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Abstract. This paper proposes an innovative approach to improve residual arti-
facts in image-based parallel magnetic resonance imaging (MRI) reconstruc-
tion. Despite its superior signal-to-noise ratio (SNR) over the conventional Sen-
sitivity Encoding (SENSE) method, SENSE is hindered by persisting residual 
artifacts, causing it to be less effective in image-based parallel MRI reconstruc-
tion. We propose a joint estimation of actual and virtual coil sensitivity maps, 
along with the reconstructed image. Inspired by the principles of the Joint Sen-
sitivity Encoding (JSENSE) method, the proposed approach employs an itera-
tive optimization process via phase-constrained data of virtual conjugate coils, 
progressively refining these integral components to achieve superior image 
quality. Experimental results show that the proposed method not only enhances 
MRI image quality by suppressing residual artifacts but also paves the way for 
future research into the potential of virtual conjugate coils in image-based MRI 
reconstruction. Different from the phase-constrained data for enhancing k-
space-based parallel MRI, the method shows that the phase-constrained data al-
so improve image-based parallel MRI reconstruction. 
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1 Introduction 

Virtual Conjugate Coil (VCC) [1,2] has undeniably brought about significant im-
provements in the quality of parallel Magnetic Resonance Imaging (MRI) reconstruc-
tions and deep network-based methods. Renowned techniques such as VCC-
GRAPPA [2], VCC-LORAKS [3], and VCC-ESPIRIT [4] along with newer ap-
proaches like virtual coil augmentation for MR coil extrapolation via deep learning 
[11], have showcased their efficacy in suppressing residual artifacts in reconstructed 
images and enhancing the Signal-to-Noise Ratio (SNR). 

Virtual Conjugate Coil Sensitivity Encoding (VCC-SENSE) [2], a technique that 
has gained significant attention in the field, has demonstrated a superior SNR com-
pared to the conventional Sensitivity Encoding (SENSE) [5] approach. However, this 
approach is not without its flaws. Residual artifacts, lingering remnants from the re-
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construction process that interfere with the interpretation of the final image, continue 
to persist in VCC-SENSE reconstructions. This shortcoming has led to VCC being 
less studied in the realm of image-based parallel MRI reconstruction compared to k-
space-based reconstruction [2,3,4]. 

In this context, it becomes imperative to devise innovative strategies that focus on 
the reduction and potential elimination of these residual artifacts. In this paper, our 
primary goal is to improve these residuals in SENSE reconstructions. Our approach 
involves solving an iterative optimization problem, a strategy that has proven success-
ful in various computational tasks. Motivated by the principles of Joint Sensitivity 
Encoding (JSENSE) [8], we propose a joint estimation of actual coil sensitivity maps, 
virtual coil sensitivity maps, and the reconstructed image. This is not a straightfor-
ward approach, as it involves iteratively enhancing and refining these three integral 
components to achieve superior image quality. The coil sensitivity maps – both actual 
and virtual – along with the image to be reconstructed, undergo a series of improve-
ments, progressively refining the final output. 

The iterative optimization process offers a systematic and guided approach to im-
prove the quality of the reconstructed image. The idea is to start with an initial estima-
tion for each of the three components and iteratively refine them, with each iteration 
offering an improvement over the last. The process continues until an optimal or near-
optimal solution is found. The joint estimation approach provides a mechanism for the 
system to learn from the residuals, enabling it to correct and suppress these artifacts. 
The suppression of these residuals can significantly improve the quality of the recon-
structed images. By addressing one of the major shortcomings of the SENSE-related 
techniques, we aim to bring VCC to image-based MRI reconstruction and provide an 
improved approach that balances both SNR and the minimization of residual artifacts. 
In this paper, the first and the section sections of this paper present an introduction 
and background. The proposed method is given in the third part. Experimental results 
and conclusions are provided in the fourth and fifth sections. 

