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Plastic production over the years
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Adapted from: World Economic Forum ,The New Plastics Economy: Rethinking the Future of Plastics’, 2016.
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Polyolefins — An important feedstock from a recycling perspective

PUR(0.4%) Others (0.2%)

* Practical Recycling: Key Components

* Feedstock Supply in MSW

o POs: Predominant component (~ 60% of plastic in MSW) (22.6%)

. (30.3%)
* Reprocessing of Recycled Stream

o POs: Easy to Process
o Minimal degradation
o Nodrying required

{18;495]

(20.8%)
 Market for Recycled Stream

Challenge: Need for increased market demand for POs
Plastic use in the packaging industry
Our aim is to find more avenues of use for recycled POs throughout the world in 2015

Rabnawaz et al, Green Chem., 2017, 19, 4737
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Vitrimers can bridge the gap among commodity thermoplastics, engineering
polymers and thermosets via thermally reversible crosslinking
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Dynamic Covalent Bonds
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Associative mechanism A B + q - A; N
(vitrimers) ~— A B C < B ¢
-C +A
Dissociative mechanism A
(vitirmer - like)

Constant
Crosslink-Density

Materials Today, 2021, 51, 586-625; Polymers 2020, 12, 1660.
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Our approach to vitrimers

Novelty

Single-step solvent-free Use of reactive extrusion
manufacturing of vitrimers

Maximize the storage modulus at Use of surface energy modifiers to
high temperatures tailor the grafting density
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o~ The chemistry where a low surface energy
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The chemistry chosen - Transesterification
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One-pot extrusion with a diepoxy crosslinker

/N —HDPE
Q =MA
() =DM

v = 1,4-Butanedio
diglycidyl ethe

Transesterification based Vitrimers

NIng
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Formulations

Maleic Dimethyl Dicumyl

Anhydride, maleate, peroxide, | Catalyst | Crosslinker

MA (mol %) | DM (mol %) | DCP (mol %)
m 0 0 0 0 0
m 0.14 0.00 0.01 0.21 0.18
0.14 0.10 0.01 0.21 0.18
m 0.14 0.19 0.02 0.21 0.18
m 0.29 0.00 0.01 0.21 0.36
m 0.29 0.19 0.01 0.21 0.36
m 0.57 0.00 0.02 0.21 0.71
m 0.57 0.39 0.04 0.21 0.71

All the sample names used in this study are designated by the weight percentage of the grafting agent. MA, DM, denotes a
sample of HDPE grafted with 2 wt% maleic anhydride (MA) and 2 wt% dimethyl maleate (DM) crosslinked with diepoxy crosslinker
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Surface energy of HDPE, 2MA-HDPE, and 2MA2DM-HDPE

74.1° £ 0.2°

44.0° £ 0.1°

HDPE 2 MA - HDPE 2 MA 2 DM - HDPE
TSE =35.8 £ 0.0 dynes/cm =45.2 £ 0.1 dynes/cm =41.2 + 0.1 dynes/cm

A) Water droplet images and their contact angles on HDPE, 2MA-HDPE, and
2MA2DM-HDPE, respectively.

B) Diiodomethane droplet images and their contact angles on HDPE, 2MA-HDPE,
and 2MA2DM-HDPE, respectively.
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Dynamic Mechanical Analysis

The maximum crosslinking density for MA, DM, (3.52x10~°> mol/cm?3) is almost
twice that of MA, (1.81x107°> mol/cm3).

Melt Flow Rate (MFR) at
E' at 453.15K Crosslinking density v
Sample code 463.15 K (g /10 min)
(MPa) (x 10~ mol/cm3)
TN 000 0.00 9.015 £ 0.470
m 0.15 1.29 0.524 + 0.028
BT o 1.59 0.591  0.021
| ma.DM,  [EERT: 1.58 0.619 £ 0.014
. wma, YT 1.29 0.535  0.009
BT o 1.30 0.509 £ 0.008
A, YR 1.83 0.116  0.007
_ wiaom, PN 3.52 :

14
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Tensile properties

Two important factors that play contrasting roles:

s 900 1) A decrease in the crystallinity of the polymer
§:§ A 800 B leads to a decrease in the tensile strength and
—_ — 700
D35 £ c0o modulus.
E 0 '§'5UG
a2 3 400 2) An increase in the crosslinking density leads to
§1s S0 an increase in the tensile strength and modulus.
o 200
F- 1: 100
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a
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Tensile properties (continued)

25

Impact Strength (J/cm)
5 & S
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« Both crosslinking and crystallinity significantly influence the impact strength.

* MA, which had the lowest crystallinity and highest crosslinking density,
exhibited a ~2.8-fold increase relative to the control sample (unmodified

HDPE).

1‘“'[[

HDPE MAO0.5 MAO.5 MAO0.5 MA1l
DM0.5 DM1 DM1
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Differential Scanning Calorimetry (DSC)

m Crystallinity decreases as grafting i

increased because MA and DM hinder
192.5 205.8 5.6 133.7 112.3 chain packaging.

= Crosslinking also reduces crystallinity

189.5 204.0 64.5 133.0 117.6
because it lowers the chain mobility,

186.3 1916  63.5 1334 115.1 thereby preventing the chains from
packing into ordered crystalline
179.2 188.6 61.0 132.8  116.3 arrangements.

= Broad heating and cooling curves indicate

that these crosslinks are well-distributed,
178.4 181.6 608 1362 1135 and that there are differences in crystallite
size distribution in the polymer.

186.8 199.2 63.6 138.2 113.5

178.1 185.0 60.7 136.1 114.3

155.5 159.4 53.0 134.5 110.1

18
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Melt-reprocessing experiments

1005
MA, DM, Rep 1 5 B —HDPE
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REPROCESSING 1
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x x 40 60 80 100 120 140 160 180 200 220

: A, DM, Rep 2 Temperature (°C)

1. Making pellets
2. Reactive extrusion

Storage Modulus (MPa)
o
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Thermogravimetric Analysis Fourier-Transform Infrared
Spectroscopy
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Conclusion

« Demonstrated a solvent-free and continuous approach to produce HDPE-based vitrimers.

 The interplay of the two grafting agents is an important aspect of this study because MA acted
as a reactive grafting agent that promoted crosslinking while DM served as a co-agent which
helped to lower the surface energy, thereby facilitating the grafting of MA to HDPE.

« Significant enhancement in tensile stress at break was observed for our HDPE-based
vitrimers, while the tensile stress at yield was similar to that of unmodified HDPE. The impact
resistance also improved as the crosslinking density increased and, in some cases, increased
by 2.8 times compared that of the neat HDPE.

« Storage modulus beyond the T, confirmed the presence of a crosslinked network. The
crosslinking density increased two-fold for MA,DM, as compared to MA, because of the better
grafting of MA thanks to the lower surface energy provided by DM.

 Crystallinity decreased as the crosslinking and grafting increased. The vitrimers showed

excellent thermal stability.
In review - ACS Applied Polymer Materials 21
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