
A Robust Exact Algorithm for the Euclidean Bipartite
Matching Problem

Akshaykumar G. Gattani1, Sharath Raghvendra1, and Pouyan Shirzadian1

1Department of Computer Science, Virginia Tech

Abstract

Algorithms for the minimum-cost bipartite matching can be used to estimate
Wasserstein distance between two distributions. Given two sets A and B of n
points in a 2-dimensional Euclidean space, one can use a fast implementation of
the Hungarian method to compute a minimum-cost bipartite matching of A and B
in Õ(n2) time. Let ∆ be the spread, i.e., the ratio of the distance of the farthest to
the closest pair of points in A ∪ B. In this paper, we present a new algorithm to
compute a minimum-cost bipartite matching of A and B with a similar worst-case
execution time of Õ(n2 log∆). However, when A and B are drawn independently
and identically from a fixed distribution that is not known to the algorithm, the
execution time of our algorithm is, in expectation, Õ(n7/4 log∆).
To the best of our knowledge, our algorithm is the first one to achieve a sub-
quadratic execution time even for stochastic point sets with real-valued coordinates.
Our algorithm extends to any dimension d, where it runs in Õ(n2− 1

2dΦ(n)) time
for stochastic point sets A and B; here Φ(n) is the query/update time of a dy-
namic weighted nearest neighbor data structure. Our algorithm can be seen as a
careful adaptation of the Hungarian method in the geometric divide-and-conquer
framework.

1 Introduction

Given two distributions µ and ν defined on the sets Sµ, Sν ⊆ Rd, respectively, and an integer p ≥ 1,
the p-Wasserstein distance between µ and ν is the minimum cost required to transport mass from
one to the other. More formally, let Γ(µ, ν) be the set of all probability measures on Sµ × Sν with
marginal distributions µ and ν. The p-Wasserstein distance between µ and ν is defined as

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
Sµ×Sν

∥s1 − s2∥pdγ(s1, s2)

)1/p

,

where ∥s1 − s2∥ denotes the Euclidean distance of s1 and s2.

In many applications, the distribution µ (resp. ν) may not be known, but one may have access to n
i.i.d samples A (resp. B) from µ (resp. ν). The empirical distribution µn (resp. νn) is a discrete
distribution with A (resp. B) as support, where each sample has a mass of 1/n. The empirical
p-Wasserstein distance is simply the p-Wasserstein distance between the empirical distributions
µn and νn. As n → ∞, the empirical p-Wasserstein distance between µ and ν converges to the
real p-Wasserstein distance between them [7, 15, 16, 46] with several results showing sharp upper
and lower bounds on the empirical p-Wasserstein distances [10, 17, 19, 45, 49]. See also [36]

∗Following convention from Theoretical Computer Science, all authors are ordered alphabetically.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

for a survey on such results. Due to these properties, empirical p-Wasserstein distance has found
applications in training generative adversarial networks [8, 9, 24, 33–35], image retrieval [39, 42],
graph predictions [27, 37], clustering stability validation [18, 31], and two-sample tests [13, 14, 23,
25, 41]. The convergence of the empirical distribution to the real distribution, however, exhibits the
“curse of dimensionality”; that is, the convergence rate decreases as the dimension increases [16, 49].
The empirical p-Wasserstein distance therefore is most useful in low-dimensional settings.

Computing the empirical p-Wasserstein distance can be done by solving an instance of the minimum-
cost bipartite matching problem as follows. Consider the complete bipartite graph on A and B
where each edge from a ∈ A to b ∈ B has a cost of ∥a − b∥p. A bipartite matching (or simply a
matching) M on A ∪ B is a set of vertex-disjoint edges of G(A,B). The matching M is said to
be a perfect matching if |M | = n. We define the cost of a matching M , denoted by wp(M), as
wp(M) =

∑
(a,b)∈M ∥a− b∥p. The pth power Euclidean bipartite matching is a perfect matching

M∗
p with the minimum-cost under wp(·). The empirical p-Wasserstein distance between µ and ν is

Wp(µn, νn) =
(
1
nwp(M

∗
p)
)1/p

.

The minimum-cost matching M∗
p and therefore, the empirical p-Wasserstein distance can be computed

in O(n3) time using the Hungarian algorithm [28]. In this paper, we adapt the Hungarian algorithm
in a geometric divide-and-conquer framework. The execution time of our algorithm is similar to
that of the Hungarian algorithm (Remark 3.2). However, when the input point sets A and B are
samples drawn from the same distribution, the algorithm is asymptotically faster than the Hungarian
algorithm.

Related Work. Computing an optimal minimum-cost bipartite matching can be done in O(n3) time
using the classical Hungarian algorithm [28]. In geometric settings, the efficiency of the Hungarian
algorithm can be improved to Õ(n2Φ(n)), where Φ(n) is the query and update time of a dynamic
weighted nearest neighbor data structure [3, 44, 48]. For two dimensions, Φ(n) = logO(1) n and
therefore, we get a Õ(n2) time exact algorithm. For higher dimensions, however, this leads to only
slightly sub-cubic execution time.

For graphs with n vertices and m edges, there are faster algorithms that compute an optimal minimum-
cost matching [11, 21, 22] provided the edge costs are integers that are bounded by C1. However, in
our setting, the coordinates of the input points are real-valued and the Euclidean distances, due to the
presence of a square-root, can be irrational. As a result, these algorithms only provide an approximate
solution and the Hungarian algorithm and its fast implementations remain the only known exact
algorithm for the problem.

