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Abstract

Attention mechanism is the key of large lan-
guage models, and attention matrix serves as
algorithmic and computational bottleneck for
such scheme. In this paper, we define two
problems, motivated by designing fast algo-
rithms for prozy of attention matrix and solv-
ing regressions against them. Given an input
matrix A € R"*? with n > d and a response
vector b, we first consider the matrix expo-
nential of the matrix AT A as a proxy, and we
in turn design algorithms for two types of re-
gression problems: mingcga [|[(ATA) 2z — b|2
and min,cga [|A(AT Az — b||2 for any posi-
tive integer j. Studying algorithms for these
regressions are essential, as matrix exponen-
tial can be approximated term-by-term via
these smaller problems. The second proxy is
applying exponential entrywise to the Gram
matrix, denoted by exp(AAT) and solving the
regression mingegn || exp(AAT)z — bl2. We
call this problem the attention kernel regres-
sion problem, as the matrix exp(AAT) could
be viewed as a kernel function with respect
to A. We design fast algorithms for these
regression problems, based on sketching and
preconditioning. We hope these efforts would
provide an alternative perspective of studying
efficient approximation of attention matrices.

1 INTRODUCTION

Many numerical linear algebra tasks admit efficient,
randomized solutions (Woolfe et al., 2008; Klein et al.,
1994; Wang and Eppstein, 2006; Azar et al., 2001).
These problems include the approximating leverage
scores, least squares regression, and low rank approxi-
mation, and they have numerous applications in areas
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such as recommendation systems (Drineas et al., 2002),
data mining (Azar et al., 2001), web search (Achliop-
tas et al., 2001; Kleinberg, 1999), information retrieval
(Papadimitriou et al., 1998), learning mixtures of distri-
butions (Achlioptas and McSherry, 2005; Kannan et al.,
2008), and clustering (Drineas et al., 2004; McSherry,
2001). The deployment of randomization and approxi-
mation enables these problems to be solved much more
rapidly than their deterministic and exact counterpart.

In the modern big data era in which the size of the
matrices grows rapidly, these randomized approaches
become even more appealing as most of them could
leverage the structure of the input matrix, and sub-
sequently solve the problem in time nearly linear of
the data. A prominent randomized paradigm for nu-
merical linear algebra is the sketching approach (Sar-
los, 2006; Clarkson and Woodruff, 2017). Roughly
speaking, given a tall and skinny matrix A € R"*¢
with n > d, one draws a random matrix S € R"*"
from a structured family and computes the product
SA. Based on the choice of m, the random matrix
S can either preserve the column norms of A (John-
son and Lindenstrauss, 1984) or the entire subspace
spanned by A (Sarlos, 2006). Moreover, the structure
of S oftentimes enables the matrix product SA to be
computed very efficiently (Ailon and Chazelle, 2006;
Clarkson and Woodruff, 2017; Lu et al., 2013; Nelson
and Nguyén, 2013; Kane and Nelson, 2014). Such an
approach has found many applications including linear
regression (Clarkson and Woodruff, 2017), low rank ap-
proximation (Clarkson and Woodruff, 2017; Boutsidis
et al., 2014) and kernel approximation (Avron et al.,
2014; Ahle et al., 2020; Song et al., 2021a).

In this paper, we study the efficient computation and
approximation of attention matrices. These matrices
are fundamental objects of deep learning models uti-
lized in a wide range of domains, including natural
language processing (Jiao et al., 2019), computer vi-
sion (Guo et al., 2022), speech recognition (Chorowski
et al., 2015; Wang et al., 2021), and robotics (Liu
et al., 2022). Attention mechanisms enable models to
focus selectively on specific portions of input data and
dynamically adjust weights for distinct features and
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context information. The attention matrix is a crucial
component of attention mechanisms, capturing the rela-
tionships between input elements and the query vector.
By computing the attention matrix, models can learn
to attend to pertinent information and disregard irrele-
vant information, leading to improved performance and
interpretability. Furthermore, the attention matrix pro-
vides valuable insights into how models make decisions
and reason about input data, aiding in debugging and
enhancing models. Therefore, understanding the atten-
tion matrix is crucial for comprehending the behavior
and limitations of deep learning models and developing
more potent attention mechanisms. Recent studies
have shown that attention mechanisms can be applied
to other problems beyond traditional deep learning,
such as graph neural networks (Zhang et al., 2020; Gao
et al., 2022), reinforcement learning (Bramlage and
Cortese, 2022), and meta-learning (Sokar et al., 2021).

As indicated by Alman and Song (2023), efficient ap-
proximation of attention matrices requires the struc-
tural condition that the entries are bounded given
standard complexity theoretical assumptions. On the
flip side, they also show these matrices can be approx-
imated in O(n'*t°(M) time if certain parameters are
desirable. While this seems to close the algorithmic
study of approximating attention matrices, it doesn’t
bar the study of prozy for these objects, i.e., compo-
nents of attention matrices that either admit different
structural assumptions, bypassing bounded entries; or
different type of matrices which serve as a replacement
for the standard attention. We hence introduce two
kinds of proxy: the first uses matrix exponential, and
the second applies exponential function entrywise to
a Gram matrix. We then consider solving regressions
against these proxies.

Definition 1.1. Given an input matriz A € R4, g
response b € R™, the goal is to solve

min |AAT Az — y||3

z€RC
Definition 1.2. Given an input matriz A € R"*¢, o
response b € Re, the goal is to solve

min ||ATAAT Az — y|)3
z€R4

Both of these problems serve as primitives for solving
regressions for matrix exponential. As we will see later,
by induction, algorithms for these problems naturally
extend to higher even and odd powers:

. T 1
min [[(A°A)z — bl (1)

and

min ||A(ATA) 2z —b|,, (2)
R4

where d and j are arbitrary natural numbers. These
sub-problems subtly relate to regression against matrix
exponential, as each term of the matrix exponential can
be approximated via solving these smaller problems for
each power.

The next problem concerns applying entrywise expo-
nential to a Gram matrix. As it could be interpreted
as applying an exponential kernel function to the data
A, we call it attention kernel regression or exponential
Tegression.

Definition 1.3 (Attention Kernel Regression (or Expo-

nential Regression)). Given an input matriz A € R"*,
a response b € R™, the goal is to solve

i AAT )z — b3

min [[exp(A4 ")z — bl

where exp(-) is applied entrywise to the matriz AAT.

The attention kernel regression problem owing its name
to the attention mechanism, as it could be viewed as a
simplification of approximating one critical component
of the attention matrix.

1.1 Owur Result

We present the informal version of our main result
below.

Theorem 1.4 (Informal Version of Theorem G.2). Let
A e R4 peRY and k denote the condition number
of A. Let €gnal, Ofinal € (0,0.1).

For the regression problem shown in Eq. (1), there exists
an algorithm (Algorithm 1) that runs in time

O((nd + d3) . ] . log(f{/eﬁnal) . 10g2 (jn/(sﬁnal))

and outputs a vector ' € R? such that ||(AT Az’ —
bll2 < €finall|b|l2 holds with probability 1 — Sgnal-

Theorem 1.5 (Informal Version of Theorem G.3). Let
A e R4 pheR", and k denote the condition number
of A. Let €gnal, Ofinal € (070.1).

For the regression problem shown in Eq. (2), there exists
an algorithm (Algorithm 2) that runs in time

O((nd + d®) - j - log(k/€gnal) - 108 (jn/Sanar))

and outputs a vector ' € R? such that |A(AT A)iz’ —
bll2 < efinall|bl|2 holds with probability 1 — danal-

Before proceeding, we highlight the significant speedup
obtained by our results. Note that if we try to compute
the product (AT A)7 directly, it will take O(j-nd?) time.
One could also utilize the squaring trick to compute
this product in O(logj - nd?) time. In contrast, our
algorithm runs in time O(j - nd) for n > d. This is a
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significant improvement as long as j < logj - d, which
is often the case when j is orders smaller than d.

Our result regarding the attention kernel regression
requires some extra assumptions, in particular, we
focus on the regime where n < d. Now we are ready to
state our result.

Theorem 1.6 (Informal Version of Theorem H.7). Let
A e R™ bR, and k denote the condition number
of A. Let €ginal, 0ainal € (0,0.1). We can find 2’ such

lexp(AAT)z" = bll2 < eginar - [1B]]2

Let m = O(egfalﬂ 10g3(/<md/(eﬁna15ﬁnal))) be sketching
dimension and [ be a parameter to be specified later.
Then, the vector ¥’ € R™ can be computed in time

O(mn + €52 nd +m?).

The parameter 3 is an upper bound on the rank of the
following sequence of matrices:

(A, A®2 A®3  A®4},

for ¢ = O(r* +log(n/€fnal) and v is the radius of rows
of A, A®! ¢ R4 s the matriz where each row of the
matriz is the self-tensoring of corresponding row of A
for l times.

Note that if we compute the kernel exp(AAT), it would
take O(n2d) time. If we pose a naive upper bound
B < n, then as long as d > egfalnlogg(nnd/eﬁnaléﬁnal),
our algorithm is faster than exact computation.

1.2 Related Work

Least-Squares Regression. The fitting method re-
ferred to as “least-squares” has only recently been
named as such in literature (Golub and Van Loan,
1980). However, it is not a new method and has been
extensively studied in the statistical literature for a long
time under various names, such as “orthogonal regres-
sion,” “errors-in-variables,” and “measurement errors.”
In fact, the problem of univariate fitting, n =1,d =1,
was first discussed in 1877 by Adcock (Adcock, 1877),
and subsequent contributions were made by Pearson
(Pearson, 1901), Koopmans (Koopmans, 1937), and
York (York, 1966). The method has been rediscov-
ered several times, often independently, and around 50
years ago, it was extended by Gleser (Gleser, 1981) to
multivariate problems of dimension n > 1 and d > 1.

In more recent times, the least-squares method has
gained attention beyond the field of statistics. Golub
and Van Loan (Golub and Van Loan, 1980) were the
first to study this problem in the field of numerical
analysis, and they developed an algorithm based on

the singular value decomposition. Staar (Staar, 1982)
independently arrived at the same concept through geo-
metrical insight into the properties of the singular value
decomposition. Van Huffel and Vandewalle (Van Huffel
and Vandewalle, 1988) extended Golub and Van Loan’s
algorithm to cover all cases where their algorithm fails
to produce a solution. They described the properties
of these non-generic total least-squares problems and
proved that their proposed generalization still satis-
fies the least-squares criteria if additional constraints
are imposed on the solution space. This approach,
which appears to be different from the multivariate
EIV regression analysis method studied by Gleser, is
actually equivalent to it. Gleser’s method is based
on an eigenvalue-eigenvector analysis, while the least-
squares method uses the singular value decomposition,
which is more robust numerically in terms of algorith-
mic implementation. Moreover, the total least-squares
algorithm can compute the minimum norm solution
whenever the least-squares solution is not unique.

Attention Matrix. The attention matrix is a square
matrix that represents correlations between words or to-
kens in natural language text. It has rows and columns
that correspond to each token, and its entries denote
the degree of correlation between them. This matrix is
employed to determine the significance of each input
token in a sequence when generating an output. In
an attention mechanism, each input token is assigned
a weight or score, which indicates its relevance or im-
portance to the current output being produced. These
scores are calculated based on a similarity function that
compares the current output state to the input states.

There are several methods that attempt to estimate
the heavy entries of the attention matrix by constrain-
ing the attention to local neighbors of queries using
techniques such as locality-sensitive hashing (LSH) (Ki-
taev et al., 2020; Chen et al., 2021b; Sun et al., 2021)
or k-means clustering (Daras et al., 2020). Another
approach is to use random feature maps of Gaussian
or exponential kernels to approximate the attention
matrix (Choromanski et al., 2020). Recently, Chen et
al. (Chen et al., 2021a) demonstrated that combining
LSH-based and random feature-based methods is more
effective at approximating the attention matrix.

