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Abstract. This paper proposes an innovative approach to improve residual arti-
facts in image-based parallel magnetic resonance imaging (MRI) reconstruc-
tion. Despite its superior signal-to-noise ratio (SNR) over the conventional Sen-
sitivity Encoding (SENSE) method, SENSE is hindered by persisting residual
artifacts, causing it to be less effective in image-based parallel MRI reconstruc-
tion. We propose a joint estimation of actual and virtual coil sensitivity maps,
along with the reconstructed image. Inspired by the principles of the Joint Sen-
sitivity Encoding (JSENSE) method, the proposed approach employs an itera-
tive optimization process via phase-constrained data of virtual conjugate coils,
progressively refining these integral components to achieve superior image
quality. Experimental results show that the proposed method not only enhances
MRI image quality by suppressing residual artifacts but also paves the way for
future research into the potential of virtual conjugate coils in image-based MRI
reconstruction. Different from the phase-constrained data for enhancing k-
space-based parallel MRI, the method shows that the phase-constrained data al-
so improve image-based parallel MRI reconstruction.
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1 Introduction

Virtual Conjugate Coil (VCC) [1,2] has undeniably brought about significant im-
provements in the quality of parallel Magnetic Resonance Imaging (MRI) reconstruc-
tions and deep network-based methods. Renowned techniques such as VCC-
GRAPPA [2], VCC-LORAKS [3], and VCC-ESPIRIT [4] along with newer ap-
proaches like virtual coil augmentation for MR coil extrapolation via deep learning
[11], have showcased their efficacy in suppressing residual artifacts in reconstructed
images and enhancing the Signal-to-Noise Ratio (SNR).

Virtual Conjugate Coil Sensitivity Encoding (VCC-SENSE) [2], a technique that
has gained significant attention in the field, has demonstrated a superior SNR com-
pared to the conventional Sensitivity Encoding (SENSE) [5] approach. However, this
approach is not without its flaws. Residual artifacts, lingering remnants from the re-



construction process that interfere with the interpretation of the final image, continue
to persist in VCC-SENSE reconstructions. This shortcoming has led to VCC being
less studied in the realm of image-based parallel MRI reconstruction compared to k-
space-based reconstruction [2,3,4].

In this context, it becomes imperative to devise innovative strategies that focus on
the reduction and potential elimination of these residual artifacts. In this paper, our
primary goal is to improve these residuals in SENSE reconstructions. Our approach
involves solving an iterative optimization problem, a strategy that has proven success-
ful in various computational tasks. Motivated by the principles of Joint Sensitivity
Encoding (JSENSE) [8], we propose a joint estimation of actual coil sensitivity maps,
virtual coil sensitivity maps, and the reconstructed image. This is not a straightfor-
ward approach, as it involves iteratively enhancing and refining these three integral
components to achieve superior image quality. The coil sensitivity maps — both actual
and virtual — along with the image to be reconstructed, undergo a series of improve-
ments, progressively refining the final output.

The iterative optimization process offers a systematic and guided approach to im-
prove the quality of the reconstructed image. The idea is to start with an initial estima-
tion for each of the three components and iteratively refine them, with each iteration
offering an improvement over the last. The process continues until an optimal or near-
optimal solution is found. The joint estimation approach provides a mechanism for the
system to learn from the residuals, enabling it to correct and suppress these artifacts.
The suppression of these residuals can significantly improve the quality of the recon-
structed images. By addressing one of the major shortcomings of the SENSE-related
techniques, we aim to bring VCC to image-based MRI reconstruction and provide an
improved approach that balances both SNR and the minimization of residual artifacts.
In this paper, the first and the section sections of this paper present an introduction
and background. The proposed method is given in the third part. Experimental results
and conclusions are provided in the fourth and fifth sections.