For 2-dimensional points with integer coordinates bounded by Γ, Sharathkumar [43] presented a
weakly polynomial Õ(n3/2 log Γ) time algorithm to compute the exact 1-Wasserstein distance. The
main idea was to use the approximation algorithm by Sharathkumar and Agarwal [44] to initially
find a planar sub-graph that traps all the edges of the optimal matching. Then, they use the planar
separator based algorithm by Lipton and Tarjan [32] to find a minimum-cost matching in this sub-
graph. This algorithm, however, is restricted only to two dimensions and for p = 1. The design
of a faster algorithm to compute the pth power Euclidean bipartite matching for d-dimensional
point sets remains a major open problem. We would also note the extensive work on the design of
approximation algorithms for the 1-Wasserstein distance [2, 4–6, 12, 20, 26, 30, 38, 40] as well as
the 2-Wasserstein distance [1, 29].

Our Results. For any point set P in the Euclidean space, the spread of P is the ratio of the distance
of the farthest pair to the closest pair in P . The main result of this paper is presented in Theorem 1.1.
Theorem 1.1. There exists a randomized algorithm that, given any two point sets A and B sampled
independently and identically from a distribution µ inside the unit d-dimensional hypercube, where
|A| = |B| = n and µ is not known to the algorithm, computes an exact Euclidean bipartite matching
between A and B and has an expected running time of Õ(n2− 1

2dΦ(n) log∆); here, ∆ is the spread
of the points in A ∪B.

When A and B are i.i.d samples from a distribution µ in the unit square (d = 2) and µ is not
known to the algorithm, our algorithm achieves a weakly polynomial sub-quadratic execution time
of Õ(n7/4 log∆). Our algorithm easily extends to any constant p > 1 and any fixed d-dimensional

1The execution time of these algorithms have a dependence on logC, making them weakly polynomial.

2

(a) (b) (c)

Figure 1: (a) An infeasible edge, (b) a feasible matching edge satisfying constraint (2), (c) a feasible
non-matching edge satisfying constraint (1).

space (we present our result for any arbitrary p as well as the proof of all our claims in the Appendix).
For instance, for p = 2 and d = 2 as well as for p = 1 and d = 3, the execution time of our algorithm
can be bounded by Õ(n11/6Φ(n) log∆). However, for simplicity in exposition of the ideas, we
restrict the presentation of our algorithm to two-dimensional (d = 2) and Euclidean settings (p = 1).
To the best of our knowledge, this is the first sub-quadratic weakly polynomial exact algorithm
for computing the pth power Euclidean bipartite matching for 2-dimensional stochastic point sets.
Furthermore, for many distributions, such as the uniform distribution on the unit square, one can
show that, with high probability, the spread of the point set is bounded by a polynomial in n. For all
such distributions, we achieve a strongly polynomial sub-quadratic exact algorithm.

Our algorithm can be seen as an elegant adaptation of the classical Hungarian algorithm in a
quadtree based divide-and-conquer framework. The previous speed-ups of the Hungarian algorithm
in geometric settings are based on sophisticated data structures that are hard to implement. In contrast,
our geometric improvements are relatively simple, which allows us to implement and compare our
algorithm with the standard implementation of the Hungarian algorithm. Experiments suggest that
our algorithm outperforms the Hungarian algorithm for synthetic data samples drawn from two
(possibly different) distributions µ and ν as long as the 1-Wasserstein distance between µ and ν is
small. Our algorithm also outperforms the Hungarian algorithm on data samples drawn from the New
York Taxi dataset, where one sample is drawn from the set of request pick-up locations (µ) and the
other sample is drawn from the request drop-off locations (ν). Experiments also suggest that our
analysis may not be tight, at least for the case where µ = ν is the uniform distribution inside the unit
square. Obtaining a tighter analysis of our algorithm remains an important open question. Next, we
present an overview of our divide-and-conquer algorithm.

Our Approach. The classical Hungarian algorithm is based on the primal-dual framework where,
along with a matching M , for every point v ∈ A ∪B, the algorithm maintains a non-negative dual
weight y(v). The matching M and dual weights y(·) are feasible if, for every edge (a, b) ∈ A×B,

y(b)− y(a) ≤ ∥a− b∥, (a, b) /∈M, (1)
y(b)− y(a) = ∥a− b∥, (a, b) ∈M. (2)

The Hungarian algorithm initializes M to be an empty matching and the dual weights of every vertex
v ∈ A∪B to be 0. It then incrementally builds a perfect matching M while maintaining its feasibility
and returns the constructed feasible perfect matching. It is well-known that a perfect matching that is
feasible is also a minimum-cost matching.

In the Euclidean setting, we interpret the dual weight y(v) of any point v as the radius of a disc
centered around v. We refer to these discs as the dual discs. For any edge (a, b), if the dual disc
of a is in the interior of the dual disc of b (Figure 1(a)), then y(b) − y(a) > ∥a − b∥, making the
dual assignment infeasible. Therefore, for any feasible dual weight assignment, the dual disc of a
cannot be completely inside the dual disc of b. The condition (2) corresponds to Figure 1(b) where
the boundary of the disc of a touches the boundary of the disc of b from inside. Figure 1(c) is an
example of an edge that only satisfies (1).

In order to implement the Hungarian algorithm in the geometric divide-and-conquer framework, we
can use a quadtree Q with the unit square as the root node. Each node of this tree represents a square
□ and if □ has more than one input point, then it has four children that are obtained by splitting □
into four equal squares. Squares with no more than one point become a leaf node in this tree.

3

(a) (b)

Figure 2: (a) Feasible matchings for children that is infeasible when combined at the parent (the edge
(b, a′) is infeasible), (b) Restricted feasible matchings inside the children, which is also restricted
feasible when combined at parent.