The computation of inner product attention (Zandieh
et al., 2023; Alman and Song, 2023; Gao et al., 2023a,d;
Brand et al., 2023; Deng et al., 2023a; Li et al., 2023;
Gao et al., 2023b) is also a crucial task in contemporary
machine learning. It is necessary for training large lan-
guage models (LLMs) such as Transformer (Vaswani
et al., 2017), GPT-1 (Radford et al., 2018), BERT
(Devlin et al., 2018), GPT-2 (Radford et al., 2019),
GPT-3 (Brown et al., 2020), and ChatGPT, which
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are capable to handle natural language more effectively
than conventional algorithms or smaller models. Alman
and Song (2023) provides both algorithm and hardness
for static attention computation. Brand et al. (2023)
provides both algorithm and hardness for dynamically
maintaining the attention matrix. Gao et al. (2023b)
shows how to compute the attention matrix with dif-
ferential privacy guarantees. Li et al. (2023) studies
the regression for matrix hyperbolic functions. Gao
et al. (2023a); Deng et al. (2023a) consider algorithms
for softmax attention.

Sketching. Sketching techniques are powerful tools
for speeding up machine learning algorithms and op-
timization. The central idea is to break down a large
input matrix into a much smaller matrix while pre-
serving important characteristics. This enables down-
stream tasks to be performed on top of the smaller
matrix. Many previous works have developed sketching
algorithms with strong theoretical guarantees. For ex-
ample, the Johnson-Lindenstrauss lemma in (Johnson
and Lindenstrauss, 1984) shows that under a certain
high-dimensional space, the projecting points onto the
lower-dimensional subspace may preserve the pairwise
distances between the points. This property supports
the development of faster algorithms for problems, such
as approximate nearest neighbor search.

Typically, there are two methods for employing sketch-
ing matrices. The first one is called sketch-and-solve,
which applies sketching and then subsequently solves
the problem in a one-shot manner. The second one is
called iterate-and-sketch: sketching can be employed
during each iteration of the algorithm to speed up the
iteration.

Sketch-and-solve has led to faster algorithms in sev-
eral domains: for low-rank approximation and linear
regression (Nelson and Nguyén, 2013; Clarkson and
Woodruff, 2017), sketches are applied to reduce the
problem size, so it is much easier to solve the smaller
regression problem to get an approximated solution to
the original problem; for approximating kernel matri-
ces, as in Laparra et al. (2015); for fast computation of
vector and matrix tensors, a long line of works (Avron
et al., 2014; Pagh, 2013; Pham and Pagh, 2013; Diao
et al., 2018) present a technique, called TensorSketch
which can compress tensors down to much smaller core
tensors, enabling faster algorithms for problems such as
tensor regression (Reddy et al., 2022; Diao et al., 2019,
2018; Song et al., 2021a), CP decomposition (Ma and
Solomonik, 2021); for column subset selection, sketch-
ing the data matrix speeds up column selection with
provable approximation guarantees (Sobczyk and Gal-
lopoulos, 2022; Song et al., 2019; Jiang et al., 2020,
2021a). Moreover, it can be used for finding an ap-

proximate solution with £, guarantees (Price et al.,
2017; Song et al., 2023c), designing an efficient neural
network training method (Qin et al., 2023b).

Beyond the classic sketch-and-solve paradigm, sketch-
ing has also been adapted to many iterative optimiza-
tion algorithms. Notable examples include but not
limited to non-convex optimization (Zhang, 2022; Al-
man et al., 2023; Song et al., 2024, 2021b), discrepancy
minimization (Song et al., 2022b; Deng et al., 2022),
John Ellipsoid computation (Song et al., 2022¢), Frank-
Wolfe algorithm (Song et al., 2022a; Xu et al., 2021),
linear programming (Jiang et al., 2021¢; Cohen et al.,
2021; Song and Yu, 2021; Liu et al., 2023), reinforce-
ment learning (Xu et al., 2023), dynamic kernel esti-
mation (Qin et al., 2022b), empirical risk minimization
(Qin et al., 2023c; Lee et al., 2019), federated learning
(Song et al., 2023a), semidefinite programming (Gu
and Song, 2022), rational database (Qin et al., 2022a),
matrix completion (Gu et al., 2024), matrix sensing
(Qin et al., 2023d), submodular maximization (Qin
et al., 2023a), trace estimation (Jiang et al., 2021b),
and projection maintenance (Song et al., 2023Db).

Subspace Embedding. Given a matrix A € R"*?,
we say a family of random matrices is an (n,d, ¢, d)
subspace embedding if, for any fixed orthonormal basis
U of A, with probability at 1—¢, any matrix .S € R™*"
where m is a function of n, d, €, §, from this distribution
has the property that

(1—e) I =UTSTSU < (1+e)I

where A < B denotes the matrix B — A is PSD. Alter-
natively, one could interpret the result as the singular
values of SU lie in the range of [1 —¢,1 + ¢]. In the
context of least-squares regression, it is usually more
convenient to state in the following way: for any vector
r € R, ||SAz||2 = (14 ¢€)||Ax||]2. Subspace embedding
is first introduced in Sarlos (2006). Subsequently, struc-
tured family of random matrices that can be applied
to A efficiently was proposed (Clarkson and Woodruff,
2017; Nelson and Nguyeén, 2013; Lu et al., 2013; Meng
and Mahoney, 2013). For a more comprehensive review
of subspace embedding, we refer readers to the book
by Woodruff (Woodruff, 2014).

Roadmap. In Section 2, we introduce the basic math-
ematical notations. In Section 3, we give an overview
of the techniques that we use in this paper. In Sec-
tion 4, we present our algorithms and main results. In
Section 5, we give a conclusion of this paper.

2 PRELIMINARY

In this section, we introduce notations used throughout
the paper.
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We use R to denote the set of all real numbers. We
use Z to denote the set of all integers and use Z. to
denote the set containing all positive integers. For any
n € Zy, we define [n] :=={1,2,3,...,n}.

For all d € Z,, we use R? to denote the set of all
vectors with length d and real entries and use Zi to
denote the set containing all vectors with length d and
entries of positive integers. For a vector x € R™, we
use ||z]|; to denote the ¢; norm, use ||z|2 to denote
2

%

the ¢, norm, ie., ||z = (X, @
to denote the ¢o, norm.

)2, and use ||z|/o

For all m,n € Z,, we use R™*™ to denote the set con-
taining all matrices with m rows, n columns, and real
entries. For a matrix A € R™*", we use ||A|| to denote
the spectral norm of 4, i.e., || Al = max|,|,=1 [|Az2-
We use AT to denote the transpose of A. We use
Omin(A) to denote the minimum singular value of A,
i.e., omin(A) = min|,,=1 ||Az|]2. Accordingly, we use
Omax(A) to denote the maximum singular value of A,
S0 Tmax(A) = || Al|. Furthermore, we use Af to denote
the pseudo-inverse of A and use A~' to denote the
true inverse of A. The true inverse exists if m = n
and rank (A) = m. For all my,mq,n € Z,, for all
the matrices A € R™*™ and B € R™2*" we use

A @ B to denote the matrix Correspondingly,

A
gl
for all my,mg,...,mp,p,n € Z4, for all the matrices
Ay e RmMxn Ay e R™2X™ ... 0 A, € R™ X", we use
@f_|A; to denote A} ® Ay & -+ D A,,.

We write z =y teif x € [y — €,y + €]. 1,, represents
an n-dimensional vector, whose entries are all 1, and
0,, represents a n-dimensional vector, whose entries are
all 0. For a symmetric matrix B € R"*" we say B
is positive semidefinite (denoted as B = 0) if, for any
vectors = in R”, the inequality =" Bz > 0 always holds.
We also call B a PSD matrix for simplicity.

3 TECHNIQUE OVERVIEW

In Section 3.1, we present the techniques we use to
show the properties of a particular case of the odd
power algorithm. In Section 3.2, we not only show the
techniques of showing the correctness and the runtime
of a particular case of the even power algorithm but
also introduce a way to bound the forward error of
the PSD matrix. In Section 3.3, we offer the methods
to generalize the particular case to all the even power
cases. In Section 3.4, we elucidate the methods of
generalizing the particular case to all the odd power
cases. In Section 3.5, we introduce the techniques which
are used for analyzing the exponential regression.

To give an algorithm for Theorem 1.4 and 1.5, we need
to analyze the simpler case with only 3 and 4 matrices

involved:

min ||AAT Az — b| (3)
zER?

and

min ||ATAAT Az — b||,. (4)
z€R4

Suppose we are provided with algorithms for these
smaller problems, we can complete the picture for The-
orem 1.4 and 1.5 via induction. It remains to show how
to solve the simpler cases.

3.1 A Particular Case for Odd Power
Algorithm

To solve Eq. (3), our approach can be briefly described
as follows: we first solve the regression min,cga [|Ay —
blj2 then solve || AT Az — y|l>. To understand the er-
ror, suppose z’ is the final approximate solution to
ming cga |AT Az —y/'||2, we can decompose the error as
follows:

JAAT Aa’ — blls = A(AT A’ — ¢/) + Ay’ — b2
< IAIIAT Az’ — o/ |ls + [ Ay — bl

For the second term, it can be bounded as long as we
utilize a fast solver with relative error dependence in
terms of the optimal cost, the value of Eq. (3). For the
first term, we deploy a fast, high accuracy solver for
PSD regression, with the guarantee that

1AT Az’ =3/ [l < e [ly'l2

so it remains to get a good handle on ||y’||2. Note that
it is the solution to the regression ||Ay’ — b2, and we
can convert the error on the regression cost to the error
on the quality of 4. More specifically, we have

1
amin(A)
for y, being the optimal solution to the regression.

Finally, note that y, = A'b, so we can simply bound
its norm as ||y.|2 < m -||b]|2- Put it all together,

1y = yella < O(Ve) - || Ays — b2

we have

v llz < 11y — yallz + llyll2

1
m(ﬁ‘ | Ay — bll2 + [|b]]2)-

By setting € properly, we can conclude

IN

IAAT Az" —blls < (1+€) - [AAT Azy = bll2 + € - [[B]|2.

For the running time, since we would need to set €
perhaps polynomially small to account for the error
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induced by backward-to-forward conversion and min-
imum singular values of A, fast solvers with runtime
depends inverse polynomially on ¢ is infeasible. We re-
sort to solvers with runtime depends on log(1/€) (Avron
et al., 2010; Brand et al., 2021), which in turn provides
the following final runtime bound:

O((nd + d3) log(rk/e) 10g2(n/§))7

where k is the condition number of A and ¢ is the
failure probability of the algorithm.

3.2 A Particular Case for Even Power
Algorithm

To solve Eq. (4), our algorithm is similar, except that
we need to perform two rounds of regressions on PSD
matrices: min,, [|AT Ay—b||2 and min, [|AT Az —y|[2. Tt
is more complicated to analyze this than to analyze the
prior algorithm because, to the best of our knowledge,
there was no past literature proving the forward error
for PSD matrices.

We thus focus on the techniques for deriving the forward
error for PSD matrices. Let us consider the regression
problem

min ||AT Az — b||2, (5)
zERA
and we will use x, to denote the exact solution to
the above problem and z’ to denote an approximate
solution, i.e.,

|AT Az" = bl < € [[bll2-

We can bound the gap ||z’ — z*||2 as follows:
2" = z.]ls < AT A" = 22)l2 - (AT AT

The second term is simply crr;izn(A), and since AT A is

full rank, AT Az, = b, so the first term is e ||b||>. This
gives us a final bound of

2" = 2ull2 < e - 102,

1
UI2IIin(A)
coupling with the analysis of error and runtime in the
preceding section, we obtain the desired results.

3.3 General Case for Even Power Algorithm

Given an algorithm and analysis for the base case,
we can now generalize to any even powers. We start
by setting up the induction hypothesis, for which we
assume for all 7 € [k], we have

L [(ATA)'b; — bol2 < €]boll2s

2. [|bll2 < 205,22 (A)|1boll2,

min
3. €; S 0.561‘,1,

4. The running time is C- ((nd+d?3)-k-log(k(A)/ex) -
log(1/0%)),

5. The failure probability is §; + 62 + - - + k.

We want to show that these five statements also hold
for : = k 4+ 1. To prove the first statement, we need to
analyze ‘|(ATA)k+1bZ — b(]”zi

(AT A by yr — bl

< AT A AT by = billz + [1(ATA)*br — boll2-
(6)

The three terms can be bounded as follows:

o ||(ATA)*b, — byll2 can be bounded by ex||boll2
based on induction hypothesis for i = k.

e |[(AT A)¥|| can be bounded by o2¢_(A) based on
Fact A.3.

o |ATAbyyy — b2 can be bounded by
0.1ep 16~ 2A||byll2 based on our two ma-
trices version of PSD regression (see Lemma E.2).