2 Background 

Joint Sensitivity Encoding (JSENSE) [8] is a magnetic resonance imaging (MRI) 
technique designed to overcome certain limitations of conventional SENSE [5] meth-
od, which rely heavily on precise estimations of coil sensitivity maps for image re-
construction. The conventional SENSE method can suffer from inaccuracies in these 
initial estimates, leading to degraded image quality. JSENSE adopts an iterative ap-
proach optimizing both coil sensitivity maps and the image concurrently. This innova-
tive strategy allows for the refinement of the actual coil image sensitivity profile dur-
ing the image reconstruction process, thus potentially yielding higher-quality images. 
Despite the computational demands of this iterative process making JSENSE more 
resource-intensive than conventional SENSE methods, ongoing research including the 
application of deep learning methods is focused on enhancing the performance and 
efficiency of JSENSE, particularly in situations where initial coil sensitivity profiles 
are inaccurate or change during MRI scan. 
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Efforts to improve calibration accuracy in MRI reconstruction have necessitated 
mining valuable data within the restricted auto-calibration signal (ACS) lines, where a 
notable strategy involves the application of the VCC concept. The VCC enhances 
encoding power, effectively bolstering the reconstruction performance of numerous 
methodologies such as SENSE [2], GRAPPA [2], ESPIRiT [4], KerNL [6], iterative 
RAKI [9], nonlinear GRAPPA [7], even multi-contrast data [10], and PROPELLER 
[13]. Additionally, the VCC method introduces extra equations into the inverse recon-
struction matrix by incorporating additional phase information, augmenting the preci-
sion of the reconstructed images. In the context of machine learning, VCC serves as 
an effective data augmentation technique, contributing to the enhanced performance 
of learning models [6]. However, while VCC improves the reconstruction quality, it 
results in increased computational costs due to the doubling of channels in the k-space 
data used in the process. For instance, a dataset involving a 32-coil k-space would 
necessitate a total of 64 coils for reconstruction, including the original 32 and an add-
ed 32 virtual coils, making the procedure more computationally demanding. 

3 Proposed Method 

3.1 The Proposed Framework 

The proposed methodology framework is illustrated in Fig.1. Phase-constrained data 
are generated as VCC signals. Both physical coil data and VCC data are used in 
JSENSE-like iterative reconstruction. 
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Fig. 1. Framework of the proposed method. Phase-constrained data are incorporated into the 
iterative reconstruction process, which is supported by JSENSE-like method. 

3.2 Generating Phase-Constrained Data 

In parallel MRI, one coil’s k-space data denotes the Fourier Transform (FT) of the 
distribution of the spatial spins combined with the coil sensitivities. Furthermore, in 
practical imaging, background phase effects caused by B0 field inhomogeneity, flow, 
and pulse sequence also exist in the effective coil sensitivities. The coil k-space data 
can be represented as [1] 

 ,                                  (1) 

where  represents the spin distribution,  denotes background phase,  is 
the coil sensitivities of the jth coil,   is the k-space data vector, and  represents the 
vector in the image domain. The symmetric complex-conjugate k-space data can be 
represented as [1] 

     ,                                 (2) 

where  is the complex-conjugate operator. Additional phase information is provided 
in the VCC, although the magnitude sensitivities are the same between actual and 
virtual coils. 

Additional equations are added in the VCC-based reconstruction, and reconstructed 
image quality is improved due to the additional encoding power from VCC. The ex-
plicit knowledge of the background phase information is not required when VCC is 
combined with GRAPPA reconstruction [1] for improving the quality. Encoding 
power is significantly improved by using the phase variations in the complex coil 
sensitivities. On the other hand, insufficient phase variations and inaccurate 
knowledge of spatial phase information cause artifacts [1]. 

3.3 Iterative JSENSE Reconstruction Using VCC Data 

The SENSE technique takes advantage of the spatial sensitivity variations of multiple 
surface receiver coils. It's a parallel imaging method that helps reduce scan times by 
acquiring less k-space data, thus speeding up the imaging process. SENSE uses an 
array of multiple receiver coils. Each of these coils has a different spatial sensitivity 
pattern, which means they pick up signals with varying strength depending on their 
position relative to the body. As a result, each coil can provide a unique "view" of the 
body, which contains spatial encoding information in addition to the signal data. The 
SENSE technique then uses these unique views to fill in the gaps in the undersampled 
k-space data, thus allowing for a reduction in the number of phase-encoding steps and 
consequently faster image acquisition. It is important to note that the accuracy of the 
reconstructed image depends on the correct estimation of the coil sensitivity profiles. 
Misestimation could lead to errors known as aliasing artifacts. For the SENSE imag-
ing formulation, 

 ,                                                        (3)  
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where  represents the acquired k-space data from all actual coils, the encoding ma-
trix  contains the product of Fourier encoding with undersampled k-space and coil-
specific sensitivity modulation over the image, and  is the unknown image to be 
reconstructed.  