Consider the following naïve implementation of the Hungarian algorithm in a quadtree based geomet-
ric divide-and-conquer framework. Given a square □ of the quadtreeQ, we recursively find a feasible
matching in each of the four children. Doing so, however, may lead to a dual weight assignment that
violates the feasibility condition for bridge edges, i.e., edges that cross the boundary of the children
squares. See Figure 2(a) that illustrates a dual feasible assignment at two children squares, which
when combined causes the edge (a′, b) to violate the feasibility condition (1). Thus, implementing
the conquer step becomes challenging since we cannot simply combine the feasible dual assignments
at the children to achieve a feasible dual assignment at the parent.

To overcome this difficulty, we add an additional condition that restricts the dual disc of a point
v inside any child square □′ to always stay inside □′, i.e., y(v) ≤ d(v,□′), where d(v,□′) is the
Euclidean distance of v to the boundary of □′. Figure 2(b) shows a restricted dual assignment at the
two children squares, which remains feasible when combined at the parent. Such a restricted feasible
matching inside each of the four children squares of □ trivially combine to form a feasible matching
at □. Thus, one can apply the divide-and-conquer framework to compute such a restricted feasible
matching. Unfortunately, however, the restricted feasible matchings computed at the children may
be of an extremely low cardinality. This is particularly true when most of the input points are close
to the boundaries of the children squares. See, for instance, in Figure 3(a), the restricted feasible
matching is an empty one since most of the blue points are close to the boundary. As a result, the
divide step may not make any progress in computing a perfect matching and the conquer step may
have to do significant amount of work to find a perfect matching, causing the execution time of the
conquer step to be the same as that of the standard implementation of the Hungarian algorithm.

We observe that if the quadtree Q is constructed using a random-shift, then, in expectation, only
sub-linearly many points are close to the boundary of any square of Q. By combining this with the
fact that the average length of a matching edge for n points drawn from an arbitrary distribution µ
inside unit square is ≈ 1/

√
n, we are able to bound the expected number of unmatched points in

the restricted matchings by Õ(n3/4), leading to an execution time of Õ(n7/4) for the conquer steps
across all cells at each level of the quadtree and an overall execution time of Õ(n7/4 log∆).

2 Preliminaries

We begin by introducing the notations necessary to describe our algorithm. Given A ∪ B and any
square □, let A□ = A ∩ □, B□ = B ∩ □, and n□ = |A□ ∪ B□|. Let ℓ□ denote the side-length
of □. For any point v ∈ A□ ∪ B□ inside □, let d(v,□) denote the Euclidean distance of v to its
closest point on the boundary of □. We say that v is δ-close to □ if d(v,□) ≤ δℓ□. Let nδ

□ denote
the number of points of A□ ∪B□ that are δ-close to □.

Randomly Shifted Quadtree. Given the input points A ∪B inside a unit square, a randomly shifted
quadtree on the input can be constructed as follows. Let ξ be a point chosen uniformly at random
from the unit square [0, 1]2. Define the square □∗ := [−4, 4]2 + ξ to be the root of the quadtree Q.
Recursively construct Q by decomposing any square □ with n□ > 1 into four equal squares, each of
which become the children of □. Any square with exactly one point becomes a leaf square of the
quadtree. Given that the spread of the points in A ∪B is ∆, the height of Q is O(log∆).

4

(a) (b) (c)

Figure 3: (a) A □-MCM where all points of B (blue points) are unmatched, (b) the boundaries of the
cells of the randomly shifted quadtree (solid line) and the δ-close points to the cells of the quadtree
(points in the shaded area), (c) the matchings constrained to the cells of the quadtree.

For any square □ of the quadtree Q, in the next lemma, we show that due to the random shift, there
are not many points that are very close to the boundary of □.
Lemma 2.1. For any square □ of a randomly shifted quadtree and any δ ∈ (0, 1/2), E

[
nδ
□

]
=

O(δE [n□]).

Constrained Matching. For any square □, we introduce a variant of the minimum-cost matching
problem, which we refer to by the minimum-cost □-constrained matching problem. Given a square
□, consider a matching M□ of the points in A□ ∪B□. Any point v ∈ A□ ∪B□ is a free point with
respect to M□ if v is not matched in M□. Let AF

□ (resp. BF
□) denote the set of free points of A□

(resp. B□) with respect to M□. We define the □-constrained cost of the matching M□, denoted by
w□(M□), as

w□(M□) :=
∑

(a,b)∈M□

∥a− b∥+
∑
b∈BF

□

d(b,□). (3)

For any square □, the minimum-cost □-constrained matching (□-MCM), denoted by M∗
□, is simply

a matching with the minimum □-constrained cost. In Lemma 2.2, we show that for the root square
□∗ of Q, the minimum-cost □∗-constrained matching is also a minimum-cost matching on A ∪B.

For any arbitrary square □ of Q, M∗
□ might be of a very small cardinality. See, for instance in

Figure 3(a) where B is the set of blue points, Equation (3) is minimized when all blue points are free
points; i.e., w□(M

∗
□) =

∑
b∈B d(b,□) and M∗

□ is an empty matching. Nonetheless, by using the
bound on the number of δ-close points to any square □ of a randomly-shifted quadtree, we can bound
the expected number of free points with respect to any □-MCM M∗

□. In the example of Figure 3(b),
the solid lines show the boundary of the squares of a randomly-shifted quadtree, and as shown in
Figure 3(c), only a few points will be free with respect to the optimal matchings constrained to the
squares of the quadtree.
Lemma 2.2. For any square □ of a randomly shifted quadtree and any minimum-cost □-constrained
matching M∗

□, (i) the expected number of free points of B□ with respect to M∗
□ is Õ

(
n3/4

)
in

2-dimensions (and Õ(n1− 1
2d) in d dimensions), and (ii) if □ is the root square, then M∗

□ is a
minimum-cost perfect matching on A ∪B.

For the rest of the paper, we design a primal-dual method to compute a □∗-MCM, which by
Lemma 2.2 is also a minimum cost matching on A ∪B.

