
Convex Minimization with Integer Minima in Õ(n4) Time∗

Haotian Jiang† Yin Tat Lee‡ Zhao Song§ Lichen Zhang¶

Abstract
Given a convex function f on Rn with an integer minimizer, we show how to find an exact minimizer

of f using O(n2 log n) calls to a separation oracle and O(n4 log n) time. The previous best polynomial time
algorithm for this problem given in [Jiang, SODA 2021, JACM 2022] achieves O(n2 log log n/ log n) oracle

complexity. However, the overall runtime of Jiang’s algorithm is at least Ω̃(n8), due to expensive sub-routines
such as the Lenstra-Lenstra-Lovász (LLL) algorithm [Lenstra, Lenstra, Lovász, Math. Ann. 1982] and random
walk based cutting plane method [Bertsimas, Vempala, JACM 2004]. Our significant speedup is obtained by a
nontrivial combination of a faster version of the LLL algorithm due to [Neumaier, Stehlé, ISSAC 2016] that
gives similar guarantees, the volumetric center cutting plane method (CPM) by [Vaidya, FOCS 1989] and its
fast implementation given in [Jiang, Lee, Song, Wong, STOC 2020].

For the special case of submodular function minimization (SFM), our result implies a strongly polynomial
time algorithm for this problem using O(n3 log n) calls to an evaluation oracle and O(n4 log n) additional
arithmetic operations. Both the oracle complexity and the number of arithmetic operations of our more general
algorithm are better than the previous best-known runtime algorithms for this specific problem given in [Lee,
Sidford, Wong, FOCS 2015] and [Dadush, Végh, Zambelli, SODA 2018, MOR 2021].

1 Introduction

The problem of minimizing a convex function f over Rn, assuming access to a separation oracle SO, has
gained considerable interest since the seminal work of Grötschel, Lovász, and Schrijver [GLS81, GLS88]. The
separation oracle SO is such that when queried with a point x ∈ Rn, it returns “YES” if x minimizes f , or else
a hyperplane that separates x from the minimizers of f . One popular and successful approach for this problem
is the cutting plane method, which dates back to the center of gravity method, independently discovered by
Levin [Lev65] and Newman [New65] in the 1960s. Since then, cutting plane methods have undergone substantial
developments and improvements over the past six decades in terms of its oracle complexity1 and runtime efficiency
[Sho77, YN76, Kha80, TKE88, NN89, Vai89, AV95, BV04, LSW15]. In particular, the current fastest cutting
plane method is due to Jiang, Lee, Song, and Wong [JLSW20].

Despite outstanding progress on the cutting plane method, direct application of these methods for minimizing
a convex function f on Rn via a separation oracle typically results in weakly-polynomial time algorithms, with the
oracle complexity and runtime depending logarithmically on the accuracy parameter ε > 0 and the “size”2 of the
function f .

A fundamental but extremely challenging question is to design a strongly-polynomial time algorithm that
efficiently computes an exact minimizer of f on Rn, with its oracle complexity, number of arithmetic operations,
and bit size all being polynomial only in the dimension n of the problem and not dependent on the “size” of
the function f . For example, it remains a major open problem to design a strongly-polynomial time algorithm
for solving linear programs (LPs). This problem is widely known as Smale’s 9th problem in his list of eighteen
unsolved mathematical problems for the 21st century [Sma98]. In particular, recent breakthroughs on LP solvers
are all weakly-polynomial time algorithms, e.g., [LS14, LS19, CLS19, BLSS20, JSWZ21]. Despite this obstacle,
strongly-polynomial time algorithms for LPs are known under additional structures, such as LPs with at most
two non-zero entries per row [Meg83, AC91, CM91] or per column [Vég14, OV20] in the constraint matrix, LPs

∗The full version of the paper can be accessed at https://arxiv.org/abs/2304.03426
†jhtdavid96@gmail.com. Microsoft Research.
‡yintat@uw.edu. University of Washington and Microsoft Research.
§zsong@adobe.com. Adobe Research.
¶lichenz@mit.edu. Massachusetts Institute of Technology.
1The oracle complexity of an algorithm is the number of oracle calls made by the algorithm in the worst case.
2Depending on the specific problem setting, the “size” of the function can be its range, Lipschitzness, condition number, length of

binary representation, etc.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3659

D
ow

nl
oa

de
d 

07
/1

9/
24

 to
 1

08
.2

6.
22

2.
21

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://arxiv.org/abs/2304.03426


with bounded entries in the constraint matrix [Tar86, VY96, DHNV20], and LPs with 0-1 optimal solutions
[Chu12, Chu15].

For minimizing a general convex function f with access to a separation oracle, it is impossible to design
a strongly-polynomial time algorithm unless the function f satisfies additional combinatorial properties. One
natural and general assumption, satisfied by many fundamental discrete optimization problems such as submodular
function minimization (SFM), maximum flow, maximum matching, and shortest path, is that the convex function
f has an integer minimizer. Under the integer minimizer assumption, Jiang [Jia21, Jia22], improving upon the
classical work of Grötschel, Lovász, and Schrijver [GLS81, GLS88], recently gave a strongly-polynomial time
algorithm3 for finding an exact minimizer of f using O(n(n log log n/ log n+logR)) calls to SO, where R = 2poly(n)

is the ℓ∞-norm of the integer minimizer.
In fact, Jiang’s general result implies significant improvement to the oracle complexity of strongly-polynomial

time algorithms even for the special problem of SFM (see Subsection 1.2 for more details). Despite its favorable
oracle complexity, Jiang’s algorithm actually requires Ω(n8) additional arithmetic operations to implement. This
additional part of the runtime is prohibitively large for its application to SFM; other state-of-the-art strongly-
polynomial time algorithms for SFM [LSW15, JLSW20, DVZ21] have worse oracle complexity but use much fewer
arithmetic operations.

Unlike the special case of SFM, for the more general problem of minimizing a convex function with an integer
minimizer, the Ω̃(n8) arithmetic operations in Jiang’s algorithm is the state-of-the-art for strongly-polynomial
time algorithms with near-optimal oracle complexity. The lack of a fast algorithm for the general problem, as well
as the tradeoff between smaller oracle complexity and fewer additional arithmetic operations for state-of-the-art
SFM algorithms, naturally lead to the following question:

Can we minimize a convex function with integer minimizers using a separation oracle in a way that is both
oracle-efficient and requires much fewer arithmetic operations?

In this paper, we provide an affirmative answer to the above question. Specifically, we give an algorithm that
minimizes a convex function with an integer minimizer using only O(n2 log(nR)) separation oracle calls and an
additional O(n4 log(nR)) arithmetic operations. When applied to SFM, our result implies an algorithm that makes
O(n3 log n) evaluation oracle queries and uses an additional O(n4 log n) arithmetic operations. This improves, for
both the oracle complexity and the additional arithmetic operations, the state-of-the-art strongly-polynomial time
SFM algorithms in [LSW15, DVZ21]. Compared with Jiang’s algorithm [Jia22], despite having a slightly bigger
oracle complexity, the additional number of arithmetic operations used by our algorithm is significantly lower by a
Θ̃(n4) factor.

1.1 Our Result The main result of this paper is a much more efficient algorithm for minimizing convex functions
with integer minimizers:

Theorem 1.1. (Main result, informal version of Theorem 5.1) Given a separation oracle SO for a
convex function f on Rn. If the set of minimizers K∗ of f is contained in a box of radius R and all extreme points
of K∗ are integer vectors, then there exists a randomized algorithm that outputs an integer minimizer of f with
high probability using

• O(n2 log(nR)) queries to SO, and

• O(n4 log(nR)) additional arithmetic operations.

The strong assumption that all extreme points of K∗ are integer vectors guarantees that the algorithm outputs
an integer minimizer of f . In fact, this assumption is necessary for the algorithm to efficiently compute an integer
minimizer (see Remark 1.4 in [Jia22] for an example). Without such an assumption, the algorithm can still output
a minimizer, though not neccessarily an integer one, with the same guarantee as in Theorem 1.1 (see Remark 1.5
in [Jia22]).

Previously, under the same assumptions as in Theorem 1.1, Jiang [Jia22] gave an algorithm that computes an
integer minimizer of f using O(n(n log log n/ log n+ logR)) separation oracle calls, which is better than the oracle

3In fact, Jiang [Jia21, Jia22] gave a family of algorithms for this problem via an algorithmic reduction to the shortest vector problem.
For instance, he gave an algorithm that achieves a nearly-optimal oracle complexity of O(n log(nR)) but using exponential time.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3660

D
ow

nl
oa

de
d 

07
/1

9/
24

 to
 1

08
.2

6.
22

2.
21

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



complexity in Theorem 1.1. However, his algorithm uses an enormous Õ(n8) number of additional arithmetic
operations because of the following reasons: to obtain a subquadratic oracle complexity, [Jia22] resorts to the
random walk based cutting plane method by Bertsimas and Vempala [BV04] to work directly with the polytope K
formed by all the separating hyperplanes output by SO. Unfortunately, the sampling approach in [BV04] requires
Ω(n6) arithmetic operations to perform one iteration of the cutting plane method. In addition, to guarantee that
the sampling can be performed efficiently, [Jia22] has to maintain two “sandwiching” ellipsoids, contained in and
containing the polytope K respectively, which requires additional computational cost to preserve after reducing
the dimension of the problem.

Another computational bottleneck in [Jia22] is that the algorithm approximates the length of the shortest vector
after every iteration of the cutting plane method. To do so, [Jia22] leverages the sieve algorithm in [AKS01] that

computes a 2n log log n/ logn-approximation to the shortest vector using Õ(n4) arithmetic operations. Compounding

with the overall Õ(n2) iterations of the algorithm, this step of approximating the shortest vector takes Ω(n6)
arithmetic operations in total.

To get around the aforementioned computational bottlenecks, we utilize an intricate combination of a
computationally more efficient cutting plane method based on the volumetric center of K due to Vaidya [Vai89]
and a faster version of the LLL algorithm given in [NS16]. Instead of working directly with the polytope K and
performing volume reduction in a step-by-step manner, we run Vaidya’s cutting plane method [Vai89] in blocks of
O(n log n) consecutive steps, the volume decreases by a constant factor per step only in an amortized sense within
each block. In particular, recent work by Jiang, Lee, Song and Wong [JLSW20] shows that O(n log n) steps of
Vaidya’s method can be implemented using a total of O(n3 log n) arithmetic operations. Running Vaidya’s method

in blocks also enables us to compute only Õ(n) approximate shortest vectors in total, while still being able to avoid
the appearance of extremely short vectors. Harnessing the faster implementation of the LLL algorithm in [NS16]

allows us to compute the Õ(n) approximate shortest vectors using a total of Õ(n4) arithmetic operations.

1.2 Applications to Submodular Function Minimization Submodular function minimization (SFM) has
been one of the cornerstone problems in combinatorial optimization since the seminal work of Edmonds [Edm03].
Many classic combinatorial problems can be abstracted as optimization over a submodular function, such as graph
cut function, set coverage function and economic utility function. For more comprehensive reviews of SFM, we
refer readers to [McC05, Iwa08].

Papers Year Runtime Remarks General?

