
Mechanic: A Learning Rate Tuner

Ashok Cutkosky
Boston University

Boston, MA
ashok@cutkosky.com

Aaron Defazio
Meta, FAIR

New York, NY
adefazio@meta.com

Harsh Mehta
Google Research

Mountain View, CA
harshm@google.com

Abstract

We introduce a technique for tuning the learning rate scale factor of any base op-
timization algorithm and schedule automatically, which we call MECHANIC. Our
method provides a practical realization of recent theoretical reductions for accom-
plishing a similar goal in online convex optimization. We rigorously evaluate
MECHANIC on a range of large scale deep learning tasks with varying batch sizes,
schedules, and base optimization algorithms. These experiments demonstrate that
depending on the problem, MECHANIC either comes very close to, matches or
even improves upon manual tuning of learning rates.

1 Introduction

Modern deep learning is driven by first-order stochastic optimization algorithms. These are algo-
rithms that are designed to solve the classical stochastic optimization problem:

minF (x) = minE
z
[f(x, z)]

where z is a minibatch of examples, x ∈ Rd is the model parameters, and f is the loss incurred by
using weights x on the minibatch z. A first-order algorithm follows the protocol:

1. Output a tth iterate xt.
2. Sample a random minibatch zt.
3. Compute gt = ∇f(xt, zt) (the gradient is taken with respect to xt only).
4. Possibly update some internal algorithm state based upon gt in preparation for computing

the next iterate xt+1.

The prototypical such optimization algorithm is stochastic gradient descent (SGD), which exempli-
fies the attractive features of this approach: it is computationally cheap (running in O(d) time per
update), and with proper tuning obtains minimax optimal convergence guarantees [1, 2]. Modern
practice makes use of a wide range of variants of SGD, such SGD with momentum, AdaGrad [3],
Adam [4], AdamW [5] or Lion [6]. Interest in such improvements to SGD is driven by the increas-
ing computational demands of training large neural networks: better optimization means cheaper
training, which translates to significant savings in terms of time, cost, and environmental impact.

Most modern algorithms for training neural networks are equipped with a scalar “scale factor” or
“learning rate” hyperparameter s ∈ R. Roughly speaking, these algorithms produce iterates of the
form xt+1 = xt + s · ut where ut is some update vector produced as a function of the observed
gradients g1, . . . ,gt (we will use bold font for vectors in Rd like u and normal font for all other
quantities like s). As an example, the classical SGD algorithm sets ut = −ηtgt for some sequence
of scalars {ηt} typically called the schedule. The formula for the SGD update is:

xt+1 = x1 − s ·
t∑︂

i=1

ηigi. (1)

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

The process of selecting the optimal s is called “tuning”, and is a key resource sink in machine
learning. The typical approach is simply to try many possibilities to find the empirically optimal s,
which requires multiple expensive training runs. This paper introduces a technique for choosing s
automatically on-the-fly in order to avoid this expense.

Our procedure, which we call MECHANIC, is a generic wrapper around any base optimization al-
gorithm (BASE) that produces a new optimizer which does not require tuning of the scalar s. The
base optimization algorithm is allowed to make any kind of update (for example, it may use any
kind of schedule, preconditioner or weight decay). If xBASE

t ∈ Rd is the tth iterate of BASE, then
the wrapper will produce a scalar st ∈ R and set the tth iterate of the wrapped algorithm to be
xt = xBASE

1 + st(x
BASE
t − xBASE

1). As an example, suppose that BASE is the classical SGD algorithm
with update equation (1). Then, given st, we would set xt = xBASE

1 − st
∑︁t−1

i=1 ηigi. Disregarding
for now the fact that the gradients gi actually depend on the iterates xi

1, we see that xt is what the
tth iterate of SGD would have been if the schedule were scaled by st.

Removing tuning of learning rate scalars is already a well-studied problem. One of the main
attractions of early work in “adaptive” optimization such as AdaGrad and Adam [3, 7, 4] is
that these algorithms require less tuning than ordinary SGD. Over the last decade, a number
of works have aimed to tackle this problem from both an empirical and theoretical perspective
[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. An intuitive approach might take the route of “hy-
pergradient descent”: that is, differentiating the update step of the optimization algorithm itself (e.g.
[8, 9]). Strangely, it appears to be difficult to prove that such schemes behave well: theory-based
approaches often adopt rather different strategies. Instead, we start from known theory and propose
a few important modifications to produce a simple and effective practical implementation. We then
rigorously evaluate our algorithm on a variety of datasets. We emphasize that our primary contri-
bution is not new theoretical development, but instead the translation between theory and practice,
which involves fusing several known analytical techniques as well as subtle departures from theory.

Previous works that investigate deep learning performance of “learning-rate free” optimization in-
spired by theory (e.g. [20, 21, 16, 15]) have already demonstrated impressive results. However,
these works typically build “hand-crafted” algorithms that often blend theoretical analysis with spe-
cific empirically successful algorithms such as Adam. In contrast, our wrapper works well with any
base algorithm and so can seamlessly integrate new empirical advances in optimization: one does
not need intimate familiarity with the analysis of our approach to apply it to a new algorithm.

2 Background: Online Convex Optimization

We develop our formalism via online convex optimization (OCO) [22, 23, 24]. OCO is a popular
framework for design and analysis of stochastic optimization algorithms. In brief, for each of T
rounds (corresponding to T iterations of optimization), the OCO algorithm must first output a tth
iterate xt, after which the algorithm is presented with a tth loss function ℓt. Typically, one envisions
the case ℓt(x) = ℓ(x, zt) for some fixed loss ℓ and new data point zt. The goal of an algorithm ALG
is to minimize the regret RALG(x̊):

RALG(x̊) ≜
T∑︂

t=1

ℓt(xt)− ℓt(x̊).

Many references focus primarily on the case x̊ = argmin
∑︁T

t=1 ℓt(x) in order to consider the single
scalar value supx̊ RT (x̊) [25, 26], but we will employ the formulation of regret as a function above
instead as it is strictly more general. When ℓt is convex, then with gt ≜ ∇ℓt(xt) (or, more generally
when gt is a subgradient of ℓt at xt), we have:

RALG(x̊) ≤
T∑︂

t=1

⟨gt,xt − x̊⟩ ≜ RALG
linear(x̊).

