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Abstract. In this paper, we propose a novel approach for improving the quality 
of Parallel Magnetic Resonance Imaging (pMRI) reconstructions by incorporat-
ing the power of Generative Adversarial Networks (GANs). We integrate the 
Joint Sensitivity Encoding (JSENSE) technique with a GAN for parallel mag-
netic resonance imaging (MRI). The innovation lies in refining the JSENSE iter-
ative reconstruction process using a GAN which effectively addresses the persis-
tent challenge of low signal-to-noise ratio (SNR) and artifact degradation. While 
JSENSE offers improved reconstruction in rapid scanning or under-sampled ac-
quisitions, images often exhibit noise and aliasing artifacts when the reduction 
factor is high. To resolve this problem, we deployed a GAN within the JSENSE 
framework for image-to-image translation and transforming noisy and artifact-
ridden images into high-quality ones. Our GAN model, trained on paired sets of 
clean and noisy MRI images, performs noise and artifact removal after each 
JSENSE reconstruction iteration. Comparative evaluations with standard 
JSENSE and other contemporary techniques, such as CG-SENSE indicate signif-
icant improvement in the quality of the proposed method. Our approach achieved 
superior Structural Similarity Index Measure (SSIM) and lower Normalized 
Mean Squared Error (NMSE) with increased reduction factors and demonstrated 
its effectiveness in high-quality MRI reconstruction. 
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1 Introduction 

Due to the non-invasive characteristics and superior ability to differentiate soft tissues, 
Magnetic Resonance Imaging (MRI) serves as a potent tool in both medical practice 
and scientific research. However, high-quality image reconstruction from MRI data is 
a challenging task, especially when the data is undersampled. Parallel Magnetic Reso-
nance Imaging (pMRI) is a clinical solution that accelerates the imaging process by 
undersampling k-space data while exploiting spatial sensitivity profiles of multiple re-
ceiver coils [1]. 
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Joint Sensitivity Encoding (JSENSE) [2], an advanced iterative method, has been used 
for pMRI reconstruction. This technique jointly estimates the sensitivity maps of the 
multiple coils and reconstructs the image. However, JSENSE reconstructions often in-
troduce noise and artifacts, especially in situations of rapid scanning with undersampled 
acquisitions. Furthermore, as the reduction factor is increased to accelerate the acquisi-
tion process, the level of noise also increases. These constraints limit its applicability 
in clinical settings for further accelerating imaging speed. 

Advancements in deep learning have initiated a paradigm shift in many fields in-
cluding medical imaging. Generative Adversarial Networks (GANs) [3] have emerged 
as a powerful tool for image-to-image translation tasks, demonstrating promising re-
sults in noise reduction and artifact removal. Notably, the Cycle-Consistent Generative 
Adversarial Network (CycleGAN) [4] model has been effective in such applications, 
given its capacity to learn a mapping between the distributions of different image do-
mains without the need for explicitly paired training data. 

This work bridges the gap between traditional parallel imaging reconstruction tech-
niques and deep learning methodologies. We propose a novel method that integrates 
the CycleGAN model within the JSENSE reconstruction loop. In this framework, 
JSENSE acts as the initial image constructor from undersampled k-space data, while 
CycleGAN refines these initial reconstructions by transforming the noisy and aliasing 
artifact images into cleaner ones. Our model exploits the strengths of both techniques 
and we observe a significant enhancement in the quality of reconstructed MRI images 
while also potentially facilitating faster pMRI protocols. The aim of this research is 
two-fold: to provide a novel technique for improved JSENSE reconstruction and to il-
lustrate the potential of combining traditional imaging methodologies with advanced 
Deep Learning [5] techniques. Traditional methods tend to struggle with reconstructing 
noise-free images at high reduction factors, whereas our methods demonstrate signifi-
cant performance improvement even under such conditions. The results demonstrate 
that our proposed method yields significant improvements in the quality of recon-
structed MRI images over standard JSENSE and other existing techniques. 

The rest of the paper is organized as the following: Section 2 describes the related 
work section, which provides an overview of the traditional parallel MRI technique and 
implementation of GAN in MRI reconstruction. Section 3 describes our proposed 
method, which integrates CycleGAN into the JSENSE reconstruction loop. Section 4 
presents our experimental setup, including the datasets used, CycleGan training details, 
the performance metrics adopted, and the experimental results. The paper is concluded 
in Section 5 with the conclusion section. 