For the second statement, the goal is to bound ||bg41]|2-
By using the property of the spectral norm, we can get

o1 ll2 < (AT A TH AT A b2 (7)

These two terms can be bounded similarly, we include
the reasoning here:

o [[((ATA)¥+1)=1| can be bounded by 20,-%1)(A)
based on Fact A.3.

o ||[(ATA)** b 1|2 can be bounded 2||bg |2 based
on the first statement and triangle inequality.

The remaining statements are rather straightforward:
the third one requires us to choose €x41 in a particular
fashion, and the running time can be computed via
plugging €r41. The failure probability follows from
a union bound, and conditioning all prior algorithms
succeed.

3.4 General Case for Odd Power Algorithm

For general odd powers in the form of
mingcpa |A(ATA)Jz — b||a, our argument is sim-
ilar to preceding section, with a minor modification
that we start by solving a linear regression on A
instead of a PSD regression on A" A. Similar to
Section 3.1, we will have to convert error on the cost
to error on the solution, and the remaining are similar
to that of Section 3.3.
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3.5 Attention Kernel Regression

We start by recalling the definition of attention kernel
regression: given an input matrix A € R"*? and a
response b € R™, our task is in two-folds: 1). compute
or approximate exp(AAT); 2). solve the regression on
top of the (approximated) kernel matrix. A simple,
exact algorithm would be computing the Gram matrix
AAT, applying entrywise exponential activation and
solving the regression. This would take O(n?d) time,
inefficient if d is large.

The key is to identify the kernel structure of exp(AAT),
where the (i, j)-th entry is exp((a;, a;)). We can apply
sketches for polynomial kernels to efficiently approxi-
mate this kernel matrix, and then solve the regression
with high precision. Although the sketch dimension
is super linear in n and the result naturally follows
from Song et al. (2021a), we also design a novel algo-
rithm if the data is highly structured and the sketch-
ing dimension is sublinear in n. We illustrate how to
compute a quick preconditioner such kernel and solve
the corresponding regression. For simplicity, we let
G :=exp(AAT). The goal is to find ' € R™ such that

1G=" = yll2 < ellyll2,

for € € (0,1) be an accuracy parameter. The idea
is to compute a sketch W,(A4) € R™*™ such that
W, (A)TW,(A) is an e-spectral approximation to G.
Since m is small, we can apply another shallow sketches
to the matrix W,(A4) " to improve the dimension from
n to s where s = o(n), then compute an SVD of the
sketched matrix SW,(A)T = USV . By choosing the
matrix R = UX~? as a preconditioner, we can then pro-
ceed to implement the preconditioned gradient descent,
and obtains an improved running time and convergence
rate. We briefly explain why the matrix R is a good
preconditioner, note that

SW,(A) W,(A)S'TR=USVVSU UL
=Ux?y~?
= U’
which has condition number 1. As S produces an
e-subspace embedding, the condition number of the
matrix W, (A) "W, (A)STR is also good. We can thus
perform gradient descent on this matrix, yields a good

convergence and running time. Put it together, we
obtain a running time of

e 2nfB - poly(log(nd/ed)) - log(r/¢)
+ (nd + (e 72B)%) - log(nd/ed).

4 MAIN RESULT

We now state our main algorithms and results. For the
even/odd power regression, note that directly comput-

ing the product (AT A)? requires O(j - nd?) time. The
squaring trick reduces this to O(log j-nd?) time. While
the dependence on n is nearly optimal, the dependence
on d makes these impractical for large-scale problems.
Our new algorithms achieve a running time of O(j - nd)
for n > d. So when j is smaller than d - log j, this is a
significant improvement.

Algorithm 1 Algorithm for solving even power regres-
sion mingcpa [|(ATA)Tz — bl|s.

1: procedure EVENPOWERS(A € R"*4 b c R n €
Z+7d S Z+7j S Z+, €final € (0, 1), (Sﬁnal € (07 1))

2 bp+ b

3 for k=1—jdo

4: Op < 5ﬁna1/k

5: €k < €final * 0.57F

6: br <  FASTPSDRECGRESSION(A €
RnXd, br_1 € Rd, n,d, Ek/FL(A)2k7 6k)

7 end for

8: ' bj

9: return z’

10: end procedure

Algorithm 2 Algorithm for solving odd power regres-
sion mingcga [|A(AT A)z — b|o.
1: procedure ODDPOWERS(A € R"*4 b € R",n €
Z+7d € Z+7j € Z+, €final € (07 1)a Ofinal € (07 1))
2: €1 < 0.1egna

3: 01 ¢ Ofinal/2

4: b1 + FASTLINEARREGRESSION(A € R4 p e
R”,n,d,el,él) > by € R?

5 €even Eﬁnal/"f(fl)

6: 5even — 6ﬁnal/2

7: ' <+ EVENPOWERS(A € R4 b ¢
Rd7 n7 d7 j7 Eeven7 56\/611)

8: return z’

9: end procedure

Theorem 4.1 (Main Result for Matrix Exponential
Proxy and Even/Odd Power Regression). Let A €
R4 pe q matriz and b € R® be a vector. Let €ana €
(0,0.1) denote the accuracy parameter. Let Ogna €
(0,0.1) denote the failure probability. Let x denote the
condition number of A. Then, there exist algorithms
(Algorithm 1 and 2) that run in time

O((nd + dg) - j - log(k/€final) - 10g2(jn/5ﬁnal))
and outputs a vector x' € R? such that

(AT AY 2" — blla < €qnatllbll2 (Algorithm 1)
|A(ATA) 2" — blly < €fnall|bll2 (Algorithm 2).

holds with probability at least 1 — dgpa)-
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Algorithm 3 Algorithm for solving attention kernel
regression min,egn || exp(AA ")z — b||a.

1: procedure PRECONDITIONEDGRADIENTDE-
SCENT(A € R™4ph € R", B € [1,n],€fna €
(0,1), 0fina1 € (0,1)) > Theorem H.7
ey +— 0.01
m <+ O(Blog” (nd/egnaidenal) 108(n/Ssna1) /€2 ya1)
if m > n then
x < Theorem 6.6 of Song et al. (2021a)
return z
end if
s + Q(mlog(mn/eodnal) log(n/Sanal)/€2)
Let Wy(X) € R™*™ be the approximate Gaus-
sian kernel in Theorem H.6
10: Let S € R**™ be an SRHT matrix
11: Compute the SVD of SW,(X)T =UXV T
12: R+ UX~2 ¢ Rs*m

13: zg < 0,, € R™

14: while |W,(X)TW,(X)ST Rz, —yll2 > €final do
15: Zer1 < 2p — (RTSWQ(X)TWg(X)STR)T~
16: (RTSWQ(X)TWQ(X)STth — RTSy)

17: end while

18: return ST Rz

19: end procedure

We defer the details of the proofs to Appendix G.3 and
G.

Theorem 4.2 (Main Result for Attention Kernel Re-
gression). Let A € R™? and b € R”, €anal; Oinal €
(0,1) be accuracy parameter and failure probability, re-
spectively. Suppose for all i € [n], ||ai]l2 < 1, where
a; 1s the i-th row of matrix A. Further, let 8 be an
upper bound on the rank of the following sequence of
matrices:

(A, A®2 . A®9}

for ¢ = O(log(n/egna1)) and A% € R4 s the matriz
formed by taking each row of A and computing the
l-fold self-tensoring. Then, there exists a randomized
algorithm (Algorithm 3) that succeeds with probability
at least 1 — 0gna1, computes a vector ¥’ € R™ such that

| exp(AAT )2’ — blla < €gnar - [|b]l2,

moreover, let m = O(ngzalﬂlogg(:‘ind/(éﬁna]éﬁna]))),
then the vector ' can be computed in time

O(mn + €52 nd +m?).

For the complete algorithm and detailed analysis, we
refer readers to Appendix H.

5 Conclusion

Large language models have demonstrated remarkable
performance in various tasks. One significant aspect,
from a computational standpoint, is the computation of
the attention matrix. Earlier research had thoroughly
examined the feasibility and limitations of approximat-
ing the attention matrix. In this study, we introduce
several new problems concerning computing or approx-
imating proxies for the attention matrix, via matrix
exponential or entrywise exponential for the Gram
matrix of data. We provide fast algorithms for these
problems, based on sketching and preconditioning.

We note that while our algorithm for regression against
of product of matrices runs in nearly linear time, the
runtime dependence on the number of matrices j is still
linear. In contrast, the squaring method only depends
logarithmically on j. Unfortunately, our algorithm has
fundamental limits on improving dependence on j due
to the alternating solve nature. It will be interesting
to devise an algorithm that both runs in nearly linear
time and has better dependence on j.
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Appendix

Roadmap. In Section A, we introduce the notations, basic definitions, and facts that we use. In Section B,
we present the background of the exp of the inner product kernel. In Section C, we discuss the background of
standard sketching. In Section D, we introduce the background of the high precision sketching. In Section E, we
show the fast linear regression algorithm (see Algorithm 4), solving the regression problem containing one matrix,
and analyze its properties, including its correctness and running time. In Section F, we offer a new algorithm (see
Algorithm 6), which solves the regression problem containing three matrices, and analyzes its correctness and
running time. In Section F.2, we propose an algorithm (see Algorithm 7), which solves the regression problem
containing four matrices, and analyzes its properties. In Section G, we summarize and utilize the patterns of the
previous sections to analyze the odd and even power regressions. In Section H, we analyze the attention kernel.

A PRELIMINARY

In Section A.1, we introduce the basic notations. In Section A.2, we introduce some basic definitions and useful
facts. In Section A.3, we present some background about attention computation.

A.1 Notations

We use R to denote the set of all real numbers. We use Z to denote the set of all integers and use Z, to denote
the set containing all positive integers. For any n € Z,, we define [n] := {1,2,3,...,n}.

For all d € Z, , we use R? to denote the set of all vectors with length d and real entries and use Z‘i to denote
the set containing all vectors with length d and entries of positive integers. For a vector € R™, we use ||z||; to

1
denote the ¢ norm, use [|z||> to denote the ¢, norm, i.e., |[z[2 = (X1, 27)?, and use ||z[| to denote the (.,

norml.

For all m,n € Z,, we use R™*" to denote the set containing all matrices with m rows, n columns, and real
entries. For a matrix A € R™*", we use ||A|| to denote the spectral norm of A, i.e., ||Al| = max |, [|[Az|2.
We use AT to denote the transpose of A. We use opmin(A) to denote the minimum singular value of A, i.e.,
Omin(A) = min|,,—1 [[Az|]2. Accordingly, we use onmax(A4) to denote the maximum singular value of A, so
Omax(A) = ||A]|. Furthermore, we use A" to denote the pseudo-inverse of A and use A~! to denote the true inverse
of A. The true inverse exists if m = n and rank (A) = m. For all m;, ma,n € Z,, for all the matrices A € R™*"

and B € R™2X" we use A @ B to denote the matrix [g] . Correspondingly, for all my,ma,...,mp,p,n € Z, for
all the matrices A; € R™>*" Ay € R™2X" ... A, € R™*" we use ®F_; A; to denote Ay @ Ay @ --- ® A,.

We write z =y £ eif x € [y — €,y + €]. 1,, represents an n-dimensional vector, whose entries are all 1, and 0,
represents a n-dimensional vector, whose entries are all 0. For a symmetric matrix B € R™*™, we say B is positive
semidefinite (denoted as B »= 0) if, for any vectors x in R”, the inequality x " Bx > 0 always holds. We also call
B a PSD matrix for simplicity.

A.2 Definitions and Facts

In this section, we introduce the basic definitions and facts.

Definition A.1. We use k(A) to denote the condition number of A, i.e.,
K(A) := omax(A)/omin(A).

Definition A.2 (Hadamard matrix). A Hadamard matriz is a square matriz of size n with entries of either 1 or
—1, where each row of the matriz is orthogonal to every other row.