[GLS81, GLS88] 1981,88 Õ(n5 · EO+ n7) [McC05] first strongly ✓
[Sch00] 2000 O(n8 · EO+ n9) first comb. strongly
[IFF01] 2000 O(n7 log n · EO+ poly(n)) first comb. strongly
[FI03] 2000 O(n7 · EO+ n8)
[Iwa03] 2002 O(n6 log n · EO+ n7 log n)
[Vyg03] 2003 O(n7 · EO+ n8)
[Orl09] 2007 O(n5 · EO+ n6)
[IO09] 2009 O(n5 log n · EO+ n6 log n)

[LSW15] 2015 O(n3 log2 n · EO+ n4 logO(1) n) previous best runtime

[LSW15] 2015 O(n3 log n · EO+ 2O(n)) exponential time

[DVZ21] 2018 O(n3 log2 n · EO+ n4 logO(1) n) previous best runtime

[Jia21] 2021 O(n3 log log n
logn · EO+ n8 log n) best oracle complexity ✓

[Jia21] 2021 O(n2 log n · EO+ 2O(n)) exponential time ✓
This paper 2023 O(n3 log n · EO+ n4 log n) best runtime ✓

Table 1: Strongly-polynomial algorithms for submodular function minimization. The oracle complexity measures
the number of calls to the evaluation oracle EO. In the case where a paper is published in both conference and
journal, the year we provide is the earlier one. In the column “General?”, ✓ means that the algorithm works for
the more general problem of minimizing convex functions with integer minimizers studied in this paper.

We briefly recall the standard setting of SFM: we are given a submodular function f : 2V → Z over an

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3661

D
ow

nl
oa

de
d 

07
/1

9/
24

 to
 1

08
.2

6.
22

2.
21

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



n-element ground set V where the function f is accessed via an evaluation oracle, which returns the value f(S) for
a query set S using time EO. The goal is to find the minimizer of f using queries to the evaluation oracle and
additional arithmetic operations.

An SFM algorithm is called strongly-polynomial time if its runtime depends polynomially only on EO
and the dimension n, but not on the range of the function f . In their seminal work, Grötschel, Lovász, and
Schrijver [GLS84, GLS88] gave the first strongly-polynomial time algorithm for SFM based on the ellipsoid method.
Since then, there has been a long history of efforts in designing faster strongly-polynomial time algorithms for
SFM (see Table 1).

The state-of-the-art strongly-polynomial time algorithms for SFM, in terms of the number of arithmetic
operations used, were given by Lee, Sidford, and Wong [LSW15] and Dadush, Végh, and Zambelli [DVZ21].

Both algorithms have runtime O(n3 log2 n · EO+ n4 logO(1) n). The oracle complexity of these algorithms were
later improved to sub-cubic in terms of n by Jiang [Jia21, Jia22], where he gave a strongly-polynomial time

algorithm with runtime O(n3 log log n/ log n · EO+ n8 logO(1) n) alongside an exponential time algorithm with a
nearly-quadratic O(n2 log n) oracle complexity. It remains a major open problem in the area of SFM whether
there exists a strongly-polynomial time algorithm with truly sub-cubic, i.e. O(n3−c) for some absolute constant
c > 0, oracle complexity.

Unfortunately, while the algorithm in [Jia22] answers major open questions in [LSW15] and makes significant
progress on the oracle complexity for SFM, the number of additional arithmetic operations used by Jiang’s
algorithm is a factor of Θ̃(n4) larger than the algorithms in [LSW15, DVZ21]. In this paper, we complement
Jiang’s algorithm by giving the following strongly-polynomial time SFM algorithm that improves both the oracle
complexity and the number of arithmetic operations used by the algorithms in [LSW15, DVZ21].

Corollary 1.1. (Submodular function minimization) Given an evaluation oracle EO for a submodular
function f defined over an n-element ground set, there exists a randomized strongly-polynomial time algorithm
that computes an exact minimizer of f with high probability using

• O(n3 log n) queries to EO, and

• O(n4 log n) additional arithmetic operations.

Corollary 1.1 almost immediately follows from Theorem 1.1 together with the standard fact that a separation
oracle for the Lovász extension of the submodular function f can be implemented by making n queries to the
evaluation oracle of f and O(n log n) additional arithmetic operations (e.g., Theorem 6.4 in [Jia22]). The proof of
Corollary 1.1 is essentially identical to the proof of Theorem 1.7 in [Jia22], and is therefore omitted.

Compared to the previous best runtime algorithms in [LSW15] and [DVZ21], our algorithm improves their
oracle complexity from O(n3 log2 n) to O(n3 log n) while also improving the number of arithmetic operations from

O(n4 logO(1) n) to O(n4 log n). We highlight that in [LSW15], the authors manage to achieve an O(n3 log n) oracle
complexity, but at the expense of an exponential runtime. It is also important to note that our improvements are
achieved via a much more general algorithm, whereas the algorithms in [LSW15, DVZ21] work specifically for
SFM.

In comparison to the current best oracle complexity algorithm in [Jia22], our algorithm has a slightly worse

oracle complexity, but we significantly improve the Õ(n8) additional arithmetic operations in his algorithm down
to O(n4 log n).

Finally, note that the current best implementation of a separation oracle for the Lovász extension requires
n queries to EO, and the current fastest cutting plane method requires O(n2) arithmetic operations per step.
So for any cutting plane algorithm for SFM that uses T iterations, the current best runtime we can hope for
such a method is O(Tn · EO + Tn2) using state-of-the-art techniques. Our algorithm, in fact, matches such a
runtime bound. In particular, we use O(n2 log n) iterations of the cutting plane method with a total runtime of
O(n3 log n · EO + n4 log n). So in some sense, our result matches what can be achieved using the current best
known algorithmic techniques for cutting plane methods. In contrast, the algorithm in [Jia22] does not have such
a feature, with the Ω(n8) additional arithmetic operations being much larger than its oracle complexity.

2 Technique Overview

In this section, we provide a brief overview of the techniques in prior work and in our work. In Section 2.1, we
review the methods in [Jia22]. In Section 2.2, we present a preliminary overview of our approach. In Section 2.3,

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3662

D
ow

nl
oa

de
d 

07
/1

9/
24

 to
 1

08
.2

6.
22

2.
21

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



we summarize current progress on the problem of minimizing convex functions with integer minimizers and discuss
potential future directions.

2.1 An Overview of Previous Work Before discussing our main technical insights, we first review the
approach of [Jia22] that achieves subquadratic oracle calls for minimizing convex functions with integer minimizers.
The key ingredient in Jiang’s algorithm is an interplay between the polytope, formed by the separating hyperplanes
returned by the separation oracle, which contains the integer minimizer, and a lattice that captures the structures
of integer points.

In particular, in each iteration of the cutting plane method, Jiang’s algorithm examines the length of the
(approximate) shortest vector in the lattice under the Cov(K)-norm, where Cov(K) is the covariance matrix of
the polytope K. The length of this vector under Cov(K)-norm provides a measurement for the width of the outer
ellipsoid induced by Cov(K)−1. Thus, when this norm is small, it implies that the outer ellipsoid has a small
width and we can safely proceed by reducing dimension and projecting the lattice onto the orthogonal complement
of the shortest vector. On the other hand, if the shortest vector still has a relatively large norm, then the polytope
K can be further refined by using cutting plane method. To achieve the best possible oracle complexity, the
algorithm in [Jia22] performs the width measurement in a step-by-step fashion, meaning that it actively checks the
length of the shortest vector after every single cutting plane step. This ensures that the algorithm can enter the
dimension reduction phase as soon as a short lattice vector can be obtained, which happens when the volume of K
is small enough.

Unfortunately, such a step-by-step strategy and careful width measurement come at a price – the approximate
shortest vector subprocedure will be called in every iteration of the cutting plane method. Moreover, an expensive
cutting plane method, such as the random walk based center of gravity method [BV04], that guarantees the volume
shrinks in every step needs to be used.

2.2 Our Approach: Cutting Plane in Blocks and Lazy Width Measurement Now we discuss our
approach for overcoming the major computational bottleneck of [Jia22], which is the step-by-step measurement
of width mentioned above. For simplicity, we assume the integer minimizer x∗ ∈ {0, 1}n (i.e. R = 1) in the
subsequent discussion. By delaying the width measurement, i.e. find an approximate shortest vector after a block
of cutting plane steps, we can utilize the much more efficient cutting plane method due to Vaidya [Vai89]. However,
this comes at the cost of a possibly much larger number of oracle calls, since the length of the shortest vector
in the lattice might become very small when we actually perform the measurement, which will lead to a large
increase in the volume of K after dimension reduction. Nevertheless, we show that by carefully balancing the
block size of cutting plane steps and the loss incurred during dimension reduction due to short lattice vectors, we
can still achieve an O(n2 log n) oracle complexity.

To explain our approach, we first provide a brief introduction to Vaidya’s cutting plane method. Unlike
classical cutting plane methods, such as the ellipsoid method and the center of gravity method, where each
step is guaranteed to shrink the volume, Vaidya’s algorithm and analysis rely on controlling the volume of the
Dikin ellipsoid induced by the log barrier on polytope K. The algorithm iteratively finds the point ωK whose
corresponding Dikin ellipsoid has the largest volume, which is called the volumetric center. Subsuquently, the
algorithm uses a separation oracle on the volumetric center ωK . If ωK is a minimizer, then we are done; otherwise,
the algorithm computes the leverage score of each constraint with respect to the Hessian matrix, which measures
the relative importance of each constraint. If all constraints are relatively important, then a new constraint is
added based on the separating hyperplane returned by the separation oracle at ωK . If one of the constraints has
leverage score smaller than some tiny constant, then it is dropped to ensure that the polytope K always has at
most O(n) constraints. Due to the increase in the volume of the polytope K when constraints are dropped, the
volume of K only shrinks in an amortized sense. In particular, only after O(n log n) steps, the volume of K is
guaranteed to decrease by a multiplicative factor of 2−O(n logn) from the initial volume. It is crucial to note that no
guarantee on the volume shrinkage of K is known if o(n log n) iterations of Vaidya’s cutting plane method is run.

Our idea is then to view the O(n log n) steps as a “block”, meaning that each time we measure the shortest
vector and realize that it still has a large norm, we execute Vaidya’s cutting plane steps for O(n log n) steps and
then re-examine the norm. This naturally induces a strategy that measures the width of the ellipsoid in a lazy
fashion. The volume decrease of K via this strategy is similar to that when running the cutting plane method
in [BV04] for O(n log n) steps. Therefore, the only issue is the significant decrease in the norm of the shortest

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3663

D
ow

nl
oa

de
d 

07
/1

9/
24

 to
 1

08
.2

6.
22

2.
21

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



vector during a block of cutting plane steps, which can be as small as 2−O(n logn). Fortunately, this shrinkage of
the norm is acceptable and it incurs only an additional O(log n) factor in the number of oracle calls.

One major advantage of using Vaidya’s cutting plane method is that the iterations can be performed very
efficiently. Using the fast implementation in [JLSW20], a block of O(n log n) cutting plane steps can be done in
O(n3 log n) time. Lazy width measurement also reduces the total number of approximate shortest vectors we need

to compute from Õ(n2) to Õ(n), which opens up the gate of using faster approximate shortest vector algorithms
in [NS16].

Although the efficiency issue of the cutting plane step and width measurement is addressed, we still need to
carefully control the complexity of the dimension reduction step. This step can be particularly expensive due to
the loss of structural information of the polytope K after collapsing it onto a proper subspace P on which the
algorithm recurs, as discussed in [Jia22]. In the standard setting of Vaidya’s cutting plane method, the polytope
evolves in a “slow-changing” manner that makes it easy to maintain and update the volumetric center and its
corresponding Hessian matrix. However, after reducing a dimension, we no longer have such a “slow-changing”
property, and thus the new volumetric center and Hessian matrix have to be computed from scratch.