For JSENSE, the imaging equation becomes 
 ,                                                    (4)  

where  represents unknown actual coil sensitivities. In our study, we are introducing 
a method where we propose a simultaneous estimation of actual coil sensitivity maps, 
virtual coil sensitivity maps, and the reconstructed image. The traditional approach 
usually treats these aspects independently, but our method acknowledges their inter-
connected nature and leverages this relationship for a more accurate and effective 
reconstruction process. By jointly estimating these factors, we can address challenges 
in MRI reconstruction and improve the quality of the resultant image. In particular, 
the actual coil sensitivity maps are key to accounting for the distinct signal reception 
profiles of different coils. On the other hand, the virtual coil sensitivity maps intro-
duce extra equations to the inverse reconstruction matrix by incorporating additional 
phase information. Furthermore, the reconstructed image integrates these considera-
tions to result in improved final output. Overall, our proposed method aims to en-
hance MRI image reconstruction by comprehensively considering all the key contrib-
uting factors in a unified estimation process. So, the image equation is 

 ,                                                  (5)  
where  denotes the unknown virtual coil sensitivities. We apply iterative optimiza-
tion to solve the equation (5). In phase-constrained reconstruction, actual and virtual 
coils are harmoniously combined. They are fed into the reconstruction procedures 
without separating them, resulting in a unified input. This integrated approach is also 
maintained during the iterative optimization process, where both coil types are jointly 
involved. Therefore, the actual and virtual coils coexist throughout the iterations, 
contributing to the overall solution.  

Specifically, the cost function is alternatively minimized for 
 .                                (6) 

In each computational cycle of the reconstruction process, the image that is being 
restructured is integrated with actual and virtual coil sensitivity maps — computation-
al representations of the coil's sensitivities. This integration results in two unique 
images, an actual coil image and a virtual coil image, which facilitate a more accurate 
image reconstruction. The coil sensitivity maps are initially generated through a self-
calibration process, establishing a foundation for the iterations to improve the image. 
After all the iterations are completed, a final reconstructed image is produced. This 
image is then assessed for its clarity, detail, and fidelity compared to the original im-
age. This evaluation process gauges the effectiveness of the reconstruction process 
and identifies potential enhancements for future iterations, with the final image 
demonstrating the success of the applied method. 
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4 Experimental Results 

4.1 Datasets and Evaluation Metrics 

Two datasets are used to evaluate the reconstruction performance of the proposed 
random feature method. The first dataset of axial brain images was acquired on a 3T 
scanner (SIEMENS AG, Erlangen, German) with a 32-channel head coil using a 2D 
gradient echo sequence (TE/TR = 2.29/100 ms, flip angle = 25°, matrix size = 256 × 
256, slice thickness = 3 mm, and FOV = 24 × 24 cm2). The second set of coronary 
brain data was acquired using a 2D gradient echo sequence (slice thickness = 3.0 mm, 
matrix size = 256 × 256, FOV = 24 × 24 cm2, and TE/TR = 2.29/100 ms). The k-space 
data was subject to undersampling by a reduction factor, with the count of the ACS 
lines is set as 32. The reconstruction algorithm was executed in MATLAB, a high-
level programming language developed by MathWorks based in Natick, Massachu-
setts. All image reconstruction was carried out on a laptop equipped with an i7 pro-
cessor and 32GB of RAM. Given that the proposed technique does not apply deep 
learning, there was no requirement for a graphics processing unit (GPU). 

In addition to the subjective evaluation, the suggested technique is also bench-
marked against alternative methods employing two quantifiable evaluation standards. 
These standards encompass the normalized mean square error (NMSE), which 
measures the magnitude of error, and the structural similarity index measurement 
(SSIM), a method that gauges image quality by comparing changes in structural in-
formation. 