Constrained Feasibility. Similar to the Hungarian algorithm, we devise a primal-dual method to
compute a □-MCM. For any square □ of Q, we say that a matching M□ on A□ ∪B□ along with a
set of non-negative dual weights y(·) for the points in A□ ∪B□ is □-feasible if,

y(b)− y(a) ≤ ∥a− b∥, ∀(a, b) ∈ A×B, (4)
y(b)− y(a) = ∥a− b∥, ∀(a, b) ∈M□. (5)

y(b) ≤ d(b,□), ∀b ∈ B□, (6)

y(a) = 0, ∀a ∈ AF
□. (7)

5

(a) (b) (c)

Figure 4: (a) A □-feasible matching M□ where b1 is a □-free point and b2 is a free point that is not
□-free, (b) an admissible path P (dashed line) from b1 to a point b3 whose vertex slack is zero, and
(c) the □-optimal matching obtained from augmenting M□ along P .

Note that (4) and (5) are conditions identical to the ones maintained by the Hungarian algorithm.
Condition (6) ensures that the dual discs stay inside the square and condition (7) ensures that the
□-MCM is of minimum cost.

Given a □-feasible matching M□, y(·), we say that any point b ∈ B□ is a □-free point with respect
to M□ if b is not matched in M□ and y(b) < d(b,□). Note that a free point may not be □-free.
For instance, in Figure 4(a), the blue point b2 is free but not a □-free point since its dual weight is
equal to its distance to □. Let BF□ denote the set of all □-free points in B□. We say that a □-feasible
matching M□, y(·) is □-optimal if it does not have any □-free points, i.e., BF□ = ∅. The following
lemma shows that any □-optimal matching M□, y(·) is a □-MCM. Thus, we focus on computing a
□-optimal matching.

Lemma 2.3. Let M□, y(·) be a □-optimal matching on A□ ∪ B□. Then, M□ is a minimum-cost
□-constrained matching.

Given a square □ ofQ and its four children □1,□2,□3, and □4, we can obtain a □-feasible matching
at □ by simply combining the □i-optimal matchings from each child □i. We use this property to
design our divide-and-conquer algorithm for computing □-optimal matching.

Lemma 2.4. For any square □, let □i, i ∈ [1, 4] be the set of all children of □ and let Mi, y(·)
denote a □i-optimal matching. Then, the matching

⋃4
i=1 Mi, y(·) is a □-feasible matching.

Next, we define slack and an augmenting path with respect to a □-feasible matching.

Slacks. For any square □, any □-feasible matching M□, y(·), and any pair of points (a, b) ∈
A□ ×B□, we define the edge slack on the feasibility conditions for edge (a, b), denoted by s(a, b),
as s(a, b) = ∥a − b∥ − y(b) + y(a). We say that (a, b) is admissible if s(a, b) = 0. Furthermore,
for any point b ∈ B□, we define the vertex slack of b with respect to condition (6) to be s□(b) :=
d(b,□)− y(b). We refer to the edge slack (resp. vertex slack) as slack when the edge (resp. vertex)
is obvious from the context.

While the definition of edge slacks are identical to what is used in the Hungarian algorithm, the
definition of vertex slacks is new. Since the dual weights associated with any □-feasible matching
satisfies (4)–(7), both edge slacks and vertex slacks will be non-negative.

Admissible Augmenting Path. For any square □, suppose M□, y(·) is a □-feasible matching on
A□ ∪ B□. An alternating path with respect to M□ is a simple path on A□ ∪ B□ whose edges
alternate between those in M□ and those not in M□. An admissible augmenting path (or simply
admissible path) is any alternating path consisting only of zero slack edges that starts at a □-free
point b ∈ BF

□ and ends at either (i) a free point a ∈ AF
□ or (ii) a point b′ ∈ B□ with a slack of 0. We

can augment a □-feasible matching M□ along an admissible path P by setting M□ ← M□ ⊕ P ,
i.e., we remove all matching edges of P from M□ and add all non-matching edges of P to M□ (see
Figure 4). The following lemma shows that augmenting a matching along an admissible path does
not violate □-feasibility conditions and also reduces the number of □-free points of B□ by one.

6

Lemma 2.5. Suppose M□, y(·) is a □-feasible matching and P is an admissible path. After
augmenting M□ along P , the matching M□, y(·) remains □-feasible. Furthermore, the augmentation
reduces the number of □-free points of B□ with respect to M□ by one.

Residual Network. In order to assist in computing admissible paths with respect to a □-feasible
matching M□, y(·), we define a residual network of A□ ∪B□ with respect to M□ as follows. The
vertex set of the residual network is the set of points A□ ∪B□ and a source vertex s. For any pair
of points (a, b) ∈ A□ × B□, if (a, b) ∈ M□, we add an edge directed from a to b with a weight
s(a, b) to the residual network. Otherwise, if (a, b) ̸∈M□, we add an edge directed from b to a with
a weight s(a, b). In addition, we add zero-weight edges from the source s to every □-free point in
BF□. Note that any zero-weight directed path from the source vertex s to a free point a ∈ AF

□ or a
zero-slack point b ∈ B□ in this residual network is an admissible path.

3 Algorithm

In this section, we describe our algorithm for computing an optimal matching on a point set A ∪B.
Our algorithm builds a randomly shifted quadtree Q. For any square □ of the quadtree Q, we denote
the set of children of □ in Q by C[□].

We describe our divide-and-conquer algorithm with respect to an arbitrary square □ in Q. Our
algorithm computes a □-optimal matching M□, y(·).
Base case. If □ is a leaf of Q, let v be the only point in □. If v ∈ B, set y(v) ← d(v,□) and
M□ ← ∅. If v ∈ A, set y(v)← 0 and M□ ← ∅ and return (see lines 1–4 of Algorithm 1).