Fact A.3. We have

o For any matriz A, ||(AT A)Y|| = omin(A) 2.

o For any matriz A, ||[AT A|| = omax(A)2.
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e For any matriz A, for any positive integer k, |((AT A)*)T|| < omin(A)72F.

e For any orthonormal column basis U € R"*¢ (n > d), we have |Uz||2 = ||z|2.
e For any matriz A, we have || Az| < ||A]l - ||z]l2 = omax(A) - [|2]|2-

e For any matriz A, we have || Az|2 > omin(A) - [|2]|2-

e For any matriz A, k(A) = k(AT).

e For any matriz A, B, k(A) < k(AB) - k(B).

e For any matriz A,b, k(AB) < k(A) - k(B).

Definition A.4 (Tensor Product). Let z € R™ and y € R™. We use x ® y to denote the tensor product of x and
y, and it is defined as

r®y = vec(zy').

We use x®P to represent x tensoring with itself for p times.

A.3 Attention Backgrounds

In this section, we introduce the important background of attention mechanism and matrix. Given matrices
Q, K,V € R4 a5 weights, and X € R"*? which be viewed as the embedding of a length-n sentence where each
length-d vector is corresponding to a word. The attention matrix is defined as

D(X) texp(XQKTX XV (8)

where D(X) = diag(exp(XQK " X T)1,,) and exp(-) is applied entrywise.

In Alman and Song (2023); Brand et al. (2023), they simplify the computation by treating X@Q, X K, and XV as
Q, K,V € R"*4 50 they obtain

D exp(QK TV (9)
where D = diag(exp(QK ")1,).
In Gao et al. (2023c), they simplify the attention by treating V' as identity, namely

D™l exp(QK "), (10)
where D, Q, K are defined same as above.
In addition, in Deng et al. (2023b), the attention is simplified into the form of

D7 lexp(KK "), (11)
where D, Q, K, for (K = @), are defined same as above.

In this work, we provide a simplification of Eq. (8) from a different perspective, by ignoring the factor of D1
and exp, so that we can get

XQK'XTXV
Further, we merge QK T into one matrix W and consider one column of V a time,
XWX Xv (12)

where v is a column of V.

Thus, we can obtain the following definition of attention formulation.
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— n

diag exp [ n X X d Q X d KT X d X7 — nilexp(XQKTXT)| x n

o
£

exp(XQKTXT) € R™xn

exp(XQKTXT)1, € R

D(X) = diag(exp(XQK T XT)1,) € R*"

Figure 1: The visualization of the matrix D(X) € R"*". Given Q, K,V € R%*4 and X € R"*?, we first compute
XQKTXT € R"™", Then, we find exp(XQK X T) € R™*". After that, we multiply exp(XQK T X ") € R**?
with the vector 1, € R™. Finally, we use diag(-) to transform exp(XQK T X T)1,, € R” into a diagonal matrix,
which is D(X) € R™*™. In this figure, green matrices/vectors represent the terms that are given; the purple
matrix represents the term after one operation; the red vector represents the term after two operations; the blue
matrix represents the term after three operations.

ni| DXL | x nilep(XQETXT) x n X X d v - n{|DX) lexp(XQKTXT)XV

D(X) 'exp(XQKTXT)XV € R"xd

Figure 2: The visualization of the attention computation (see Eq. (8)). Since we present the visualization of how
we get D(X) € R™*™ and exp(XQK T X T) € R™" in Figure 1, we regard them as given. Moreover, we are also
given V € R¥4 and X € R"*¢. We compute their product, namely D(X) ' exp(XQK "X T)XV. In this figure,
green matrices represent the terms that are given, and the purple matrix represents the term after one operation.

Definition A.5. Given X € R™*4, W € R¥*? and y € R™, the goal is to solve the following regression problem

min | XWX "X -v — yl|3
veER?

We show that it is in fact equivalent to the odd power regression of degree 3, defined as follows.
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diag| |exp | n Q X d KT = exp(QKT) | x n{ 1. |—=n

I(_L}Ié)dx'

exp(QKT) c Rnxn

exp(QK )1, € R”

D = diag(exp(QKT)1,,) € R**"

Figure 3: The visualization of the matrix D € R™*". Given Q, K,V € R"*? we first compute QK T € R"*",
Then, we find exp(QK ") € R™*". After that, we multiply exp(QK ") € R**" with the vector 1,, € R”. Finally,
we use diag(-) to transform exp(QK )1, € R" into a diagonal matrix, which is D € R"*". In this figure, green
matrices/vectors represent the terms that are given; the purple matrix represents the term after one operation;
the red vector represents the term after two operations; the blue matrix represents the term after three operations.

Definition A.6. Given X € R"*?¢ y € R™. The goal is to solve

in || XX Xv—yl?
min | v =yl

The equivalence can be established as such.

Lemma A.7. Solving problem A.5 is equivalent to problem A.6.

Proof. Let W = UU". We define X and ¥ as follows

Then we have X = XU~ Consequentially,
min [ XWX "X -v—y|3
vER?
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n D=1 x nilexp(QK") x n 174 - n D lexp(QKT)V

D lexp(QK ")V € R"¥4

Figure 4: The visualization of the simplified version of attention computation in Alman and Song (2023); Brand
et al. (2023) (see Eq. (9)). Since we present the visualization of how we get D € R™*" and exp(QK ") € R™*" in
Figure 3, we regard them as given. Moreover, we are also given V € R"*¢. We compute their product, namely
D~ texp(QK ")V € R™4, In this figure, green matrices represent the terms that are given, and the purple matrix
represents the term after one operation.

is equivalent to

min | XX XU v — yl|?
vER?

and can be rewritten as
min H)Z')?T)Z”ﬁ— yl|2
veR4

Here we use that U is full rank. O

B PRELIMINARY ABOUT EXPONENTIAL OF INNER PRODUCT KERNEL

In Section B.1, we provide a formal definition of the attention kernel. In Section B.2, we analyze the properties of
the attention kernel.

B.1 Definition of Attention Kernel

Here, we start to present the definitions of the Gaussian Kernel and the Attention Kernel. We will focus on
exp((-,-)) inner product. It is similar to the Gaussian kernel, let us first review the definition of the Gaussian
Kernel

Definition B.1 (Gaussian Kernel ). Let X € R¥". Let x; be the i-th column of X. We say G is the Gaussian
kernel if for any two points x,y € R,

G(z,y) = exp(—|z — yl[3/2).
We say G is the Gaussian kernel on X if
Gi; = exp(—zi — x;]3/2).

Here we abuse the notation and let G be an n X n real matrix.
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n D1 x nil exp(QK ") = N D lexp(QKT)

D~ lexp(QKT) € R**n

Figure 5: The visualization of the simplified version of attention computation in Gao et al. (2023c) (see Eq. (10)).
Since we present the visualization of how we get D € R"*" and exp(QK ") € R"*" in Figure 3, we regard them
as given. We compute their product, namely D~ exp(QK ") € R™*". In this figure, green matrices represent the
terms that are given, and the purple matrix represents the term after one operation.

We define the attention kernel as follows

Definition B.2 (Attention Kernel). Let X € R4*". Let x; be the i-th column of X. We say G is the Gaussian
kernel if for any two points x,y € R,

G(z,y) = exp((z, ).
We say G is the Gaussian kernel on X if

Gij = exp((zi, ;).
Here we abuse the notation and let G be an n x n real matriz.
B.2 Properties of Attention Kernel

After we define the attention kernel, we start to analyze its properties.
Fact B.3. Let B be a PSD matriz in R™*",

Then we have

Bi,iBj,j > Bij, VZ,] S [n] X [n]
Proof. Let x =a-e; +b-ej.
For all arbitrary a,b € R, we can get

0< z'Bz
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n{| Dlexp(KKT) | < | n x ni exp(KK") | + exp|n K X d KT

exp(KK ') € RPxn

D lexp(KKT) € R™*"

Figure 6: The visualization of the simplified version of attention computation in Deng et al. (2023b) (see Eq. (11)).
Since we present the visualization of how we get D € R™*" in Figure 3, we regard it as given. We are also
given that K € R™*? which implies that KT € R¥". First, we compute their product, namely KK € R?**",
Then, we find exp(KK ") € R**". Finally, we multiply D~! € R"*" with exp(KK ") € R"*"  which gives us
D texp(KK T) € R™*™, In this figure, green matrices represent the terms that are given; the purple matrix
represents the term after one operation; the red matrix represents the term after two operations.

- lafg 5[] @

where the first step follows from the fact that B is a PSD matrix and the second step follows from expanding the
equation.

Note that for all arbitrary a,b € R, Eq. (13) holds.

B:: B
det ot “I) >0
([Bm BmD -

which is equivalent to say B; ;B ; > B} ;. O

Therefore,

Lemma B.4. Let X € R"*?. We define attention kernel
A:=exp(XX") e R™"
where exp(-) is applied entrywise. Let e € (0,0.1), r > 0 and a matrizc B € R™*™ satisfy the following conditions
e Condition 1. e < % exp(—4r).

o Condition 2. A, ; € [exp(—r),exp(r)] fori,j € [n] x [n].



Zhao Song, Junze Yin, Lichen Zhang

XWXTX X di| v —n

ax | XMX

XWXTX e R

XWXTXveR"

Figure 7: The visualization of the simplified version of attention computation that we analyze in this paper
(see Eq. (12)). We are given that X € R™*4 W € R¥? and v € R%. First, we compute the product of the
matrices, namely XWX T X € R"?, Then, we multiply XWX "X € R"*? with the vector v € R%, which gives
us XWX T Xv € R™ In this figure, green matrices represent the terms that are given; the purple matrix represents
the term after one operation; the red matrix represents the term after two operations.

o Condition 3. (1—¢€)-A=<=B =< (1+¢)-A.
Then, we have
B;j € [(1 = e)exp(—r), (1 + €) exp(r)].

Proof. B—(1—¢)- A is a PSD matrix.

Thus, we have

Bij— (1= ) Ayl < /(Bui— (1= ) - Ai)(Byy — (1- ) Ay)

S 26\/ Ai,iAj,j

< 2eexp(r) (14)

where the 1st step is by Lemma B.3, the 2nd step is due to B; ; < (1+4¢€)A,;; (By condition 3 in lemma statement),
and the 3rd step is because of the definition of A; ; from the lemma statement.

Based on the second condition from the lemma statement, we have
(1—€)-Aij€[(l—e)-exp(—r),(1—e)-exp(r)], (15)
Combining Eq. (14) and Eq. (15), we have
B;; € [(1 —¢€)exp(—r) — 2eexp(r), (1 + €) exp(r)] (16)
By using (1+¢€) - A — B is a PSD matrix, we may do a symmetric argument as follows:
B, ; € [(14¢€)exp(—r) — 2eexp(r), (1 + 3¢€) exp(r)]. (17)

The intersection of Eq. (16) and Eq. (17) gives us:

Bij € [(1+€)exp(—r) — 2eexp(r), (1 + €) exp(r)]
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We know that

(—r) — 2eexp(r)

(=) = 2Ve- e exp(r)

> exp(—7r) —2-e- %GXP(_QT) ~exp(r)
= exp(—r) — Veexp(—r)

= (1 —+/e) - exp(—7)

where the first step follows from e > 0, the second step follows from simple algebra, the third step follows from
Ve< %GXp(*QT) (by condition 1 in lemma statement), the fourth step follows from simple algebra, and the last
step follows from simple algebra.

(14 €)exp(—r) — 2eexp(r) > exp
= exp

r

Thus, we have

B;j € [(1 — ve)exp(—r), (1 — €) exp(r)].
This completes the proof. O

C PRELIMINARY ABOUT STANDARD SKETCHING

In Section C.1, we provide two types of fast sketching matrices. In Section C.2, we introduce the formal definition
of subspace embedding. In Section C.3, we interpret and analyze the property of subspace embedding by different
matrices. In Section C.4, we provide the definition of the Frobenius norm approximate matrix product.

C.1 Sketching Matrices

We define subsampled randomized Hadamard transform (SRHT) as follows.

Definition C.1 (Subsampled Randomized Hadamard Transform (SRHT), see Lu et al. (2013); Woodruff (2014)).
Let H be a Hadamard matriz in R4*? (see Definition A.2). Let D be a diagonal matriz in R¥>< which satisfies
that each diagonal entry is either —1 or 1 with the same probability. Let P be a matriz in {0,1}™*¢ where each

row of P contains only one 1 at a random entry. We define the matriz S € R™*4 qgs
1
S:=—=PHD
vm

and call S the SRHT matriz.