2 Related Work 

Parallel MRI enhances the speed of image acquisition by employing multiple receiver 
coils, each providing a unique perspective of the scanned object. Parallel Imaging re-
construction techniques such as Sensitivity Encoding (SENSE) [6] have been pivotal 
in enhancing imaging speed. The SENSE method performs image reconstruction based 



 

 

on the sensitivity profiles of each individual coil. It reduces scan times, but high reduc-
tion factors can lead to noise amplification, known as "g-factor noise." JSENSE [2] 
goes a step further by jointly estimating the sensitivity maps and the image reconstruc-
tion. Deep learning methodologies have outperformed conventional techniques in nu-
merous medical imaging applications in recent years. Various deep learning architec-
tures, particularly Convolutional Neural Networks (CNNs) and Generative Adversarial 
Networks (GANs), have been applied to MRI reconstruction tasks for accelerated and 
artifact-free reconstruction [7][8].  

Generative Adversarial Networks (GANs) have increasingly been utilized in MRI 
reconstruction due to their exceptional ability to mimic prior information for generative 
tasks. Various methods have been proposed to enhance their effectiveness. Shitrit et al. 
[9] introduced a technique that reconstructs missing k-space data from undersampled 
information using a GAN framework. Yang et al. [10] incorporated the U-Net structure 
into the generator of DAGAN. Moreover, Mardani et al. [11] proposed a unique ap-
proach that combined Compressed Sensing algorithms with GANs and enforced recon-
struction constraints through a cyclic loss. Quan et al. [12] designed a fully residual 
GAN with two consecutive networks to reconstruct and enhance outputs. Furthermore, 
Shaul et al. [13] devised a two-stage GAN architecture - KIGAN, capable of estimating 
missing k-space data and rectifying motion artifacts in MR images. Li et al. [14] devel-
oped SEGAN to recover MR image structure, leveraging local and global information. 
In recent developments, Murugesan et al. [15] fused global and local contextual infor-
mation in their GAN-based model, Recon-GLGAN. Deora et al. [16] presented a GAN-
based framework that emphasized preserving fine texture details and high-frequency 
information in reconstructed MR images using a patch-based discriminator and SSIM-
based loss. Inspired by these advances and aiming to tackle the noise and artifact chal-
lenges in JSENSE reconstructions, our work introduces a novel integration of JSENSE 
and GAN in the MRI reconstruction process. This unique approach aims to enhance the 
quality of reconstructions by exploiting the capabilities of GANs to perform image-to-
image translation and noise and artifact removal, achieving superior results. 

3 Methods 

3.1 Problem formulation 

Joint Sensitivity Encoding (JSENSE) is an advanced iterative technique utilized for 
multichannel image reconstruction in MRI [2]. The method works by simultaneously 
estimating the sensitivity maps and the reconstructed image, which substantially im-
proves the quality of the final image, particularly in instances of undersampled acqui-
sition. The JSENSE method can be expressed as a system of linear equations that rep-
resent the multichannel acquisition process: 

 
            (1) 
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Here,  is the acquired data from the th coil,  is the encoding operator, which 
includes the Fourier transform, and the coil sensitivity encoding, x is the image to be 
reconstructed,  is the noise in the th coil, and N is the total number of coils.  

The JSENSE method involves an iterative process that alternates between two main 
steps: image reconstruction and sensitivity estimation. In the image reconstruction step, 
the coil sensitivities are assumed to be known, and the image is estimated by solving 
the optimization problem: 

 
  (2) 

Where, is a regularization parameter that controls the trade-off between data fidelity 
and prior knowledge,  is a regularization term that encodes prior knowledge about 
the image, such as its sparsity in a certain transform domain. In the sensitivity estima-
tion step, the coil sensitivities are estimated by fitting a model to the data. This iterative 
process is repeated for a number of iterations, with the aim of gradually improving the 
accuracy of both the image and the coil sensitivities. 
 