Divide step. If □ is not a leaf of Q, for each child □′ ∈ C[□], recursively compute the □′-optimal
matching M□′ , y(·) on A□′ ∪B□′ (see lines 6 and 7 of Algorithm 1).

Conquer step. For any child □′ ∈ C[□], let M□′ , y(·) denote the □′-optimal matching returned by
the algorithm. Set M□ :=

⋃
□′∈C[□] M□′ as the union of all matchings computed inside the children

of □. Let BF□ denote the □-free points of B□ with respect to M□. To obtain a □-optimal matching,
our algorithm iteratively executes the CONSTRAINEDHUNGARIANSEARCH procedure that adjusts
the dual weights to find an admissible path P with respect to M□. Then, the AUGMENT procedure
updates M□ by augmenting the matching along P . The algorithm continues to search and augment
until there are no □-free points of B□, i.e., until M□, y(·) is a □-optimal matching. See lines 8–11
of Algorithm 1. We describe the details of the CONSTRAINEDHUNGARIANSEARCH and AUGMENT
procedures below.

1- CONSTRAINEDHUNGARIANSEARCH procedure: Compute the residual network with respect to
M□ and execute a Dijkstra’s shortest path algorithm starting from the source s. Let κv denote the
shortest path distance from s to v as computed by the Dijkstra’s algorithm. Let

κ = min{min
a∈AF

□

κa, min
b∈B□

κb + s□(b)},

and let u denote the point that achieves this minimum. Note that u ∈ AF
□ ∪ B□. Let Pu denote

the shortest path from s to u and P denote the path obtained by removing s from Pu. For any
v ∈ A□ ∪B□, if κv < κ, update its dual weight to y(v)← y(v) + κ− κv .

2- AUGMENT procedure: Augment M□ along P .

Our algorithm returns the matching M□∗ computed at the root □∗ of Q as the minimum-cost
matching between A and B. This completes the description of our algorithm. The pseudo-code of
our divide-and-conquer algorithm is provided in Algorithm 1.

3.1 Proof of correctness

Recollect that for the root square □∗ of Q, from Lemma 2.2, a □∗-optimal matching is a minimum-
cost matching of A and B. Therefore, it suffices to show that, at each square □ of Q, our algorithm
computes a □-optimal matching.

We begin by showing this for any leaf square □, which by definition contains exactly one point. Since
there are no edges inside □, conditions (4) and (5) hold trivially. Let v be the only point inside □.

7

Algorithm 1 D&CHUNGARIAN(□, A□, B□)

Input: A square □ of quadtree Q and two point sets A□ and B□ inside □
Output: A minimum-cost □-constrained matching M□, y(·)

1: if □ is a leaf of Q then ▷ Base case
2: M□ ← ∅
3: // Let v be the only point in A□ ∪B□
4: if v ∈ A□ then y(v)← 0 else y(v)← d(v,□)
5: else
6: // Let □1,□2,□3, and □4 be the children of □ in Q ▷ Divide step
7: M□i

, y ← D&CHUNGARIAN(□i, A□i
, B□i

), ∀i ∈ [1, 4]
8: M□ ←

⋃
i∈[4] M□i

▷ Conquer step
9: while BF□ ̸= ∅ do

10: P, y ← CONSTRAINEDHUNGARIANSEARCH(M□, y)
11: M□ ← AUGMENT(M□, P)

12: return M□, y(·)

If v ∈ B□, then y(v) = d(v,□) and therefore, condition (6) holds. Otherwise, v ∈ A□ and our
algorithm sets y(v) = 0; therefore, condition (7) holds. In both cases, it is easy to see that BF□ is
empty and therefore the empty matching M□ and dual weight y(v) is a □-optimal matching.

For any non-leaf square □ of Q, at the beginning of the conquer step, the algorithm simply combines
the constrained optimal matchings computed at its non-empty children. From Lemma 2.4, the
resulting matching will be a □-feasible matching. From Lemma 3.1 below, after the execution of
the CONSTRAINEDHUNGARIANSEARCH procedure, the matching M□, y(·) remains a □-feasible
matching and the path P returned by the procedure is an admissible path. From Lemma 2.5,
the execution of AUGMENT procedure then reduces the number of □-free points by one while
maintaining the □-feasibility conditions. Therefore, during the execution of the conquer step, the
matching M□, y(·) remains □-feasible and the number of □-free points reduces by one at each
iteration; thus, the algorithm terminates with a □-optimal matching, as desired.

Lemma 3.1. Given any square □ of Q and any □-feasible matching M□, y(·), after executing the
CONSTRAINEDHUNGARIANSEARCH procedure on □, the updated dual weights remain □-feasible.
Furthermore, the returned path P is an admissible path.

3.2 Proof of Efficiency

For any square □, let T□ denote the execution time of the conquer step of our algorithm when
executed on □. Additionally, for any i, let L(i) denote the set of all squares of the quadtree that are
processed at depth i of recursion and let Ti denote the total execution time of our algorithm across all
such squares, i.e., Ti =

∑
□∈L(i) T□.

Recall that the conquer step of our algorithm consists of iterations, where in each iteration, it executes
the CONSTRAINEDHUNGARIANSEARCH procedure followed by the AUGMENT procedure. For any
square □ of Q, from Lemma 2.5, each iteration of the conquer step reduces the number of □-free
points of B□ by one. Therefore, the number of iterations is bounded by the number of □-free points
of B□, which is at most the total number of free points with respect to the □′-MCM computed for all
children □′ of □. By invoking Lemma 2.2 on all children of □, we bound the expected number of
iterations of the conquer step on □ by Õ(n3/4) for 2 dimensions (and Õ(2dn1− 1

2d) for d dimensions).