As a result, the vast majority of OCO algorithms provide analysis that bounds only the linearized
regret RALG

linear(x̊). Such algorithms do not need to observe the entire function ℓt: instead, they only
make use of the gradients gt. That is, the tth output of ALG (i.e. xt) is purely a function of the
previous sequence of gradients g1, . . . ,gt−1 so that ALG is a first-order algorithm.

1This seems like a significant issue to disregard, but we will provide mathematical justification shortly.

2

2.1 Learning the Scale in OCO

Just like stochastic optimization algorithms, most OCO algorithms also require a scale factor s. In
fact, many stochastic optimization algorithms (such as SGD and AdaGrad) are also OCO algorithms.
Setting ηt = η for all t, SGD ensures the regret bound:

RSGD(x̊) ≤ RSGD
linear(x̊) ≤ O

(︄
∥x̊− x1∥2

sη
+ sη

T∑︂
t=1

∥gt∥2
)︄
. (2)

From this equation, one can deduce in hindsight that for any given x̊, the optimal value for s is
∥x̊−x1∥

η
√∑︁T

t=1 ∥gt∥2
, which would provide the bound:

RSGD WITH TUNED s
linear (x̊) ≤ O

⎛⎝∥x̊− x1∥

⌜⃓⃓⎷ T∑︂
t=1

∥gt∥2

⎞⎠ . (3)

This result is minimax optimal [27], but requires knowledge of the unknown optimal s. Very re-
cently, [14, 16, 15] have produced algorithms that estimate the value of ∥xBASE

1 − x̊∥ on-the-fly and
use this estimate to quickly identify the optimal scaling value s. These algorithms achieve impres-
sive practical performance, but they require an understanding of the closed-form solution for the
optimal s value above. Our goal is to learn the correct scaling regardless of the base algorithm.

To this end, we will leverage a scheme recently developed by [28] that allows one to automatically
tune the scale of a base OCO algorithm using another “meta” OCO algorithm. We reproduce their
result below (with notation altered to suit our application) along with the short proof:

Theorem 1 ([28]). Suppose BASE and TUNER are both OCO algorithms. Let {xBASE
t } ⊂ Rd indicate

the iterates of BASE in response to an arbitrary sequence of gradients {gt}, and let {st} ⊂ R
indicate the iterates of TUNER in response to the sequence of scalars {ht = ⟨gt,x

BASE
t − x1⟩}.

Define a new online algorithm MECHANIC via:

xMECHANIC
t = xBASE

1 + st · (xBASE
t − xBASE

1).

Then xMECHANIC
t ensures regret:

RMECHANIC
linear (x̊) ≤ inf

s̊
RTUNER

linear (s̊) + s̊RBASE
linear((x̊− xBASE

1)/s̊).

Proof. By definition, for any s̊, we have:

RMECHANIC
linear (x̊) =

T∑︂
t=1

⟨gt,x
BASE
1 + st · (xBASE

t − xBASE
1)− x̊⟩

=

T∑︂
t=1

⟨gt,x
BASE
t − xBASE

1 ⟩(st − s̊) + s̊

T∑︂
t=1

⟨gt,x
BASE
t − xBASE

1 − (x̊− xBASE
1)/s̊⟩

= RTUNER
linear (s̊) + s̊RBASE

linear(x
BASE
1 + (x̊− xBASE

1)/s̊).

With this result, the job of finding the optimal s can usually be completely relegated to TUNER.
Although the value s̊ appears in both terms of the sum RTUNER

linear (s̊)+ s̊RBASE
linear(x

BASE
1 +(x̊−xBASE

1)/s̊),
it turns out that for essentially all plausible BASE algorithms, there is a particular value s̊ that causes
s̊RBASE

linear(x
BASE
1 + (x̊ − xBASE

1)/s̊) to obtain the optimal regret bound (3). Thus, by setting s̊ to be
this value, which is unknown a priori, we need only ensure that RTUNER

linear (s̊) is small enough to not
significantly affect the overall regret bound. Note that this setting of s̊ is done entirely in the analysis.
For example, if BASE is actually SGD with a learning rate η and s = 1 as in (2), we have

RMECHANIC(x̊) ≤ RMECHANIC
linear (x̊) ≤ inf

s̊
RTUNER

linear (s̊) +O

(︄
∥x̊− x1∥2

s̊η
+ s̊η

T∑︂
t=1

∥gt∥2
)︄
,

3

setting s̊ = ∥x̊−x1∥
η
√∑︁T

t=1 ∥gt∥2
:

≤ RTUNER
linear

⎛⎝ ∥x̊− x1∥

η
√︂∑︁T

t=1 ∥gt∥2

⎞⎠+O

⎛⎝∥x̊− x1∥

⌜⃓⃓⎷ T∑︂
t=1

∥gt∥2

⎞⎠ .

Thus, if TUNER obtains low regret, then we will obtain the same regret bound as if we had optimally
tuned the scaling factor for SGD. Intuitively, the gradient ht provided to TUNER approximates the
gradient over the entire course of the base optimizer rather than just at the most recent iterate. That
is, for SGD, ht ≈ df(xt,zt)

ds where xt = x1 − s
∑︁t−1

k=1 ηkgk.

2.2 Parameter-Free Online Optimization

The problem with the above result is that we seem to have simply pushed the problem off to TUNER:
what if TUNER itself requires us to set a scale factor? Solving this problem has been the focus of a
substantial effort in the online optimization community [29, 30, 10, 11, 28, 12]. The most advanced
such algorithms are able to ensure for all s̊ simultaneously:

Rlinear(s̊) =

T∑︂
t=1

ht(st − s̊) ≤ Õ

⎛⎝|s̊|
⌜⃓⃓⎷ T∑︂

t=1

h2
t

⎞⎠ . (4)

Thus, if we set ht = ⟨gt,x
BASE
t − xBASE

1 ⟩, we obtain:

RTUNER
linear (s̊) ≤ Õ

⎛⎝|s̊|
⌜⃓⃓⎷ T∑︂

t=1

⟨gt,x
BASE
t − xBASE

1 ⟩2

⎞⎠ .