3.2 Proposed Method 

With the problem formulation, we propose a new method that leverages the power of 
Generative Adversarial Networks (GANs) within the framework of the JSENSE recon-
struction technique. This is achieved by introducing a CycleGAN [4] model into the 
JSENSE iterative reconstruction process for improving image quality reconstructed, 
mainly focusing on noise and artifact reduction. The primary focus of this integration 
is to improve the JSENSE reconstruction quality. Our approach consists of a refined 
JSENSE reconstruction step where a CycleGAN model is employed for image refine-
ment. This refinement stage takes place within each iteration of the JSENSE recon-
struction process, as shown in Fig. 1. 

 
Fig. 1. Framework of the proposed CycleGAN-assisted JSENSE method. The figure demon-
strates how CycleGAN is incorporated into the JSENSE iterative reconstruction process.  

The first step of the JSENSE iterative process remains the same where the image is 
reconstructed by solving the following optimization problem: 
 



 

 

          (3) 
Where  represents the estimated image at th iteration,  is the encod-
ing operation involving the Fourier transform and the estimated coil sensitivity , 

represents the acquired data from the multiple coils, and  and  has the same 
definition.  

Once the image  is estimated, it is then passed through the CycleGAN model, 
which acts as a refinement tool to produce a noise and artifact-reduced version of the 
image. We denote this refined image as  as: 

 
    (4) 

 
Here, G represents the generator of the CycleGAN model. Finally, the sensitivity esti-
mation step is adjusted to incorporate this refined image, . The coil sensitivities 
are now estimated by minimizing the discrepancy between the encoding of the refined 
image and the acquired data: 
 

             (5) 
 

In this way, the refinements achieved by the CycleGAN model are effectively incor-
porated into the JSENSE iterative process. The improved image quality obtained 
through this refinement should lead to a more accurate estimation of coil sensitivities 
in the subsequent iterations, and thereby enhancing the overall reconstruction quality. 
The process is repeated until a pre-specified stopping criterion is met. 

4 Experimental Setup and Results 

4.1 Datasets and Training Details 

For training the CycleGAN model, a unique dataset was utilized that comprised 630 
paired brain slice images. Each pair included an artifact and noisy image and its corre-
sponding fully sampled and noise-free version. The noisy data was generated using 
JSENSE reconstruction to serve as a robust comparative measure, allowing the model 
to learn the necessary transformations for effective noise and artifact removal. This 
training dataset was extracted from an open-source fMRI [20] brain dataset obtained 
using a 3T Philips scanner with a 16-coil system. Key parameters for this procedure 
included a repetition time of 2000ms, an echo time of 30ms, and a matrix size of 768 × 
396 × 16 × 16. Oversampling in the readout was managed by transitioning from k-space 
to an image, with the focus on the central 256 × 256 region. For assessing and testing 
the proposed method's performance, we used two different brain slices which were not 
included in the training dataset. The brain slices were extracted from the same fMRI 
open-source dataset package.   

Training of the CycleGAN model was performed using the Adam optimizer with a 
learning rate of 0.0002,  set to 0.5, and  set to 0.999. We adopted a batch size of 1, 
considering the substantial size and complexity of the MRI images. As for the loss 



6 

 

functions, we applied a combination of adversarial loss, cycle consistency loss, and 
identity loss in line with the original CycleGAN settings. The model was trained for 
200 epochs, where the first 100 epochs utilized a linearly decaying learning rate, and a 
constant learning rate was applied for the remaining epochs. The experiments were per-
formed on a desktop equipped with an Intel Core i7 processor, 64GB RAM, and 
NVIDIA Quadro P2200 GPU. MATLAB was used for the JSENSE reconstruction and 
initial training dataset preparation. Python 3.8, along with PyTorch 1.4, was utilized for 
CycleGAN model implementation, training, and evaluation. When local resources were 
insufficient, Google Colab's GPU acceleration was employed.  

 
4.2 Results 

In this study, we aimed to investigate the effectiveness of the proposed JSENSE-
CycleGAN integrated method for MRI reconstruction. To provide a comprehensive 
analysis, we conducted a comparative study, juxtaposing the performance of our novel 
approach against two established methods: CG-SENSE [5] and the conventional 
JSENSE [2].  