A natural idea would be to formulate the problem of recomputing the volumetric center and Hessian as a
convex optimization task constrained to the polytope K ∩ P we have access to. On the surface, this problem
can be solved straightforwardly using the same cutting plane procedure efficiently. The caveat is that evaluating
the volumetric function or its gradient requires O(nω) time4. As the cutting plane method evolves for O(n log n)
iterations, this will lead to a total of O(nω+1 log n) arithmetic operations. To circumvent this issue, we start from
a simpler convex body containing K ∩ P whose volumetric center can be easily computed. Specifically, we choose
the hyperrectangle centered at the center of the outer ellipsoid that contains K ∩ P . We show that this method
only affects the number of oracle calls by a factor of O(log n), despite causing the volume to blow up by a factor of
nO(n). A similar approach is also taken in [Jia22] to ease the computation of centroid and covariance matrix of
K ∩ P . However, his method requires iterativelty refining the hyperrectangle using constraints of K ∩ P until it
coincides with K ∩ P , at which point the algorithm relearns the collapsed polytope K ∩ P . This approach can
take as many as Õ(n2) steps (without calling the separation oracle) with Ω(n2) operations per step, and is mainly
for achieving the best possible oracle complexity. Our approach is arguably simpler and much more efficient.

Another challenge is to prove that using volumetric centers and Dikin ellipsoids [Dik67] is sufficient to progress
the algorithm. In Jiang’s algorithm, the use of centroid and covariance matrix makes the analysis straightforward
due to the standard nice geometric property that the polytope K is sandwiched between ellipsoids induced by
the covariance matrix at the centroid. However, in our analysis, we use the volumetric center and Dikin ellipsoid
of the log barrier, which requires a different approach. Past works that exclusively analyze the performance of
the cutting plane method based on this approach [Vai89] take a functional value point of view, measuring the
progress of the algorithm via the change of the volumetric function. Instead, our analysis extracts key geometric
information of Vaidya’s cutting plane method, showing that the volumetric center and Dikin ellipsoid evolve in a
similar spirit as the centroid and covariance matrix.

In particular, we prove structural result for using Dikin ellipsoids [Dik67] to sandwich of an n-dimensional
polytope defined by m constraints. Let us parametrize K = {x ∈ Rn : Ax ≥ b} where A ∈ Rm×n and b ∈ Rm,
define the Hessian of the log-barrier as H(x) = A⊤S−2

x A where Sx ∈ Rm×m is the diagonal matrix with i-
th diagonal being a⊤i x − bi. The volumetric function is defined as F (x) = 1

2 log det(H(x)) and we let vc(K)
denote the minimizer of F , i.e. vc(K) is the volumetric center of K. The key structural result we prove is that
E(vc(K), H(vc(K))) ⊆ K ⊆ poly(mn) · E(vc(K), H(vc(K))), where E(vc(K), H(vc(K))) is the ellipsoid centered
at vc(K) and defined by H(vc(K)). While it is standard for K to be sandwiched by Dikin ellipsoids induced by a
self-concordant barrier function and centered at the minimizer of that function, we note that vc(K) is not the
minimizer of the log-barrier function (but rather the minimizer of F ), while the Dikin ellipsoid is defined w.r.t.
the Hessian H of the log-barrier. In fact, for the Dikin ellipsoid centered at the analytic center denoted by ac(K)
(minimizer of the log-barrier function) and the induced Hessian at ac(K), we have

E(ac(K), H(ac(K))) ⊆ K ⊆ O(m) · E(ac(K), H(ac(K)).

On the other hand, to progress Vaidya’s cutting plane method, we have to work with the Dikin ellipsoid
centered and induced by vc(K) instead of ac(K). We first note that the scaled volumetric function indeed defines

4ω is the exponent of matrix multiplication [DWZ23, VWXXZ24, LG24]. Currently, ω ≈ 2.373.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3664

D
ow

nl
oa

de
d 

07
/1

9/
24

 to
 1

08
.2

6.
22

2.
21

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



a self-concordant barrier function and we thus have

E(vc(K),∇2F (vc(K))) ⊆ K ⊆ O(mn) · E(vc(K),∇2F (vc(K))).

For the left containment, we can safely replace ∇2F (vc(K)) as for any x ∈ K, it is true that E(x,H(x)) ⊆ K.
For the right containment, we utilize the fact that H(x) and ∇2F (x) are close spectral approximation of each
other, thus we have E(vc(K),∇2F (vc(K))) ⊆ O(

√
m) · E(vc(K), H(vc(K))), and we conclude

E(vc(K), H(vc(K))) ⊆ K ⊆ poly(mn) · E(vc(K), H(vc(K))).

We believe this sandwiching condition might be of independent interest for other geometric applications of
Vaidya’s method.

To carry out the analysis, we use the potential function developed in [Jia22], which captures the volume of
the polytope and the density of the lattice simultaneously. We show that the block of cutting plane steps also
leads to rapid decrement of the potential. Unlike [Jia22], the block cutting plane steps and Dikin ellipsoids cause
extra losses on the volume of K after dimension reduction, due to the possible appearance of very short vectors.
We observe that such blowups are always at most nO(n) for each dimension reduction step. Thus, the potential
increases by at most O(n2 log n) in total, and we need to use a total of O(n2 log n) oracle calls to counter this
increment. To summarize, by trading for a slightly-worse number of oracle calls, we make more room for the
algorithm to gain extra speedup through leverage score maintenance, faster approximate shortest vector, and
crude estimation of the convex body after reducing dimension.

2.3 Discussion A natural question that arises from our result is whether it is possible to obtain a strongly-
polynomial time algorithm with quadratic or subquadratic oracle complexity, matching the one in [Jia22], while
achieving the same improved runtime as ours. Our algorithm has only one log n factor in the oracle complexity, but
we contend that this is inherent for Vaidya’s approach since it can only guarantee a volume decrease after O(n log n)
cutting plane steps. Additionally, in the dimension reduction phase, we use a hyperrectangle to approximate the
convex body, which introduces a volume increase of nO(n). To resolve this issue, an algorithm that approximately
computes the volumetric center in O(n3 log n) time would be necessary. However, designing such an algorithm
is an interesting and nontrivial data structure task, as discussed in the preceding subsection, since it requires
maintaining and updating the log determinant of a Gram matrix under slow diagonal changes.

To achieve a subquadratic oracle complexity, a crucial ingredient in [Jia22] is an approximate shortest vector
algorithm with a sub-exponential approximation factor, first given in [AKS01]. The main reason for the sub-
exponential approximation ratio is a block-reduction scheme introduced in [Sch87] that computes a more general
notion of reduced lattice basis. Recent improvements on basis reduction algorithms make use of this block-reduction
idea to obtain more refined recursive structures. Therefore, it is of interest to design approximate shortest vector
algorithms using Õ(n3) arithmetic operations while achieving a sub-exponential approximation factor.

3 Preliminary

In Section 3.1, we provide several basic notations, definitions and facts. In Section 3.2, we discuss LLL algorithm
and shortest vector problem. In Section 3.3, we define and state several basic tools in convex geometry. In
Section 3.4, we provide some related definitions about lattice projection. In Section 3.5, we present the slicing
lemma. In Section 3.6, we state a dimension reduction lemma.

3.1 Notations and Basic Facts
Basic Notations. For an integer n, we use [n] to denote the set {1, 2, · · · , n}. For any function f , we use

Õ(f) to denote f · poly(log f).
Matrices and Vectors. For a vector x, we use ∥x∥2 to denote its ℓ2 norm. For a vector x, we use x⊤ to

denote its transpose. For a matrix A, we use A⊤ to denote its transpose. We use 0n to denote a length-n vector
where all the entries are zeros. We use 1n to denote a length-n vector where all the entries are ones.

We say a square matrix A ∈ Rn×n is PSD (A ⪰ 0) if for all vectors x ∈ Rn, x⊤Ax ≥ 0. For a square matrix
A, we use det(A) to denote the determinant of matrix A. For a square and invertible matrix A, we use A−1 to
denote the inverse of matrix A.

For a PSD matrix A, we define the induced matrix norm for any vector x as ∥x∥A :=
√
x⊤Ax.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3665

D
ow

nl
oa

de
d 

07
/1

9/
24

 to
 1

08
.2

6.
22

2.
21

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



Ellipsoid. Given a point x0 ∈ Rn and a PSD matrix A ∈ Rn×n, we use E(x0, A) to denote the (not necessarily
full-rank) ellipsoid given by

E(x0, A) := {x ∈ x0 +WA : (x− x0)
⊤A(x− x0) ≤ 1},

where WA is the subspace spanned by eigenvectors corresponding to nonzero eigenvalues of A. When the ellipsoid
is centered at 0n, we use the short-hand notation E(A) to denote E(0n, A).

Lattices. Let b1, . . . , bk ∈ Rn be a set of linearly independent vectors, we use

Λ(b1, . . . , bk) = {
k∑

i=1

λibi, λi ∈ Z}

denote the lattice generated by b1, . . . , bk and k is the rank of the lattice. If k = n, then it’s full rank. A basis of
Λ := Λ(b1, . . . , bk) is a set of k linearly independent vectors that generates Λ under integer combinations. Bases of
Λ are equivalent under unimodular transforms. We use λ1(Λ) to denote the ℓ2 norm of the shortest nonzero vector
in Λ and λ1(Λ, A) to denote the induced A-norm of the shortest nonzero vector in Λ.

Given a basis B ∈ Rn×k, the parallelotope associated to it is the polytope P (B) = {
∑k

i=1 λibi : λi ∈ [0, 1), ∀i ∈
[k]}. The determinant of Λ is the volume of P (B), which is independent of basis.

The dual lattice of Λ is defined as follows:

Definition 3.1. (Dual lattice) Given a lattice Λ ⊆ Rn, the dual lattice Λ∗ is the set of all vectors x ∈ span{Λ}
such that ⟨x, y⟩ ∈ Z for all y ∈ Λ.

For more backgrounds about lattices, we refer the readers to lecture notes by Rothvoss [Rot16].
Leverage Score. We define leverage score, which is a standard concept in numerical linear algebra

[CW13, BWZ16, SWZ17, SWZ19, JLSW20, SXZ22, SYYZ22, DSW22]. We remark that leverage score has
multiple equivalent definitions, here we just present one of them.

Definition 3.2. (Leverage score) Given a matrix A ∈ Rm×n, we define the leverage score for matrix A to be
σ ∈ Rm, i.e,

σi = a⊤i (A
⊤A)−1ai, ∀i ∈ [m]

Note that a⊤i is the i-th row of A.

We state a useful fact here.

Fact 3.1. (folklore) Given a matrix A ∈ Rm×n, we have the following identity of its leverage score:

m∑
i=1

σi = n.

3.2 LLL Algorithm for Shortest Vector Problem Given a lattice Λ and a corresponding basis B ∈ Rn×k,
it is natural to seek an algorithm that finds the vector with norm λ1(L), or at least approximately finds it. The
famous Lenstra-Lenstra-Lovász algorithm serves such a purpose:

Theorem 3.1. (LLL algorithm, [LLL82]) Let b1, · · · , bk ∈ Zn be a basis for lattice Λ and A ∈ Zn×n be a
PSD matrix that is full rank on span(Λ). Let D ∈ R such that ∥bi∥2A ≤ D for any i ∈ [k]. Then there exists an
algorithm that outputs in O(n4 log(D)) arithmetic operations a nonzero vector b′1 such that

∥b′1∥2A ≤ 2k−1 · λ2
1(Λ, A)

Moreover, the integers occuring in the algorithm have bit sizes at most O(n log(D)).

