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Abstract—Model-serving systems have become increasingly
popular, especially in real-time web applications. In such
systems, users send queries to the server and specify the desired
performance metrics (e.g., desired accuracy, latency). The
server maintains a set of models (model zoo) in the back-end
and serves the queries based on the specified metrics. This pa-
per examines the security, specifically robustness against model
extraction attacks, of such systems. Existing black-box attacks
assume that a single model can be repeatedly selected for
serving inference requests. Modern inference serving systems
break this assumption. Thus, they cannot be directly applied to
extract a victim model, as models are hidden behind a layer of
abstraction exposed by the serving system. An attacker can no
longer identify which model she is interacting with. To this end,
we first propose a query-efficient fingerprinting algorithm to
enable the attacker to trigger any desired model consistently.
We show that by using our fingerprinting algorithm, model
extraction can have fidelity and accuracy scores within 1% of
the scores obtained when attacking a single, explicitly specified
model, as well as up to 14.6% gain in accuracy and up to
7.7% gain in fidelity compared to the naive attack. Second,
we counter the proposed attack with a noise-based defense
mechanism that thwarts fingerprinting by adding noise to the
specified performance metrics. The proposed defense strategy
reduces the attack’s accuracy and fidelity by up to 9.8% and
4.8%, respectively (on medium-sized model extraction). Third,
we show that the proposed defense induces a fundamental
trade-off between the level of protection and system goodput,
achieving configurable and significant victim model extraction
protection while maintaining acceptable goodput (> 80%). We
implement the proposed defense in a real system with plans to
open source. Access to code provided for anonymous review1.

1. Introduction

The deployment of inference serving systems [17], [1],
[16], [22], [50], [3] to serve machine learning models to
users in interactive web applications [26], [61] is witnessing
a significant surge, enabling applications to leverage efficient
and scalable ML model predictions for a variety of use cases.
As these applications are typically user-facing and interac-
tive, ML inference must be performed in real-time, subject
to strict latency constraints, known as a latency service
objective (SLO) imposed on each individual request (e.g.,
< 100ms) [63]. The latency SLO defines the latency budget
available to the system to serve a single query. Model-
less inference serving systems [22], [50] abstract away the
burden of explicit model selection from the set of registered
models (known as the “model zoo”) by the client. These
systems decouple applications from the models they use,
allowing each to evolve independently. Furthermore, this
obviates the need for “early binding”—making premature
static model choice decisions (e.g., [17], [16]) and enables
“late binding”—choosing the right-sized model just-in-time
on a query to query basis (e.g., [22], [50]). This flexibility
proves important for maximizing the fraction of queries for
which the latency SLO is met (defined as latency SLO
attainment), as dynamic deployment conditions (e.g., mem-
ory/network/storage bandwidth, power consumption, battery
level) and application requirements (desired accuracy and
response time) fluctuate [7]. This proliferation of model
zoo inference serving systems raises significant concerns
regarding the privacy and security of the registered models.
The models stored span a large range of model sizes and
accuracies, each potentially trained on proprietary datasets
and further fine-tuned and specialized to different runtime
conditions, exposing valuable intellectual property.

Each model in the model zoo is considered highly valu-
able because they are expensive to obtain [54]. Along with

1. Two links: PSML Repo and Modified Clockwork Repo
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Figure 1: A high-level overview of this paper. The first Pareto frontier shows a naive attack. In the second Pareto frontier, the accuracy
and latency specifications obtained from our fingerprinting algorithm successfully target the victim model, and it gets picked for serving
most of the queries. In the third Pareto frontier, the accuracy and latency specifications after fingerprinting but with the defense become
less accurate, and the victim model is not picked that often. Our fingerprinting algorithm shows that a single-model attack can be used
on a model zoo. With our defense mechanism, we offer a protection method.

training the final model, the architecture, training algorithm,
training data, and hyper-parameters are all valuable (e.g.,
Training GPT-3 [9] cost OpenAI more than $4 million).
Qualcomm is scheduled to make available Meta’s Llama
2 [56], which has up to 70 billion parameters, based AI
implementation on smartphones in 2024 [4]. This imple-
mentation could be worth millions of dollars. The cost is
further compounded by specializing the model to predictably
execute with high probability under a certain latency bud-
get leveraging latency-aware Neural Architecture Search,
mixed-precision quantization, hardware-aware kernel fusion,
etc. Thus, surprisingly, smaller models may actually hold
higher value to the attacker. Model zoos can contain tens to
hundreds of these vulnerable models in the cloud, each spe-
cialized for a different application requirement (e.g., Meta’s
anomaly detection framework, Sigma, contained more than
100 distinct models running in production everyday in
2018 [26] and Meta’s personalized recommendation system
contained more than 400 distinct models in 2020 [25]).

Black-box attacks [52], [21], [57], [6] pose a substan-
tial threat to the privacy and security of inference serving
systems. These attacks allow adversaries to exploit vulnera-
bilities within the system and extract sensitive information,
including the victim model’s functionality, training data,
architecture, and parameters. Surprisingly, despite the in-
creasing adoption of model-less [22], [50] inference serving
systems and the displacement of explicit model selection
serving [17], [16], [29], [1], practical demonstrations of

black-box attacks on these systems have not been well
studied. Indeed, state-of-the-art model extraction techniques
assume the adversary’s ability to route all queries to the
same, explicitly specified victim model. Importantly, we
assert that this is an outdated and impractical assumption
for state-of-the-art inference serving systems [50], which
prioritize flexibility to cater to diverse user requirements.
Consequently, a pressing need arises to explore effective
mechanisms that can bridge this gap: adapt existing black-
box attacks, such as model extraction, to state-of-the-art in-
ference serving systems that are model-less, latency-aware,
and operate under real-time latency constraints. To the best
of our knowledge, this work is the first to showcase the
viability of black-box attacks on inference serving systems
without requiring explicit model specification by the user.

Since interactive applications have different latency
SLOs for different requests, model zoo entries typically span
a broad latency-accuracy tradeoff space. Inference serving
systems typically expose and serve the Pareto frontier
of optimality of this tradeoff space, such that the highest
accuracy model is served for a given latency budget, and
the lowest latency model is served for a given accuracy
threshold. Since applications operate on diverse operating
latency budgets, and target deployment devices may have
diverse resource constraints, the highest accuracy model
may not always be the attacker’s desired target. Given the
latency constraint of attacker’s interest, she does, however,
prefer the highest possible accuracy model that satisfies this
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constraint. Indeed, extracting Pareto optimal points with
lower accuracy/latency tradeoff may be more suitable for
embedded devices or autonomous cyber-physical systems
that operate on a tight sensory-actuator feedback control
loop and are resilient to lower accuracy [30]. To target
a given point of interest on the Pareto frontier requires a
fingerprinting mechanism.

Thus, we propose a novel and query-efficient
fingerprinting-based attack that enables model extraction
performance on a model-less inference serving system (w.r.t.
accuracy and fidelity) comparable to traditional black-box
attacks conducted on a single, explicitly specified model.
Our fingerprinting algorithm enables black-box extraction
attacks to have accuracy and fidelity within 1% of the
corresponding values in the single-model setting while
spending the same number of queries. We show up to
14.6% gain in accuracy and up to 7.7% gain in fidelity
than the naive attack without fingerprinting while spending
only 4000 queries. This bridges the gap and recoups the
loss in extraction performance thwarted by state-of-the-art
model-less abstraction layer.