Figure 2 presents the comparative results of the MRI reconstruction for the first brain 
slice across the three methods, where the outer reduction factor was set to 4, and Auto-
calibration Signal (ACS) lines constituted 12% for all methods. In terms of quantitative 
performance metrics, the Structural Similarity Index Measure (SSIM) and Peak Signal-
to-Noise Ratio (PSNR) were used. For the CG-SENSE method, SSIM and PSNR values 
of 0.7030 and 30.9016 were recorded, respectively. The JSENSE method yielded 
slightly different scores, with SSIM at 0.7025 and PSNR at 31.1765. Our proposed 
JSENSE-CycleGAN approach demonstrated a significant improvement reaching an 
SSIM value of 0.9230 and a PSNR of 33.7876, indicating a higher structural similarity 
and signal clarity in the reconstructed images. It is seen that our method successfully 
reduced noise and artifacts in the reconstructed image. 

 
Fig. 2. Comparative MRI reconstruction results of the first brain slice using CG-SENSE, 
JSENSE, and our proposed JSENSE-CycleGAN approach. All methods employed an outer re-
duction factor of 4 and 12% ACS lines. The arrows in the figure clearly show that our method 
provides enhanced structural similarity and signal clarity, and significantly reduces noise and 
artifacts. 

Figure 3 presents the MRI reconstruction results of a second brain slice, using an 
outer reduction factor of 4 and 12% ACS lines. The SSIM and NMSE values for the 



 

 

CG-SENSE method were 0.6989 and 0.0339, respectively, while the JSENSE method 
recorded 0.6561 and 0.0394. However, our JSENSE-CycleGAN approach significantly 
outperformed both, with an SSIM of 0.8955 and NMSE of 0.0171, demonstrating su-
perior structural preservation and lower reconstruction errors. Figure 3 also shows that 
regions of interest extracted from the reconstructed brain slices of each method. A vis-
ual examination of these regions underscores the superiority of the proposed JSENSE-
CycleGAN approach, since it exhibits lower noise and fewer artifacts than both the CG-
SENSE and JSENSE methods. 

 
Fig. 3. MRI reconstruction comparison for a different brain slice using CG-SENSE, JSENSE, 
and the proposed JSENSE-CycleGAN method under the same reduction factor and ACS line 
conditions. The regions of interest from each method's output highlight the lower noise and fewer 
artifacts produced by our approach, corroborating the superior SSIM and lower NMSE values. 

Figure 4 provides a performance analysis of our proposed JSENSE-CycleGAN 
method under varying reduction factors. Specifically, the reduction factors employed 
are 2, 4, and 5. The corresponding SSIM values achieved for these reduction factors are 
0.9598, 0.9230, and 0.9089, respectively. These results, derived from the first brain 
slice, clearly show that despite increasing the reduction factor, our method maintains a 
high SSIM value, indicating consistent performance in preserving the structural fidelity 
of the reconstructed image. 

 
Fig. 4. Performance of our proposed method using different reduction factors (2, 4, 5) on the first 
brain slice. The SSIM values indicate our method's ability to maintain high structural fidelity 
even as the reduction factor increases. 
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5 Conclusion 

Our study has highlighted the novel JSENSE-CycleGAN integration for improving 
parallel MRI reconstruction. A marked improvement was delivered over traditional 
methods such as CG-SENSE and JSENSE. The efficacy of our approach is evident in 
its superior performance substantiated by higher SSIM values across different reduction 
factors, and signifies superior preservation of structural fidelity in the reconstructed 
images. Additionally, the compelling visual quality of the output characterized by sig-
nificant reduction in noise and artifacts underlines the remarkable strength and adapta-
bility of our proposed method. It sets a challenging precedent for future methodologies 
in MRI reconstruction. 

While this integration between JSENSE and CycleGAN is promising, it opens new 
dimensions for future exploration. Future research directions may include the integra-
tion of other advanced deep learning architectures such as 3D convolutional neural net-
works or transformer models [17] to handle more complex imaging scenarios. Addi-
tionally, the applicability of the proposed method could be extended to other MRI mo-
dalities such as Diffusion Tensor Imaging (DTI) [18] or Functional MRI (fMRI) [19], 
further broadening the impact of this work. Furthermore, the use of more sophisticated 
loss functions or training strategies to improve the GAN's performance can be consid-
ered. Lastly, an in-depth investigation into the effects of varying the ACS lines and the 
reduction factor on the quality of the reconstructed images could provide deeper in-
sights into the optimal parameters for our proposed method.  
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