Lately, [NS16] improves the runtime of the LLL algorithm by leveraging the block reduction technique
introduced in [Sch87]. This is a key component in our O(n4 log n) time algorithm.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3666

D
ow

nl
oa

de
d 

07
/1

9/
24

 to
 1

08
.2

6.
22

2.
21

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



Theorem 3.2. (Theorem 2 of [NS16]) Let b1, · · · , bk ∈ Zn be a basis for lattice Λ and A ∈ Zn×n be a PSD
matrix that is full rank on span(Λ). Let D ∈ R such that ∥bi∥2A ≤ D for any i ∈ [k]. Then there exists an algorithm
that outputs in O(n3) arithmetic operations to a nonzero vector b′1 such that

∥b′1∥2A ≤ 2k−1 · λ2
1(Λ, A)

Moreover, the integers occurring in the algorithm have bit sizes at most O(n log(D)).

3.3 Convex Geometry In this section, we define notions about centroid and covariance. The work [Jia22]
heavily exploits the structure of objects to design a subqudratic oracle complexity algorithm for minimizing convex
functions. Our approach also relates to these notions.

For a convex body K, we use vol(K) to denote its volume, i.e., vol(K) :=
∫
x∈K

dx. We first define the centroid
of convex body,

Definition 3.3. Let K ⊆ Rn be a convex body. Let g : K → R+ denote the uniform measure on convex body K.
We define the centroid of K as

cg(K) =

∫
K

g(x) · x dx.

Equivalently, we can write cg(K) as

cg(K) =
1

vol(K)

∫
K

x dx.

Then, we define the covariance of convex body,

Definition 3.4. (Covariance of convex body, Cov(K)) Let K ⊆ Rn be a convex body. We define the
covariance matrix of K under uniform measure as

Cov(K) =
1

vol(K)

∫
K

(x− cg(K))(x− cg(K))⊤ dx.

It is well-known that any isotropic5 convex body is enclosed by two balls.

Lemma 3.1. (Ellipsoidal approximation of convex body, [KLS95]) Let K be an isotropic convex body in
Rn. Then, √

n+ 1

n
·B2 ⊆ K ⊆

√
n(n+ 1) ·B2,

where B2 is the unit Euclidean ball in Rn.
If K is non-isotropic, then√

n+ 1

n
· E(cg(K),Cov(K)−1) ⊆ K ⊆

√
n(n+ 1) · E(cg(K),Cov(K)−1).

3.4 Lattice Projection We collect some standard facts of lattice projection that is directly implied by
Gram-Schmidt process. We use ΠW (·) to denote the orthogonal projection onto the subspace W .

Fact 3.2. (Lattice projection) Let Λ be a full rank lattice in Rn and W be a linear subspace such that
dim(span(Λ ∩W )) = dim(W ). Then

det(Λ) = det(Λ ∩W ) · det(ΠW⊥(Λ)).

Fact 3.3. (Dual of lattice projection) Let Λ be a full rank lattice in Rn and W be a linear subspace such
that dim(span(Λ ∩W )) = dim(W ). Then

(ΠW (Λ))∗ = Λ∗ ∩W.

5A convex body is isotropic if the uniform distribution over the body has zero mean and covariance matrix being the identity.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3667

D
ow

nl
oa

de
d 

07
/1

9/
24

 to
 1

08
.2

6.
22

2.
21

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



3.5 Slicing Lemma We present a variant of Lemma 3.2 in [Jia21] in our Lemma 4.10. In particular, we
replace the norm with respect to Cov(K) to the norm with respect to H−1

K . Before stating the our new lemma
(Lemma 4.10), we first recall the high dimension slicing lemma of [Jia21].

Lemma 3.2. (Lemma 3.2 in [Jia21]) Let K be a convex body and L be a full-rank lattice in Rn. Let W be an
(n− k)-dimensional subspace of Rn such that dim(L ∩W ) = n− k. Then

vol(K ∩W )

det(L ∩W )
≤ vol(K)

det(L)
· kO(k)

λ1(L∗,Cov(K))k

where L∗ is the dual lattice (see Definition 3.1) and λ1(L
∗,Cov(K)) is the shortest nonzero vector in L∗ under the

norm ∥ · ∥Cov(K).

3.6 Dimension Reduction Lemma The key building block of both [Jia21] and our algorithm is a lattice-
dimension reduction step. The following result from [Jia21] shows that all integral points are preserved after a
dimension reduction step.

Lemma 3.3. (Lemma 3.1 of [Jia21]) Given an affine subspace W = x0 + W0 where W0 is a subspace of Rn

and x0 ∈ Rn is some fixed point, and an ellipsoid E = E(x0, A) that has full rank on W . Given a vector
v ∈ ΠW0

(Zn) \ {0n} with ∥v∥A−1 ≤ 1/2 then there exists a hyperplane P ̸⊇W such that E ∩ Zn ⊆ P ∩W .

4 Cutting Plane Method

In Section 4.1, we introduce the definition of log-barrier and volumetric center. In Section 4.2, we introduce
leverage score and related notations. In Section 4.3, we present the convergence lemma. In Section 4.4, we present
the sandwiching lemma. In Section 4.5, we show the closeness between Hessian of log-barrier and covariance
matrix. In Section 4.6, we show the stability of approximate center. In Section 4.7, we show the closeness between
approximate center and true center. In Section 4.8, we present a novel slicing lemma. In Section 4.9, we present
the dynamic leverage score maintenance data structure. In Section 4.10, we present our main lemma.

4.1 Log-barrier and Volumetric Center We start with defining log-barrier, and it has been widely used in
convex optimization [Ren88, NN94, JKL+20, HJS+22, JNW22, SYZ23, LSZ+23].

Definition 4.1. (Log-barrier) Let A ∈ Rm×n and b ∈ Rm. Let a⊤i denote the i-th row of A. The log-barrier
is defined as

ϕ(x) =

m∑
i=1

− ln(a⊤i x− bi)

for x ∈ Rn.

Let K be the bounded full-dimensional polytope L = {x : Ax ≥ b} where A ∈ Rm×n, b ∈ Rm and x ∈ Rn.

Definition 4.2. (Hessian and volumetric) Given A ∈ Rm×n and b ∈ Rm. Let H(x) be defined as

H(x) =
m∑
i=1

aia
⊤
i

(a⊤i x− bi)2

where a⊤i denotes the i-th row of A.
Let (volumetric) function F (x) be as

F (x) :=
1

2
ln(det(H(x)))

H(x) is the Hessian of the logarithmic barrier function
∑m

i=1− ln(a⊤i x− bi) and is positive definite for all x in
the interior of K.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3668

D
ow

nl
oa

de
d 

07
/1

9/
24

 to
 1

08
.2

6.
22

2.
21

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



Definition 4.3. (Volumetric center) We define the volumetric center of K as

vc(K) := arg min
x∈K

F (x).

Observe that F is a convex function, hence one can run Newton-type algorithm to approximate vc(K) very
fast.

4.2 Leverage Score of Log Hessian We start with some definitions.

Definition 4.4. We define σi(x) to be the i-th leverage score of matrix H(x) as

σi(x) =
a⊤i H(x)−1ai
(a⊤i x− bi)2

, ∀i ∈ [m].

Using σi, we can write the gradient of F in an convenient form:

∇F (x) = −
m∑
i=1

σi(x)
ai

a⊤i x− bi
.

Definition 4.5. We define Q(x) as

Q(x) =

m∑
i=1

σi(x)
aia

⊤
i

(a⊤i x− bi)2
.

where σi(x) is defined as Definition 4.4.

It is well-known that Q(x) is a good approximation of ∇2F (x):

Lemma 4.1. (Lemma 3 of [Vai89]) For any x ∈ Rn, we have

Q(x) ⪯ ∇2F (x) ⪯ 5Q(x).

Finally, we define µ(x) which quantifies:

Definition 4.6. Let µ(x) be the largest number λ such that

Q(x) ⪰ λH(x).

The following lemma provides an upper bound on µ(x):

Lemma 4.2. (Lemma 4 of [Vai89]) For any x ∈ K, we have

1

4m
≤ µ(x) ≤ 1.

Further, we have

µ(x) ≥ min
i∈[m]
{σi(x)}.

4.3 Volume Shrinking The following result (Lemma 4.3) bounds the progress of adding or deleting a plane of
Vaidya’s CPM.

Lemma 4.3. Let δ ≤ 10−4 and ϵ ≤ 10−3δ be some constants and let ρk denote the value of F (vc(K)) at the
beginning of k-th iteration. Then at the beginning of each iteration there exists an z satisfying the condition

F (z)− F (vc(K)) ≤ ϵ4µ(vc(K)).

Furthermore, the following statements hold:

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3669

D
ow

nl
oa

de
d 

07
/1

9/
24

 to
 1

08
.2

6.
22

2.
21

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



• If mini∈[m]{σi(z)} ≥ ϵ at k-th iteration then

ρk+1 − ρk ≥ (δϵ)1/2

5
.

• Otherwise, we have

ρk − ρk+1 ≤ 5ϵ.

Next, in Lemma 4.4, we show that after T = O(n logm) iterations, the volume of the resulting convex body is
only ( 1

m )n fraction of the original convex body.

Lemma 4.4. Let K ⊆ Rn be a convex body with non-empty interior. Suppose we run CuttingPlaneMethod
for T = O(n logm) iterations, then we obtain a convex body K ′ such that

vol(K ′) ≤
(

1

m

)n

· vol(K)

Proof. Let πk denote the volume of the polytope K at the beginning of k-th iteration. Note that vol(K ′) = πT .
Using Lemma 4.3 we shall obtain an upper bound on πk and show that after O(n logm) iterations the volume
decreases by a factor of ( 1

m )n. First, we show that

ρk ≥ ρ0 +
1

2
kϵ.

Since K is bounded, the number of bounding planes is at least n+ 1 and to start with this number is exactly
n+ 1. Thus by the k-th iteration the case of adding a plane must have occurred at least as often as the case of
deleting a plane otherwise the number of planes would have fallen below n+ 1. So by the k-th iteration adding a
plane must happen at least k/2 times and removing a plane must happen at most k/2 times. Hence

ρk − ρ0 ≥ 1

2

(
1

5
k(δϵ)1/2 − 5kϵ

)
≥ 1

2
kϵ

where the last step follows from ϵ ≤ 10−3δ.
Set k = T , we have

ρT − ρ0 ≥ 1

2
Tϵ.(4.1)

We note that by Lemma 4.5, the polytope K contains E(vc(K), HK) so its π0 can be lower bounded by the
volume of E(vc(K), HK). Therefore,

ln(π0) ≥ − 1

2
ln(det(HK))− n log n

= − ρ0 − n log n.(4.2)

To obtain an upper bound on πT , we note that if x∗ is the point that maximizes the logarithmic barrier over
K ′, then

K ′ ⊆ {x : (x− x∗)⊤H(x∗)(x− x∗) ≤ m2}.

Then from the relationship between determinants and volume it follows that

vol(K ′) ≤ (2m)n(det(H(x∗)))−1/2

≤ (2m)n(det(H(vc(K ′))))−1/2

≤ (2m)n exp(−F (vc(K ′))).(4.3)

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3670

D
ow

nl
oa

de
d 

07
/1

9/
24

 to
 1

08
.2

6.
22

2.
21

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



where the last step follows from definitions of H and F (see Definition 4.2).
Since

∑m
i=1 σi(x) = n (by Fact 3.1), the case of deleting a plane is forced to happen at an iteration if the

number of planes defining K is greater than n/ϵ and hence m never exceeds n/ϵ.
Let us bound the difference between ln(πT ) and ln(π0):

ln(πT )− ln(π0) ≤ n log(2m)− ρT − ln(π0)

≤ n log(2m)− ρ0 − 1

2
Tϵ− ln(π0)

≤ n log(2m)− 1

2
Tϵ+ n log n

≤ − n logm,

the first step is by Eq. (4.3), the second step is by Eq. (4.1), the third step is by Eq. (4.2) and the last step is by
T = O(n logm).