We further propose a novel defense approach to counter
our fingerprinting attack. The defense mechanism is based
on the introduction of noise to the performance2 specifi-
cations of queries, effectively disrupting the fingerprinting
process. Our defense strategy reduces the accuracy and
fidelity of the attack by up to 9.8% and 4.8%, respectively,
compared to the scores obtained with our fingerprinting
algorithm. It is particularly successful in protecting medium
and small-sized victim models. Finally, we expose and
study a fundamental tradeoff between the effectiveness of
our defense and inference serving system performance. We
measure the latter in goodput—fraction of queries with both
accuracy and latency constraints satisfied. We demonstrate
that our defense can give significant protection while main-
taining acceptable goodput (> 80%). Fig. 1 captures a high-
level conceptual overview.

We instantiate the proposed attack and defense mech-
anisms in a real Pareto-Secure Machine Learning system
(PSML), integrating it with a state-of-the-art inference serv-
ing system [22]. Our paper instantiates the following prin-
cipal contributions:

• A real model-less inference serving system with
the implementation of proposed attack and defense
mechanisms, processing queries in real time in ac-
cordance with accuracy and latency constraints.

• A generic and query-efficient fingerprinting algo-
rithm that enables practical black-box extraction at-
tacks on model-less inference serving systems.

• A noise-based defense strategy that effectively re-
duces the success of fingerprinting-based attacks on
inference serving systems.

• Configurable levels of defense, inducing a trade-
off space between system goodput and level of
protection, providing the ability to achieve robust

2. Proposed attack and defense generalize to metrics other than latency.

protection while maintaining reasonable system per-
formance.

2. Background and Related Work

2.1. Inference-Serving Systems

TensorFlow Serving [1] was one of the first dedicated
ML serving systems, although it was limited to models in
the TensorFlow framework. Clipper [17] was later developed
to use general frameworks and make it modular for anyone
to deploy a model. Amazon Sagemaker [29] and NVIDIA
Triton Inference Serving [3] were some of the first publicly
released serving systems officially offering inference as a
service to satisfy business use cases. These systems have the
advantage of large infrastructures backed by Amazon and
NVIDIA, as Sagemaker autoscales based on the inference
load, and Triton optimizes inference on NVIDIA GPUs.

All of these systems require the user to specify the model
used for inference, which may not satisfy all use cases.
InferLine [16] provides serving for a pipeline of models
by planning resource allocation for each model and tuning
as necessary during execution. A prominent problem is a
lack of developer understanding of the trade-off of accu-
racy/latency among variants of a model, such as the ResNet
family [27]. Therefore, instead of having the developer
specify the model to query, model-less systems that query
from model zoos have arisen. INFaaS [50] generates variants
for every model deployed to its zoo during the profiling
process, and it navigates the trade-off space of these variants
on the user’s behalf. The clients simply provide the latency
and accuracy bounds with their inputs in INFaaS.

However, many of these systems do not take advan-
tage of the predictability of inference latency for a model,
i.e., deterministic forward pass latency of a deep neural
network. Only recently has this attribute been studied, by
systems such as Clockwork [23] and iGniter [62]. Clock-
work achieves predictability by discarding queries that take
too long, as well as by reducing the choice of resource
allocation and program execution at the hardware, OS, and
application level in order to reduce variability in end-to-
end latency. This determinism allows for a model zoo to be
represented as a Pareto frontier when plotted by its latency
and accuracy, exhibiting the positive correlation between
these two attributes in ML models. However, both of these
systems require clients to specify the models they want
along with the input.

Secure inference serving systems have been proposed
to protect against malicious clients [38], [53], [11]. These
works employ secure cryptographic protocols to protect
against attacks that try to steal private inputs and parameters
of the model. We consider an adversary (§3.2) that is only
interested in extracting the functionality of a model and not
its weights or training data.
Model Zoo. Models that are pre-trained for a specific task
like image recognition can be coalesced into a repository
known as a model zoo. Real-world examples have demon-
strated the wide range of model zoo scales, with some
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containing as few as five models [17], while others contain
hundreds [25], [26]. Clockwork [23] uses the ONNX [2]
and GluonCV [24] model zoos to keep 61 different models
in its model zoo. INFaaS [50] contains 22 different archi-
tectures of models in its model zoo, each having a number
of associated model variants combining for a total of 175
model variants. Each model variant is trained with different
frameworks, compilers, batch sizes, and hardware platforms.

Developer APIs are used to interact with the model zoo
of a system. For instance, the INFaaS [50] model-less inter-
face has a declarative API that uses register_model to
allow users to register models to its model zoo. To submit
inference queries, developers use the inference_query
API to specify high-level application requirements, such as
accuracy and latency goals, without specifying the models.
INFaaS then navigates the model zoo, selecting suitable
model variants to meet the specified goals.

2.2. Black-box Model Extraction Attack

Black-box attacks are attacks where the adversary lacks
knowledge of the victim model’s parameters, architecture,
or training data. Machine Learning as a Service (MLaaS)
are systems on which such attacks are usually carried out. In
every query, the user typically submits an input and receives
either a prediction vector or a class label from an already
trained model hosted in the cloud. Most of these attacks are
carried out during inference and, thus, on inference serving
systems. Such attacks aim to obtain information not meant
to be disclosed, such as the training data or details about
the model.

The adversary’s goal in model extraction is to replicate
the functionality of the victim model by creating an ex-
tracted model [10], [49], [33], [14], [57], [42], [31], [12],
[48], [58], [47]. It leverages the ability to query the victim
model and observe its outputs, which are utilized to train
the extracted model. Task accuracy attacks involve creating
a model that matches the victim model’s accuracy on a
test set derived from the input data distribution. Fidelity
attacks, however, aim to maximize the similarity between
the victim and extracted models on the test set. Fidelity can
be defined as the ratio of points in the test set on which both
the victim and the extracted models have the same output
labels. Attackers with problem domain data require fewer
queries, and access to output labels alone is adequate for
them to extract a model. In both scenarios, the adversary
aims for efficiency, striving to minimize the number of
queries used. One notable extraction attack is the MixMatch-
based [8] extraction attack [31]. The MixMatch attack uses
unlabeled task-specific data to improve model extraction
via semi-supervised learning techniques. Here, the victim
model architecture and the output prediction vector are not
provided to the attacker; it only gets the output label to
its input query. More details about the attack are provided
in §C.

These attacks assume that the outputs received by the
adversary are all from the victim model; hence, we call
them single-model attacks in this work. The attack described

in [38] is on inference serving systems, but it assumes that
the adversary can access the victim model repeatedly from
the model zoo.