2 Background

Joint Sensitivity Encoding (JSENSE) [8] is a magnetic resonance imaging (MRI)
technique designed to overcome certain limitations of conventional SENSE [5] meth-
od, which rely heavily on precise estimations of coil sensitivity maps for image re-
construction. The conventional SENSE method can suffer from inaccuracies in these
initial estimates, leading to degraded image quality. JSENSE adopts an iterative ap-
proach optimizing both coil sensitivity maps and the image concurrently. This innova-
tive strategy allows for the refinement of the actual coil image sensitivity profile dur-
ing the image reconstruction process, thus potentially yielding higher-quality images.
Despite the computational demands of this iterative process making JSENSE more
resource-intensive than conventional SENSE methods, ongoing research including the
application of deep learning methods is focused on enhancing the performance and
efficiency of JSENSE, particularly in situations where initial coil sensitivity profiles
are inaccurate or change during MRI scan.



Efforts to improve calibration accuracy in MRI reconstruction have necessitated
mining valuable data within the restricted auto-calibration signal (ACS) lines, where a
notable strategy involves the application of the VCC concept. The VCC enhances
encoding power, effectively bolstering the reconstruction performance of numerous
methodologies such as SENSE [2], GRAPPA [2], ESPIRIT [4], KerNL [6], iterative
RAKI [9], nonlinear GRAPPA [7], even multi-contrast data [10], and PROPELLER
[13]. Additionally, the VCC method introduces extra equations into the inverse recon-
struction matrix by incorporating additional phase information, augmenting the preci-
sion of the reconstructed images. In the context of machine learning, VCC serves as
an effective data augmentation technique, contributing to the enhanced performance
of learning models [6]. However, while VCC improves the reconstruction quality, it
results in increased computational costs due to the doubling of channels in the k-space
data used in the process. For instance, a dataset involving a 32-coil k-space would
necessitate a total of 64 coils for reconstruction, including the original 32 and an add-
ed 32 virtual coils, making the procedure more computationally demanding.

3 Proposed Method

3.1  The Proposed Framework

The proposed methodology framework is illustrated in Fig.1. Phase-constrained data
are generated as VCC signals. Both physical coil data and VCC data are used in
JSENSE-like iterative reconstruction.
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Fig. 1. Framework of the proposed method. Phase-constrained data are incorporated into the
iterative reconstruction process, which is supported by JSENSE-like method.

3.2 Generating Phase-Constrained Data

In parallel MRI, one coil’s k-space data denotes the Fourier Transform (FT) of the
distribution of the spatial spins combined with the coil sensitivities. Furthermore, in
practical imaging, background phase effects caused by B0 field inhomogeneity, flow,
and pulse sequence also exist in the effective coil sensitivities. The coil k-space data
can be represented as [1]

Si(@) = FT (p(x) - e - (%)), (M

where p(x) represents the spin distribution, e’#® denotes background phase, C;(x) is
the coil sensitivities of the j# coil, p is the k-space data vector, and X represents the
vector in the image domain. The symmetric complex-conjugate k-space data can be
represented as [1]

S; (p) = FT[p(x) - 7™ - ¢; (0], 2

where * is the complex-conjugate operator. Additional phase information is provided
in the VCC, although the magnitude sensitivities are the same between actual and
virtual coils.

Additional equations are added in the VCC-based reconstruction, and reconstructed
image quality is improved due to the additional encoding power from VCC. The ex-
plicit knowledge of the background phase information is not required when VCC is
combined with GRAPPA reconstruction [1] for improving the quality. Encoding
power is significantly improved by using the phase variations in the complex coil
sensitivities. On the other hand, insufficient phase variations and inaccurate
knowledge of spatial phase information cause artifacts [1].

3.3 Iterative JSENSE Reconstruction Using VCC Data

The SENSE technique takes advantage of the spatial sensitivity variations of multiple
surface receiver coils. It's a parallel imaging method that helps reduce scan times by
acquiring less k-space data, thus speeding up the imaging process. SENSE uses an
array of multiple receiver coils. Each of these coils has a different spatial sensitivity
pattern, which means they pick up signals with varying strength depending on their
position relative to the body. As a result, each coil can provide a unique "view" of the
body, which contains spatial encoding information in addition to the signal data. The
SENSE technique then uses these unique views to fill in the gaps in the undersampled
k-space data, thus allowing for a reduction in the number of phase-encoding steps and
consequently faster image acquisition. It is important to note that the accuracy of the
reconstructed image depends on the correct estimation of the coil sensitivity profiles.
Misestimation could lead to errors known as aliasing artifacts. For the SENSE imag-
ing formulation,