We define TensorSRHT as follows:

Definition C.2 (Tensor Subsampled Randomized Hadamard Transform (TensorSRHT), Definition 2.9 in Song
et al. (2021a)). Let P be a matriz in {0,1}™*¢ where each row of P contains only one 1 at a random entry.
P can be regarded as the sampling matriz. Let H be the Hadamard matriz in R¥*? (see Definition A.2). Let
D1 and D, be diagonal matrices in R**¢, which satisfy that each diagonal entry is either —1 or 1 with the same
probability. Dy and Dy are independent. Then, we define TensorSRHT as a function S : R? x R* — R™, which is
defined as

1
P-(HD, ® HD,).

S::ﬁ

C.2 Subspace Embedding

We define subspace embedding as follows.

Definition C.3 (Subspace Embedding SE(n, d, ¢, ), Sarlos (2006)). Given a matriz A € R"*4, we say S is an
(n,d, e, o) subspace embedding, if

Pr[(1—¢) - [[Az|2 < [[SAz[l2 < (1 +¢€) - [[Az]]s] = 1 6.
Equivalently,
Pr[(1—€) - (ATA) < ATSTSA=< (1+¢)-(ATA)]>1-04.



Zhao Song, Junze Yin, Lichen Zhang

C.3 Subspace Embedding by Different Sketches

We specify several classes of subspace embedding that obtain a small sketching dimension and can be applied to
A fast.

Lemma C.4. Given a matriv A € R"*? S is an (n,d,€,0) subspace embedding for

o Let S € R™*" denote a SRHT matriz with m = O(e~2dlog(n/§)) rows. In addition, SA can be computed in
O(ndlog(n/d)) time.

o Let S € R™™ denote OSNAP matriz with m = O(e 2dlog(d/d)) rows and column sparsity s =
O(e~tlog(d/)). In addition, SA can be computed in O(s-nnz(A)) time.

C.4 Approximate Matrix Product

Here, we define the Frobenius Norm Approximate Matrix Product as follows.

Definition C.5 (Frobenius Norm Approximate Matrix Product). Let A € R"*% B € R"*% be two matrices.
We say S is Frobenius Norm Approzimate Matriz Product FAMP(n, €, ) with respect to A, B if

Pr[|ATB ~ ATSTSB|p < ¢l|Allp|Bllr] > 1 6.

D PRELIMINARY ABOUT HIGH PRECISION SKETCHING

In Section D.1, we explain more useful facts regarding matrix spectrum. In Section D.2, we analyze the property
of well-conditioned PSD regression. In Section D.3, we analyze the forward error for overconstrained systems. In
Section D.4, we study the forward error for PSD matrices.

D.1 Norm Preservation and Spectrum

Fact D.1. The following two conditions are equivalent:

e For all unit vector x, 1 —e < ||Az|]3 < 1+¢;
o |[ATA—TI| <e.
Proof. We know that,
JATA- 1] < e
is equivalent to
—e<z'(ATA-Dz<e, Vz[a=1
move —z |  to both sides we have
l—e<z"ATAz <1+4e¢ Vz|2=1
which is equivalent to

l—e<|Az|3<1+e V|z]2=1.

D.2 Well-Conditioned PSD Regression

We state a lemma for solving well-conditioned PSD regression, due to Brand et al. (2021).
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Lemma D.2 (Well-conditioned PSD regression, Lemma B.2 in Brand et al. (2021)). Consider the regression
problem

in || Bz — yl|3.
min ||Bz - ylz

Suppose B € R¥™*? is ¢ PSD matriz with

ot

<||Bzlla <5, Va such that |o]> = 1.

| w

Using gradient descent update
Tyl = Ty — BT(th —y).
Then, after t iterations, we obtain
IB(ae — ")z < c'[|B(ao — 2*)||2

for some constant ¢ € (0,0,9].

Proof. The gradient at time t is B (Bx; — y) and
241 =2 — BT (B, —y), (18)
so we have

|Baei1 — Ba*||2 = || B(z: — B (B —y)) — Ba*|l2

= ||B(zy — %) — BBTth + BB Bz*||,

= [|B(zt —2") = BB B(z¢ — 272
)
)

— (1 = BB) Bl — ")
< W= BEDI- 15—l
< B~ 2,

where the first step follows from Eq. (18), the second step follows from BT Bx* = BTy, the third step follows
from simple algebra, the fourth step follows from simple algebra, the fifth step follows from ||Az||2 < ||A] - ||z]|2,
and the last step follows from the fact that the eigenvalue of BB belongs to [ 5 16] by our assumption.

Thus we complete the proof. O

D.3 Forward Error for Overconstrained System
Given a fast regression solver with error guarantees on the cost, it can be conveniently converted to guarantees
on the solution. We include the proof of a lemma in Gu et al. (2024) for completeness.

Lemma D.3 (Lemma 5.5 in Gu et al. (2024)). Given a matriz A € R"*, a vector b € R"™. Suppose there is a
vector ' € R? such that

Az’ — b2 < (1+ 61) mln |Az — b2

Let x, denote the exact solution to the regression problem, then it holds that

1

2" = 2.l < O(Ve1) - oo (A)

Az, bl



Zhao Song, Junze Yin, Lichen Zhang

Proof. Note that
|42’ — A2 = [ A2’ — b — (Az, = ),
so we can perform the following decomposition:
[A(z" —z.)ll5 = A" — b — (Az, — )13
= [|Az" = b||3 — [|Az. — b]3
< (L4 a)?|| Az, — b3 — [[ Az, — 0[5
< de; - || Az, — b||3, (19)

where the first step follows from simple algebra, the second step follows from the Pythagorean theorem, the third
step follows from the assumption in Lemma statement, and the fourth step follows from simple algebra.

Assuming A has full column rank, then ATA = I. Therefore, we have
2" = zill2 = [|ATA(2" — 2]l
<A@ — )2 - A7)
2v/er - Az —blfz - | AT
= 2 Ao, =,
where the first step follows from AfA = I, the second step follows from HAB:I:HQ < ||Az]||2||B||, the third step
follows from Eq. (19), and the last step follows from | AT|| = ||A~!|| = O

IN

Um]n(A) .
D.4 Forward Error for PSD Matrices

When the matrix in question is PSD, we can obtain a similar error guarantees, in terms ||b||2 instead of the cost
[ Az = bl

Lemma D.4 (PSD version of Lemma D.3). Given a matriz A € R"*¢, q vector b € R?. Suppose there is a vector
2’ € R? such that

IAT Az" — b2 < ealb]2

Let x, denote the exact solution to the regression problem, then it holds that

2" = 22 < €2 - [1bll2-

b
Omin(A)?
Proof. Note that
|AT Az’ — AT Az, ||o = ||[(AT Az’ — b) — (AT Az, — b)]|2,

so we can perform the following decomposition:

IATA@" — 23 = (AT A2" —b) — (AT Az, - b)]13

= AT Az — blff — AT Az, — b3

e3Ibl3 (20)

IN

where the first step follows from simple algebra, the second step follows from the Pythagorean theorem, the third
step follows from the assumption in lemma statement.

Assuming A has full column rank, then (AT A)T(AT A) = I. Therefore, we have
2" = aull2 = [[((ATA)TATA@ — 2.2
< JATA@ =22 - I(AT A
ea - [[bll2 - (AT A)T|
= €2 Omin(A4) 7?[[b]l2

where the first step follows from (AT A)T(AT A) = I, the second step follows from ||ABz||; < || Az]|2||B||, the
third step follows from Eq. (20), and the last step follows from Fact A.3. O

A
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E FAST REGRESSION VIA SKETCHING AND PRECONDITIONING

E.1 Linear Regression

In this section, we present the fast linear regression algorithm and analyze its error guarantees and efficiency.

Algorithm 4 Algorithm for solving min, ||Az — by||2.

1: procedure FASTLINEARREGRESSION(A € R"™™? b € R" . n € Z,,d € Zy,¢; € (0,1),8; € (0,1))

2: Compute a subspace embedding S; and apply it to A > Let Sy denote a SE(n,d, €05 = 0.1, dose = 61/2)
3 Compute R such that S; AR are orthonormal columns via QR decomposition R € R4x¢

4: T1 «— @(log(l/el))

5: zo < argming [|[SARx — Sby||2

6: t+0

7 while |ARz; — b2 > €1 do

8 Zi41 S 2t — (RTAT)(ARZt — bl)

9

: t—t+1
10: end while
11: return Rz,

12: end procedure

Lemma E.1 (Dense and High Accuracy Regression, Lemma 5.4 in Gu et al. (2024)). Given a matriz A € R"*¢
and a vector by € R”, let €1 € (0,0.1) and 61 € (0,0.1), there exists an algorithm that takes time

O((nd + &%) - log(1 /1) - 10g(n/61))
and outputs x' € RY such that

HA.’L‘I - b1||2 S (1 + 61) min ||AJ,‘ - b1||2
z€ERC
holds with probability 1 — d7.

Proof. Let us analyze Algorithm 4, first its convergence then its runtime. Note that the S we choose is an
(€ose, Gose )-oblivious subspace embedding. Since SA = QR~! where @ is orthonormal, we know the singular values
of AR are between [1 — €gse, 1 + €ose). Let AR = USVT be the SVD of AR and z* denote the optimal solution to
the regression min,cga ||[ARz — by ||2. Let us consider

AR(z41 —2%) = AR(z + RTAT (b — ARz) — 2%)
(2 —2*)+ ARRTATby — ARRT AT ARz,
(2t —2*) + ARRTATARz* — ARR" AT ARz
= (AR — ARRTATAR)(z — 2¥)
= UV U3V (2 — 2%), (21)

AR
AR

where the first step follows from the definition of z;1; from Algorithm 4, the second step follows from simple
algebra, the third step follows from b, = ARz*, the fourth step follows from simple algebra, the last step follows
from the SVD, AR =UXV .

Therefore,

JAR(z41 = 2)|la = [(UZVT = UV 1) (2 — 27) |2
= 1(E=)VT(z —2%)|2
< O(€ose) - VT (21 = 2%) 2
O(€ose)

— €ose

= Oeose) - 1BV (2t = 2")|l2

< 1=V (ze = 2%)ll2
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O(GOSE) : ||UEVT(Zt - Z*)||2
O(Gosc) : ||AR(Zt - Z*)”Q’

where the first step follows from Eq. (21), the second step follows from U U = I, the third step follows from
IAB|| < ||A]| - ||B||, the fourth step follows from (1 — enge) < ||2]], the fifth step follows from €y € (0,0.1), the
sixth step follows from UTU = I, and the last step follows from the SVD, AR =UXV .

This means the error shrinks by a factor of O(eqse) per iteration. After T'= O(log(1/e1)) iterations, we have
[AR(zr — 27)|l2 < O(er) - [AR(z0 — 27) |2, (22)
and recall for initial solution zg, we have
|ARzo — bi|l2 < (1 + €ose) - ||ARZ" — by]|2.
The above equation implies that

IARzo — b1l — | AR2" — i[5 < O(eose) [ARZ™ — b 3. (23)

We can wrap up the proof as follows:

|ARzr — b1||2 = [|AR(zr — 2)II3 + [ ARz" — b I3
O(e) - |[AR(z0 — 2)|I3 + [ AR=" — b I3
O(&) - ([ ARz — b3 — |AR=" = bi[3) + [[AR=" — by 13
< O(€f) - (O(eose)[|AR=" — b1 [3) + | ARZ" — by |13
= (1+0(e)) - |[ARz" — bu|f3,
where the first step follows from the Pythagorean theorem, the second step follows from Eq. (22), the third step

follows from the Pythagorean theorem again, the fourth step follows from Eq. (23), and the fifth step follows
from €gge < 1.

It remains to show the runtime. Applying S to A takes O(ndlogn) time, the QR decomposition takes O(mg.d?) =
O(d®log®(1n/d0se)) time.

Inverting d x d matrix @ takes O(d?) time. To solve for 2o, we need to multiply SA with R in O(mgd?) time
and the solve takes O(mgd?) time as well. To implement each iteration, we multiply from right to left which
takes O(nd) time. Putting things together gives the desired runtime. O

E.2 Fast PSD Regression Solver

We can extend the algorithm in the preceding section for solving PSD regression.