3. Threat Model and Motivation

3.1. System Model

We consider an inference serving scenario where models
are loaded in the system like in Clockwork [23], and it is
the responsibility of the inference serving system to select a
model for each query that satisfies the accuracy and latency
specified by the query, like in INFaaS [50]. Predictability
in inference serving systems is extremely important, and
for that reason, state-of-the-art inference serving frame-
works support multi-tenancy in a non-interfering manner by
mapping their query traffic flow to different model-serving
workers. In addition to exclusive access to GPU workers,
applications are also typically mapped to different queues in
the router. Clockwork maintains a single queue per model
served. The combination of dedicated queues inside the
serving system as well as dedicated GPU workers leads to
a multi-tenant system with highly predictable tail latency
guarantees, leveraged by PSML.

3.1.1. Pareto Frontier and Feasibility Set. For our pur-
poses, the model zoo will be used to provide possible
model selections for Clockwork to serve when performing
inference. If we plot each model in the model zoo as a
point on a scatter plot, such that the x-axis is the model’s
inference latency and the y-axis is its accuracy, we can select
a subset of points that are preferred to the other points. This
subset constitutes a Pareto frontier. It is a subset of points
such that no point in the subset is strictly better than any
other point when plotted against its chosen attributes. In
our context, it means that no model will have both a lower
latency and a higher accuracy compared to any other model
on the Pareto frontier. By definition, every model zoo has a
Pareto frontier.

Definition 1. (Pareto frontier) Let am and lm be the accu-
racy and latency values of any model m in the model zoo.
For any (ai, li), (aj , lj) ∈ R2, the Pareto frontier P is:

P = {(ai, li)|{(aj , lj)|(aj > ai) ∧ (lj < li)} = ϕ}, (1)

where ϕ is the null set, (ai, li) ̸= (aj , lj), and i ∈ {1, . . . , n}
with n being the total number of models in the model
zoo. Thus, P ⊆ Rn×2. Since it is preferable to minimize
inference latency and maximize accuracy, the Pareto frontier
will form at the top left of the region of points representing
the model zoo, as shown in Fig. 4. The Pareto frontier will
serve as the backbone for our fingerprinting algorithm, as it
provides the adversary a path of traversal across the model
zoo.

The feasibility set of a query is the set of models
that satisfy the latency and accuracy specifications of the
query. It is a subset of the Pareto frontier of the model
zoo. The manner in which the serving system makes a
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model selection from the feasibility set, such as aggregation,
random selection, round-robin, lowest-cost, etc., provided
that the set is non-empty, is known as the system’s pol-
icy. If the accuracy and latency specifications of a query
are acc and lat, respectively, then the feasibility set is
F = {(ai, li) ∈ P|(ai ≥ acc) ∧ (li ≤ lat)}.

3.1.2. Inference Serving. To demonstrate that single-model
attacks against a victim model from a model zoo can be
successful in the simplest inference serving scenario, we
employ the following two policies:

Cross-hair interface: The model serving endpoint ac-
cepts inference queries with specified minimum accuracy
requirement areq and maximum latency lreq requirement.
A model will be randomly selected from the feasibility set
defined by areq and lreq . While it may make more sense to
select the most cost-effective model from the feasibility set
instead of random selection, we do not profile the resource
requirements of each model and hence do not use it in
the model selection process. The model selection policy
can be easily changed to select the most cost-effective
model, however, if the resource consumption is known to
the profiler. If the feasibility set is empty, an “infeasible set
error” will be returned to the client. Please note that the
feasibility set is a subset of the Pareto frontier of the model
zoo. This means the system serves models exclusively from
the Pareto frontier like in [51]. A default value of 0 is set
if areq is not provided.

Granularity and Boundary: There is a granularity for
accuracy (accg) and a granularity for latency (latg) that
the inference serving system keeps track of beyond which
adjacent values are indistinguishable. accg is less than the
minimum difference between the accuracy values of any two
consecutive models on the Pareto frontier. Similarly, latg
is less than the minimum difference between the latency
values of any two consecutive models on the Pareto frontier.
For instance, the inference serving system might only keep
track of accuracy to 0.1% and latency to 1 millisecond.
Additionally, there is an upper bound for latency lup in the
system.

3.2. Adversary Model

Adversary Goal: To extract the most accurate model
from the model zoo, given a specific latency budget, with
a reasonably small number of queries. The adversary does
not know the accuracy or latency specifications needed to
target this model. It is important to note that this is not the
same as simply extracting the most accurate model from
the model zoo, as that model may have an inference latency
greater than the latency budget of the adversary. This makes
fingerprinting necessary as we will see in §4.2. The latency
budget (L) is associated with every query. The adversary
selects L based on its intended deployment scenario for the
extracted model. The latency budget can be thought of as the
latency SLO of the application or task associated with the
query, like image classification or language translation. The
adversary will try its best not to violate this budget for as

many queries as possible so that it does not incur additional
costs per query.

Type of Attack: This is an end-user attack because the
adversary disguises itself as any other client trying to query
the inference serving system for getting predictions on its
input, using the cross-hair interface. Since the models are
hidden in a model zoo behind a model-less interface, neither
does the adversary know the accuracy or latency values of
any model in the model zoo nor does it know the number
of models present in the model zoo.

Information Leakage: The critical information that gets
leaked is the accuracy and latency of each query along with
the prediction made by the selected model. The (accuracy,
latency) information can be seen as auxiliary information
acquired by the adversary. This is crucial information that
enables the attacker to learn more about the Pareto frontier
of the model zoo with every query it sends to the system.

4. Attack on Inference Serving Systems

4.1. Naive Attack

TABLE 1: Accuracy and Fidelity scores of MixMatch model
extraction in the single-model and the model zoo setting. Here, the
victim model is DenseNet-161 and the extracted model is ResNet-
50. The adversary naively tries to adapt single-model attacks to
the model zoo setting, i.e., without fingerprinting.

Setting accuracy fidelity

single model 92.00 87.13
model zoo 81.04 79.84

The MixMatch attack can be used without any modi-
fication to extract a model from a model zoo as per the
adversary goal. The client has to simply specify its latency
budget to the inference serving system. Since it does not
know the accuracy of its victim model, it does not pro-
vide an accuracy specification (i.e., the default value 0 is
selected). We conduct the MixMatch attack on a model zoo
(Fig. 4) that we trained on the CIFAR-10 dataset [36] and
separately run experiments for the single-model setting as
well, where the only model is the victim model. Tab. 1
shows the accuracy and fidelity values obtained after training
MixMatch for 1024 epochs. It is clear that the attack is
significantly weaker in the model zoo setting as compared
to the single-model setting. The model zoo can function as
a layer of protection for the victim model, which means
that naively using black-box single-model attacks will not
be very successful on a model zoo unless there is a definitive
way to route the queries to the victim model.

4.2. Fingerprinting the Pareto Frontier

To make sure queries to the model zoo are routed to the
victim model, we propose to fingerprint the Pareto frontier
of the model zoo. Specifically, given black-box access to
the model serving system, an adversary wants to find the
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Algorithm 1 Our Fingerprinting Algorithm. Accuracy is a dis-
crete value between 0 and 1 and has a step size of accg . Similarly,
latency is a discrete value ranging from 0 to a predetermined upper
boundary, lup, with an incremental step size of latg .