Ef =d, 3)



where d represents the acquired k-space data from all actual coils, the encoding ma-
trix E contains the product of Fourier encoding with undersampled k-space and coil-
specific sensitivity modulation over the image, and f is the unknown image to be
reconstructed.
For JSENSE, the imaging equation becomes
E(a)f =d, 4
where a represents unknown actual coil sensitivities. In our study, we are introducing
a method where we propose a simultaneous estimation of actual coil sensitivity maps,
virtual coil sensitivity maps, and the reconstructed image. The traditional approach
usually treats these aspects independently, but our method acknowledges their inter-
connected nature and leverages this relationship for a more accurate and effective
reconstruction process. By jointly estimating these factors, we can address challenges
in MRI reconstruction and improve the quality of the resultant image. In particular,
the actual coil sensitivity maps are key to accounting for the distinct signal reception
profiles of different coils. On the other hand, the virtual coil sensitivity maps intro-
duce extra equations to the inverse reconstruction matrix by incorporating additional
phase information. Furthermore, the reconstructed image integrates these considera-
tions to result in improved final output. Overall, our proposed method aims to en-
hance MRI image reconstruction by comprehensively considering all the key contrib-
uting factors in a unified estimation process. So, the image equation is
E(a,a’)f =d, (5)
where a’ denotes the unknown virtual coil sensitivities. We apply iterative optimiza-
tion to solve the equation (5). In phase-constrained reconstruction, actual and virtual
coils are harmoniously combined. They are fed into the reconstruction procedures
without separating them, resulting in a unified input. This integrated approach is also
maintained during the iterative optimization process, where both coil types are jointly
involved. Therefore, the actual and virtual coils coexist throughout the iterations,
contributing to the overall solution.
Specifically, the cost function is alternatively minimized for
{[a,a’],f} = arg min U([a,a’],f). (6)
la.a’l.f

In each computational cycle of the reconstruction process, the image that is being
restructured is integrated with actual and virtual coil sensitivity maps — computation-
al representations of the coil's sensitivities. This integration results in two unique
images, an actual coil image and a virtual coil image, which facilitate a more accurate
image reconstruction. The coil sensitivity maps are initially generated through a self-
calibration process, establishing a foundation for the iterations to improve the image.
After all the iterations are completed, a final reconstructed image is produced. This
image is then assessed for its clarity, detail, and fidelity compared to the original im-
age. This evaluation process gauges the effectiveness of the reconstruction process
and identifies potential enhancements for future iterations, with the final image
demonstrating the success of the applied method.



4 Experimental Results

4.1 Datasets and Evaluation Metrics

Two datasets are used to evaluate the reconstruction performance of the proposed
random feature method. The first dataset of axial brain images was acquired on a 3T
scanner (SIEMENS AG, Erlangen, German) with a 32-channel head coil using a 2D
gradient echo sequence (TE/TR = 2.29/100 ms, flip angle = 25°, matrix size = 256 x
256, slice thickness = 3 mm, and FOV = 24 x 24 cm?). The second set of coronary
brain data was acquired using a 2D gradient echo sequence (slice thickness = 3.0 mm,
matrix size = 256 x 256, FOV = 24 x 24 cm?, and TE/TR = 2.29/100 ms). The k-space
data was subject to undersampling by a reduction factor, with the count of the ACS
lines is set as 32. The reconstruction algorithm was executed in MATLAB, a high-
level programming language developed by MathWorks based in Natick, Massachu-
setts. All image reconstruction was carried out on a laptop equipped with an i7 pro-
cessor and 32GB of RAM. Given that the proposed technique does not apply deep
learning, there was no requirement for a graphics processing unit (GPU).

In addition to the subjective evaluation, the suggested technique is also bench-
marked against alternative methods employing two quantifiable evaluation standards.
These standards encompass the normalized mean square error (NMSE), which
measures the magnitude of error, and the structural similarity index measurement
(SSIM), a method that gauges image quality by comparing changes in structural in-
formation.

