to 35. The optimal kernel size-based GRAPPA reconstruc-
tion has the lowest NMSE errors which locate at the bottom of the “U” shape. 
 
In the second dataset, we employed 30 ACS lines and the outer reduction factor 6 for 
undersampling k-space data. In the search space of columns 9 to 23, grid search can 
identify the best quality of image reconstruction with kernel size 2 blocks by 9 col-
umns. From the different maps shown in Fig.5, the optimal kernel size-based recon-
struction has less noise than other reconstructed images. The quantitative metric val-
ues are shown in Table 1. It is seen that the kernel size identified by the grid search 
has the lowest value of NMSE and the highest values of PSNR and SSIM. The grid 
search can effectively find the GRAPPA reconstruction kernel size with the best qual-
ity in this search space with 8 kernel sizes.  

Table 1. Quantitative Metric Values for Evaluating Reconstructions of Coronary Brain Data. 

Kernel Size NMSE PSNR SSIM 
2 x 9 1.491039e-01 4.137814e+01 9.525026e-01 
2 x 11 1.568932e-01 4.118346e+01 9.493362e-01 
2 x 13 1.678597e-01 4.092436e+01 9.451885e-01 
2 x 15 1.818892e-01 4.061941e+01 9.400285e-01 
2 x 17 1.983778e-03 4.028633e+01 9.343896e-01 
2 x 19 2.185512e-03 3.991481e+01 9.277394e-01 
2 x 21 2.442428e-03 3.949184e+01 9.197368e-01 
2 x 23 2.738180e-03 3.905595e+01 9.110834e-01 
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Fig. 5. A coronary brain image reconstruction results using different kernel sizes. The 
proposed grid search method can identify the best reconstruction quality in a search 
space.  

5 Conclusion 

In conclusion, we have introduced a grid search approach to automate the identifica-
tion of the optimal GRAPPA reconstruction quality. Our proposed methodology has 
demonstrated its effectiveness in discerning the optimal kernel size. This has been 
substantiated through experiments on in-vivo MRI datasets, which affirm the 
method's ability to accurately pinpoint the best kernel size within a predefined search 
space. As a future course of action, we aim to enhance the search space by leveraging 
prior knowledge, thereby refining and optimizing the outcomes of clinical MRI even 
further. 
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