Exponentiating both sides, we obtain

vol(K ′) ≤
(

1

m

)n

· vol(K).

Thus, we complete the proof.

4.4 Sandwiching Lemma We derive some sandwiching conditions regarding the ellipsoid induced by the
Hessian of log barrier.

Lemma 4.5. (Sandwich convex body via log Hessian) Let K = {x : Ax ≥ b} be a polytope where
A ∈ Rm×n and b ∈ Rm. Let H(x) be defined as Definition 4.2. Then for any x ∈ K, we have that

E(x,H(x)) ⊆ K,

and the following upper bound

K ⊆ 2m1.5n · E(vc(K), H(vc(K))).

Proof. Let us first consider the ellipsoid contained in K. By definition, we have that

E(x,H(x)) = {y : (y − x)⊤H(x)(y − x) ≤ 1},

without loss of generality assume x = 0, then y ∈ E(x,H(x)) means

m∑
i=1

(a⊤i y)
2

b2i
≤ 1,

which means that for any i ∈ [m], it holds that

(a⊤i y)
2 ≤ b2i .

Since x ∈ K, we must have that bi ≤ 0 for all i ∈ [m]. Hence, the square condition only requires that
|a⊤i y| ≤ |bi|, so if a⊤i y ≥ 0, then clearly y ∈ K. Otherwise due to the absolute value constraint, it must be the case
that a⊤i y ≥ bi. This concludes the proof of E(x,H(x)) ⊆ K.

For the ellipsoid that contains K, we note that the volumetric function F scaled by
√
m is also a self-concordant

barrier with complexity parameter
√
mn [Vai89, VA93, Ans97] and scaling does not change the minimizer, therefore

we have

K ⊆ mn · E(vc(K),∇2F (vc(K)))),

recall that ∇2F (vc(K)) ⪰ µ(vc(K)) ·H(vc(K)) (due to Lemma 4.1 and Definition 4.6) and 1
4m ≤ µ(vc(K)) ≤ 1

(See Lemma 4.2), we conclude that

1

4m
·H(vc(K)) ⪯ ∇2F (vc(K)),

thus, E(vc(K),∇2F (vc(K))) ⊆ 2
√
m · E(vc(K), H(vc(K))) and we conclude the desired result.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3671

D
ow

nl
oa

de
d 

07
/1

9/
24

 to
 1

08
.2

6.
22

2.
21

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



4.5 Closeness of Log Hessian and Covariance Note that Lemma 3.1 and Lemma 4.5 together imply the
spectral approximation between the matrix H(vc(K)) (See Definition 4.2) and Cov(K) (See Definition 3.3).

Lemma 4.6. (Closeness of log Hessian and covariance) Let K = {x : Ax ≥ b} be a polytope for
A ∈ Rm×n and b ∈ Rm. Then

1

4m3n2
·H(vc(K)) ⪯ Cov(K)−1 ⪯ 4n2 ·H(vc(K)).

Proof. The proof relies on two sandwiching lemmas.
By Lemma 3.1, we have that

E(cg(K),Cov(K)−1) ⊆ K ⊆ 2n · E(cg(K),Cov(K)−1),

by Lemma 4.5,

E(vc(K), H(vc(K))) ⊆ K ⊆ 2m1.5n · E(vc(K), H(vc(K))).

We thus have

E(cg(K),Cov(K)−1) ⊆ 2m1.5n · E(vc(K), H(vc(K))),

E(vc(K), H(vc(K))) ⊆ 2n · E(cg(K),Cov(K)−1).

Without loss of generality, let’s prove one side containment. Given

E(cg(K),Cov(K)−1) ⊆ 2m1.5n · E(vc(K), H(vc(K))),

we note that re-centering and making their centers the same does not change the containment relation, therefore,
we have the following:

E(Cov(K)−1) ⊆ 2m1.5n · E(H(vc(K))),

this directly implies the Lowener ordering

1

4m3n2
·H(vc(K)) ⪯ Cov(K)−1

Following a similar approach, we can show that

Cov(K)−1 ⪯ 4n2 ·H(vc(K))

this completes the proof.

4.6 Stability of Approximate Center In this section, we prove another useful lemma that concerns properties
of the Hessian matrix of the log barrier. It compares the Hessian evaluated at the volumetric center and an
approximate center.

Before proceeding to the second lemma, we define some notions.

Definition 4.7. Let K = {x : Ax ≥ b} be a polytope with m constraints of dimension n. Let r ∈ (0, 1). Define
Σ(x, r) to be the region

Σ(x, r) =
{
y : ∀i ∈ [m], 1− r ≤ a⊤i y − bi

a⊤i x− bi
≤ 1 + r

}
.

Recall the CPM of [Vai89] maintains an approximate volumetric center that will be updated via Newton’s
method. By performing Newton’s method, it can be guaranteed that evaluating function F on the approximate
center is not too far away from the volumetric center. The next lemma shows that the approximate center is also
in the region Σ(vc(K), r) for proper r.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3672

D
ow

nl
oa

de
d 

07
/1

9/
24

 to
 1

08
.2

6.
22

2.
21

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



Lemma 4.7. (Lemma 10 of [Vai89]) Let F be defined as in Definition 4.2. Let Q be defined as in Definition 4.5.
Let ϵ ≤ 10−4 be a small constant and let z be a point in K such that F (z)− F (vc(K)) ≤ ϵ

√
µ(vc(K)). Then we

have

• z ∈ Σ(vc(K), 5ϵ1/2).

• µ(vc(K)) ≤ 1.5µ(z).

• 0.1∇F (z)⊤Q(z)−1∇F (z) ≤ F (z)− F (vc(K)) ≤ 2∇F (z)⊤Q(z)−1∇F (z).

In the following Lemma, we show the stability of approximate center.

Lemma 4.8. (Stability of approximate center) Let K be a convex polytope with vc(K) being its volumetric
center. Let H and F be defined as in Definition 4.2. Let ϵ ∈ (0, 10−4) be a small constant. Let z ∈ K be a point
such that F (z)− F (vc(K)) ≤ ϵ

√
µ(vc(K)), then we have

(1− 30ϵ) ·H(vc(K)) ⪯ H(z) ⪯ (1 + 30ϵ) ·H(vc(K)).

Proof. By Lemma 4.7, we know that z ∈ Σ(vc(K), 5ϵ1/2), which means that for any i ∈ [m], we have that

a⊤i z − bi
a⊤i vc(K)− bi

∈ [1− 5ϵ1/2, 1 + 5ϵ1/2].

Recall we define the H (Definition 4.2) matrix as

H(x) =

m∑
i=1

aia
⊤
i

(a⊤i x− bi)2
,

which means for different arguments, the only part differs is the coefficients (a⊤i x− bi)
2. If we can approximate

the coefficients well, then we can show H(z) and H(vc(K)) are spectrally close. Without loss of generality we
prove the upper bound, lower bound is similar:

H(z) =

m∑
i=1

aia
⊤
i

(a⊤i z − bi)2

⪯
m∑
i=1

aia
⊤
i

(1− 5ϵ1/2)2(a⊤i vc(K)− bi)2

⪯ 1

1− 10ϵ

m∑
i=1

aia
⊤
i

(a⊤i vc(K)− bi)2

=
1

1− 10ϵ
H(vc(K))

⪯ (1 + 30ϵ)H(vc(K)),

where the first step follows from definition H , the second step follows from (a⊤i z−bi)2 ≥ (1−5ϵ1/2)2(a⊤i vc(K)−bi)2,
the third step follows from (1 − 5ϵ1/2)2 ≥ 1− 10ϵ, the forth step follows from definition of H, and the last step
follows from (1− 10ϵ)(1 + 30ϵ) ≥ 1 when ϵ ∈ (0, 0.01). This completes our proof.

4.7 Closeness of Approximate and True Center The goal of this section is to prove Lemma 4.9, which
states that under the induced-H(vc(K)) norm, the approximate center and the volumetric center is at most ϵm
away. We will later show that this discrepancy is in fact acceptable for our algorithm to make progress.

Lemma 4.9. (Closeness of approximate and true center in terms of H norm) Let K be a convex
polytope with vc(K) being its volumetric center and let ϵ ∈ (0, 10−4). Let H and F be defined as in Defini-
tion 4.2. Let z ∈ K be a point such that F (z)− F (vc(K)) ≤ ϵ

5

√
µ(vc(K)), then we have

∥z − vc(K)∥H(vc(K)) ≤ ϵm.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3673

D
ow

nl
oa

de
d 

07
/1

9/
24

 to
 1

08
.2

6.
22

2.
21

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



Proof. Throughout the proof, we set ϵ to ϵ/5.
By Lemma 4.7, we have that z ∈ Σ(vc(K), 5ϵ1/2), which means

(1− ϵ1/2) · (a⊤i vc(K)− bi) ≤ a⊤i z − bi ≤ (1 + ϵ1/2) · (a⊤i vc(K)− bi).

This means that if a⊤i z ≥ a⊤i vc(K),

a⊤i z − a⊤i vc(K) = (a⊤i z − bi)− (a⊤i vc(K)− bi)

≤ ϵ1/2(a⊤i vc(K)− bi).

On the other hand if a⊤i z < a⊤i vc(K),

a⊤i vc(K)− a⊤i z = (a⊤i vc(K)− bi)− (a⊤i z − bi)

≤ (a⊤i vc(K)− bi)− (1− ϵ1/2)(a⊤i vc(K)− bi)

= ϵ1/2(a⊤i vc(K)− bi).

We thus have shown that |a⊤i (z−vc(K))| ≤ ϵ1/2(a⊤i vc(K)−bi). We proceed to measure the squared-H(vc(K))
norm of z − vc(K):

∥z − vc(K)∥2H(vc(K)) =

m∑
i=1

(a⊤i z − a⊤i vc(K))2

(a⊤i vc(K)− bi)2

≤
m∑
i=1

ϵ(a⊤i vc(K)− bi)
2

(a⊤i vc(K)− bi)2

= ϵm.

This completes the proof of the lemma.

4.8 High Dimensional Slicing Lemma We present a novel high dimensional slicing lemma that uses Hessian
of log barrier, instead of the covariance matrix as in [Jia21]. It incurs an extra (mn)O(k) term, but as we will see
later, this does not affect the total number of oracle calls too much.

Lemma 4.10. (High dimensional slicing lemma, volumetric version) Let K be a convex body, let HK

denote the Hessian matrix of log barrier of K at its volumetric center. Let L be a full-rank lattice in Rn. Let W be
an (n− k)-dimensional subspace of Rn such that dim(L ∩W ) = n− k. Then we have

vol(K ∩W )

det(L ∩W )
≤ vol(K)

det(L)
· k

O(k) · (mn)O(k)

λ1(L∗, H−1
K )k

where L∗ is the dual lattice and λ1(L
∗, H−1

K ) is the shortest nonzero vector in L∗ under the norm ∥ · ∥H−1
K

.

Proof. Let v denote the shortest nonzero vector in L∗ under the norm ∥ · ∥Cov(K) and u be the shortest nonzero
vector in L∗ under the norm ∥ · ∥H−1

K
, by Lemma 4.6, we know that

O

(
1

m3n2

)
·H−1

K ⪯ Cov(K) ⪯ O(n2) ·H−1
K .

We have

∥v∥Cov(K) ≥
1

2m1.5n
· ∥v∥H−1

K

≥ 1

2m1.5n
· ∥u∥H−1

K
,

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3674

D
ow

nl
oa

de
d 

07
/1

9/
24

 to
 1

08
.2

6.
22

2.
21

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



therefore, we have that

1

λ1(L∗,Cov(K))
≤ 2m1.5n

λ1(L∗, H−1
K )

.