In a theoretical development of this technique, it is necessary to prevent the terms ⟨gt,x
BASE
t −

xBASE
1 ⟩2 from becoming too large (as otherwise RTUNER

linear is too large). Typically, this is accomplished
by constraining the base algorithm to satisfy ∥xBASE

t − xBASE
1 ∥ ≤ ρ for some user-specified arbitrary

ρ. Enforcing such a constraint means that the regret bound (2) would only apply to ∥x̊∥ ≤ ρ, but
ensures that ⟨gt,x

BASE
t − xBASE

1 ⟩2 ≤ ρ2∥gt∥2. Thus, by setting s̊ = ∥x̊ − xBASE
1 ∥/ρ, the combined

algorithm obtains the optimal regret bound of O(∥x̊− xBASE
1 ∥

√︂∑︁T
t=1 ∥gt∥2) (amazingly, the value

of ρ is irrelevant!). In practice however, we do not attempt to explicitly enforce any such constraints
and simply rely on the intuition that any non-diverging algorithm is unlikely to produce excessively
large iterates.

At no point in this process do we need access to the internal state of the base algorithm BASE. This
means that improvements to BASE will automatically be reflected in improvements to the overall
algorithm. In this paper, we investigate the performance of MECHANIC on deep learning tasks. We
consider a variety of settings for the base algorithm BASE (i.e. AdamW, Lion, SGD, with various
batch sizes and learning rate schedules of various shapes), and employ a parameter-free algorithm
as the TUNER to automatically find the best scale factor for the base algorithm.

3 The MECHANIC algorithm

Our MECHANIC algorithm is specified in Algorithm 1. The algorithm is built by applying Theo-
rem 1 to a parameter-free TUNER algorithm presented in Algorithm 2, which is described along with
theoretical analysis in Appendix D. However, when building MECHANIC, we modify the “pure”
theoretically tractable Algorithm 2 to simplify the implementation while still capturing the essential
intuition and maintaining the same performance. In the remainder of this section we will provide
some intuition behind the TUNER update as used in MECHANIC as well as describing some poten-
tially unfamiliar subtleties relating to our use of exponentially weighted moving averages.

MECHANIC takes as input a base algorithm that generates update vectors ut as described in the
previous sections. We then set ∆t+1 =

∑︁t
k=1 uk = xBASE

t+1 − xBASE
1 . The majority of the algorithm

contains our TUNER method, which is a variant of the analytically tractable Algorithm 2, with a

4

Algorithm 1 MECHANIC

1: Input: Base algorithm BASE, β ∈ [0, 1]n (default n = 6, β =
(0.9, 0.99, 0.999, 0.9999, 0.99999, 0.999999), λ ∈ R (default λ = 0.01). sinit ∈ R:
first non-zero s value (default sinit = 10−8). ϵ = 10−8: small value for numerical stability.

2: v0 ← 0 ∈ Rn, r0 ← 0 ∈ Rn, m0 ← 0 ∈ Rn, xref ← xBASE
1 .

3: ∆1 ← 0 ∈ Rd

4: s1 ← 0 ∈ Rn. // We will use st,i to indicate the ith coordinate of st.
5: for t = 1 . . . T do
6: gt ← ∇f(xt, zt). // xt is the tth set of model parameters and zt is the tth minibatch.
7: Send gt to BASE, receive update uk. // On its own, BASE would update xt+1 ← xt + uk.
8: [Optional] Set ∆t =

xt−xref

(
∑︁n

i=1 st,n)+ϵ
to save memory instead of storing ∆t from last round.

9: ∆t+1 ←∆t + ut.

10: ht ←
⟨︃
∆t,gt +

λ(
∑︁n

i=1 st,n)∥gt∥xt

∥xt∥

⟩︃
// Note use of ∆t rather than ∆t+1.

11: mt ← max(βmt−1, ht) (multiplications by β and maximum are taken coordinate-wise)
12: vt ← β2vt−1 + h2

t
13: rt ← βrt−1 − st−1ht

14: rt ← max(0, rt) // This step is used instead of more complicated procedures in Algorithm 2
15: Wt ← sinit·mt

n + rt
16: st+1 ← Wt√

vt+ϵ

17: xt+1 ← xBASE
1 + (

∑︁n
i=1 st+1,i) ·∆t+1

18: end for

few modifications. Note that the indexing on ∆ is very important and may be counterintuitive: the
definition of ht does not include ∆t+1, but rather ∆t. ht is the “gradient” that is supplied to TUNER,
as described by Theorem 1.

To gain some intuition behind the update, let us consider the case that n = 1 and β = 1.0 (that
is, without employing any exponentially-weighted moving averages). We keep track of the quantity
Wt = sinit ·mt −

∑︁t
k=1 hksk, which is usually called the “wealth” of the algorithm (the quantity

rt = −
∑︁t

k=1 hksk is sometimes called the “reward”). sinit specifies the starting value for st and
should be an under-estimate of the true optimal scaling. We then set st+1 = Wt√

vt
(neglecting the ϵ

included for numerical stability). To understand this update strategy, we can re-write the update as:

st+1 = st ·
√
vt−1√
vt
− stht√

vt
≈
(︃
1− h2

t

2vt

)︃
st −

stht√
vt
.

Thus, the update looks like a combination of an AdaGrad-esque gradient descent step with learning
rate scaled by st and a kind of “adaptive decay” (multiplication by 1 − h2

t

2vt
). The adaptive decay

is very important for stabilizing the algorithm: without it the values for st are prone to unchecked
exponential growth due to scaling by st in stht√

vt
. Intuitively, this decay is the minimum amount

required to prevent instabilities.

In Appendix D, we provide a formal Theorem bounding the regret of a variant of the procedure
described above. Roughly speaking, for β = 1 this result suggests:

T∑︂
t=1

ht(st − s̊) ≤ O

⎛⎝(s̊+max
t

st) ·mT + s̊ · log(T s̊/sinit)

⌜⃓⃓⎷ T∑︂
t=1

h2
t

⎞⎠ . (5)

In fact, the dependence of O(log(T)) in equation (5) can be improved to O(
√︁
log(T)) via more

complicated algorithms (e.g. [28, 12, 31, 32]). However, we favor the simpler update and pleasing
resemblance to familiar algorithms like AdaGrad via the Taylor expansion analysis above. Of note,
the dependence on sinit is very mild: this suggests that we should be able to set sinit to a very small

5

value without damaging performance. In practice, we choose sinit = 10−8, which we expect to
dramatically underestimate the optimal value in all scenarios.

We hypothesize that the simplified TUNER we use in MECHANIC in fact possesses a rigorous theoret-
ical analysis (although perhaps only with respect to simpler non-fully-worst-case adversaries), but
demonstrating such a bound appears to involve difficult technical hurdles. In particular, our imple-
mention is designed to be “scale-free”: rescaling the values of gt by any constant scalar will have no
effect on st. This property was first achieved only recently in theoretical analysis of parameter-free
algorithms [12], and as-yet requires significantly more involved algorithms [12, 33].