Algorithm 5 Algorithm for solving mingcga [[AT Az — ba||2.

1: procedure FASTPSDREGRESSION(A € R™*? by e R4 n € Zy,d € Z,,e3 € (0,1),52 € (0,1)) > Lemma E.2
2: Apply S5 to matrix A > Let Sy denote a SE(n, d, €pse = 0.1, dpse = 02/2)
3 Compute R such that Sy AR orthonormal columns via QR decomposition > R € Réxd
4: 2o < 0y

5: t<+ 0
6.
7

8

9

while ||ATARZt — b2||2 Z €9 do
Zi41 S 2t — (RTATAR)T(RTATARZt — RTbg)
t—t+1
end while
10: return Rz,
11: end procedure
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Lemma E.2 (Formal Version of Lemma 4.2, Lemma B.1 in Brand et al. (2021)). Given a matriz A € R"*?_ let
K denote the condition number of A, i.e. k = omax(A)/omin(A), consider the following regression problem

min ||AT Az — by||. (24)
z€R4

There is an algorithm that runs in time
O((nd + d®) - log(k/e2) - log*(n/ds)).
and outputs ' € R? such that
|AT Az’ = ball2 < e2ba ]l

holds with probability 1 — Js.

Proof. Let Sy € R%2*™ be a SE(n, d, €5se = 0.1,0) (Definition C.3) for A, then with probability 1 — 4, the following
holds for any = € R¢

[S2Az]|2 = (1 £ €ose)[| Az 2. (25)

Suppose R € R4%4 is computed so that SAR has orthonormal columns, e.g., via QR decomposition. We use R as
a preconditioner for matrix A. Formally, for any = € R? satisfying ||z|| = 1, we have

||AR$H2 = (1 + Eose)HSQARLL'HQ
= (1 + 6050)7 (26)

where the first step follows from Eq. (25) and the second step follows from the fact that Se AR has orthonormal
columns. Taking the squares on both sides, we have

|ARz||3 = (1 + 3eose)-
By Fact D.1, the above equation implies

”RTATAR - I” < 3€ose

Hence, using the definition of spectral norm, we know for any ||z|2 = 1,
IRTATARzls < (1 4 3eose),
Similarly, we can prove the other direction
|RTATARz||y > (1 — 3€pse)-
We choose €,5c = 0.1, and consider the regression problem

min |[RTATARz — R by (27)
z€R™

By Lemma D.2, using gradient descent, after T5 = log (1/e2) iterations, we can find z; satisfying
IRTATAR(z — 2*)2 < e RT AT AR(z0 — 2*) o, (28)
where
2*=(RTATAR)"'R"b, (29)
is the optimal solution to Eq. (27).
We are going to show that

T = RZt (30)
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is an 2ke-approximate solution to the original regression problem (Eq. (24)), i.e.,

AT Ay — byl2 < Kea|lballa-

Loading Eq. (29) into Eq. (28), we obtain
IRTAT ARz — RTbys < 2| RTAT ARzy — R byo

Loading the definition of zg = 0 and Eq. (30), we have

||RTATA5L',5 - RTb2H2 S €9 - ||RTb2||2
< €2+ Omax(R) - [|b2[2, (31)

where the second step follows from the definition of oyyax(R). On the other hand, we have
HRTATALEt - RTb2||2 == ||RT(ATAIL't - bQ)HQ
Z O—min(RT)”ATAxt - b2||27 (32)

where the first step follows from simple algebra and the second step follows from the definition of oy (RT).
Putting it all together, we have

|AT Az — bola < ear(R")][ball2
e2k(R)][bz |2
e2r(AR)(A)]|b2]|2
2e2(A)||ba]|2,

INIA

where the first step follows from Eq. (31) and Eq. (32), the second step follows from R is a square matrix and
thus x(R) = k(R"), the third step follows from Fact A.3, and the last step follows from Eq. (26).

For the running time, the preconditioning time is O(nd + d®), the number of iteration for gradient descent is
log (k/€2), the running time per iteration is O(nd), so the total running time is

O((nd + d®) - log(r/es) - log*(n/ds)).

F EVEN AND ODD POWER REGRESSION: BASE CASE

We showcase the algorithms for solving even and odd power regression when there are only 4 (for even) and 3 (for
odd) matrices are involved. This simple case serves as a basis, both algorithmically and analytically, for the more
complicated algorithm.

F.1 Three Matrices

Our algorithm will be first solving an overconstrained regression, then followed with a PSD regression.

Lemma F.1. Let A € R"*? be a matriz and b € R™ be a vector. Let r denote the condition number of A (see
Definition A.1), i.e. &= 0max(A)/omin(A) Consider the regression problem (defined in Definition 1.1):

min ||AAT Az — bl|s.
zeR4

There exists an algorithm (Algorithm 6) that runs in time
O((nd + d°) - log(r/e5) - log*(n/63))
and outputs a vector ' € R? such that

|AAT Az’ — bljy < (14 €3) min |AAT Az — bl|o + €3]/b]|2
S

with probability 1 — d3.
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Algorithm 6 Algorithm for solving the regression min, ||AAT Az — b||s.

1: procedure FASTATTENTIONREGRESSION(A € R™*4 b c R" n € Z,,d € Zy,e3 € (0,1),63 € (0,1))

2: €1 < 0.1eg

3 51 < 53/2

4: by <+ FASTLINEARREGRESSION(A € R™*? b € R" n,d, ¢;,61) > by € RY
5: €3 < €3/Kk(A)

6: 0o 53/2

7 7' < FASTPSDREGRESSION(A € R™*4 by € RY n,d, €, 02)

8 return z’

9: end procedure

Proof. We define OPT as

OPT := min ||[AA" Az — b||.
z€R4

First, we use Algorithm 4 to solve
in || Ay — b||>. 33
min Ay — b (33)
Let y, denote the exact solution to this regression problem. By Lemma E.1, we can get 3/ € R? such that the
following holds with probability 1 — 41,
[Ay" = bll2 < (1+ €1) - min [[Ay — ]2
yeR4
< (1+¢)-OPT, (34)

where the last step follows from the AT Az might not be able to do a better job than minimizer y (in terms of
minimizing cost).

This step takes time

O((nd 4 d*) - log(1/e;) - log?(n/d1)).

By triangle inequality, we can show

vl = 11y" — v« + yll2
<Ny = yallz + llysll2- (35)

To bound the first term of Eq. (35), we have

ly" = yull2 < O(Ver) - omin (A) | Ay — bl
< O(\/a) : Umin(A)_l OPT7 (36)

where the first step follows from Lemma D.3 and the second step follows from Eq. (34).
To bound the second term of Eq. (35), we have

ly+ll2 = 1| ATbl2
< [ AT|| - [[bll2
S Umin(A)_l : Hb”Za (37)

where the first step follows from y, = AT, the second step follows from ||Az||s < ||Al|||z||2, and the third step
follows from ||Af|| = opmin(A4) 7.
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By plugging Eq. (36) and Eq. (37) into Eq. (35), we have

[15/1l2 < O(Ver) - Tumin(A) ™ OPT +ormin (A)~[[b]]2- (38)

Let by =y € R? and 2’ € R%. Then, using Algorithm 5, we solve

min ||AT Az’ — by||s.
z/€R?

By Lemma E.2, we find an 2’ € R? such that
AT Az’ = bs|l2 < eal|ba]2 (39)

holds with probability 1 — ds.
This step takes time

O((nd + d®) - log(k/e2) - log*(n/ds)).

Correctness.

To bound ||AAT Az’ — b||2, we have

|AAT Az’ —b|j; = ||AAT Az’ — Ay’ + Ay’ — b,
< [|AAT Az’ — Ay'||o + [ Ay — b2
< |JAAT Az’ — Ay'||]2 + (1 4 €) - OPT, (40)
where the first step follows from adding and subtracting the same thing, the second step follows from triangle
inequality, and the third step follows from Eq. (34). Let’s consider the first term of Eq. (40). We have
|AAT Az — Ay'[l2 = | A(AT Az’ — o)
< Al [|AT Az’ — ¢/l
< [|All - e2]ly/[|2
< JAll - &2 (O(Ver) - Omin(A) ™ OPT +omin(4) 7" [b]]2)
= [|A]l - €20(V/&r) - omin(A) ™ OPT + || Al - €20umin (A) 7|02, (41)

where the first step follows from simple algebra, the second step follows from || Az||2 < ||A||||z||2, the third step
follows from Eq. (39), the fourth step follows from Eq. (38), and the last step follows from simple algebra.

Then, to bound the first term of Eq. (41), we have

Al - €20(\/€1) - Tmin(A) " OPT < 0pax (A)omin(A) 1 - €20(y/e1) - OPT
= Omax(A)omin(4) 7! - O(\/e1€e2) - OPT
= O(y/e1e2)k(A) OPT
= O(y/e1€3) OPT, (42)

where the first step follows from || 4| < omax(A), the second step follows from the property of O(-), the third step
follows from the definition of x(A) (see Definition A.1), and the last step follows from ez = €3/k(A). Similarly, to
bound the second term of Eq. (41), we get

A - €20min(A) 7 [1bll2 < Omax(A)Tmin(A) ™" - e2]|b]l2
= K(A) - e2|b]|2
= e3]|bll2, (43)

where the first step follows from [|A|| < omax(A), the second step follows from the definition of k(A4) (see
Definition A.1), and the last step follows from e; = €3/k(A).
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Plugging Eq. (42) and Eq. (43) into Eq. (41), we get

|AAT Az’ — Ay'||s < O(v/eres) OPT +es b2 (44)

Therefore, by plugging Eq. (44) into (40), we have

|AAT Az’ —b|la < O(y/e1e3) OPT +es][bll2 + (1 +€1) - OPT
< (14 €3) - OPT +e3]|b|2,

where the last step follows from O(e;) < 1/10 and €; < €3/10. Therefore, we complete bounding ||AAT Az’ — b||5.
Running time.

The overall running time is

O((nd + d3) log(k/e3) - logZ(n/dg))

Failure probability.

By taking a union over two events, the failure probability is at most 6, + do = 3. O

F.2 Four Matrices

For four matrices, the algorithm will be alternating two PSD regressions.

Algorithm 7 Algorithm for solving mingcpa [|[AT AAT Az — byo.

1: procedure FOURMATRICES(A € R"*4 by € R4 n € Zy,d € Zy,eq € (0,1),64 € (0,1))
2 €g < 0.1es/K(A)?

3 0o 54/2

4: by <+ FASTPSDREGRESSION(A € R™*? by € R% n, d, €3, 05)

5 2’ < FASTPSDREGRESSION(A € R"*4 by € R%, n,d, €3, 02)

6 return z’
7: end procedure

Lemma F.2. Let A € R™*? be a matriz and by € R? be a vector. Let k denote the condition number of A.
Consider the regression problem

min ||ATAAT Az — by
reRd

There exists an algorithm that runs in time
O((nd + d?) - log(k/es) - log®(n/d4))
and outputs a vector ' € R? such that
|ATAAT Az — by|o < ea|ba]2
holds with probability 1 — d4.
Proof. First, we use Algorithm 5 to solve
mig AT Ay — ball2.
Let y,. denote the exact solution to this regression problem. By Lemma E.2, we get

[AT Ay' — bal2 < e2]|ball2. (45)
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This step takes time
O((nd + d®) - log(k/e3) - log*(n/dy)).
By triangle inequality, we can show that

o'l < 1y = ye + yell2
<y = yall2 + lysll2- (46)

To bound the first term of Eq. (46), we have
ly" = ysll2 < €2 - Tmin (A) 72 - [[ball2. (47)
where the last step follows from Lemma D.4. To bound the second term of Eq. (46), we have

lyellz = [[(ATA) byl
(AT AT - [[ball
< Omin(A) 72 - ||ball2s (48)

where the first step follows from the definition of y,, the second step follows from [|Az|2 < ||All||z]2, the last
step follows from Fact A.3. Then, plugging Eq. (47) and Eq. (48) into Eq. (46), we have

[y'[l2 < (€2 + 1)min(A) "2 [|ball2
< 20min(A) % [|ball2, (49)
where the first step follows from simple algebra and the second step follows from ey < 1. Let by = ¢/ € R% and
2’ € R%. Then, using Algorithm 5 again, we solve
min ||AT Az’ — by||y.

yER

By Lemma E.2, we can find 2’ € R? such that
JAT Az — bolls < ea[ball2 (50)
holds with probability 1 — do. This step takes time

O((nd + d®) - log(r/es) - log*(n/ds)).