Using any dynamic weighted nearest neighbor data structure with an update/query time of Φ(n□),
one can execute the CONSTRAINEDHUNGARIANSEARCH procedure in Õ(n□Φ(n□)) time [44, 48].
For planar point sets, Φ(n□) = poly(log n□) and therefore, each execution of the CONSTRAINED-
HUNGARIANSEARCH procedure takes Õ(n□) time. Furthermore, the AUGMENT procedure simply
augments the matching along an admissible path, which can be done in O(n□) time. Therefore,
the conquer step of our algorithm executes Õ(n3/4) iterations for 2 dimensions (and Õ(2dn1− 1

2d)

iterations for d dimensions), in expectation, where each iteration takes Õ(n□) time for 2 dimen-
sions (and Õ(n□Φ(n□)) for d dimensions). Since

∑
□∈L(i) n□ ≤ n, E [Ti] =

∑
□∈L(i) E [T□] =

8

(a) Uniform vs. Uniform (b) Uniform vs. Gaussian (c) Pickup vs. Drop-off

Figure 5: The running time of our algorithm (D&C Hungarian Algorithm) and the Hungarian
algorithm for computing the 1-Wasserstein distance between µ and ν, where (a) both µ and ν are
Uniform, (b) µ is Uniform and ν is Gaussian, and (c) µ is Pickup and ν is Drop-off.

Õ
(∑

□∈L(i) n
3/4n□

)
= Õ(n7/4) for 2 dimensions (and E [Ti] = Õ(2dn2− 1

2dΦ(n)) for d dimen-

sions). Summing over all levels of Q, the expected execution time of our algorithm is Õ(n7/4 log∆)

for 2 dimensions (and Õ(2dn2− 1
2dΦ(n) log∆) for d dimensions). Using a slightly sophisticated

argument which is presented in the Appendix, we can remove the 2d from the execution time for the
d-dimensional settings, leading to Theorem 1.1.
Remark 3.2. When the input points A ∪ B are chosen arbitrarily, the number of iterations of
the conquer step can be Θ(n□), leading to an execution time of O(n2

□Φ(n□)) per square and
O(n2Φ(n) log∆) in total.

4 Experiments

In this section, we present the results of our experiments comparing the execution time of our
algorithm to that of the Hungarian algorithm. Both algorithms are implemented in Java and share the
same data structures2. For both algorithms, we use the classical implementation of Dijkstra’s shortest
path algorithm used in the Hungarian search procedure and do not use any weighted nearest neighbor
data structures. All computations are performed using a single calculation thread on a computer with
a 2.6 GHz 6-Core Intel Core i7 CPU and 16 GB of 2667 MHz DDR4 RAM.

Datasets. We test our algorithm on 2-dimensional synthetic and real-world datasets. For the synthetic
dataset, we use two distributions, namely (i) a uniform distribution defined on the unit square
(Uniform), and (ii) a Gaussian distribution constrained to the unit square with a randomly chosen
mean inside the unit square and a standard deviation of 0.25 (Gaussian). For a real-world dataset, we
employ the New York Taxi dataset [47] and obtain two distributions, namely (i) the distribution of
pickup locations (Pickup) and (ii) the distribution of drop-off locations (Drop-off) of passengers. We
filtered the datasets by considering trips in seven dates in 2014 with (i) a trip duration of at least 3
minutes, and (ii) a trip velocity of at most 110mph.

Tests. In each test, we conducted experiments using two sets of n i.i.d samples from distributions µ
and ν within the unit square. We executed both our divide-and-conquer algorithm and the Hungarian
algorithm to compute the empirical 1-Wasserstein distance between the same set of samples and
compared the execution times. In our first experiment, we used Uniform distribution for both µ and
ν to compare the performance of algorithms when the distributions are the same. For the second
experiment on synthetic datasets, we compared running times with different distributions - µ being
Uniform and ν being Gaussian, and in the third experiment, which is on the real-world datasets, µ
was set to the Pickup distribution while ν was the Drop-off distribution. In our experiments on the
synthetic datasets, we recorded the number of iterations our algorithm executes at each square of the
quadtree to find out how tight our analysis are. The results of our experiments are shown in Figures 5
and 6.

Results. As depicted in Figure 5, experiments suggest that our algorithm outperforms the Hungarian
algorithm, and the improvement is most significant when the distributions are the same (Figure 5(a)).
More generally, experiments suggest that our algorithm performs significantly better than the Hungar-

2Our implementations are available at https://github.com/agattani190/Exact-Euclidean-Bipartite-Matching.

9

https://github.com/agattani190/Exact-Euclidean-Bipartite-Matching

(a) Uniform vs. Uniform (b) Gaussian vs. Gaussian

Figure 6: The number of iterations of the conquer step for a square with n points when executed on
samples from the same distributions ((e) Uniform and (f) Gaussian).

ian algorithm when the matching cost is low (Figures 5(a) and (c)). The reason for this improvement
lies in the fact that the Hungarian algorithm performs a ’global Hungarian search’ for matching each
point, whereas our algorithm isolates shorter edges of the optimal matching within smaller quadtree
sub-problems and execute ‘local Hungarian search’ for them. Therefore, while the asymptotic im-
provements are shown for samples from the same distribution, we expect our algorithm to perform
better when the optimal matching has many edges with small cost, such as when points are drawn
from two similar but not identical distributions. This is evident in our third experiment (Figure 5(c)),
where we sample n pick-up locations and n drop-off locations from the New York Taxi dataset.
Notably, pick-up and drop-off locations tend to follow different distributions, with pick-ups having a
higher density around Manhattan.