3.1 The use of β

We include β to introduce some recency bias in the statistics recorded by MECHANIC, a common
feature of practical optimizers. Mathematically, we accomplish this by up-weighting the tth feed-
back to TUNER by β−t: ht → htβ

−t. Thus, for example, we have vt =
∑︁t

k=1 h
2
kβ

−2kt and
rt = −

∑︁t
k=1 hksk−1β

−k
s . Using these weights directly results in numerical stability issues as the

weights become exponentially large. Instead, since we only need to maintain the correct ratio Wt√
vt

,
we can cancel a factor of β−t

s from both sides, giving the update equations in Algorithm 2.

We found that tuning the value of β can significantly improve performance on different tasks. Thus,
we incorporated multiple β values simultaneously in a way that obviates the need for such tuning.

Our approach is inspired by work on “combining” parameter free algorithms [34]. The idea is
simple: parameter-free algorithms typically ensure Rlinear(0) ≤ ϵ for some constant ϵ set by
the user. So, if st,1, . . . , st,n are the outputs of n parameter-free algorithms with regret bounds
R1

linear(s̊), . . . , R
n
linear(s̊), we have for any j:

T∑︂
t=1

ht

(︄
n∑︂

i=1

st,i − s̊

)︄
=

T∑︂
t=1

ht(st,j − s̊) +
∑︂
i ̸=j

T∑︂
t=1

ht(st,i − 0)

= Rj
linear(s̊) +

∑︂
i ̸=j

Ri
linear(0) ≤ Rj

linear(s̊) + (n− 1)ϵ.

So, with small constant additive overhead in the regret, the sum of all the outputs st,1 + · · · + st,n
achieves the same regret as the best of all the outputs. Motivated by this observation, we instantiate
n = 6 copies of TUNER with different β values and add their iterates to produce a final scaling.

3.2 Weight decay

Finally, we found that an addition of a peculiar weight-decay-esque term helped significantly
on certain tasks, including vision tasks with smaller datasets, multi-objective NLP tasks and es-
pecially with reducing the variance in final results for all tasks. Specifically, rather than pro-
viding ht = ⟨gt,∆t⟩ as the input to the TUNER algorithm, we instead provide ht = ⟨gt +
λ∥gt∥(

∑︁n
i=1 st,i)xt

∥xt∥ ,∆t⟩. We conjucture that this term is helpful in the common case that the base
algorithm itself is incorporating regularization or weight-decay.

This extra term is the derivative of the regularizer x ↦→ λ∥gt∥ (
∑︁n

i=1 st,i) ∥x∥. From a standard
theoretical perspective, this regularization may seem overly large. However, it may not have as big
an impact as one might imagine because the base algorithm does not see this regularization. Instead,
the base algorithm may (or may not) perform weight decay using another method that MECHANIC
has no insight into. That said, we do not propose an analytical explanation for this modification. We
simply observed that in practice it performed well with a fixed λ = 0.01.

3.3 Runtime and Memory Cost

MECHANIC incurs little additional cost over that of BASE. In Algorithm 1, we denote d-dimensional
vectors with bold font, and n-dimensional vectors and scalars with normal font (note that typically
n = 6). We use 1 additional O(d) memory slot, and four O(d)-time steps in lines 8, 9, 10 and 17.
All other steps are O(1) or O(n) time and so have negligible cost.

6

Model Size Pre Opt MLM Optimizer MNLI-m/mm QNLI SST-2 QQP

BERT-B 110M
AdamW 71.5 AdamW 84.3/84.8 91.0 92.4 90.1

M-AdamW 83.7/83.5 90.6 91.9 90.5

M-AdamW 71.7 AdamW 84.7/85.1 91.2 93.3 90.7
M-AdamW 84.5/84.4 91.3 92.5 91.1

BERT-B 110M
Lion 71.8 Lion 83.4/83.5 86.8 89.7 89.4

M-Lion 83.1/83.8 89.9 91.0 90.2

M-Lion 72.0 Lion 84.5/84.2 89.0 91.2 90.8
M-Lion 84.2/84.2 88.6 91.1 90.2

BERT-L 340M
AdamW 75.4 AdamW 86.2/86.4 92.2 93.9 91.3

M-AdamW 86.1/86.4 92.5 93.7 91.5

M-AdamW 75.3 AdamW 86.3/86.5 92.7 94.4 91.4
M-AdamW 86.1/86.3 91.7 93.5 91.5

BERT-L 340M
Lion 75.7 Lion 86.7/86.6 90.7 92.9 91.1

M-Lion 86.0/86.2 90.3 93.4 91.2

M-Lion 75.5 Lion 87.4/87.4 92.9 93.3 91.7
M-Lion 87.2/87.1 91.5 92.3 91.6

Table 1: Comparing MECHANIC on BERT. 5 largest datasets from GLUE. Results reported are peak
validation scores averaged over 3 runs, both for the baseline and MECHANIC tuned models.

4 Experiments

In this section we describe our experiments using MECHANIC to tune various base optimizers on dif-
ferent tasks. Note that almost all base optimizer implementations require a user-specified scale factor
which is is not directly visible to MECHANIC. We set this value to 1.0 before applying MECHANIC.
Since MECHANIC multiplies the base update by st, setting the base scale factor to 1.0 allows us to
interpret st as the “correct” value for the base scale.

4.1 Masked Language Modeling

We perform BERT pre-training on the Wikibooks dataset following the procedure from [35] with a
few minor changes, most notably, we omit the Next Sentence Prediction (NSP) loss following [36].
Masked language modeling (MLM) requires reconstructing randomly masked tokens given an input
sequence of tokens. As shown in Table 1, using MECHANIC leads to a noticeable improvement in
MLM accuracy.

Varying batch size and model size: Past works observe that the scale factor s should decrease
as either batch size is decreased or model size is increased [37, 38]. To inspect the scale factor
that MECHANIC learns, we vary the batch size and model size while pre-training BERT using ME-
CHANIC. As shown in Figure 1, in both cases, MECHANIC learns to decrease the scale factor s when
decreasing the batch size and when increasing the model size.

Addition Ablations: Ablation studies on the effects of n, λ, sinit can be found in Appendix B.