Correctness.

To bound ||ATAAT Az’ — by]|2, we have

|ATAAT Az’ — byl = ||[ATAAT Az’ — AT Ay + AT Ay’ — by|»
< ATAAT Az’ — AT Ay || + ||AT Ay’ — byl
< [|ATAAT Ax" — AT Ay (|2 + €a][bal2 (51)
where the first step follows from adding and subtracting the same thing, the second step follows from triangle
inequality, and the third step follows from Eq. (45). Let’s consider the first term of Eq. (51). We have
|ATAAT Az’ — AT Ay' |2 = |ATA(AT Az’ — /)|
< ATA|- AT Az — /|2
< ATA| - eally’[l2
< ATA|l - €2 (20min(A) 72 [[ba]l2)
< Omax(A)” - €2 (20min(A) 7% [[bal|2)
< 2k(A)ez]|ball2, (52)

A
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where the first step follows from simple algebra, the second step follows from || Ax|2 < ||A||||x]|2, the third step
follows from Eq. (50), the fourth step follows from Eq. (49), the fifth step follows from Fact A.3, and the last step
follows from the definition of k (see Definition A.1).

Therefore, we complete bounding ||ATAAT Az’ — byl|o.
Running time.

The total running time is

O((nd + d®) - log(k/e4) - log*(n/dy)).

Failure probability.

By taking a union over two events, the failure probability is at most do + do = d4. O

G EVEN AND ODD POWER REGRESSION: COMPLETE ALGORITHM
We provide the complete algorithm and analysis for our even and odd power regressions via induction.

G.1 Induction Hypothesis and Step

In this section, we present our induction hypothesis and prove the induction step.

Lemma G.1 (Induction Hypothesis). Let C > 1000 denote a sufficiently large constant. If for all i € [k], we
have

o |[(ATA)b; — boll2 < €illbol|2

[bill2 < 20min(A) 2o 2

€; S O.5€i_1

e The running time is C - ((nd 4+ d®) - k - log(k(A)/ex) - log(1/6x))

The failure probability is 61 + 62 + - - - + 0
Then for i =k + 1, we have

o [[(ATA)KTb g —boll2 < €xtallboll2

[rr1ll2 < 20min (A) ~2FFD ||bg |

€pt1 < 0.5eg

o The running time is C - ((nd + d*) - (k + 1) - log(k(A)/ery1) - log(1/0141))

The failure probability is 61 + 02 + -+ - + dp41
Proof. Proof of Part 1.
Running our two matrices version of PSD regression, we can obtain byy; which is the approximate solution of
min ||AT Az — by|2
z€ERY
then we have
[AT Abgyy — billa < 0.Tepy1m(A) 2" |[br 2 (53)
The running time for this additional step is

0.1C - ((nd + &) - log(k(A)* /eg 1) - Iog? (n/611)).
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We have
(AT A byrr —bolla = [[(AT A by — (AT A) by + (AT A) by — bol
< AT A bggq — (AT A b2 + [[(AT A)* by — bol|2
= [[(AT AP (AT Abgia = br)ll2 + [[(ATA)* by — boll2
< (AT A)F|| - [ AT Abgry — bilz + [[(ATA) by — bolla
< (ATAYM| - AT Abgrr — bell2 + exlboll2

= Tmax(A)*" - [|AT Abjy1 — bel|2 + exlbo]l

Tmax(A)*F - 0.1ex11/(A) 72 |[brl2 + ex[|boll2

0-2€11[bol[2 + €xllboll2

ex+1/[boll2, (54)
where the first step follows from adding and subtracting the same thing, the second step follows from the triangle
inequality, the third step follows from simple algebra, the fourth step follows from ||Az||2 < ||Al|||z]|2, the fifth
step follows from the assumption in the Lemma statement, the sixth step follows from Fact A.3, the seventh step

follows from Eq. (53), the eighth step follows from the assumption in the Lemma statement, and the last step
follows from € < 0.5€j41.

Proof of Part 2.
We have

INIAIA

(AT A b fla < [[(AT A bgyy — boll2 + [|boll2
< (1 + ery1)lboll2
< 2[bol|2, (55)

where the first step follows triangle inequality, the second step follows from Part 1, and the third step follows
from €41 < 1.

Thus,
[brrllz < [[((ATAFH T (AT A byl
< AT MY (AT A b 2
< (AT AP 2o |
< 2O-mirl(14)_2(k+l)||b0||27

where the first step follows from ((AT A)*+1)=1. (AT A)*+1 = I the second step follows from ||Az|y = ||Al|||z||2,
the third step follows from Eq. (55), and the last step follows from Fact A.3.

Proof of Part 3.

We can choose € to satisfy these conditions. Thus, it automatically holds.
Proof of Part 4.

The proof follows by adding the time from the previous step and this step.
Proof of Part 5.

It follows from taking a union bound. O

G.2 Even Number of Matrices Regression

In this section, we present and prove our main result for even power regression.

Theorem G.2. Let A € R™*? be a matriz and b € R? be a vector. Let k denote the condition number of A.
Consider the regression problem

min [|(ATA)z — b|s.
zER4
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Let eqnar € (0,0.1) denote the accuracy parameter. Let dana € (0,0.1) denote the failure probability. There exists
an algorithm that runs in time

O((nd + d®) - j - log(k/€ginar) - log” (jn/Sginal))
and outputs a vector ' € R? such that
I(ATAY 2"~ bll2 < eqnar[bll2
holds with probability 1 — dgpnal-
Proof. The proof is a standard induction.

Base case:

When j = 0, we have

min |ATA(AT A)%2 — b|y = min |AT Az — b]|s.
zER? z€R

The base case follows from Lemma E.2.
Inductive case:
This follows from Lemma G.1. O

G.3 0Odd Number of Matrices Regression

In this section, we analyze the odd power algorithm with its correctness and running time.

Theorem G.3. Let A € R"*? be a matriz and b € R™ be a vector. Let k denote the condition number of A.
Consider the regression problem

in |A(ATAYz —b|2.
min [ A(A" Az — b2

Let €tinal € (0,0.1) denote the accuracy parameter. Let dgna) € (0,0.1) denote the failure probability. There exists
an algorithm that runs in time

O((nd + d®) - j - 1og(k/eginar) - 10g” (jn/Snal))
and outputs a vector x' € R* such that
IACAT A)Y 2" — b2 < egnall|b2
holds with probability 1 — dgpa-

Proof. For convenience, we use b,qq to denote b. We define OPT as

OPT := min ||A(AT Az — boql2-
rcRd

First, we use Algorithm 4 to solve

in || Ay — boadl2- 56
min Ay — boaall: (56)

By Lemma E.1, we can get 3’ € R? such that the following holds with probability 1 — 6y,
[AY" — bodall2 < (1 + €1) - min [|Ay — boqal|2
y€ERd

< (1+¢)-OPT, (57)
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where the last step follows from the AT Az might not be able to do a better job than minimizer y (in terms of
minimizing cost). This step takes time

O((nd + d*) -log(1/e1) - log*(n/d1)).
By triangle inequality, we can show

o' llz = 11" — ys + vll2
<Ny = yell2 + lysll2- (58)

To bound the first term of Eq. (58), we have

1Y — yull2 < O(Ve1) - omin(A) ™ | Ays — boaall2
< O(Ve1) - omin(4) "' OPT, (59)
where the first step follows from Lemma D.3 and the second step follows from Eq. (57).
To bound the second term of Eq. (58), we have

lyll2 = | ATboaall2
< IAT]| - [[boaall:
< Omin(A) "+ [[boadll2, (60)

A

where the first step follows from y, = Afbyqq, the second step follows from ||Az||s < ||Al|||z||2, and the third step
follows from ||AT|| = omin(A4)7L.

By plugging Eq. (59) and Eq. (60) into Eq. (58), we have

15112 < O(Ve1) - Tmin (A) ™" OPT +0min(A) ™ [[boaall2- (61)

Let beven = 3 € R? and 2’ € R?. Then, using Algorithm 1, we solve

i T AV —
nin, (A" A) 2" — beven||2-

By Lemma E.2, we find an 2’ € R? such that

‘(ATA)jxl - beven||2 < 6even”bevenl|2 (62)

holds with probability 1 — ds.
This step takes time

O((nd + dg) - j - log(k/€even) - Ing(n/(Seven))~
Correctness.
To bound ||A(AT A) 2’ — boqq|2, we have

|A(AT AY 2" — boaallz = ||A(AT A)P 2’ — Ay’ + Ay’ — boadl2
< |A(ATAY 2" — Ay'||2 + | Ay — boaall2
< JA(ATA)Y 2’ — AY'|2 4+ (1 + 1) - OPT, (63)

where the first step follows from adding and subtracting the same thing, the second step follows from the triangle
inequality, and the third step follows from Eq. (57). Let’s consider the first term of Eq. (63). We have

IACAT A) 2" — Ay'||2 = [A((ATA) 2" = 3/)]
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< JlAll- (AT AY 2" — o/l

< Al - €evenlly/ll2

< Al €even (O(V/€D) - Omin(A) ™" OPT +0umin (A) ™ [[bodall2)

= [[A[l - €evenO(Ve1) - Umin(A)_l OPT +[|A] - 6evemgmin(A)_l”bodd”% (64)

where the first step follows from simple algebra, the second step follows from || Ax|2 < ||A||||x]|2, the third step
follows from Eq. (62), the fourth step follows from Eq. (61), and the last step follows from simple algebra.

Then, to bound the first term of Eq. (64), we have

||A|| : 6evenO(\/a) : O—min(A)71 OPT S O—max(A)Umin(A)il ° 6evenO(\/a) : OPT
= Umax(A)Umin(A)_l . O(\/aGeven) -OPT
= O(y/€1€even)k(A) OPT
= O(\/aeﬁnal) OPT; (65)
where the first step follows from [|A|| < omax(A), the second step follows from the property of O(-), the third

step follows from the definition of k(A) (see Definition A.1), and the last step follows from €even = €fina1/K(A).
Similarly, to bound the second term of Eq. (64), we get

||AH : Gevenomin(A)_leodd||2 < Umax(A)amin(A)_l . 6even”boddHQ
= H(A) : 6even||bodd||2
6ﬁnal”bodd”% (66)

where the first step follows from ||A|] < omax(A), the second step follows from the definition of k(A) (see
Definition A.1), and the last step follows from €eyon = €final/<(A).

Plugging Eq. (65) and Eq. (66) into Eq. (64), we get

||A(ATA)j:E/ - Ay/HQ < O(\/aﬁﬁnal) OPT +€ﬁnal||bodd||2. (67)

Therefore, by plugging Eq. (67) into (63), we have

HA(ATA)]:EI - bodd||2 S O(\/aeﬁnal) OPT +€ﬁnaleodd”2 + (1 + 61) -OPT
< (1 + 6ﬁnal) -OPT +€ﬁnal||bodd||2;

where the last step follows from O(e;) < 1/10 and €; < €gna1/10. Therefore, we complete bounding | A(AT A)z" —
bodd |2

Running time.

The overall running time is

O((nd + ) - j - 10g(/€gina) - 10g° (1/8gina1))-

Failure probability.

By taking a union over two events, the failure probability is at most 1 + deven = Ofinal- O

H ATTENTION KERNEL REGRESSION

In this section, we demonstrate algorithms for solving attention kernel regressions, inspired by algorithms for
Gaussian kernel regression. We develop novel algorithms when the sketch dimension is smaller than n.

H.1 Fast Subspace Embedding for Tensors

We need the following tools from prior results. The first result regards a class of subspace embeddings whenever
the target matrix has certain tensoring structure.
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Theorem H.1 (Theorem 3 in Ahle et al. (2020)). For every positive integers p,d,n, every €, 3 > 0, there exists
a distribution on linear sketches IIP € R™*% such that

1. If
m = Q(pB?),
then IIP 4s an (n,dP,e,1/ poly(n))-SE, where 8 is an upper bound on the rank of the target matriz.
2. If
m = Q(pe?),
then II? has the FAMP(n, €, 1/ poly(n)) (Definition C.5).

