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Abstract

We introduce a novel no-RL, no-graph, no-odometry ap-
proach to visual navigation using feudal learning. This ar-
chitecture employs a hierarchy of agents that each see a
different aspect of the task and operate at different spatial
and temporal scales. We develop two unique modules in
this framework: (1) a memory proxy map learned in a
self-supervised manner that is used to record prior obser-
vations, and (2) a waypoint network that outputs interme-
diate subgoals by learning to imitate human waypoint se-
lection during local navigation. This waypoint network is
pre-trained using a dataset [1] of teleoperation sequences
made publicly available in our prior work. The resulting
feudal navigation network achieves SOTA performance on
the image goal navigation task.

Introduction Visual navigation is motivated by the idea
in psychology that humans navigate with cognitive maps
and graphs that preserve relative distances between land-
marks [2—5] without ever building detailed 3D maps of their
environment. In vision and robotics, these ideas have trans-
lated to the construction of topological graphs [6—10] and
metric maps [11, 12] based primarily on visual observa-
tions [13—16]. Moreover, visual navigation methods seek
new environment representations that are rich with seman-
tic information [17-20], easy to dynamically update [21-
23], and can be constructed faster and more compactly than
full 3D metric maps [24-27]. NRNS [9] goes a step further
by removing the reliance on simulators and reinforcement
learning to train functional visual navigation models.

Our approach uses no simulator and no RL, but goes one
step further by using no graphs and no odometry, resulting
in a lightweight, easy-to-train visual navigation framework.
We take inspiration from feudal learning [28-34], which
identifies workers and managers and allows for multiple
levels of hierarchy (ie. mid-level and high-level managers)
that each observe different aspects of the task and operate
at different temporal or spatial scales [35-37]. For naviga-
tion in unseen environments, this division of labor is ideal
to make the overall task more manageable [38—40]. Our
three tiered feudal navigation agent (FeudalNav) shown in
Figure | achieves SOTA performance in image-goal naviga-
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Figure 1. FeudalNav provides a no-graph, no-odometry, and no-
RL visual navigation agent for the image-goal task on previously
unseen environments. The hierarchy consists of: (1) a high-level
manager with a memory proxy map (MPM) that frames memory
as a latent space learning problem, (2) a mid-level manager way-
point network (WayNet) mimicking human teleoperation to guide
worker agent exploration, and (3) a low-level worker choosing ac-
tions in the environment based on the previous layers’ supervision.

tion tasks in previously unseen Habitat [41] environments.

Methods Key to our approach is representing traversed
environments with a learned latent map that acts as a mem-
ory proxy during navigation. We contrastively learn a latent
space that preserves the approximate distance between im-
ages to build an aggregate memory proxy map (MPM).
We learn this self-supervised latent space using a modified
implementation of SMoG [46] that combines instance level
contrastive learning and clustering methods. We add fur-
ther modifications to model training in order to conduct
navigation-aware, self-supervised contrastive learning on
our Landmark-Aware Visual Navigation (LAVN) Dataset
[1], which contains human waypoint-guided teleoperation
trajectories in multiple virtual and real world environments.
Instead of using typical constrastive learning data augmen-
tation methods, we rely on the variations introduced through
multiple camera views to learn robust image representa-
tions. During training, we build clusters for all trajectories
where observations are grouped based on Superglue [47]
robust keypoint matching. Then, we randomly sample pos-
itive pairs from each cluster to train the network.

As the agent navigates in novel environments, the high-
level manager sequentially places observation images in this



Path Model Easy Medium Hard Average

Type Succt | SPLT | Succt | SPLT | Succt | SPLT || Succt | SPLt
DDPPO (10M steps) * [42] 10.50 | 6.70 | 18.10 | 16.17 | 11.79 | 10.85 || 13.46 | 11.24

DDPPO (extra data + S0M steps) * [42] | 36.30 | 34.93 | 35.70 | 33.98 | 5.94 6.33 25.98 | 25.08

DDPPO (extra data+100M steps) * [42] | 43.20 | 38.54 | 36.40 | 34.89 | 7.44 7.20 29.01 | 26.88

BC w/ ResNet + Metric Map [9] 24.80 | 23.94 | 11.50 | 11.28 | 1.36 1.26 12.55 | 12.16

BC w/ ResNet + GRU [9] 3490 | 3343 | 17.60 | 17.05 | 6.08 5.93 19.53 | 18.80

Straight | NRNS w/ noise [9] 64.10 | 55.43 | 47.90 | 39.54 | 25.19 | 18.09 || 45.73 | 37.69
NRNS w/out noise [9] 68.00 | 61.62 | 49.10 | 44.56 | 23.82 | 18.28 || 46.97 | 41.49