Finetuning pre-trained models: In addition to pre-training, we evaluate our models on the 5 largest
datasets from the GLUE suite [39]. One possible failure mode of MECHANIC tuned pre-trained
models could have been that, even though they lead to high accuracy at pre-training time, transfer
learning may fail at finetuning time.

To ensure that standard transfer learning pipelines still work with MECHANIC pre-trained models,
we finetune them without a learning rate tuner using the AdamW optimizer and find that MECHANIC
pre-trained models lead to higher accuracy at pre-training time, and they also outperform in finetun-
ing more often than not. We finetune BERT-B (110M) and BERT-L (340M) models for at most 10
epochs on each of the GLUE datasets and report results on the GLUE dev set in Table 1.

Using MECHANIC for finetuning: We also investigated using MECHANIC for finetuning. Typically,
to not erase the progress already made, a much lower base learning rate is employed at finetuning

7

(a) Varying batch size

(b) Varying model size

Figure 1: Scaling values s learned by MECHANIC while varying batch size and model size.

time. This could easily have been a potential failure mode of any kind of automatic learning rate
tuner as such strategies might “explore” a high learning rate at the beginning of the optimization
procedure. Fortunately, we observed that this inductive bias typically baked at finetuning time is
still maintained when using MECHANIC.

4.2 Image Classification

In this Section, we present results on popular Image Classification tasks. Apart from training from
scratch, we also perform transfer learning experiments where we pre-train on the JFT-300M [40]
dataset and finetune on ImageNet, Cifar-10 and Cifar-100 datasets. We follow the exact setting
employed in [41] for both pre-training and finetuning.

As shown in Table 2, MECHANIC is quite competitive across the board and produces results either
very close to the baseline or better. Since MECHANIC optimizes for the train loss, in general, we
observe that it results in better test performance on tasks with large amounts of data where the
model is unable to overfit to the train set. For instance, we see that MECHANIC beats the baseline
substantially when pre-training ViT models on JFT-300M, whereas it lags slightly behind on smaller
datasets like ImageNet-1k or CIFAR-10/100. Even though we fix λ to 0.01 as default for all our
reported experiments, we find that for small datasets like CIFAR-10, increasing it led to better test
performance.

4.3 Comparison with D-adaptation

Recently, [16] introduced the D-adaptation algorithm, with the same goal of learning the correct
scale s for SGD and Adam base optimizers. D-adaptation showed impressive empirical results on a
range of popular deep learning tasks, so we compare MECHANIC with D-adaptation on a selection of
tasks that D-adaptation worked well on, using code provided by the authors. Hyper-parameter set-
tings were kept the same to ensure a fair comparison. In contrast to D-adaptation, MECHANIC does
not require modification for different base optimizers and, as shown in Figure 2, it remains quite

8

Model Size Pre Opt Pre Acc Optimizer I1K Cifar100 Cifar10

CNN from scratch on CIFAR datasets

ResNet-18 11M
- - Mom - 77.6 95.4
- - M-Mom - 75.3 94.1
- - M-Mom (λ = 0.1) - 76.6 95.3

WRN-40-10 56M - - Mom - 79.9 -
- - M-Mom - 79.6 -

Pre-train on JFT-300M

ViT-B/16 86M
AdamW 48.5 Mom 84.7 91.9 99.1

M-Mom 84.7 90.7 99.1

M-AdamW 49.9 Mom 84.2 91.5 99.1
M-Mom 84.1 90.3 99.1

ViT-B/16 86M
Lion 47.0 Mom 85.3 92.1 99.2

M-Mom 85.2 91.0 99.2

M-Lion 49.6 Mom 84.7 92.3 99.2
M-Mom 84.6 90.9 99.1

ViT-L/16 307M
AdamW 54.4 Mom 86.7 93.9 99.5

M-Mom 86.6 92.7 99.5

M-AdamW 54.4 Mom 86.3 93.4 99.4
M-Mom 86.0 92.0 99.3

ViT-L/16 307M
Lion 52.0 Mom 86.7 93.8 99.4

M-Mom 86.7 93.0 99.4

M-Lion 55.4 Mom 87.2 94.0 99.4
M-Mom 87.2 93.4 99.4

Table 2: Comparing MECHANIC on vision models. All fine-tuning results are averaged over 3
independent runs with different seeds.

competitive on small datasets like CIFAR-10/100 while outperforming both a manually tuned base-
line and D-adaptation on bigger tasks like IWSLT14 and language modeling on BookWiki dataset.
We present additional results in Appendix C.3, including a comparison on a suite of 12 logistic
regression problems.

5 Conclusion

MECHANIC is a new technique for scaling the updates of any base optimization algorithm. Our
approach provides a practical implementation of recent developments in optimization theory, and is
able to match the performance of tuned baselines on large-scale machine learning tasks. This work
suggests several natural future directions. First, is there a theoretical motivation for our weight-decay
term? Next, is it possible to leverage similar techniques to learn a per-layer scale factor? Such a
capacity would not significantly increase computation cost, but by allowing more degrees of freedom
may yield a method that significantly outperforms baselines since it is infeasible to manually tune a
scale factor for every layer.

Acknowledgments

Ashok Cutkosky acknowledges funding support from NSF grant CCF-2211718, an Amazon research
award, and Google.

References
[1] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex

stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

9

0 50 100 150 200 250 300
Epoch

75

80

85

90

95

Te
st

 A
cc

ur
ac

y
(%

)

CIFAR-10 (WRN-16-8)

D-Adapt SGD (95.56% SE 0.04)
SGD (95.59% SE 0.03)
Mechanic (95.46% SE 0.03)

0 50 100 150 200 250 300
Epoch

55

60

65

70

75

80

Te
st

 A
cc

ur
ac

y
(%

)

CIFAR-100 (DenseNet)

D-Adapt SGD (76.90% SE 0.06)
SGD (76.41% SE 0.14)
Mechanic (75.44% SE 0.08)

0 10000 20000 30000 40000 50000 60000
Step

5

6

7

8

Te
st

 L
os

s

IWSLT14 (LSTM)

Adam (4.31 SE 0.003)
Mechanic Adam (4.31 SE 0.004)
D-Adapt Adam (4.33 SE 0.003)

0 10000 20000 30000 40000 50000 60000
Step

15

20

25

30

35

40

Te
st

 P
er

pl
ex

ity

BookWiki (GPT Transformer)

Adam (19.49 SE 0.012)
D-Adapt Adam (19.46 SE 0.019)
Mechanic Adam (18.60 SE 0.038)

Figure 2: Comparing MECHANIC with D-adaptation and Adam or SGD with manually tuned learn-
ing rates on vision and language tasks.