4.2 Reconstruction Results 

For the first dataset of axial brain, k-space is undersampled with 32 ACS lines and the 
outer reduction factor of 4. The fully sampled k-spaced data are inversely Fourier 
transformed to image space and all coil images are combined to generate the final 
image. Missing k-space data are recovered by CG-SENSE [12], JSENSE [8], and the 
proposed JSENSE-VCC methods. A region-of-interest (ROI) is extracted for compar-
ing the details of reconstructed images. In Fig.2, it is seen that the proposed method 
can suppress aliasing artifacts and noise in the reconstructed image. In contrast, CG-
SENSE image has typical aliasing artifacts and JSENSE also have artifacts and noise. 
The proposed method has the closest appearance of image content to the reference 
image. In addition, SSIM values are presented in Fig.2. It is seen that the proposed 
JSENSE-VCC method has the highest SSIM value 0.9303 in all three images recon-
structed from undersampled k-space data. 
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Fig. 2. For the axial brain data, reconstruction performance comparison among the reference 
image, CG-SENSE, JSENSE, and the proposed JSENSE-VCC method. The reference image is 
fully sampled. The proposed method can suppress aliasing artifacts in comparison to CG-
SENSE. In comparison to the conventional JSENSE, JSENSE-VCC can restore more details. 
The proposed method has the highest SSIM value. 

 For the second dataset of the coronary brain, 32 ACS lines and the outer reduction 
factors of 2, 4, and 8 are used to undersample k-space data, respectively. The fully 
sampled k-spaced data are inversely Fourier transformed to image space and all coil 
images are combined to generate the final image. Missing k-space data are recovered 
by CG-SENSE, JSENSE, and the proposed JSENSE-VCC methods. A ROI is extract-
ed for comparing the details of reconstructed images. In Fig.3, it is seen that the pro-
posed method can suppress aliasing artifacts and noise in the reconstructed image. 
CG-SENSE image has typical aliasing artifacts and noise, and JSENSE reconstruction 
also has noise. The proposed method has the closest appearance of image content to 
the reference image. In addition, SSIM and NMSE values are presented in Fig.3. It is 
seen that the proposed JSENSE-VCC method has the highest SSIM value 0.9706 and 
the lowest NMSE value 0.003022 in all three images reconstructed from under-
sampled k-space data. Besides the JSENSE-VCC, feature selection-based reconstruc-
tion [14], dual-interpolator-based reconstruction [16], and broad learning reconstruc-
tion [15] may also be combined with VCC concept for further improvement of per-
formance. 
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Fig. 3. For the coronary brain data, reconstruction performance comparison (outer reduction 
factor 4) among the reference image, CG-SENSE, JSENSE, and the proposed JSENSE-VCC 
method. The reference image is fully sampled. The proposed method can suppress aliasing 
artifacts in comparison to CG-SENSE. In comparison to the conventional JSENSE, JSENSE-
VCC can restore more details. The proposed method has the highest SSIM and the lowest 
NMSE values. 

To quantitatively evaluate the reconstruction performance, the undersampled k-space 
data of the coronary brain are reconstructed by CG-SENSE, JSENSE, and JSENSE-
VCC, respectively. Quantitative results are shown in Table 1. It is seen that the pro-
posed JSENSE-VCC method has the highest SSIM values for images reconstructed at 
the outer reduction factor 2, 4, and 8, respectively.  

Table 1. Quantitative Metric Values for Evaluating Reconstruction Performance of Coronary 
Brain Data. 

 R2 R4 R8 
 SSIM NMSE SSIM NMSE SSIM NMS

E 
CG-
SENSE 

0.943532 0.002597 0.941088 0.005265 0.794037 0.021442 

JSENSE 0.963015 0.003143 0.955321 0.003393 0.829628 0.015490 
JSENSE-
VCC 

0.971696 0.002107 0.970637 0.003022 0.921765 0.007200 

5 Conclusion 

In conclusion, the study presented an innovative approach to improve the quality of 
image-based MRI reconstruction. Our methodology leverages an iterative optimiza-
tion process that jointly estimates actual and virtual coil sensitivity maps, along with 
the image to be reconstructed. Each iteration refines these three components and en-
hances the final output. The proposed method notably elevates the quality of recon-
structed images through suppressing residual artifacts. The results not only bolster the 
promise of image-based MRI reconstruction but also highlight the potential of this 
approach in improving both SNR and minimizing residual artifacts. 
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