Moreover, in the setting of 1., for any X € R¥*™ if A € RY*" is the matriz whose columns are obtained by a
p-fold self-tensoring of each column of X and rank(A) = B, then the matriz IIP A can be computed in time

O(pnm + p*/? B nnz(X)).

The next result provides a formal statement on the quality of SRHT matrix.
Lemma H.2 (Theorem 2.4 in Woodruff (2014)). Let T be an SRHT matrixz defined in Definition C.1. If

m = O(e~*Blog(nd/5)),
then T is an (n,d,€,8)-SE where B is an upper bound on the rank of the target matric.

We review an algorithm due to Song et al. (2021a).

Algorithm 8 Algorithm of Song et al. (2021a).

1: procedure TENSORSKETCHVIALIMRAND(z € RY, p € (1,00), S € Rmxm* T ¢ R™xd) > Theorem H.4
and H.5

2: q + 2llogp]

3: wo < Tx > T can be SRHT (Definition C.1)
4: for [ =1 to log, ¢ do

5: wy + S(wP?) > S can be TensorSRHT (Definition C.2)
6: end for

7: > Let b be the binary representation of p, and let £ = {i : b; = 1,7 € {0, ...,log, p}}
8: > Let z = wj, where j is the lowest bit of b where b; =1
9: for i in F\ {j} do

10: z=S(z®w)

11: end for

12: return z >z e R™

13: end procedure

Before stating the guarantees of this algorithm, we need some auxiliary definitions.

Definition H.3. Let S € R™ — R™ and T : RY — R™ be base sketches. Let X € RE*™ be an input matriz. We
define Z(S,T, X) to be the matriz for which we apply Algorithm 8 on each column of X, with base sketches S
and T'.

Theorem H.4 (Theorem 4.8 in Song et al. (2021a)). Let
S:R™ 5 R™
be an (n,d,e,0)-SE for degree-2 tensors and
T:R*—R™

be an (n,d,e,0)-SE. Let p be a positive integer, Z = Z(S,T, X) be the matriz as defined in Definition H.3. Then
for any y € R™, we have

(L= [ XPylla < || Zyll2 < (1 + €)% - | XPy]lo.
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The next theorem states Algorithm 8 can be quickly applied to a structured matrix. We slightly modify their
guarantee to depend on the rank of the matrix.

Theorem H.5. Let p € Zy and let €,5 € (0,1). For every X € R4X" there ewists a distribution over oblivious
linear sketches IT : R — R™ such that if

m = 0(e?fp?),
where 3 is an upper bound on the rank of X®P. Then, we have

(HX®p)THX®” (X®p)TX®p
Moreover, using Algorithm 8,
nx® = 2(S,T,X)
can be computed in time
O(nd + e *npp?).

Utilize this result, we prove a result regarding exponential kernel.

Theorem H.6. For every r > 0, every positive integers n,d, and every X € R¥™ such that ||z;||2 < 7 for all
i € [n], where x; is the i-th column of X, suppose K € R™*"™ is the attention kernel matriz i.e.,

K= e{Tizr)
for all j,k € [n]. There exists an algorithm which computes Wy(X) € R™*™ in time
O(¢®¢*nf + ndlog(nd/ed))

such that for every e > 0,

1

5,5[(1 — K < (Wy(X))TWy(X) = (1+e)K] > 1~ poly ()’

where
=0(¢°/¢)
and
g = O(r? +log(n/e))
and B is an upper bound on the rank of the following sequence of matrices:

{X,X®2 . X%

Proof. Note that the Taylor series expansion for kernel K gives

>0 X®l TX®Z
K=

Il
o

Let

g=C(r* +log(n/e))

for a sufficiently large constant C.
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Let
a NT yol
B (xehHrx
Q= Z i
1=0
be the first g terms of K. By triangle inequality, we have:

X®l TX®I
1K -qp< 3 A
I>q ’
(X®I)TX®I
S,

I>q

21

<>
I>q

€
~ LK
<],

IN

where the first step follows from the definition of @, the second step follows from [|A|| < ||A||r for all matrix A,
the third step follows from the upper bounding the Frobenious norm, and the last step follows from the choice of
q and ||K|| < nexp(r).

For each term (X®)T X®! in @, we run Algorithm 8 to approximate X ®!.

Let Z; € R™*™ be the resulting matrix Z(S,T, X ), where

my = Qe 2B1%log? (nd/ed) log(n/6)).

Then by Theorem H.5, we get
(1—e/2)(X®HTX® < (M XPHTIIX®! < (14 €/2)(X®)T X% (68)

with probability at least 1 — %.

Moreover, Z; can be computed in time

n

O(e™2npI? - log*(nd/ed) ~log((S ).

Our algorithm will simply compute Z; from | = 0 to ¢, normalize each Z; by \%
More precisely, the approximation W,(X) will be

Z

Wy(X) = (@?:o\ﬁ

);

Notice Wy (X) € R™*™.
The following holds for Wy (X)W, (X):

q T
AV
W(X)TWy(X) =Y lzv .
1=0 ’

By combining terms in Eq. (68) and using a union bound over all 0 <[ < ¢, we obtain that with probability at
least 1 — &, we have the following:

(1-¢/2)-Q= Wg(X)TWg(X) =(1+€/2)-Q.

Thus, we conclude that

(1—€) - KXWy (X)TWy(X) = (1+¢) K.
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Note the target dimension of W, is

q
m = 2{:7ni
i=0
= Q(e 2ng® - log®(nd/ed) - log(n/d)),
where the first step follows from the construction of W, (X) and the second step follows from simple algebra.

Also, by Theorem H.5, the time to compute W, (X) is

q
Dt
j:

0
= O(e?nBq> - log*(nd/ed) - log(n/d)).

t

Notice that we will have to add the term ndlog(nd/ed) due to line 2 of Algorithm 8 when applying the SRHT to
X. However, we only need to perform this operation once for the term with the highest degree or for the terms
with lower degree that can be formed by combining nodes computed with the highest degree. Therefore, the final
runtime is:

O(e 2nBq® - log?(nd/ed) - log(n/8) 4+ ndlog(nd/ed)).

H.2 Main Result

Theorem H.7 (Formal version of Theorem 1.6). Let G € R™*"™ be the Attention kernel matriz (Definition B.2)
for X € R¥™*™ and factor G = ZT Z. Let k denote the condition number of Z. If we assume that for all i € [n],
lzill2 < 1, then Algorithm 3, with probability at least 1 — &, computes an T satisfying the following:

1GZ —yll2 < €|lyllz.

Moreover, let
m = O(e 2B log?(nd/ed) log(n/9)),
where B is an upper bound on the rank of the following sequence of matrices:
{X,X®2 ... X%,
the vector T € R™ can be computed in time

O(mn + e *nd +m?).

Proof. Throughout the proof, we will set € = ¢/4. If m > n, then we can invoke Theorem 6.6 of Song et al.
(2021a), which readily provides the desired result. So we assume m < n. By Theorem H.6, we can compute an
e-approximation to Z and Wy(X) in time

O(e?np - poly(log(nd/ed)) + ndlog(nd/ed))

If we solve the problem:

Wy (X) Wy (X)z — yll2

min
TzER™

with solution 7, then we have

Wy (X)TWy(X)T —yll2 < (1+7) Inin 127 Zx — yll2.
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This means the optimal solution for the sketched problem gives a e-approximation to the optimal solution to
the original problem. We will now show that Algorithm 3 computes the desired solution. By Lemma H.2, with
probability at least 1 — §, for any = € R™, we have:

IS Wy(X)" zllz = (1 £ e0) - [| Wy (X)) 2.
—— ——

<~
SXN pxm nxm
Note that from Algorithm 3, we have
S Wy(X)"'= U » V' (69)
~— L N
SXn nxm SXm mXmmXm
R = U 7?2 (70)
~ =
sXm SXMm mXm

We know that

< 26(W, (X)), (71)

where the first step follows from Eq. (69) and Eq. (70), the second step follows from U U = I, the third step
follows from Fact A.3 and V is an orthonormal basis, the fourth step follows from the Fact A.3, and the last step
follows from S is a (n,d, €9, §)-SE (see Lemma H.2).

We have
RK(RTS) < K(RTSW,(X)T) - 5(Wy (X))
< 2R(W,(X))? (72)
where the first step follows from Fact A.3, the second step follows from Eq. (71).

For any unit vector =z € R™, from the above formulation, we know that

|SW, (X)W, (X)ST Rz|lo = |[USVTVSUTUS 22|,
= |UZEE 22|,
= U]l
= [zl
=1, (73)

where the first step follows from Eq. (69), the second step follows from V'V =T and U'TU = I, the third step
follows from simple algebra, the fourth step follows Fact A.3, the last step follows from |z||2 = 1.

We need to obtain a bound on ||[W,(X)TW,(X)S " Rx||:

Wy (X)W, (X)STRz|l2 = (1 £ €)™ - |SWy(X) W, (X)ST Rz|2
=(1+¢) !
=1+ 2,

where first step follows from S is (n,d, €y, d)-SE (see Lemma H.2) of W,(X)T, the second step follows from
Eq. (73), the third step follows from ¢y € (0,0.1).

Now, pick €g = 0.1 and solve the following regression problem:

min || RT S W, (X)"W,(X) ST R z—R" S y|o. (74)
2ER™ N~ N~ N~ N~ N~
mxs sXn nxm mxn nxs sxXm mxXs sXn
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For convenience, we define ® € R™*™ as follows

®:=RTSW,(X) ' W,(X)STR.

Notice that Algorithm 3 implements gradient descent. Using Lemma D.2, after ¢ = log(1/€) iterations, we have
1@ (2t — 2%)lla <€ [[® - (20 = 27)2, (75)
where
=0 'RTSy (76)
is the optimal solution to Eq. (74). Define

zy:= ST Rz (77)

We will show the following for z; (in Eq. (77)):

Wy (X) "Wy (X)ae — yll2 < wellyllo-

We get

|RTSW,(X) W,y(X)z, — BT Sylla = |1© - 2 — R Sylla

[~ (2 — 2%)]l2

€ [|2(z0 = 2)ll2

€[z

e |IRT Syl

€ Omax(RTS) - [lyll2, (78)
where the first step follows follows from definition of ® and Eq. (77), the second step follows from Eq. (76), the

third step follows from Eq. (75), the fourth step follows from zg = 0,,, the fifth step follows from the definition of
z*, the last step follows from Fact A.3.

On the other hand,

IN

IN

IRTSWo(X) T Wy(X)z: — RTSyll2 = |RT S(Wy(X) Wy(X)ae — )2
> Ouin(RTS) - [ We(X) T Wy(X)ze = yll2, (79)
where the first step follows from simple algebra and the second step follows from Fact A.3.
Putting everything together, we get
Wy (X) Wy (X)a, —yll3 < e(RTS)lyll2
< 26(Wy(X)€llyll2,
where the first step follows from Eq. (78) and Eq. (79), the second step follows from Eq. (72).
This means by setting the number of iterations to
t = log(k(W, (X))/e),
we obtain

Wy (X) T Wy(X)ae —yll2 < 2€]yll2. (80)

Now, recall that for any z,y € R™, we have,

W (X)W (X)z —ylla < 1+ 2 Zz — yll2.
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As a consequence,

12T Zae — ylla < (14| Wy(X) "Wy (X)z: — yll2
(1 +e)2elyll2
ellyll2,

IAINA

the second step follows from Eq. (80), and the third step follows from € < 0.1e. Now we analyze the runtime.
o Computing Wy (X), by Theorem H.6, takes time
e ?nf - poly(log(nd/ed)) + ndlog(nd/es).
o Applying S to Wy(X), using the FFT algorithm, takes time
e 2np3 - poly(log(nd/ed)).
e The SVD of SW,(X)" can be computed in time

(€728)* - poly(log(nd/e/5))

The cost of each iteration is bounded by the cost of taking a matrix-vector product, which is at most 5(715 /€2),
and there are O(log (k/€)) iterations in total. Thus, we obtain a final runtime of

e ?nf - poly(log(nd/ed)) - log(k/€) + (nd + (¢ 2B)“) - log(nd/ed).
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