Using Lemma 3.2, we have

vol(K ∩W )

det(L ∩W )
≤ vol(K)

det(L)
· kO(k)

λ1(L∗,Cov(K))k

Finally, combining the above equations we conclude

vol(K ∩W )

det(L ∩W )
≤ vol(K)

det(L)
· k

O(k) · (mn)O(k)

λ1(L∗, H−1
K )k

.

Thus, we complete the proof.

4.9 Faster Cutting Plane via Leverage Score Maintenance The vanilla Vaidya’s CPM algorithm requires to
compute all m leverage scores per iteration, which would require O(nω) time to form a projection matrix. [JLSW20]
shows that by carefully designing data structures for leverage score maintenance, each iteration can be improved
to O(n2) amortized time. The following lemma states that to correct the extra error induced by using such data
structures, it is sufficient to run for an extra O(ϵ−1) step. This provides guarantee for [JLSW20], and we leverage
it to speed up our algorithm.

Lemma 4.11. (Approximating function value via approximate leverage score, Lemma A.3 of [JLSW20])
If the following conditions hold

• The Vaidya’s Newton step [Vai89] uses exact leverage score σ and runs in T = O(n log n) iterations to obtain
an approximate point z such that

F (z)− F (vc(K)) ≤ 0.1.

• The closeness between true leverage score and approximate leverage score, ∥σ̃ − σ∥2 ≤ 1/ logO(1)(n)

Then, running Vaidya’s Newton step [Vai89] with approximate leverage score σ̃ for T̃ = T +O(1/ϵ) iterations, we
can obtain a z̃ such that

F (z̃)− F (vc(K)) ≤ ϵ.

To obtain various guarantees, we need to find an z ∈ K with F (z) − F (vc(K)) ≤ c ·
√
µ(vc(K)) for small

constant c ≤ 10−4. Note that whenever the smallest leverage score is at least ϵ, we only need to run an extra
O(ϵ−1) iterations of Newton’s step. In the other case, one can show that the old point z is still a good starting
point for the Newton’s step, therefore running an extra O(1) iterations suffices.

We state the data structure of [JLSW20] for completeness.

Lemma 4.12. (Theorem 5.1 of [JLSW20]) Given an initial matrix A ∈ Rm×n with m = O(n), initial weight
w ∈ Rm

≥0, there is a randomized data structure that approximately maintains the leverage score

σi(w) = (
√
WA(A⊤WA)−1A⊤

√
W )i,i, ∀i ∈ [m]

where W ∈ Rm×m is the diagonal matrix that puts w ∈ Rm on its diagonal. The data structure uses O(n2+o(1))
space and supports the following operations:

• Init(A ∈ Rm×n, w ∈ Rm): The data structure initializes in O(nω+o(1)) time.

• Update(w ∈ Rm, u ∈ Rn, wu ∈ R, i ∈ [m], act ∈ {ins, del, upd}): The data structure updates by

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3675

D
ow

nl
oa

de
d 

07
/1

9/
24

 to
 1

08
.2

6.
22

2.
21

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



– If act = ins, we insert a row u with weight wu into (A(k−1), w(k−1)) such that

wuuu
⊤ ⪯ 0.01(A(k−1))⊤W (k−1)A(k−1)

Suppose currently A(k−1) has iu rows already, we append u to the (iu + 1)-th row of A(k−1) and append
wu to the (iu + 1)-th row of W (k−1). In this case, we ignore the w and i from input parameters.

– If act = del, let iv = i, let v, wv denote the iv-the row of (A(k−1), w(k−1)). We delete the iv-th row from
(A(k−1), w(k−1)) such that

wvvv
⊤ ⪯ 0.01(A(k−1))⊤W (k−1)A(k−1)

In this case we ignore the w, u,wu from input parameters of update function.

– If act = upd, we update the weight vector from w(k−1) to w(k) such that

∥ log(w(k))− log(w(k−1))∥2 ≤ 0.01.

Here w(k) denote the w from input of update function, and w(k−1) denote the weight we stored from last
iteration. In this case, we ignore the u,wu, i from input parameters of update function.

This step takes amortized O(n2) time.

• Query(): The data structure outputs an approximate leverage score σ̃ ∈ Rm such that

∥σ̃ − σ∥2 ≤ O(1/ logc(n)),

this step takes O(n) time. Here c > 1 is some fixed constant.

In our application, we will invoke the data structure in the following fashion: each time the data structure is
initialized, it will be updated and queried for a consecutive of O(n log n) steps, which takes a total of O(n3 log n)
time. We will then perform such sequence of operations for O(n) times, which leads to a total of O(n4 log n) time.

4.10 Main Lemma The meta lemma of this section states that if we invoke O(n logm) oracle calls to add
planes for Vaidya’s CPM, we end up with a polytope whose volume is only a fraction of

(
1
m

)n
of the original

polytope.

Lemma 4.13. Given a separation oracle SO for a convex function f defined on Rn. Let vc be defined
as Definition 4.3. Let H be defined as Definition 4.2. Given a polytope K ⊆ Rn with m constraints
that contains minimizer x∗ of f , and an error parameter ϵ > 0, there exists a cutting plane method
CuttingPlaneMethod(SO,K, T, ϵ) with T = O(n log(m/ϵ)) that uses at most O(n log(m/ϵ)) calls to SO and an
extra O(n3 log(m/ϵ)) arithmetic operations to output a polytope K ′ with at most O(n/ϵ) constraints, an approximate
volumetric center z of K ′ and Hessian matrix H of log barrier of K ′ such that the following holds:

• Part 1. x∗ ∈ K ′ and K ′ is the intersection of K with T hyperplanes outputted by SO.

• Part 2. E(vc(K ′), H(vc(K ′))) ⊆ K ′ ⊆ O(mn) · E(vc(K ′), H(vc(K ′)).

• Part 3. vol(K ′) ≤ ( 1
m )n · vol(K).

• Part 4. ∥z − vc(K ′)∥H(vc(K′)) ≤ ϵm.

• Part 5. (1− ϵ) ·H(vc(K ′)) ⪯ H(z) ⪯ (1 + ϵ) ·H(vc(K ′)).

Proof. We prove the lemma item by item.
For Part 1, it is implied by the original Vaidya’s algorithm as in [Vai89].
Part 2 is due to the sandwiching lemma for polytope as in Lemma 4.5.
Part 3 is owing to Lemma 4.4.
For Part 4, we prove it in Lemma 4.9.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3676

D
ow

nl
oa

de
d 

07
/1

9/
24

 to
 1

08
.2

6.
22

2.
21

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



For Part 5, we show it in Lemma 4.8.
Regarding the runtime, we will use the data structure of Lemma 4.12 for a consecutive of T operations, which

takes a total of O(nω+o(1) + n3 logm) = O(n3 logm) arithmetic operations. Note that each iteration the query
guarantees the approximate leverage score satisfy ∥σ̃ − σ∥2 ≤ O(1/ logc(n)), by Lemma 4.11, we only need to run
extra O(1) iterations of Newton’s step to obtain an approximate volumetric center z with desired guarantee. Thus,
the overall arithmetic operation count is O(n3 logm).

5 Efficient Minimization via Fast Cutting and Lazy Width Measurement

In Section 5.1, we present our main algorithm, Algorithm 1. In Section 5.2, we present the correctness of our
algorithm. In Section 5.3, we show the oracle complexity of our algorithm. In Section 5.4, we show the overall
running time of our algorithm. In Section 5.5, we summarize our main result.

5.1 Our Algorithm Our algorithm is a mixture of efficient cutting plane method of [JLSW20], fast shortest
vector algorithm of [NS16] and a novel adaptation and simplification of [Jia22]. The algorithm maintains an affine
subspace W , a lattice Λ and a polytope K. The algorithm then proceeds as follows: it computes the approximate
shortest vector on Λ with respect to H−1

K norm, where HK is the Hessian of log barrier function at an approximate
volumetric center. If the H−1

K norm of the shortest vector is relatively large, the algorithm performs a sequence of
CuttingPlaneMethod for T = O(n log n) rounds.

Algorithm 1 Our Algorithm

1: procedure Main(SO, R) ▷ Theorem 1.1
2: m← 2n
3: W ← Rn be an affine subspace
4: K ← B∞(R) be a polytope ▷ K can be parameterized by A ∈ Rm×n and b ∈ Rm

5: Λ← Zn be a lattice
6: xK ← 0 be the approximate volumetric center

7: HK ←
∑m

i=1
aia

⊤
i

(a⊤
i xK−bi)2

be the Hessian of log barrier

8: T ← O(n logm), ϵ← 0.01
9: while dim(W ) > 1 do

10: v ← FasterShortestVector(Λ, H−1
K ) ▷ Theorem 3.2

11: if ∥v∥H−1
K
≥ 2−100n logn then

12: (K ′, xK′ , H ′
K)← CuttingPlaneMethod(SO,K, T, ϵ) ▷ Lemma 4.13

13: K ← K ′, xK ← xK′ , HK ← HK′

14: else
15: Find z ∈ Zn such that v = ΠW−xK

(z)
16: P ← {y : v⊤y = (v − z)⊤xK + [z⊤xK ]}
17: W ←W ∩ P
18: Let E(W,a) be the ellipsoid 3m1.5n · E(xK , HK) ∩ P
19: K ← w +A−1/2B∞(1)

20: xK ← w,HK =
∑m

i=1
aia

⊤
i

(a⊤
i xK−bi)2

21: Construct hyperplane P0 ← {y : v⊤y = 0}
22: Λ← ΠP0

(Λ)
23: end if
24: end while
25: Find integral minimizer x∗ ∈ Zn ∩K
26: return x∗

27: end procedure

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3677

D
ow

nl
oa

de
d 

07
/1

9/
24

 to
 1

08
.2

6.
22

2.
21

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



5.2 Correctness of Our Algorithm We prove the output guarantee of our algorithm (Algorithm 1) in
Lemma 5.1.

Lemma 5.1. (Formal version of Theorem 1.1, output guarantee part) Given a separation oracle SO
for a convex function f defined on Rn and a γ-approximation algorithm ApproxShortestVector for the
shortest vector problem which takes TApproxSV arithmetic operations. Suppose the set of minimizers K∗ of f is
contained in a box of radius R and satisfies all extreme points of K∗ are integral, Algorithm 1 finds an integral
minimizer of f .

Proof. Recall that lattice projection and the dual of lattice projections are defined as in Definition 3.2 and
Definition 3.3.

We start by showing that the lattice Λ is the orthogonal projection of Zn onto the subspace W0 via induction.
In the beginning of each iteration we have K ⊆W and Λ ⊆W0 where W0 is a translation of W passing through
the origin. In the beginning of the algorithm, Λ = Zn and W = Rn, so Λ = ΠW0(Z

n). Note that the lattice Λ and
subspace W are only updated in the dimension reduction step of Algorithm 1. For inductive step, let Λt−1 to
denote the lattice at the (t− 1)th dimension reduction step and Λt−1 = ΠW0

(Zn) and we prove for t.

Λt = ΠP0
(Λt−1)

= ΠP0
(ΠW0

(Zn))

= ΠW0∩P0
(ΠW0

(Zn))

= ΠW0∩P0
(Zn),

to see the third equality, we note that P0 is the orthogonal subspace of v and v ∈W0. As initially W0 = Rn,
we can inductively show that at time t, the subspace W0 is the orthogonal complement to v1, . . . , vt−1 where vi
is the (approximate) shortest vector we use in iteration i. As Λt−1 = ΠW0

(Zn), it is a subspace orthogonal to
span(v1, . . . , vt−1). Projecting this subspace onto P0 makes it orthogonal to vt. Thus, first projecting onto W0

then projecting onto P0 is equivalent to first projecting onto W0 then projecting onto W0 ∩ P0. The last equality
follows from W0 ∩ P0 is a subspace of W0. This completes the proof of the lattice property.