1: procedure FINGERPRINT(lup)
2: M← [ ]
3: accup ← 1
4: latup ← lup
5: while accup ≥ accg do
6: acc← FIND MAX ACC(accup, latup)
7: lat← FIND LAT(acc)
8: if acc ≥ accg then
9: M.add((acc, lat))

10: end if
11: accup ← acc− accg
12: latup ← lat− latg
13: end while
14: return M
15: end procedure
16: procedure FIND MAX ACC(accup, latup)
17: acclow ← 0
18: acchi ← accup + accg
19: while acchi − acclow ≥ accg do
20: accmid ← (acclow + acchi)/2
21: R← infer(accmid, latup)
22: if R is error then
23: acchi ← accmid

24: else
25: acclow ← accmid + accg
26: end if
27: end while
28: return acclow − accg
29: end procedure
30: procedure FIND LAT(acc)
31: latlow ← 0
32: lathi ← lup + latg
33: while lathi − latlow ≥ latg do
34: latmid ← (latlow + lathi)/2
35: R← infer(acc, latmid)
36: if R is error then
37: latlow ← latmid + latg
38: else
39: lathi ← latmid

40: end if
41: end while
42: return latlow − latg
43: end procedure

accuracy and latency profile of every model on the Pareto
frontier P (Eq. 1), and to leverage this information to send
inference queries that consistently trigger the victim model
in the model zoo.

4.2.1. Our Fingerprinting Algorithm. The challenge for
fingerprinting is to use as few queries as possible. We
propose a binary search-style algorithm. The intuition is
that the system serves models exclusively from the Pareto

frontier (§3.1). Due to the accuracy-latency correlation in the
Pareto frontier, the search space is already sorted. So we use
this path for traversing the search space in our algorithm.

First, given an inference serving endpoint, we perform
a binary search to find the accuracy of the most accurate
model on the Pareto frontier of the model zoo. To do this,
we first send a query with (areq, lreq) = (0.5,∞). If the
query gets a response without error, it means there is at
least one model in the model zoo with accuracy ≥ 0.5, and
we send another query with (areq, lreq) = (0.75,∞). On the
other hand, if the query gets an error in response indicating
that no model in the model zoo satisfies the requirement,
we send another query with (areq, lreq) = (0.25,∞). We
stop the binary search process when we find amax such that
querying with (areq, lreq) = (amax,∞) gets a successful
response and querying with (areq, lreq) = (amax + ag,∞)
gets an error.

Secondly, we use binary search to find the latency of the
most accurate model on the Pareto frontier of the model zoo.
We first send a query with (areq, lreq) = (amax,

1
2 × lup). If

the query gets a response without error, it means the most
accurate model in the model zoo has latency greater than
1
2 × lup, and we send another query with (areq, lreq) =
(amax,

3
4 × lup). On the other hand, if the query gets an

error in response indicating that the most accurate model
has latency less than 1

2 × lup, we send another query
with (areq, lreq) = (amax,

1
4 × lup). We stop the binary

search process when we find lmax such that querying with
(areq, lreq) = (amax, lmax) gets a successful response and
querying with (areq, lreq) = (amax, lmax− lg) gets an error.

Next, in a similar manner, we perform a binary search
to find the accuracy and latency of the second most accurate
model in the model zoo within the boundary 0 ≤ a < amax

and 0 ≤ l < lmax. Then, we adjust the boundary and find
the third most accurate model. The process continues till
we find the accuracy and latency of all models in the model
zoo. We return the result as a 2D matrix, M, where the
first column is facc(P) and the second column is flat(P).
Algorithm 1 describes the fingerprinting algorithm.

Complexity Analysis. We measure the efficiency of the
fingerprinting algorithm in terms of query complexity, i.e.,
the total number of queries an adversary needs to expend
to get the accuracy and latency of all models in the Pareto
frontier. The worst case query complexity of the fingerprint-
ing algorithm is O(n(log 1

ag
+ log

lup

lg
)), where n is the

number of models in the Pareto frontier. This is because we
perform binary searches for both accuracy and latency for
every single model in the model zoo. However, based on our
experiments in which we simulated model zoos containing
models with random accuracy and latency values, we found
that the fingerprinting algorithm has a linear time average
query complexity (see Fig. 2a). Further, Fig. 2b and Fig. 2c
illustrate the effect on the linear regression coefficient by
changing the accuracy or latency granularities.
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(a) The query complexity of the fingerprint-
ing algorithm is O(n).

(b) The effect of accuracy granularity on query
complexity.

(c) The effect of latency granularity on query
complexity.

Figure 2: Fingerprinting algorithm query complexity analysis. The slope can be interpreted as the number of queries an adversary has
to expend per model in the model zoo. Left: We see that our fingerprinting algorithm takes O(n) queries in the average case, where n
is the number of models in the Pareto frontier of the model zoo. Center and Right: We see that the query complexity remains O(n)
for different values of accuracy granularity and latency granularity.

5. Defending Against Fingerprinting

5.1. Proposed Defense

A wide range of defenses against single-model extrac-
tion has been proposed. One way is to perturb the output
of models (e.g. [37], [43], [34], [35]), but it is not a viable
option for the system as a legitimate client also receives
perturbed outputs. Watermarking (e.g. [5], [55], [32]) is
another defense method against model extraction. It embeds
a secret pattern in the model during inference or training,
but it requires post hoc analysis and the model owner to
have access to the extracted model. Another possible way
is to detect malicious clients (e.g. [33], [46]), but these
methods assume that adversarial queries have small l2 dis-
tances between them and are a mix of natural and synthetic
queries. This assumption does not hold in the MixMatch-
based extraction attack [31].

Since our primary goal is to stop single-model attacks
on the model zoo, we concentrate on obscuring the Pareto
frontier during inference serving so that the auxiliary in-
formation is less useful to the attacker. Since the inference
serving system only serves points from the Pareto frontier,
we only want to protect the models on the Pareto frontier,
not those under it. To this end, we employ a Laplace noise
addition mechanism that changes the feasibility set for every
query by adding noise to the accuracy and latency specifi-
cations of the query. The mechanism results in a modified
feasibility set which offers more protection by potentially
including a model that was not in the original feasibility set
or by potentially excluding a model that was in the original
feasibility set. This technique comes at the cost of utility as
the initial accuracy and latency specifications may not be
satisfied.

A defense should increase security while not causing
harm to legitimate clients. Therefore, it is useful to measure
the drop in performance with increased security. We measure
the system’s performance using the goodput. In our context,

it is defined as the ratio of successful queries served by the
inference serving system while satisfying the accuracy and
latency specifications of the queries. With the defense, some
models that are served will violate either the accuracy spec-
ification or latency specification, or both. This is because
our noise addition mechanism modifies the feasibility set for
every query. While the noise addition mechanism decreases
the accuracy and fidelity of the extracted model, it inevitably
reduces the goodput of the inference serving system.

The idea of injecting noise to achieve privacy is also
used in differential privacy (DP) [20], [19], as well as in
diverse applications like inference [59], [40], feature extrac-
tion [45], [44], cloud [39], and systems [28], [15], [60],
[13]. The novelty in our defense lies in the way we employ
noise-addition to protect an inference-serving system, i.e.,
by adding noise to the accuracy and latency specifications
of a declarative model-less inference serving API.