NRNS + SLING [43] 85.3 74.4 66.8 49.3 41.1 28.8 64.4 50.8

OVRL + SLING [43] 71.2 54.1 60.3 444 43.0 29.1 58.2 42.5
FeudalNav (Ours) 82.60 | 74.95 | 71.00 | 57.40 | 49.01 | 34.20 || 67.54 | 55.52

DDPPO (10M steps) * [42] 7.90 3.27 9.50 7.11 5.50 4.72 7.63 5.03

DDPPO (extra data + S0M steps)™* [42] 18.10 | 15.42 | 16.30 | 14.46 | 2.60 2.23 12.33 | 10.70

DDPPO (extra data+100M steps)* [42] | 22.20 | 16.51 | 20.70 | 18.52 | 4.20 3.71 15.70 | 12.91

BC w/ ResNet + Metric Map [9] 3.10 2.53 0.80 0.71 0.20 0.16 1.37 1.13

BC w/ ResNet + GRU [9] 3.60 2.86 1.10 0.91 0.50 0.36 1.73 1.38

NRNS w/ noise [9] 27.30 | 10.55 | 23.10 | 10.35 | 10.50 | 5.61 20.30 | 8.84

Curved | NRNS w/out noise [9] 35.50 | 18.38 | 23.90 | 12.08 | 12.50 | 6.84 2397 | 12.43
ZSEL* [20] 41.0 28.2 27.3 18.6 9.3 6.0 25.9 17.6

OVRL* (53 GPU days) [44] 53.60 | 31.70 | 47.60 | 30.20 | 35.60 | 21.90 || 45.60 | 28.00

NRNS + SLING [43] 58.6 16.1 47.6 16.8 249 10.1 43.7 14.3

OVRL + SLING [43] 68.4 47.0 57.7 39.8 40.2 25.5 55.4 37.4
FeudalNav (Ours) 72.50 | 51.26 | 64.40 | 40.73 | 43.70 | 25.32 60.2 | 39.11

Table 1. Quantitative comparison of our method (FeudalNav and Stacked FeudalNav) against baselines and SOTA on the image goal task
following the evaluation protocol from NRNS [9] in previously unseen Gibson environments [45]. Bold = best performing.

latent space to dynamically build a memory proxy map of
previously visited locations. We project SMoG features
(128 dim) to a 2D latent space using a simple MLP that acts
as an isomap imitator network by preserving the relative dis-
tance between image features. To update the MPM, we add
a gaussian kernel to the corresponding 2D location in the
map for each observation, thus creating a density map with
values corresponding to the amount of exploration that has
occurred in each location. The high-level manager polls the
MPM’s density to determine when a region is well-explored
and movement away from the current region is desired.

The mid-level manager mimics human navigation poli-
cies by predicting a point in the environment to move to-
wards. The intuition is that the human point-click navi-
gation decisions in [1] are learnable and generalize to new
environments with zero-shot transfer. We finetune Resnet-
18 [48] to predict the pixel coordinate directing the naviga-
tion agent’s motion in the environment from the combined
input of the RGBD observation and the MPM. Navigation
begins with Waynet predicting a waypoint for exploration.
Concurrently, keypoint matches between the current obser-
vation and a goal image are computed by Superglue. If the
confidence of this keypoint match is high, the average of the
matched keypoints is used in the navigation pipeline instead
of the waypoint prediction. In this manner the agent mimics
human navigation in novel environments while checking if

the goal location has been found.

The low-level worker agent chooses which actions to ex-
ecute in the environment from the following action space:
“turn left 15 degrees”, “turn right 15 degrees”, and “move
forward 0.25 meters (m)”. Although an RL agent is typi-
cally used for this type of task, we find a classifier works
well to enable effective navigation. We train this classifier
to learn a mapping between depth map and waypoint in-
put and the corresponding human-chosen action from the
LAVN dataset [1]. The agent chooses to stop navigation
when the confidence threshold for matching goal image fea-
tures to the current observation is high and either the agent’s
depth measurement indicates it is sufficiently close to the
goal location or the area of the matched keypoints is rela-
tively large with respect to the total image size.

Results We test the performance of FeudalNav using the
procedure outlined in NRNS [9] on the image-goal task in
previously unseen environments. All observation image are
480 x 640 pixels with 120° field of view. Each agent trajec-
tory is evaluated on success rate (whether or not the agent
reaches the goal) and SPL (success rate weighted by inverse
path length). We compare FeudalNav’s performance against
a variety of SOTA methods in Table 1 and show improved
performance to RL [42], behavior cloning [9], graph-based
[9], last mile [43], zero-shot [20], and self-supervised [44]
SOTA.
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