[2] Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake
Woodworth. Lower bounds for non-convex stochastic optimization. arXiv preprint
arXiv:1912.02365, 2019.

[3] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. In Conference on Learning Theory (COLT), pages 257–269, 2010.

[4] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.

[5] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2018.

[6] Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham,
Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, et al. Symbolic discovery of optimization algo-
rithms. arXiv preprint arXiv:2302.06675, 2023.

[7] H. Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex
optimization. In Proceedings of the 23rd Annual Conference on Learning Theory (COLT),
pages 244–256, 2010.

[8] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark
Siskind. Automatic differentiation in machine learning: a survey. Journal of machine learning
research, 18, 2018.

[9] Kartik Chandra, Audrey Xie, Jonathan Ragan-Kelley, and Erik Meijer. Gradient descent: The
ultimate optimizer. Advances in Neural Information Processing Systems, 35:8214–8225, 2022.

[10] Francesco Orabona and Dávid Pál. Coin betting and parameter-free online learning. In D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems 29, pages 577–585. Curran Associates, Inc., 2016.

[11] Ashok Cutkosky and Kwabena Boahen. Online learning without prior information. In Confer-
ence on Learning Theory, pages 643–677, 2017.

[12] Zakaria Mhammedi and Wouter M Koolen. Lipschitz and comparator-norm adaptivity in on-
line learning. Conference on Learning Theory, pages 2858–2887, 2020.

10

[13] Kfir Levy, Ali Kavis, and Volkan Cevher. Storm+: Fully adaptive sgd with recursive momen-
tum for nonconvex optimization. Advances in Neural Information Processing Systems, 34:
20571–20582, 2021.

[14] Yair Carmon and Oliver Hinder. Making sgd parameter-free. Conference on Learning Theory,
2022.

[15] Maor Ivgi, Oliver Hinder, and Yair Carmon. Dog is sgd’s best friend: A parameter-free dy-
namic step size schedule. arXiv preprint arXiv:2302.12022, 2023.

[16] Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation. arXiv
preprint arXiv:2301.07733, 2023.

[17] Naman Agarwal, Rohan Anil, Elad Hazan, Tomer Koren, and Cyril Zhang. Disentangling
adaptive gradient methods from learning rates. arXiv preprint arXiv:2002.11803, 2020.

[18] Zhou Lu, Wenhan Xia, Sanjeev Arora, and Elad Hazan. Adaptive gradient methods with local
guarantees. arXiv preprint arXiv:2203.01400, 2022.

[19] Xinyi Chen and Elad Hazan. A nonstochastic control approach to optimization. arXiv preprint
arXiv:2301.07902, 2023.

[20] Francesco Orabona and Tatiana Tommasi. Training deep networks without learning rates
through coin betting. In Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017, 4-9 December 2017,
Long Beach, CA, USA, pages 2157–2167, 2017. URL http://papers.nips.cc/paper/
6811-training-deep-networks-without-learning-rates-through-coin-betting.

[21] Ashok Cutkosky and Kwabena A Boahen. Online convex optimization with unconstrained
domains and losses. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
editors, Advances in Neural Information Processing Systems 29, pages 748–756. Curran As-
sociates, Inc., 2016.

[22] Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends
in Machine Learning, 4(2):107–194, 2011.

[23] Elad Hazan. Introduction to online convex optimization. arXiv preprint arXiv:1909.05207,
2019.

[24] Francesco Orabona. A modern introduction to online learning. arXiv preprint
arXiv:1912.13213, 2019.

[25] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
In Proceedings of the 20th International Conference on Machine Learning (ICML-03), pages
928–936, 2003.

[26] S. Shalev-Shwartz. Online Learning: Theory, Algorithms, and Applications. PhD thesis, The
Hebrew University of Jerusalem, 2007.

[27] Jacob Abernethy, Peter L Bartlett, Alexander Rakhlin, and Ambuj Tewari. Optimal strategies
and minimax lower bounds for online convex games. In Proceedings of the nineteenth annual
conference on computational learning theory, pages 415–424, 2008.

[28] Ashok Cutkosky and Francesco Orabona. Black-box reductions for parameter-free online
learning in Banach spaces. In Conference On Learning Theory, pages 1493–1529, 2018.

[29] Brendan Mcmahan and Matthew Streeter. No-regret algorithms for unconstrained online con-
vex optimization. In Advances in neural information processing systems, pages 2402–2410,
2012.

[30] Brendan McMahan and Jacob Abernethy. Minimax optimal algorithms for unconstrained lin-
ear optimization. In Advances in Neural Information Processing Systems, pages 2724–2732,
2013.

11

http://papers.nips.cc/paper/6811-training-deep-networks-without-learning-rates-through-coin-betting
http://papers.nips.cc/paper/6811-training-deep-networks-without-learning-rates-through-coin-betting

[31] Liyu Chen, Haipeng Luo, and Chen-Yu Wei. Impossible tuning made possible: A new expert
algorithm and its applications. In Conference on Learning Theory, pages 1216–1259. PMLR,
2021.

[32] Francesco Orabona and Dávid Pál. Parameter-free stochastic optimization of variationally
coherent functions. arXiv preprint arXiv:2102.00236, 2021.

[33] Andrew Jacobsen and Ashok Cutkosky. Parameter-free mirror descent. In Proceedings of
Thirty Fifth Conference on Learning Theory, volume 178 of Proceedings of Machine Learning
Research, pages 4160–4211. PMLR, 2022.

[34] Ashok Cutkosky. Combining online learning guarantees. In Proceedings of the Thirty-Second
Conference on Learning Theory, pages 895–913, 2019.

[35] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapo-
lis, Minnesota, 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423.
URL https://aclanthology.org/N19-1423.

[36] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert
pretraining approach. ArXiv preprint, abs/1907.11692, 2019. URL https://arxiv.org/
abs/1907.11692.

[37] L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Advances in Neural
Information Processing Systems (NIPS), 2008.

[38] Shixiang Shane Gu, Sergey Levine, Ilya Sutskever, and Andriy Mnih. Muprop: Unbiased
backpropagation for stochastic neural networks. CoRR, abs/1511.05176, 2015.