Additionally, our algorithm handles larger point sets efficiently; for example, it computes the optimal
solution for 50 000 points from the Uniform distribution in approximately 700 seconds. Finally, in
Figure 6, our experiments on samples from the same synthetic dataset suggest that for a square with
n points, the number of iterations of the conquer step of our algorithm might be bounded by O(nα)
for α ≃ 0.55. This perhaps suggests that our upper-bound of O(n3/4) may be an overestimate, at
least for the uniform and Gaussian distributions.

5 Conclusion

In this paper, we adapted the classical primal-dual approaches for computing minimum-cost matching
within the divide-and-conquer framework. This approach led to a sub-quadratic weakly-polynomial
exact algorithm for computing minimum-cost matching on stochastic point sets. Notably, our
algorithm incorporates a randomly shifted quadtree, a structure previously used only in approximation
algorithms for p-Wasserstein distance. We conclude by highlighting some open problems for further
investigation.

• An interesting question is whether it is possible to further exploit the geometry of the dual
weights and give a tighter bound for the number of iterations of our algorithm at each square;
thus, improving the analysis of our algorithm.

• Our analysis only requires the fact that the average length of the matching edges in large cells
is small. Stochastic point sets have this property and therefore, we can achieve sub-quadratic
algorithms for them. Is there a sub-quadratic exact algorithm for the case where the matching
edges are long? Understanding this case may shed light into the design of sub-quadratic
exact algorithm for arbitrary inputs.

• Finally, our algorithm is a weakly polynomial algorithm as its running time is dependent on
the spread of the point set. Can we remove the dependence on spread while maintaining the
simplicity of our algorithm?

10

Acknowledgement

We would like to acknowledge Advanced Research Computing (ARC) at Virginia Tech, which
provided us with the computational resources used to run the experiments. Research presented in
this paper was funded by NSF CCF-1909171 and NSF CCF-2223871. We would like to thank the
anonymous reviewers for their useful feedback.

References
[1] Pankaj K Agarwal and Jeff M Phillips. On bipartite matching under the rms distance. In

Proceedings of the Eighteenth Canadian Conference on Computational Geometry’, Kingston,
Canada, pages 143–146, 2006.

[2] Pankaj K. Agarwal and Kasturi R. Varadarajan. A near-linear constant-factor approximation for
Euclidean bipartite matching? In 20th International Symposium on Computational Geometry,
pages 247–252, 2004.

[3] Pankaj K Agarwal, Alon Efrat, and Micha Sharir. Vertical decomposition of shallow levels
in 3-dimensional arrangements and its applications. In Proceedings of the eleventh annual
symposium on Computational geometry, pages 39–50, 1995.

[4] Pankaj K Agarwal, Hsien-Chih Chang, Sharath Raghvendra, and Allen Xiao. Deterministic,
near-linear ε-approximation algorithm for geometric bipartite matching. In Proceedings of the
54th Annual ACM SIGACT Symposium on Theory of Computing, pages 1052–1065, 2022.

[5] Pankaj K Agarwal, Sharath Raghvendra, Pouyan Shirzadian, and Rachita Sowle. A higher
precision algorithm for computing the 1-wasserstein distance. In The Eleventh International
Conference on Learning Representations, 2022.

[6] Pankaj K Agarwal, Sharath Raghvendra, Pouyan Shirzadian, and Rachita Sowle. An improved
ε-approximation algorithm for geometric bipartite matching. In 18th Scandinavian Symposium
and Workshops on Algorithm Theory (SWAT 2022). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2022.

[7] Miklós Ajtai, János Komlós, and Gábor Tusnády. On optimal matchings. Combinatorica, 4:
259–264, 1984.

[8] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
networks. In International conference on machine learning, pages 214–223. PMLR, 2017.

[9] Jiezhang Cao, Langyuan Mo, Yifan Zhang, Kui Jia, Chunhua Shen, and Mingkui Tan. Multi-
marginal wasserstein gan. Advances in Neural Information Processing Systems, 32, 2019.

[10] Sergio Caracciolo, Carlo Lucibello, Giorgio Parisi, and Gabriele Sicuro. Scaling hypothesis for
the euclidean bipartite matching problem. Physical Review E, 90(1):012118, 2014.

[11] Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant
Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In 2022 IEEE 63rd
Annual Symposium on Foundations of Computer Science (FOCS), pages 612–623. IEEE, 2022.

[12] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances
in Neural Information Processing Systems 26, pages 2292–2300, 2013.

[13] Nabarun Deb and Bodhisattva Sen. Multivariate rank-based distribution-free nonparametric
testing using measure transportation. Journal of the American Statistical Association, 118(541):
192–207, 2023.

[14] Nabarun Deb, Bhaswar B Bhattacharya, and Bodhisattva Sen. Efficiency lower bounds for
distribution-free hotelling-type two-sample tests based on optimal transport. arXiv preprint
arXiv:2104.01986, 2021.

[15] Eustasio Del Barrio and Jean-Michel Loubes. Central limit theorems for empirical transportation
cost in general dimension. The Annals of Probability, 47(2):926 – 951, 2019.

11

[16] Richard Mansfield Dudley. The speed of mean glivenko-cantelli convergence. The Annals of
Mathematical Statistics, 40(1):40–50, 1969.

[17] RM Dudley. Real analysis and probability, 2002.

[18] Nghia Duong-Trung, Minh-Hoang Nguyen, and Hanh TH Nguyen. Clustering stability via
concept-based nonnegative matrix factorization. In Proceedings of the 3rd International Confer-
ence on Machine Learning and Soft Computing, pages 49–54, 2019.

[19] Nicolas Fournier and Arnaud Guillin. On the rate of convergence in wasserstein distance of the
empirical measure. Probability theory and related fields, 162(3-4):707–738, 2015.

[20] Kyle Fox and Jiashuai Lu. A near-linear time approximation scheme for geometric transporta-
tion with arbitrary supplies and spread. In Proc. 36th Annual Symposium on Computational
Geometry, pages 45:1–45:18, 2020.