4.2 Reconstruction Results

For the first dataset of axial brain, k-space is undersampled with 32 ACS lines and the
outer reduction factor of 4. The fully sampled k-spaced data are inversely Fourier
transformed to image space and all coil images are combined to generate the final
image. Missing k-space data are recovered by CG-SENSE [12], JSENSE [8], and the
proposed JSENSE-VCC methods. A region-of-interest (ROI) is extracted for compar-
ing the details of reconstructed images. In Fig.2, it is seen that the proposed method
can suppress aliasing artifacts and noise in the reconstructed image. In contrast, CG-
SENSE image has typical aliasing artifacts and JSENSE also have artifacts and noise.
The proposed method has the closest appearance of image content to the reference
image. In addition, SSIM values are presented in Fig.2. It is seen that the proposed
JSENSE-VCC method has the highest SSIM value 0.9303 in all three images recon-
structed from undersampled k-space data.



Reference Image CG-SENSE JSENSE JSENSE - VCC

Fig. 2. For the axial brain data, reconstruction performance comparison among the reference
image, CG-SENSE, JSENSE, and the proposed JSENSE-VCC method. The reference image is
fully sampled. The proposed method can suppress aliasing artifacts in comparison to CG-
SENSE. In comparison to the conventional JSENSE, JSENSE-VCC can restore more details.
The proposed method has the highest SSIM value.

For the second dataset of the coronary brain, 32 ACS lines and the outer reduction
factors of 2, 4, and 8 are used to undersample k-space data, respectively. The fully
sampled k-spaced data are inversely Fourier transformed to image space and all coil
images are combined to generate the final image. Missing k-space data are recovered
by CG-SENSE, JSENSE, and the proposed JSENSE-VCC methods. A ROI is extract-
ed for comparing the details of reconstructed images. In Fig.3, it is seen that the pro-
posed method can suppress aliasing artifacts and noise in the reconstructed image.
CG-SENSE image has typical aliasing artifacts and noise, and JSENSE reconstruction
also has noise. The proposed method has the closest appearance of image content to
the reference image. In addition, SSIM and NMSE values are presented in Fig.3. It is
seen that the proposed JSENSE-VCC method has the highest SSIM value 0.9706 and
the lowest NMSE value 0.003022 in all three images reconstructed from under-
sampled k-space data. Besides the JSENSE-VCC, feature selection-based reconstruc-
tion [14], dual-interpolator-based reconstruction [16], and broad learning reconstruc-
tion [15] may also be combined with VCC concept for further improvement of per-
formance.

Reference Image CG-SENSE JSENSE JSENSE-VCC



Fig. 3. For the coronary brain data, reconstruction performance comparison (outer reduction
factor 4) among the reference image, CG-SENSE, JSENSE, and the proposed JSENSE-VCC
method. The reference image is fully sampled. The proposed method can suppress aliasing
artifacts in comparison to CG-SENSE. In comparison to the conventional JSENSE, JSENSE-
VCC can restore more details. The proposed method has the highest SSIM and the lowest
NMSE values.

To quantitatively evaluate the reconstruction performance, the undersampled k-space
data of the coronary brain are reconstructed by CG-SENSE, JSENSE, and JSENSE-
VCC, respectively. Quantitative results are shown in Table 1. It is seen that the pro-
posed JSENSE-VCC method has the highest SSIM values for images reconstructed at
the outer reduction factor 2, 4, and 8, respectively.

Table 1. Quantitative Metric Values for Evaluating Reconstruction Performance of Coronary

Brain Data.
R2 R4 RS
SSIM NMSE SSIM NMSE SSIM NMS
E
CG- 0.943532 | 0.002597 0.941088 0.005265 0.794037 0.021442

SENSE
JSENSE 0.963015 | 0.003143 0.955321 0.003393 0.829628 0.015490
JSENSE- | 0.971696 | 0.002107 0.970637 0.003022 0.921765 0.007200
VCC

5 Conclusion

In conclusion, the study presented an innovative approach to improve the quality of
image-based MRI reconstruction. Our methodology leverages an iterative optimiza-
tion process that jointly estimates actual and virtual coil sensitivity maps, along with
the image to be reconstructed. Each iteration refines these three components and en-
hances the final output. The proposed method notably elevates the quality of recon-
structed images through suppressing residual artifacts. The results not only bolster the
promise of image-based MRI reconstruction but also highlight the potential of this
approach in improving both SNR and minimizing residual artifacts.
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