5.2. PSML Defense Algorithm

In order to protect the victim model in a model zoo,
we must find a way to prevent fingerprinting from being
successful. It is easy to see from Algorithm 1 that adding
noise to the accuracy and latency values of models on
the Pareto frontier would disrupt fingerprinting. However,
the accuracy of a model in the zoo cannot be changed,
and the latency can only be increased (by adding delay),
not decreased. Another possibility is to add noise to the
profiled values of accuracy and latency of each model in
the PSML server (Fig. 3). Fingerprinting now would return
noise-induced accuracy and latency values of the victim
model. However, since we do not know when the adversary
is fingerprinting and when it is collecting labeled examples
for MixMatch, the modified values would continue to be
used for picking models to be served. Thus, the adversary
would still be able to target the victim model with the noise-
induced accuracy and latency specifications it received from
the fingerprinting step.
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Instead, we propose adding noise directly to the input
query’s accuracy and latency specifications. This causes
the fingerprinting algorithm to function incorrectly. The
disruption happens in lines 21 & 35 of Algorithm 1, where
infer means querying the system. The accuracy and latency
specifications of the query are perturbed. The system reads
in these perturbed values and serves a model from the
“modified” feasibility set. Since the latency specification
of every query is the latency budget, there is a probability
of inferior models being served (the system never violates
the latency specification (see Algorithm 2)). The noise
addition scheme will remain even after the fingerprinting
step because the system does not know when a malicious
client is fingerprinting. This makes the subsequent querying
process uncertain, adding extra protection to the system. It
is easy to see that our defense strategy will work against any
single-model attack, not just model extraction. However, for
ease of experimentation (§7.3), we only use the MixMatch
extraction attack to show the viability of our defense.

We introduce two functions: fL
acc(P) : Rn×2 → R and

fL
lat(P) : Rn×2 → R, that return the accuracy and latency of

the victim model, respectively, given the adversary’s latency
budget (L). After the fingerprinting step, the adversary has
the accuracy and latency values of all the models in the
Pareto frontier. Next, it has to select the victim model based
on these values and its latency budget L. In Algorithm 1, we
fingerprint every model, regardless of the adversary’s latency
budget, so that the adversary does not have to fingerprint the
Pareto frontier again. Even if the adversary’s latency budget
changes (increases or decreases) in the future, it can just
pick the new victim model based on the values obtained
from the fingerprinting step. However, the flexibility offered
by fingerprinting every model comes at a price. Because the
adversary violates its latency budget for some queries during
fingerprinting, it incurs an extra cost for these queries.

The adversary picks row k in the Pareto frontier matrix
P , which has the largest latency value, lk, below its latency
budget L. Thus, fL

lat(P) = lk. Then, it selects the accuracy
value ak from row k. Thus, fL

acc(P) = ak. The obtained
pair of values (ak, lk) serve as the adversary’s accuracy
and latency specifications of every subsequent query to the
inference serving system. Therefore, the latency budget is
strictly obeyed by the adversary after fingerprinting.

We add Laplace noise to fL
acc(P) and fL

lat(P) while
using a single parameter (ϵ) to quantify the amount of noise
added. More formally, we need to quantify the maximal pos-
sible change of both accuracy and latency values, denoted by
∆fL

acc and ∆fL
lat, respectively. This way, we can measure

the strengths of noise for different functions using ϵ. We
discuss implementation details in §6. Algorithm 2 describes
how we serve models with the defense. The key idea is
not to serve models with latency values greater than the
latency specification. The input latency specification, lat, is
assumed to be the latency budget for every query after the
fingerprinting step. Noise addition will change this latency
value to l̃at.

Algorithm 2 Model Serving with Defense for a Query

1: procedure SERVE MODEL(P, L)
2: F ← [ ]
3: acc← fL

acc(P)
4: lat← fL

lat(P)
5: Yacc ← Y ∼ Lap(∆fL

acc/ϵ)
6: Ylat ← Y ∼ Lap(∆fL

lat/ϵ)
7: ãcc← acc+ Yacc

8: l̃at← lat+ Ylat

9: for model in P do
10: if (model.acc ≥ ãcc) and (model.lat ≤ l̃at) and

(model.lat ≤ lat) then
11: F .add(model)
12: end if
13: end for
14: return PICK RANDOM MODEL(F)
15: end procedure

PSML Server

Clockwork

Adversary

Model

Output or Error

Model Model

. . . .

Determine the feasibility set

With Defense

infer(acc, lat, input )
Add Laplace noise to acc, lat

Error: No model
satisfies both acc 
and lat constraints

Does the feasibility set
 have at least one model?

YES
NO

Randomly select a model
from the feasibility set

No Defense

Model Accuracy Latency
m1 a1 l1
m2 a2 l2
m3 a3 l3
... ... ...

Model Accuracy Latency
m1 a1' l1'
m2 a2' l2'
m3 a3' l3'

... ... ...

Query Clockwork

Clockwork client
library

selected_model.infer(input )

Model Model

Figure 3: The system design and workflow for PSML server.
After the models are uploaded and profiled in the PSML server,
inference serving takes place through the interaction between the
server process and the Clockwork process. The PSML server routes
the model architecture to be served to Clockwork, and Clockwork
returns the output back to the server, which is then returned to the
client.

6. System Design and Implementation

We build a model-less inference serving system on top
of Clockwork [23], with plans to open source to the commu-
nity. Figure 3 illustrates our system design used to perform
experiments with our proposed attack and defense mech-
anisms. Building upon the policies outlined in §3.1.2, we
leveraged Clockwork as the model server. Over Clockwork’s
client library, we implemented a shim layer (PSML Server)
in C++ that exposes an inference API. This API allows
clients to submit inference queries with specific minimum
accuracy specification acc, maximum latency specification
lat, and input to perform the inference. Thus, the entire
system becomes model-less.

Upon loading models into the model zoo, the PSML
server maintains a copy of the accuracy and latency profiles
for each model. In the absence of any defense mechanism,
upon receiving an inference query, the PSML Server ran-
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Figure 4: The Pareto frontier of the model zoo that we trained
on CIFAR-10 and use in our experiments. We maintain a good
heterogeneity of model architectures for the image classification
task. Models are not trained to their full potential to represent
a realistic Pareto frontier and allow us to experiment in large,
medium, and small model extraction settings.

domly selects a model from the feasibility set based on a
uniform distribution. In other words, every model in the
feasibility set has an equal probability of being chosen.
The PSML Server then forwards the inference query input
to Clockwork, which serves the query using the selected
model, and relays the output from Clockwork back to the
client. An error is returned if no model satisfies both the
accuracy and latency constraints (i.e., the feasibility set is
empty).

With the defense mechanism active, the PSML server
introduces Laplace noise to acc and lat before determin-
ing the feasibility set (Algorithm 2). The Laplace noise is
calculated using the boost::math::laplace distribution and
boost::math::quantile functions from the C++ boost library.
Since the latency specification of any query cannot be vio-
lated, the system does not serve models with latency values
greater than the input latency specification. This case may
arise when the noise-induced latency exceeds the latency
specification.