[39] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bow-
man. Glue: A multi-task benchmark and analysis platform for natural language understanding.
ArXiv, abs/1804.07461, 2018.

[40] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable
effectiveness of data in deep learning era. 2017 IEEE International Conference on Computer
Vision (ICCV), Oct 2017. doi: 10.1109/iccv.2017.97. URL http://dx.doi.org/10.1109/
iccv.2017.97.

[41] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=YicbFdNTTy.

[42] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Ma-
chine Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

[43] Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham,
Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V. Le. Symbolic discovery
of optimization algorithms, 2023.

[44] Ashok Cutkosky. Artificial constraints and hints for unbounded online learning. In Proceedings
of the Thirty-Second Conference on Learning Theory, pages 874–894, 2019.

[45] Zakaria Mhammedi, Wouter M Koolen, and Tim Van Erven. Lipschitz adaptivity with multiple
learning rates in online learning. In Conference on Learning Theory, pages 2490–2511. PMLR,
2019.

[46] Michal Kempka, Wojciech Kotlowski, and Manfred K Warmuth. Adaptive scale-invariant on-
line algorithms for learning linear models. In International Conference on Machine Learning,
pages 3321–3330, 2019.

12

https://aclanthology.org/N19-1423
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
http://dx.doi.org/10.1109/iccv.2017.97
http://dx.doi.org/10.1109/iccv.2017.97
https://openreview.net/forum?id=YicbFdNTTy
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html

A Limitations

In this paper, we introduce a technique for automatically learning the right scale of the learning
rate called MECHANIC and evaluate it on a broad range of practical deep learning problems and
settings. We find that, depending on the problem, MECHANIC can be quite effective and even surpass
performance of manual tuning of learning rates at a fraction of the cost. We also find that in addition
to training from scratch, MECHANIC also works for finetuning.

While the initial set of results are encouraging, many challenges remain. Firstly, we found that
MECHANIC does not seem to work well with dropout [42]. While MECHANIC is effective against
noise from sampling, we believe there may be a more fundamental reason why dropout does not
work well with MECHANIC. Second, MECHANIC re-purposes the gradient coming from the train set
for learning the learning rate, which means it optimizes for train loss. This is different from manual
tuning of learning rates where researchers tune it based on performance on the validation set. A
principled way to handle this discrepancy is also in interesting avenue of future research.

B Additional Ablations

B.1 Setting BASE learning rate with Mechanic

Even though we recommend setting peak learning rate of Base optimizer to 1.0, to make sure that
Mechanic truly is insenstive to the peak learning rate and robust to the choice of this hyperparameter,
we conduct a study where we vary peak learning rate of AdamW on BERT-B masked language
modeling task. As shown in Table 3, Mechanic is largely robust against choice of peak LR set for
AdamW on BERT-B MLM task.

Peak LR of BASE with Mechanic MLM Acc

1e-2 71.7
1e-1 71.6
1e0 71.6
1e1 71.4
1e2 71.6

Table 3: MECHANIC is largely robust against choice of peak LR set for AdamW on BERT-B MLM
task.

B.2 Robustness to sinit

sinit 1e-8 1e-7 1e-6 1e-5 1e-4

Accuracy 49.8 49.8 49.9 49.7 49.6

Table 4: Accuracy on JFT-300M using model ViT-B/16 and optimizer M-AdamW as a function
sinit. MECHANIC is robust to varying this parameter.

B.3 Ablation of λ

λ 0 1e-3 1e-2 1e-1 1e0

Accuracy 49.7 49.8 49.9 49.7 Diverged

Table 5: Accuracy on JFT-300M using model ViT-B/16 and optimizerM-AdamW as a function λ.
We have observed that while λ is helpful in stabilizing MECHANIC on some problems, as long as it
is set to a reasonable small value it does not affect performance by a lot.

13

B.4 Number of β values

Number of β values (n) 2 4 6 8

Accuracy 48.9 49.5 49.9 49.6

Table 6: Accuracy on JFT-300M using model ViT-B/16 and optimizerM-AdamW as a function n,
the number of β values. The β values are set as 1− 0.1i for i from 1 to n. This is the most sensitive
parameter in MECHANIC. For smaller n we see some significant performance degradation, while for
larger n we see milder degradation. Theory suggests that larger n should result in a degradation that
is roughly logarithmic in n.

C Additional Experimental Details

C.1 Hyperparams for BERT

Model Aug Optimizer β1 β2 lr sweep best lr Weight decay

BERT-B AdamW 0.9 0.999 [5e-4, 1e-3, 2e-3, 5e-3, 1e-2] 5e-3
BERT-L AdamW 0.9 0.999 [5e-4, 1e-3, 2e-3, 5e-3, 1e-2] 1e-3

BERT-B/L M-AdamW 0.9 0.999 0.01

BERT-B Lion 0.9 0.99 [5e-5, 1e-4, 2e-4, 5e-4, 1e-3] 5e-4
BERT-L Lion 0.9 0.99 [5e-5, 1e-4, 2e-4, 5e-4, 1e-3] 2e-4

BERT-B/L M-Lion 0.9 0.99 0.1

Table 7: Critical hyperparameters we used for BERT pre-training. For the baselines we grid searched
the learning rate as shown in the table. Batch size 2k, trained for 150k steps on original Wikibooks
dataset w/o NSP loss (similar to Roberta). We found that a small amount of weight decay makes
MECHANIC slightly more effective.

Model AdamW LR MECHANIC-AdamW

BERT-B 71.1 71.5 71.5 71.5 71.3 71.7

BERT-L 75.0 75.4 75.4 74.6 74.4 75.3
Lion LR MECHANIC-Lion

BERT-B 70.8 70.8 71.1 71.8 71.4 72.0

BERT-L 75.1 75.6 75.7 74.7 Diverged 75.5

Table 8: As detailed in Table 7, we performed a grid search of learning rate values for each base
optimizer. Here, we present the resulting accuracy values.

14

Hyperparam Optimizer Without MECHANIC pre-training With MECHANIC pre-training

Learning Rate Adam [5e-5, 1e-4, 2e-4, 3e-4, 5e-4] [1e-5, 2e-5, 3e-5, 5e-5, 1e-4]
Learning Rate Lion [5e-6, 1e-5, 2e-5, 3e-5, 5e-5] [1e-6, 2e-6, 3e-6, 5e-6, 1e-5]

Batch Size [16, 32] [16, 32]
Weight Decay 0 0
Max Epochs 10 10

Learning Rate Decay Linear Linear
Warmup Ratio 0.06 0.06

Dropout 0.1 0.1
Attention Dropout 0.1 0.1

Table 9: BERT GLUE finetuning hparams with AdamW.