Now we are ready to show that Algorithm 1 indeed finds the integral minimizer. Assuming f has a unique
minimizer x∗ ∈ Zn, we note that CuttingPlaneMethod preserves x∗, so it suffices to show that the dimension
reduction step also preserves x∗. We show that in fact, the dimension reduction step preserves all integral points
in K.

Lemma 4.5 gives the following sandwiching condition:

1

2
· E(vc(K), H(vc(K))) ⊆ K ⊆ 2m1.5n · E(vc(K), H(vc(K))).

Recall that we set HK to be a (1± ϵ)-spectral approximation to H(vc(K)):

(1− ϵ) ·HK ⪯ H(vc(K)) ⪯ (1 + ϵ) ·HK

We know that

∥xK − vc(K)∥H(vc(K)) ≤ ϵm,

this means that vc(K) ∈ 2ϵ1/2m1/2 · E(xK , H(xK)). Consequently, we have

(vc(K)− xK)⊤H(xK)(vc(K)− xK) ≤ ϵm.(5.4)

Let y ∈ K, by the sandwiching condition, we also have y ∈ 2m1.5n · E(vc(K), H(xK)) and subsequently

(y − vc(K))⊤H(xK)(y − vc(K)) ≤ 4m3n2.(5.5)

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3678

D
ow

nl
oa

de
d 

07
/1

9/
24

 to
 1

08
.2

6.
22

2.
21

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



Combining Eq. (5.4) and (5.5), we conclude

(y − xK)⊤H(xK)(y − xK)

= ∥y − xK∥2H(xK)

≤ 2∥ vc(K)− xK∥2H(xK) + 2∥y − vc(K)∥2H(xK)

≤ 8m3n2 + 2ϵm

≤ 9m3n2.

We thus have shown that

K ⊆ O(m1.5n) · E(xK , HK).

Now we proceed to show that each dimension reduction iteration preserves all integral points in K. We have

K ∩ Zn ⊆ 3m1.5n · E(xK , HK) ∩ Zn .

Since ∥v∥H−1
K
≤ 1/(10n) is satisfied in a dimension reduction step, we can invoke Lemma 3.3, which states

that all integral points in 3m1.5n · E(xK , HK) lie on the hyperplane given by

P = {y : v⊤y = (v − z)⊤xK + [z⊤xK ]}.

Thus, we have K ∩ Zn ⊆ K ∩ P and this finishes the proof of the lemma.

5.3 Oracle Complexity We prove the oracle complexity of Algorithm 1.

Lemma 5.2. (Oracle complexity part of Theorem 5.1) Given a separation oracle SO for a convex function
f on Rn such that the set of minimizers K∗ of f is contained in a box of radius R and all extreme points of K∗

are integral, then there exists a randomized algorithm (Algorithm 1) that outputs an integral minimizer of f with
at most O(n2 log n+ n log(γnR)) calls to SO with high probability.

Proof. We consider the potential function

Φ := log(vol(K) · det(Λ)).

In the beginning, Φ = log(vol(B∞) · det(I)) = n logR. A sequence of O(n logm) calls to Cutting-
PlaneMethod reduce the volume by a factor of ( 1

m )n = ( 12 )
n logm, consequently the potential decreases

by n logm, additively.
Without loss of generality, let us assume we have a maximal sequence of dimension reduction steps at

t = 1, 2, . . . , k + 1.
Note that the potential at the beginning of this maximal sequence of dimension reduction iteration is

eΦ
(0)

= vol(K(0)) · det(Λ(0))

=
vol(K(0))

det((Λ(0))∗)
.

Between t and t+ 1, we note that K(t+1) is designed in the following fashion: first compute K(t) ∩W (t+1),
then consider its outer ellipsoid E(w,A) = 3m1.5n · E(xK , HK) ∩ P , note that this blows up the volume by a
factor of nO(n). Finally, set K to be the hyperrectangle containing E(w,A) which is w +A−1/2B∞(1). This again
blows up the volume by a factor of nO(n).

In the beginning of t = 1, we have W (1) = W (0) and K(1) ⊆W (1). By the proceeding discussion, we have that

vol(K(2)) ≤ nc1n · vol(K(1) ∩W (2))

for some absolute constant c1, similarly, we can upper bound the volume of K(3) as follows:

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3679

D
ow

nl
oa

de
d 

07
/1

9/
24

 to
 1

08
.2

6.
22

2.
21

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



vol(K(3)) ≤ nc2n · vol(K(2) ∩W (3))

≤ nc1c2n · vol(K(1) ∩W (3)),

recursively apply this inequality, we conclude

vol(K(k+1)) ≤ nO(nk) · vol(K(1) ∩W (k+1))

The potential after this sequence of dimension reduction iterations is

eΦ
(k+1)

= vol(K(k+1)) · det(Π
W

(k+1)
0

(Λ(0)))

= nO(nk) · vol(K(1) ∩W (k+1)) · det(Π
W

(k+1)
0

(Λ(0)))

= nO(nk) · vol(K(1) ∩W (k+1))

det(Π
W

(k+1)
0

((Λ(0)))∗)

= nO(nk) · vol(K(1) ∩W (k+1))

det((Λ(0))∗ ∩W
(k+1)
0 )

≤ nO(nk) · vol(K(0) ∩W (k+1))

det((Λ(0))∗ ∩W
(k+1)
0 )

where the third step is by taking the dual lattice projection (Fact 3.3), the fourth step is due to (Π
W

(k+1)
0

(Λ(0)))∗ =

(Λ(0))∗ ∩W
(k+1)
0 by Fact 3.2, and the last step is by the volume shrinking after cutting.

Since W (k+1) is a translation of the subspace W
(k+1)
0 , we can apply Lemma 4.10 by taking L = (Λ(1))∗ to

obtain

eΦ
(k+1)

≤ eΦ
(0)

· n
O(nk) · kO(k) · (mn)O(k)

λ1(Λ(0), (H
(0)
K )−1)k

(5.6)

It remains to provide a lower bound on λ1(Λ
(1),K(1)).

As CuttingPlaneMethod is used in iteration t0, we have

∥v(0)∥
(H

(0)
K )−1 ≥ min{ 1

10γn
, 2−100n logn}

for the output vector v(0) ∈ Λ(0), and that Λ(0) = Λ(1) since a cutting plane iteration doesn’t change the lattice.

Since the ApproxShortestVector procedure is γ-approximation and that H
(0)
K is a (1 ± ϵ)-spectral

approximation to H
(0)
vc(K), this implies that

λ1(Λ
(0), (H

(0)
K )−1) ≥

∥v(0)∥
(H

(0)
K )−1

γ
≥ Ω(1)

γnn
(5.7)

Combining Eq. (5.6) and Eq. (5.7), we have

eΦ
(k+1)

≤ eΦ
(0)

· γO(k) · nO(nk)

as m = O(n).
This shows that after a sequence of k dimension reduction iterations, the potential increases additively by at

most O(k log(γn) + nk log n). As there are at most n− 1 such iterations the total amount of potential increase is
at most O(n log(γn) + n2 log n).

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3680

D
ow

nl
oa

de
d 

07
/1

9/
24

 to
 1

08
.2

6.
22

2.
21

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



Finally we note that whenever the potential becomes smaller than −100n log(100γn), Minkowski’s first theorem
shows the existence of a nonzero vector v ∈ Λ with ∥v∥H−1

K
≤ 1/(100γn). This implies the γ-approximation

algorithm ApproxShortestVector for the shortest vector problem will find a nonzero vector v′ ∈ Λ with
∥v′∥H−1

K
≤ 1/(100n). So the next iteration where we run the LLL algorithm will always reduce the dimension.

Therefore, the sequence of T CuttingPlaneMethod will be run at most

O
( log(γnR)

log n
+ n

)
times.

Since each run of CuttingPlaneMethod uses T = O(n logm) = O(n log n) oracle calls, this also gives the
total number of oracle calls

O(n2 log n+ n log(γnR)).

This finishes the proof of the theorem.

5.4 Runtime Analysis The goal of this section is to prove Lemma 5.3.

Lemma 5.3. (Runtime part of Theorem 5.1) Given a separation oracle SO for a convex function f on Rn

such that the set of minimizers K∗ of f is contained in a box of radius R and all extreme points of K∗ are
integral, then there exists a randomized algorithm (Algorithm 1) that outputs an integral minimizer of f , and uses
O(n4 log(nR)) arithmetic operations.

Proof. As we use γ-ApproximateShortestVector with γ = O(2n), the total number of oracle calls is
O(n2 log(nR)).

The dimensional reduction step occurs at most O(n) times. Each dimension reduction step takes at most
O(n3) arithmetic operations, amounts to an O(n4) arithmetic operations in total.

The CuttingPlaneMethod is called with T = O(n log n), so each call uses O(n3 log n) arithmetic operations.

As such calls happen at most O(n log(nR)
logn ) times, the total arithmetic operations for CuttingPlaneMethod is

at most O(n4 log(nR)).
Regarding the number of calls to FasterShortestVector, we note that there are at most O(n) dimension

reduction steps, and at most O(n logR) calls to the sequence of CPM. Thus, the total number of calls to
FasterShortestVector can be upper bounded by O(n logR), yielding a total of O(n4 logR) arithmetic
operations.

5.5 Main Result The goal of this section is to prove Theorem 5.1.

Theorem 5.1. (Main result, formal version of Theorem 1.1) Given a separation oracle SO for a convex
function f on Rn such that the set of minimizers K∗ of f is contained in a box of radius R and all extreme points
of K∗ are integral, then there exists a randomized algorithm (Algorithm 1) that outputs an integral minimizer of f
with high probability, and uses

• O(n2 log(nR)) calls to SO.

• O(n4 log(nR)) additional arithmetic operations.

Proof. The proof follows from directly combining Lemma 5.1, Lemma 5.2 and Lemma 5.3.

Acknowledgement

We would like to thank Jonathan Kelner for many helpful discussions and for suggesting the title of the paper.
Lichen Zhang is supported in part by NSF grant No. 1955217 and NSF grant No. 2022448.

References

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3681

D
ow

nl
oa

de
d 

07
/1

9/
24

 to
 1

08
.2

6.
22

2.
21

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



[AC91] Ilan Adler and Steven Cosares. A strongly polynomial algorithm for a special class of linear programs. Operations
Research, 39(6):955–960, 1991.

[AKS01] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector problem. In
Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, STOC ’01, 2001.

[Ans97] Kurt M. Anstreicher. Volumetric path following algorithms for linear programming. Math. Program., 1997.
[AV95] David S. Atkinson and Pravin M. Vaidya. A cutting plane algorithm for convex programming that uses analytic

centers. Math. Program., 1995.
[BLSS20] Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall dense linear programs in nearly

linear time. In STOC, 2020.
[BV04] Dimitris Bertsimas and Santosh Vempala. Solving convex programs by random walks. J. ACM, 2004.
[BWZ16] Christos Boutsidis, David P Woodruff, and Peilin Zhong. Optimal principal component analysis in distributed

and streaming models. In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, pages
236–249, 2016.

[Chu12] Sergei Chubanov. A strongly polynomial algorithm for linear systems having a binary solution. Mathematical
programming, 134(2):533–570, 2012.

[Chu15] Sergei Chubanov. A polynomial algorithm for linear optimization which is strongly polynomial under certain
conditions on optimal solutions, 2015.