7. Evaluation

7.1. Experiment Setup

We evaluate our fingerprinting-based attack and our
noise-based defense using the PSML server on top of a
real-world inference serving system, Clockwork[23]. The
training and profiling of models are done using NVIDIA
GeForce RTX 2080 Ti GPUs. We employ a model extraction
attack (the MixMatch attack in [31]), which we treat as a
black-box, on a zoo of image classification models trained
on the CIFAR-10 [36] and SVHN [41] datasets, like in

the original paper. To populate the model zoos for the two
datasets, we did not train the models to their full potential
on the respective training sets, so that we could represent a
realistic Pareto frontier. Training all the models we selected
to their full potential on CIFAR-10 or SVHN will result
in all models being in the high-accuracy region (≥ 90%
accuracy), which does not reflect a realistic Pareto frontier.
Additionally, this would not allow us to show that a medium
or small model (< 80% accuracy) can be successfully:

1) extracted using our fingerprinting algorithm, or
2) protected against the fingerprinting-based attack us-

ing our noise-based defense

We loaded the models, shown in Fig. 4 and Fig. 9, into
Clockwork. The extracted model (i.e., the model that the
attacker starts with) is a ResNet-50, which can reach > 95%
accuracy on CIFAR-10 and SVHN. Thus, the model has
enough expressive power to learn weights from the CIFAR-
10 and SVHN train sets. Based on the client’s desired
accuracy and latency specifications, the query is routed to
a model that satisfies them. Otherwise, the system doesn’t
fulfill the query and sends an “infeasible set” error message
to the client. It is important to note that our attack and
defense have nothing to do with the training, architecture,
or weights of the neural network models in the zoo. There-
fore, our methods are plug-and-play, i.e., no modification
is needed on real-world model zoos that are usually dense
and have models trained to their full potential on complex
datasets like ImageNet [18].

The 12 image classification models on the Pareto fron-
tiers of our model zoos are comprised of various archi-
tectures of ResNets, WideResNets, DenseNets, and Mo-
bileNets. All of these models have predictable inference
latency values. According to the definition of the Pareto
frontier of a model zoo, models with larger inference la-
tency have higher accuracy. While training our models,
we followed this accuracy-latency correlation, as shown
in Figure 4. We consider three querying scenarios with
differing latency budgets available to the adversary: large,
medium, and small latency budgets. Since with a larger
latency budget, the adversary’s victim model is a larger-sized
model, we also call these scenarios the large, medium, and
small model extraction cases. The query budget available to
the adversary is 4000 queries in all cases. The inputs of these
queries are randomly selected from the training set of the
datasets. Hence, the adversary has to do the fingerprinting
and querying for MixMatch within 4000 queries. We show
how the adversary’s success varies with different query
budgets in Fig. 5.

We set up a shim layer on top of Clockwork (see §6),
which includes the model selection logic that utilizes the ac-
curacy and latency specifications of the client. The selected
model information is relayed to the Clockwork controller
node, which subsequently assigns the inference task to the
appropriate worker node, and the inference is performed on
this model using the input provided by the client. Please
note that the actual inference time of the query is not used
by the adversary at all in our attack.
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Figure 5: Accuracy and Fidelity of the extracted model for different query budgets in the large model setting. These experiments
are done on CIFAR-10. We see that the fidelity and accuracy of the extracted model increase with increasing query budget of the
adversary. However, in some cases, increasing the number of queries will not result in a better accuracy or fidelity score, as seen in the
no-fingerprinting case (accuracy is higher with 2000 queries). This is because having more labeled points doesn’t necessarily mean higher
quality labeling in the no-fingerprinting case, as many of these points are labeled by very low accuracy models.

7.2. Attack

We aim to demonstrate our fingerprinting algorithm’s
potential in adapting single-model attacks to inference serv-
ing systems. We show that our fingerprinting algorithm im-
proves the extracted model accuracy and fidelity compared
to using the black-box attack without the fingerprinting step.
It is important to note that fingerprinting takes a constant
number of queries for a given Pareto frontier, when accg and
latg are fixed. This is because Algorithm 1 is deterministic.

We run attacks in each setting on both datasets using a
predetermined query budget. A query budget of q means that
the attacker can query the system at most q times. Thus, it
has to do the fingerprinting and get labeled points within
these q queries. The attacker’s latency budget per query
for the large-model setting is 21 ms, while it is 13 ms for
the medium-model setting and 5 ms for the small-model
setting. Thus, the victim model according to our adversary
goal in §3.2 is DenseNet-161 in the large-model setting (top
right corner of the Pareto frontiers in Fig. 4 and Fig. 9),
ResNet-101 in the medium-model setting (middle of the
Pareto frontiers) and MobileNetV3-small in the small-model
setting (bottom left of the Pareto frontiers). In each test, we
let the MixMatch attack train for 1024 epochs. Fidelity is
measured against the victim model on the test set of the
datasets.

7.2.1. Experiment Results. The experiment results are
shown in Tab. 2 and Tab. 3. Fig. 6 shows the training plots
for the medium model. Results with SVHN are in Tab. 5
and Tab. 6 in Appendix A. We show a relation between the
number of queries available to the attacker and the fidelity
and accuracy of the extracted model in Fig. 5. In the single-
model attack, all 4000 queries were answered by the victim
model. In the no-fingerprinting and fingerprinting attacks,

all the queries were served using the PSML server. A total
of 411 queries were used for fingerprinting the model zoo
trained on CIFAR-10. According to our threat model in §3.2,
the attacker does not know the accuracy of the highest-
accuracy model in the model zoo that has latency lower
than its latency budget. On the other hand, the accuracy
and latency values for all the models in the zoo were
determined by the fingerprinting step in the fingerprinting
attack. Therefore, in the subsequent step of querying the
system, the attacker simply chooses the accuracy and latency
specifications corresponding to the model with the highest
inference latency below its latency budget (see §4.2).

It is clear from Tab. 2 and Tab. 3 that the adversary can
fingerprint the entire model zoo by expending a relatively
low number of queries. This ability enables it to determine
precise accuracy and latency values of the victim model. The
test fidelity and test accuracy results show that a black-box
attack on a model zoo can be as successful as an attack on a
single model. We can also see that the single-model attack is
slightly better. This is because the number of queries used to
fingerprint the model zoo is subtracted from the total query
budget of the adversary. This means there are fewer labeled
points from the victim model for the MixMatch attack. The
main takeaway from these experiments is that an adversary
can extract the highest accuracy (or largest) model with
latency lower than a given latency budget from a model
zoo using our fingerprinting algorithm.

7.3. Defense

To demonstrate that our defense works on an actual
inference serving system, we evaluate our noise-based de-
fense mechanism on our inference serving system. The
goal of the defense is to undermine the fingerprinting step.
By introducing random noise in the accuracy and latency
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Figure 6: Fidelity and Accuracy values during extraction of the medium model with CIFAR-10. We see the training of the MixMatch
method for different settings. Our fingerprinting algorithm successfully extracts the model with just 4000 queries. The level of defense
can be configured with the ϵ parameter: lower ϵ means more protection.
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Figure 7: Probability mass functions plotted over the model zoo with different styles representing different attack/defense scenarios
(legend). ResNet-101 is the victim model. The plot shows: (a) ineffective extraction attack of the victim model without fingerprinting
(noFP); (b) effective attack with high probability of calling the target model with proposed fingerprinting (FP); (c) mitigating the efficacy
of the proposed attack with noise-based defense, dissipating the PMF over the base.

specifications given as input by the attacker, we hope to
reduce the accuracy of the fingerprinting step. At the same
time, we do not want to destroy the utility of the inference
serving system. Hence, we study the impact of adding noise
on the system’s goodput. The Laplace mechanism described
in §5 is applied to the fingerprinting algorithm that is treated
as a function. Since protection against the extraction attack
will be at odds with the system’s performance, we hope to
show the trade-off between them in this section through our
experiment results.