[21] H. N. Gabow and R.E. Tarjan. Faster scaling algorithms for network problems. SIAM J. Comput.,
18:1013–1036, October 1989. ISSN 0097-5397.

[22] Harold N. Gabow and Robert Endre Tarjan. Faster scaling algorithms for general graph-matching
problems. J. ACM, 38(4):815–853, 1991.

[23] Javier González-Delgado, Alberto González-Sanz, Juan Cortés, and Pierre Neuvial. Two-
sample goodness-of-fit tests on the flat torus based on wasserstein distance and their relevance
to structural biology. arXiv preprint arXiv:2108.00165, 2021.

[24] Xin Guo, Johnny Hong, Tianyi Lin, and Nan Yang. Relaxed wasserstein with applications to
gans. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 3325–3329. IEEE, 2021.

[25] Masaaki Imaizumi, Hirofumi Ota, and Takuo Hamaguchi. Hypothesis test and confidence
analysis with wasserstein distance on general dimension. Neural Computation, 34(6):1448–
1487, 2022.

[26] Andrey Boris Khesin, Aleksandar Nikolov, and Dmitry Paramonov. Preconditioning for the
geometric transportation problem. arXiv preprint arXiv:1902.08384, 2019.

[27] Soheil Kolouri, Navid Naderializadeh, Gustavo K Rohde, and Heiko Hoffmann. Wasserstein
embedding for graph learning. arXiv preprint arXiv:2006.09430, 2020.

[28] Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

[29] Nathaniel Lahn and Sharath Raghvendra. An o(n5/4) time ε-approximation algorithm for rms
matching in a plane. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 869–888. SIAM, 2021.

[30] Nathaniel Lahn, Sharath Raghvendra, and Kaiyi Zhang. A push-relabel based additive approxi-
mation for optimal transport. arXiv preprint arXiv:2203.03732, 2022.

[31] Tilman Lange, Volker Roth, Mikio L Braun, and Joachim M Buhmann. Stability-based
validation of clustering solutions. Neural computation, 16(6):1299–1323, 2004.

[32] Richard J Lipton and Robert Endre Tarjan. Applications of a planar separator theorem. SIAM
journal on computing, 9(3):615–627, 1980.

[33] Huidong Liu, GU Xianfeng, and Dimitris Samaras. A two-step computation of the exact gan
wasserstein distance. In International Conference on Machine Learning, pages 3159–3168.
PMLR, 2018.

[34] Huidong Liu, Xianfeng Gu, and Dimitris Samaras. Wasserstein gan with quadratic transport
cost. In Proceedings of the IEEE/CVF international conference on computer vision, pages
4832–4841, 2019.

12

[35] Youssef Mroueh, Tom Sercu, and Vaibhava Goel. Mcgan: Mean and covariance feature
matching gan. In International conference on machine learning, pages 2527–2535. PMLR,
2017.

[36] Victor M Panaretos and Yoav Zemel. Statistical aspects of wasserstein distances. Annual review
of statistics and its application, 6:405–431, 2019.

[37] Hermina Petric Maretic, Mireille El Gheche, Giovanni Chierchia, and Pascal Frossard. Got: an
optimal transport framework for graph comparison. Advances in Neural Information Processing
Systems, 32, 2019.

[38] Abhijeet Phatak, Sharath Raghvendra, Chittaranjan Tripathy, and Kaiyi Zhang. Computing all
optimal partial transports. In The Eleventh International Conference on Learning Representa-
tions, 2022.

[39] Julien Rabin, Julie Delon, and Yann Gousseau. Circular earth mover’s distance for the compari-
son of local features. In 2008 19th International Conference on Pattern Recognition, pages 1–4.
IEEE, 2008.

[40] Sharath Raghvendra and Pankaj K Agarwal. A near-linear time ε-approximation algorithm for
geometric bipartite matching. Journal of the ACM (JACM), 67(3):1–19, 2020.

[41] Aaditya Ramdas, Nicolás García Trillos, and Marco Cuturi. On wasserstein two-sample testing
and related families of nonparametric tests. Entropy, 19(2):47, 2017.

[42] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover’s distance as a metric for
image retrieval. International journal of computer vision, 40(2):99, 2000.

[43] R. Sharathkumar. A sub-quadratic algorithm for bipartite matching of planar points with
bounded integer coordinates. In 29th International Symposium on Computational Geometry,
pages 9–16, 2013.

[44] R Sharathkumar and Pankaj K Agarwal. Algorithms for the transportation problem in geometric
settings. In Proceedings of the 23rd annual ACM-SIAM symposium on Discrete Algorithms,
pages 306–317. SIAM, 2012.

[45] Peter Williston Shor. Random planar matching and bin packing. PhD thesis, Massachusetts
Institute of Technology, 1985.

[46] Max Sommerfeld, Jörn Schrieber, Yoav Zemel, and Axel Munk. Optimal transport: Fast
probabilistic approximation with exact solvers. J. Mach. Learn. Res., 20(105):1–23, 2019.

[47] NYC Taxi and Limousine Commission (TLC). Trip record data. https://www.nyc.gov/
site/tlc/about/tlc-trip-record-data.page, 2023. Accessed: 2023-03-01.

[48] Pravin M Vaidya. Geometry helps in matching. SIAM Journal on Computing, 18(6):1201–1225,
1989.

[49] Jonathan Weed and Francis Bach. Sharp asymptotic and finite-sample rates of convergence of
empirical measures in Wasserstein distance. Bernoulli, 25(4A):2620 – 2648, 2019.

13

https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

	Introduction
	Preliminaries
	Algorithm
	Proof of correctness
	Proof of Efficiency

	Experiments
	Conclusion