[CLS19] Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix multiplication time.
In Proceedings of the 51st Annual ACM Symposium on Theory of Computing (STOC), 2019.

[CM91] Edith Cohen and Nimrod Megiddo. Improved algorithms for linear inequalities with two variables per inequality.
In Proceedings of the twenty-third annual ACM symposium on Theory of Computing, pages 145–155, 1991.

[CW13] Kenneth L Clarkson and David P Woodruff. Low rank approximation and regression in input sparsity time. In
Proceedings of the forty-fifth annual ACM symposium on Theory of Computing (STOC), pages 81–90, 2013.

[DHNV20] Daniel Dadush, Sophie Huiberts, Bento Natura, and László A Végh. A scaling-invariant algorithm for linear
programming whose running time depends only on the constraint matrix. In Proceedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, pages 761–774, 2020.

[Dik67] II Dikin. Iterative solution of problems of linear and quadratic programming. In Doklady Akademii Nauk, volume
174, pages 747–748. Russian Academy of Sciences, 1967.

[DSW22] Yichuan Deng, Zhao Song, and Omri Weinstein. Discrepancy minimization in input-sparsity time. arXiv preprint
arXiv:2210.12468, 2022.

[DVZ21] Dan Dadush, László A Végh, and Giacomo Zambelli. Geometric rescaling algorithms for submodular function
minimization. Mathematics of Operations Research, 46(3):1081–1108, 2021.

[DWZ23] Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via asymmetric hashing. In FOCS, 2023.
[Edm03] Jack Edmonds. Submodular functions, matroids, and certain polyhedra. In Combinatorial Optimization—Eureka,

You Shrink! Papers Dedicated to Jack Edmonds 5th International Workshop Aussois, France, March 5–9, 2001 Revised
Papers, pages 11–26. Springer, 2003.

[FI03] Lisa Fleischer and Satoru Iwata. A push-relabel framework for submodular function minimization and applications
to parametric optimization. Discrete Applied Mathematics, 131(2):311–322, 2003.

[GLS81] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and its consequences in
combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

[GLS84] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric methods in combinatorial optimization. In
Progress in combinatorial optimization, pages 167–183. Elsevier, 1984.

[GLS88] Martin Grotschel, Laszlo Lovasz, and Alexander Schrijver. Geometric algorithms and combinatorial optimization.
Springer, 1988.

[HJS+22] Baihe Huang, Shunhua Jiang, Zhao Song, Runzhou Tao, and Ruizhe Zhang. Solving sdp faster: A robust ipm
framework and efficient implementation. In FOCS, 2022.

[IFF01] Satoru Iwata, Lisa Fleischer, and Satoru Fujishige. A combinatorial strongly polynomial algorithm for minimizing
submodular functions. Journal of the ACM (JACM), 48(4):761–777, 2001.

[IO09] Satoru Iwata and James B Orlin. A simple combinatorial algorithm for submodular function minimization. In
Proceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms, pages 1230–1237. SIAM, 2009.

[Iwa03] Satoru Iwata. A faster scaling algorithm for minimizing submodular functions. SIAM Journal on Computing,
32(4):833–840, 2003.

[Iwa08] Satoru Iwata. Submodular function minimization. Math. Program., 2008.
[Jia21] Haotian Jiang. Minimizing convex functions with integral minimizers. In Proceedings of the 2021 ACM-SIAM

Symposium on Discrete Algorithms, 2021.
[Jia22] Haotian Jiang. Minimizing convex functions with rational minimizers. ACM Journal of the ACM (JACM), 2022.
[JKL+20] Haotian Jiang, Tarun Kathuria, Yin Tat Lee, Swati Padmanabhan, and Zhao Song. A faster interior point

method for semidefinite programming. In FOCS, 2020.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3682

D
ow

nl
oa

de
d 

07
/1

9/
24

 to
 1

08
.2

6.
22

2.
21

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



[JLSW20] Haotian Jiang, Yin Tat Lee, Zhao Song, and Sam Chiu-wai Wong. An improved cutting plane method for
convex optimization, convex-concave games, and its applications. In Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, pages 944–953, 2020.

[JNW22] Shunhua Jiang, Bento Natura, and Omri Weinstein. A faster interior-point method for sum-of-squares optimization.
49th International Colloquium on Automata, Languages, and Programming (ICALP), 2022.

[JSWZ21] Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. Faster dynamic matrix inverse for faster lps.
In STOC, 2021.

[Kha80] L.G. Khachiyan. Polynomial algorithms in linear programming. USSR Computational Mathematics and
Mathematical Physics, 1980.

[KLS95] Ravi Kannan, László Lovász, and Miklós Simonovits. Isoperimetric problems for convex bodies and a localization
lemma. Discrete & Computational Geometry, 13(3):541–559, 1995.

[Lev65] Anatoly Yur’evich Levin. An algorithm for minimizing convex functions. In Doklady Akademii Nauk, volume 160,
pages 1244–1247. Russian Academy of Sciences, 1965.

[LG24] Francois Le Gall. Faster rectangular matrix multiplication by combination loss analysis. In SODA, 2024.
[LLL82] Arjen K Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring polynomials with rational coefficients.

Mathematische annalen, 1982.
[LS14] Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving linear programs in O(

√
rank)

iterations and faster algorithms for maximum flow. In 2014 IEEE 55th Annual Symposium on Foundations of Computer
Science, pages 424–433. IEEE, 2014.

[LS19] Yin Tat Lee and Aaron Sidford. Solving linear programs with sqrt (rank) linear system solves. arXiv preprint
arXiv:1910.08033, 2019.

[LSW15] Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane method and its implications for
combinatorial and convex optimization. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science,
pages 1049–1065. IEEE, 2015.

[LSZ+23] S Cliff Liu, Zhao Song, Hengjie Zhang, Lichen Zhang, and Tianyi Zhou. Space-efficient interior point method,
with applications to linear programming and maximum weight bipartite matching. In ICALP, 2023.

[McC05] S Thomas McCormick. Submodular function minimization. Discrete Optimization, 12:321–391, 2005.
[Meg83] Nimrod Megiddo. Towards a genuinely polynomial algorithm for linear programming. SIAM Journal on Computing,

12(2):347–353, 1983.
[New65] Donald J Newman. Location of the maximum on unimodal surfaces. Journal of the ACM (JACM), 12(3):395–398,

1965.
[NN89] I.U.E. Nesterov and A.S. Nemirovski. Self-concordant Functions and Polynomial-time Methods in Convex

Programming. USSR Academy of Sciences, Central Economic & Mathematic Institute, 1989.
[NN94] Yurii Nesterov and Arkadi Nemirovski. Interior-point polynomial algorithms in convex programming, volume 13.

Siam, 1994.
[NS16] Arnold Neumaier and Damien Stehlé. Faster lll-type reduction of lattice bases. In Proceedings of the ACM on

International Symposium on Symbolic and Algebraic Computation (ISSAC), pages 373–380, 2016.
[Orl09] James B Orlin. A faster strongly polynomial time algorithm for submodular function minimization. Mathematical

Programming, 118(2):237–251, 2009.
[OV20] Neil Olver and László A Végh. A simpler and faster strongly polynomial algorithm for generalized flow maximization.

Journal of the ACM (JACM), 67(2):1–26, 2020.
[Ren88] James Renegar. A polynomial-time algorithm, based on newton’s method, for linear programming. Math. Program.,

1988.
[Rot16] Thomas Rothvoss. Integer optimization and lattices. University of Washington, Spring, 2016.
[Sch87] C.P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Comput. Sci., 1987.
[Sch00] Alexander Schrijver. A combinatorial algorithm minimizing submodular functions in strongly polynomial time.

Journal of Combinatorial Theory, Series B, 80(2):346–355, 2000.
[Sho77] Naum Shor. Cut-off method with space extension in convex programming problems. Cybernetics and systems

analysis, 1977.
[Sma98] Steve Smale. Mathematical problems for the next century. The mathematical intelligencer, 20(2):7–15, 1998.
[SWZ17] Zhao Song, David P Woodruff, and Peilin Zhong. Low rank approximation with entrywise l1-norm error. In

Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 688–701, 2017.
[SWZ19] Zhao Song, David P Woodruff, and Peilin Zhong. Relative error tensor low rank approximation. In Proceedings

of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2772–2789. SIAM, 2019.
[SXZ22] Zhao Song, Zhaozhuo Xu, and Lichen Zhang. Speeding up sparsification using inner product search data structures.

arXiv preprint arXiv:2204.03209, 2022.
[SYYZ22] Zhao Song, Xin Yang, Yuanyuan Yang, and Tianyi Zhou. Faster algorithm for structured john ellipsoid

computation. arXiv preprint arXiv:2211.14407, 2022.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3683

D
ow

nl
oa

de
d 

07
/1

9/
24

 to
 1

08
.2

6.
22

2.
21

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



[SYZ23] Zhao Song, Mingquan Ye, and Lichen Zhang. Streaming semidefinite programs: O(
√
n) passes, small space and

fast runtime. arXiv preprint arXiv:2309.05135, 2023.
[Tar86] Éva Tardos. A strongly polynomial algorithm to solve combinatorial linear programs. Operations Research,

34(2):250–256, 1986.
[TKE88] S. P. Tarasov, L. G. Khachiyan, and I. I. Èrlikh. The method of inscribed ellipsoids. Dokl. Akad. Nauk SSSR,

1988.
[VA93] Pravin M. Vaidya and David S. Atkinson. A Technique for Bounding the Number of Iterations in Path Following

Algorithms, pages 462–489. World Scientific Publishing Company, 1993.
[Vai89] P.M. Vaidya. A new algorithm for minimizing convex functions over convex sets. In 30th Annual Symposium on

Foundations of Computer Science, pages 338–343, 1989.
[Vég14] László A Végh. A strongly polynomial algorithm for generalized flow maximization. In Proceedings of the forty-sixth

annual ACM symposium on Theory of computing, pages 644–653, 2014.
[VWXXZ24] Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds for matrix multiplication:

from alpha to omega. In SODA, 2024.
[VY96] Stephen A Vavasis and Yinyu Ye. A primal-dual interior point method whose running time depends only on the

constraint matrix. Mathematical Programming, 74(1):79–120, 1996.
[Vyg03] Jens Vygen. A note on schrijver’s submodular function minimization algorithm. Journal of Combinatorial Theory,

Series B, 88(2):399–402, 2003.
[YN76] David Yudin and Arkadii Nemirovski. Evaluation of the information complexity of mathematical programming

problems. Ekonomika i Matematicheskie Metody, 1976.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited3684

D
ow

nl
oa

de
d 

07
/1

9/
24

 to
 1

08
.2

6.
22

2.
21

2 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y


	Introduction
	Our Result
	Applications to Submodular Function Minimization

	Technique Overview
	An Overview of Previous Work
	Our Approach: Cutting Plane in Blocks and Lazy Width Measurement
	Discussion

	Preliminary
	Notations and Basic Facts
	LLL Algorithm for Shortest Vector Problem
	Convex Geometry
	Lattice Projection
	Slicing Lemma
	Dimension Reduction Lemma

	Cutting Plane Method
	Log-barrier and Volumetric Center
	Leverage Score of Log Hessian
	Volume Shrinking
	Sandwiching Lemma
	Closeness of Log Hessian and Covariance
	Stability of Approximate Center
	Closeness of Approximate and True Center
	High Dimensional Slicing Lemma
	Faster Cutting Plane via Leverage Score Maintenance
	Main Lemma

	Efficient Minimization via Fast Cutting and Lazy Width Measurement
	Our Algorithm
	Correctness of Our Algorithm
	Oracle Complexity
	Runtime Analysis
	Main Result