We conduct our defense experiments on the same set-

tings under which the attack is tested. Since the finger-
printing step is vital for the attack to succeed, we aim
to see to what extent our defense mechanism reduces the
effectiveness of the fingerprinting step. Ideally, we would
like to reduce the fidelity and the accuracy of the extracted
model to the values obtained when the attack was run
without the fingerprinting step (Tab. 2, Tab. 3). We add noise
to the latency and accuracy specifications of the client. The
rationale behind this is that by changing the specifications of
the model that the inference serving system has to pick, we
reduce the chances of successfully fingerprinting any model
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Figure 8: Top row: The relationship between goodput, fidelity, accuracy, and different ϵ values for extracting medium models trained
on CIFAR-10. Bottom row: Goodput plotted against accuracy and fidelity. The desirable direction is shown with black arrows. Clearly,
with decreasing ϵ, the accuracy and fidelity decrease, while the goodput also decreases. A good ϵ value should reduce the attack’s success
and have an acceptable goodput (≥ 80%). We see ϵ = 50 is the best ϵ value out of the tested ϵ values for medium models.

TABLE 2: Accuracy values of the extracted model under different
settings after training the MixMatch method for 1024 epochs. The
model zoo is trained on CIFAR-10, and the query budget is 4000.
We see that the fingerprinting attack achieves accuracy close to that
in the single-model setting for diverse model sizes. The defense
successfully protects medium and small models from extraction
with the given ϵ values.

Setting accuracy of extraction
small medium large

single model 67.29 88.98 92.00
mzoo no-FP 60.08 72.96 81.04

mzoo FP 66.29 87.52 91.35
Defense ϵ=1000 68.21 87.27 91.24
Defense ϵ=100 66.83 87.17 90.77
Defense ϵ=50 65.19 85.05 90.81
Defense ϵ=10 62.98 77.70 90.88

from the zoo.
The performance of the inference serving system is

measured in terms of goodput, defined in Section 5.1. The
system’s goal is to be as performant as possible while main-
taining a required degree of protection from fingerprinting.
Our defense mechanism only changes the client’s accuracy
and latency specifications to the system and not the quality
of the models on the Pareto frontier.

In the experiments, we set the system with sensitiv-
ity values according to the model zoo shown in Fig. 4:

TABLE 3: Fidelity values of the extracted model under different
settings after training the MixMatch method for 1024 epochs. The
model zoo is trained on CIFAR-10, and the query budget is 4000.
We see that the fingerprinting attack achieves fidelity close to that
in the single-model setting for diverse model sizes. The defense
successfully protects medium and small models from extraction
with the given ϵ values.

Setting fidelity of extraction
small medium large

single model 64.63 78.48 87.13
mzoo no-FP 56.54 70.30 79.84

mzoo FP 64.2 78.01 87.13
Defense ϵ=1000 63.29 78.16 86.74
Defense ϵ=100 61.13 77.76 86.51
Defense ϵ=50 60.94 77.00 86.85
Defense ϵ=10 58.66 73.19 86.74

∆facc = 1 and ∆flat = 18.271 for CIFAR-10. For each
dataset, we demonstrate extracting a large, medium, and
small model. In these three scenarios, the latency budgets
of the attacker are 21 ms, 13 ms, and 5 ms, respectively,
for CIFAR-10. Our experiments verify whether launching
the black-box single-model attack (MixMatch) with finger-
printing on a system that has our defense shows accuracy
and fidelity comparable to that in the no-fingerprinting case
(i.e., a naive attacker using single-model attacks on a model
zoo without fingerprinting the zoo first).
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In the defense, the number of queries taken to do the
fingerprinting is not constant for a given model zoo because
of the noise in the system. Moreover, not all queries will
be answered by the system. A breakdown of the number of
queries used in each step is presented in Tab. 4. Since the
number of queries taken for defense is not constant, we did
three trials for each setting and reported the average. After
querying, the MixMatch method is trained for 1024 epochs
on the points in the training set. Fig. 7 shows the probability
distribution of the models getting triggered in our different
attack scenarios.

TABLE 4: Mean number of queries used in each step for medium
model extraction trained with CIFAR-10. Query budget is 4000.
Fingerprinting without defense always takes a constant number
of queries. In the defense, query complexity of fingerprinting
reduces with decreasing ϵ. We also show the number of queries
that pass/fail.

Setting number of queries
fingerprinting labeling successful failed

single model 0 4000 4000 0
mzoo no-FP 0 4000 4000 0

mzoo FP 411 3589 3589 0
Defense ϵ=1000 901.33 3098.67 3093.33 5.33
Defense ϵ=100 864.33 3135.67 2310.00 825.67
Defense ϵ=50 867.33 3132.67 2007.00 1125.67
Defense ϵ=10 406.00 3594.00 3075.33 518.67

7.3.1. Experiment Results. We observe that the attack
is less successful in terms of accuracy and fidelity with
the defense in place. With ϵ = 10, we get up to 4.8%
drop in fidelity and 9.8% drop in accuracy when compared
with the fingerprinting-based attack without the defense, in
the medium model case (Fig. 6). The closer the value of
accuracy and fidelity is to those in the no-fingerprinting
setting, the better the protection against the model extraction
attack. From Tab. 2 and Tab. 3, we see that the fidelity and
accuracy scores decrease with decreasing epsilon values.
This is because lower epsilon results in more noise. And
more noise in the system results in more queries being
routed to models that are not the victim model.

Due to noise in the system, the adversary’s query may
be routed to a model with a latency larger than the query’s
latency specification. In such situations, the system does not
send the output to the query, as shown in Algorithm 2. Since
the adversary’s latency specification is its latency budget
for all queries after the fingerprinting step, all the outputs
after fingerprinting are from models that have inference
latency less than the adversary’s latency budget. Due to
the relationship between accuracy and latency on the Pareto
frontier, this also means that all queries are answered by
either the victim model or by models with accuracy less
than the accuracy of the victim model.

Since higher protection comes with lower performance,
we calculated the goodput scores of these runs. We observe
in Fig. 8 that goodput decreases with decreasing epsilon
values. The reason behind this is the fact that a lower
epsilon value means more noise. More noise in the system

means there is a high chance the query is being served by a
model from outside the feasibility set, which is defined by
the client’s unmodified accuracy and latency specifications.
Goodput greater than 0.8 (≥ 80% queries meet specifi-
cations provided by the client) is generally agreed to be
acceptable for an inference serving system. From Fig. 8,
we can see that goodput greater than 0.8 is obtained with
ϵ = 50 in the medium model setting, while the fidelity
and accuracy of the attack reduce significantly. Hence, the
system designer can use this ϵ value to effectively defend
against fingerprinting-based attacks while maintaining an
acceptable quality-of-service (QoS). The main takeaway is
that a balance between protection and performance can be
reached by configuring ϵ in our defense mechanism for
medium and small models.

We see that the defense is more effective in the medium
and small model settings than in the large model setting.
This is because while extracting a large model, even a large
amount of noise in the system may result in a high-accuracy
model being served. Since high-accuracy models result in
high-quality labeled examples, the MixMatch attack will not
suffer much, and the resulting accuracy values will remain
fairly high. We provide a lower bound on fidelity while
extracting a large model in Appendix B. Thus, our defense
mechanism with the tested ϵ values is more effective for
attacks targeting medium to small models. However, ϵ can
be configured to suit the system designer’s needs.

8. Conclusion

We make an observation that model extraction attacks
make outdated assumptions that the victim model can be
explicitly specified and directly queried. This is no longer
true in state-of-the-art ML model serving systems. A novel,
query-efficient fingerprinting algorithm re-enables model
extraction, bridging the performance gap lost to implicit
and dynamic model switching. Indeed, the proposed attack
comes close to the single model serving setting, which PSML
absorbs as a special case. The proposed attack is shown
effective over a wide range of model latencies, successfully
extracting large, medium, and small-sized models from the
zoo hidden behind the layer of model-less abstraction. We
defend against the proposed attack with a novel defense
mechanism based on perturbation of (latency, accuracy) con-
straint specification with ϵ−controlled noise. Doing so helps
expose a practical tradeoff space between the system’s level
of defense and its performance, captured by its goodput.
We show that robust levels of defense can be achieved with
acceptable loss in system goodput. The proposed attack and
defense mechanisms are instantiated in a real system, with
plans to open source to the community. With a growing
number of proprietary models served via implicit model
selection in state-of-the-art inference systems, we make the
first step towards better understanding the security implica-
tions of such systems with respect to Intellectual Property
theft through model extraction.
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Appendix A.
Attack Results on SVHN

This section presents the results of using our
fingerprinting-based attack on a model zoo trained on the
SVHN dataset.
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Figure 9: The Pareto frontier of the model zoo that we
trained on SVHN.

TABLE 5: Accuracy values of the extracted models under
different settings. The model zoo is trained on SVHN.
MixMatch method is trained for 1024 epochs. The query
budget is 4000.

Setting small medium large

single model 56.67 91.46 95.66
mzoo no-FP 49.83 77.16 87.61

mzoo FP 56.12 88.98 95.69

TABLE 6: Fidelity values of the extracted models under
different settings. The model zoo is trained on SVHN.
MixMatch method is trained for 1024 epochs. The query
budget is 4000.

Setting small medium large

single model 56.34 76.75 92.40
mzoo no-FP 49.17 68.22 85.41

mzoo FP 56.30 76.70 92.39

Appendix B.
Proof of Lower Bound on Fidelity for Large
Models

How is the fidelity of the extracted model with respect
to the victim model related to their accuracy scores on the
same test set?

To justify the defense, we need to show that it reduces
the fidelity and accuracy scores. Extraction with noise in the
system will result in an “aggregate” extracted model. Thus,
our goal is to show that this aggregate extracted model is
poor in terms of fidelity and accuracy, i.e., it has a low
fidelity score with respect to the victim model. It is safe
to assume that a high-accuracy feasibility set will result in
a high-accuracy extracted model. So now we will try to
minimize the fidelity score between an aggregate extracted
model and a victim model.

Let us calculate the minimum fidelity possible for an
aggregate extracted model (i.e., obtained with the defense)
from a high-accuracy feasibility set.

Proof. Let D be the test set of points for a classification
task with k classes. Let Si be the set of points from D
that model mi classifies correctly. There are two models
of concern here: mv (the victim model) and me (the
extracted model).

Let av and ae be the accuracy scores on D of
models mv and me, respectively. We assume that
av ≥ 0.9 and ae ≥ 0.9, as the extracted model me is
obtained from querying a high-accuracy feasibility set
and the victim model mv lies in this feasibility set.

Let n(A) stand for the number of distinct elements
in the set A. Let F be the fidelity set, i.e., the set of all
such points in D for which mv and me predict the same
class. F can be broken down into two disjoint sets:

1) a set of points on which both models make the
correct prediction, i.e., (Sv ∩ Se).

2) a set of points on which both models make
incorrect predictions but predict the same class.
We denote this set by P .

Thus, F = (Sv∩Se)+P and n(F ) = n(Sv∩Se)+n(P )

n(Sv ∩ Se) = n(Sv) + n(Se) − n(Sv ∪ Se) =
av.n(D) + ae.n(D)− n(Sv ∪ Se)

Hence, n(F ) = av.n(D)+ae.n(D)−n(Sv ∪Se)+n(P )

We can minimize the above as follows:
min(n(F )) = av.n(D) + ae.n(D) − max(n(Sv ∪
Se)) +min(n(P )) = av.n(D) + ae.n(D)− n(D) + 0 =
n(D).(av + ae − 1)

Thus, the minimum fidelity score is min(n(F ))
n(D) =

(av + ae − 1) = 0.8

■
Conclusion: Attacking a high accuracy (or large) model
results in a relatively high fidelity score (≥ 0.8) even with
the defense. Therefore, we need to attack a lower accuracy
(or small) model to get a significant reduction in fidelity (or
improvement in protection) with the defense.
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Appendix C.
MixMatch Model Extraction

MixMatch [8] is a semi-supervised learning method
that guesses low-entropy labels for data-augmented unla-
beled examples and mixes labeled and unlabeled data using
MixUp [64]. Given a batch of labeled examples with one-hot
targets and an equally sized batch of unlabeled examples,
MixMatch produces a processed batch of augmented labeled
examples and a batch of augmented unlabeled examples
with “guessed” labels. These two batches are then used in
computing separate labeled and unlabeled loss terms.

Data augmentation is used on both labeled and unla-
beled data. For each point in the batch of labeled data, an
augmented version is generated. For each point in the batch
of unlabeled data, K augmentations are generated. These
individual augmentations are used to generate a “guessed”
label using a label-guessing process. Both labeled exam-
ples and unlabeled examples with label guesses are used
in MixUp. The loss function combines cross-entropy loss
between labels and model predictions from the batch of
augmented labeled examples with squared L2 loss between
guessed labels and model predictions from the batch of
augmented unlabeled examples.

Jagielski et al. [31] leverage MixMatch as an extraction
technique on the SVHN [41] and CIFAR-10 [36] datasets.
For both datasets, inputs are color images of 32× 32 pixels
belonging to one out of ten classes. The victim model is
a WideResNet-28-2 architecture that achieves 97.36% and
95.75% accuracy on SVHN and CIFAR-10, respectively.
The adversary is given access to the same training set
but without knowledge of the labels. The results of the
MixMatch attack show that the adversary needs to query
the victim model on a small subset of the training points to
extract a model whose accuracy on the task is comparable to
the victim model’s. MixMatch is able to exploit a few labels
because of the prior it is able to build using the unlabeled
data. This results in improved test set accuracy and fidelity.
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