Hyperparam Value

Batch Size [16, 32]
Weight Decay 0
Max Epochs 10

Learning Rate Decay Linear
Warmup Ratio 0.06

Dropout 0.0
Attention Dropout 0.1

Table 10: BERT GLUE finetuning hparams when using mechanic at finetuning time. We found a
limitations of MECHANIC that it does not perform well in combination to dropout, so we set dropout
rate to 0 for these experiments.

C.2 Hyperparams for Image Classification

Model Aug Optimizer β1 β2 lr Weight decay Num epochs

ViT-B/16 AdamW 0.9 0.999 8e-4 0.1 7
ViT-B/16 M-AdamW 0.9 0.999 0.1 7
ViT-L/16 AdamW 0.9 0.999 4e-4 0.1 7
ViT-L/16 M-AdamW 0.9 0.999 0.1 7

ViT-B/16 Lion 0.9 0.99 1e-4 0.3 7
ViT-B/16 M-AdamW 0.9 0.99 0.3 7
ViT-L/16 Lion 0.9 0.99 1e-4 0.3 7
ViT-L/16 M-AdamW 0.9 0.99 0.3 7

Table 11: Critical hyperparameters we used for all the experiments, most of them directly repurposed
from [41]. For each baseline we repurposed a well-tuned base learning from previous work [41, 43].
Trained on JFT-300M with batch size 4k with LR cosine decay schedule.

15

Figure 3: Scaling values s learned by MECHANIC during ResNet18 training on CIFAR10 and
WideResNet training on CIFAR100. Shaded area represents max/min value over 3 runs. Dark
line is average.

Hyperparam ImageNet CIfar100 Cifar10

Learning rate sweep {0.003, 0.01, 00.03, 0.06} {0.001, 0.003, 0.01, 00.03} {0.001, 0.003, 0.01, 00.03}
Batch size 512 512 512

Weight decay 0 0 0
Num steps 20k 10k 10k

Warmup steps 500 500 500
Learning rate decay Cosine Cosine Cosine

Dropout 0.0 0.0 0.0
Clipping norm 1.0 1.0 1.0

Table 12: We directly use ViT finetuning hyperparams recommended by [41]. For MECHANIC we
also use same hyperparameters, omitting just the learning rate sweep, since we don’t need it now.
We use finetuning resolution of 384.

Hyperparam Value

weight decay [0.001, 0.0005, 0.0001]
lr [0.3, 0.1, 0.03]

SGD Momentum β 0.9
batch size 128

num epochs 200
schedule Step decay by 0.2 at 60, 120, 160 epochs

augmentations Random Crop, Random Horizontal Flip
Gradient clip by global norm 1.0

λ Kept at default 0.01

Table 13: Hyperparameters for tuning ResNet18 on CIFAR10 and WideResNet on CIFAR100

C.3 Hyperparams and additional results on comparisons with D-adaptation

D Theoretical Analysis

Here we provide the theoretically tractable version of TUNER as well as its analysis.

D.1 Algorithmic Simplifications

To simplify the implementation of MECHANIC, we replaced all of the red text in Algorithm 2 with a
single line rt ← max(0, rt) right after the definition of rt. This is motivated by two ideas.

16

0 20 40 60 80 100
Epoch

60

70

80

90

Ac
cu

ra
cy

 (%
)

Sensorless

Adam (89.5 SE 0.01)
D-Adapt Adam (90.0 SE 0.07)
Mechanic Adam (89.3 SE 0.01)

0 20 40 60 80 100
Epoch

70

75

80

85

90

95

Ac
cu

ra
cy

 (%
)

Aloi

Adam (94.1 SE 0.01)
D-Adapt Adam (97.1 SE 0.01)
Mechanic Adam (96.6 SE 0.00)

0 20 40 60 80 100
Epoch

70

80

90

100

Ac
cu

ra
cy

 (%
)

DNA

Adam (100.0 SE 0.00)
D-Adapt Adam (100.0 SE 0.00)
Mechanic Adam (100.0 SE 0.00)

0 20 40 60 80 100
Epoch

20

40

60

Ac
cu

ra
cy

 (%
)

Glass

Adam (72.0 SE 0.16)
D-Adapt Adam (72.3 SE 0.19)
Mechanic Adam (67.6 SE 0.25)

0 20 40 60 80 100
Epoch

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Iris

Adam (98.3 SE 0.11)
D-Adapt Adam (98.6 SE 0.00)
Mechanic Adam (98.0 SE 0.07)

0 20 40 60 80 100
Epoch

70

72

74

76

78

Ac
cu

ra
cy

 (%
)

Letter

Adam (77.8 SE 0.01)
D-Adapt Adam (77.7 SE 0.01)
Mechanic Adam (77.7 SE 0.01)

0 20 40 60 80 100
Epoch

70

80

90

Ac
cu

ra
cy

 (%
)

Pendigits

Adam (96.2 SE 0.02)
D-Adapt Adam (95.8 SE 0.02)
Mechanic Adam (95.9 SE 0.08)

0 20 40 60 80 100
Epoch

20

40

60

80

Ac
cu

ra
cy

 (%
)

smallNORB

Adam (92.9 SE 0.03)
D-Adapt Adam (95.8 SE 0.04)
Mechanic Adam (90.8 SE 0.16)

0 20 40 60 80 100
Epoch

90

92

94

96

98

Ac
cu

ra
cy

 (%
)

USPS

Adam (98.6 SE 0.01)
D-Adapt Adam (98.6 SE 0.01)
Mechanic Adam (98.1 SE 0.01)

0 20 40 60 80 100
Epoch

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

Vehicle

Adam (82.1 SE 0.08)
D-Adapt Adam (81.9 SE 0.16)
Mechanic Adam (80.7 SE 0.11)

0 20 40 60 80 100
Epoch

20

40

60

80

Ac
cu

ra
cy

 (%
)

Vowel

Adam (77.4 SE 0.11)
D-Adapt Adam (77.4 SE 0.15)
Mechanic Adam (76.4 SE 0.09)

0 20 40 60 80 100
Epoch

20

40

60

80

100
Ac

cu
ra

cy
 (%

)
Wine

Adam (100.0 SE 0.00)
D-Adapt Adam (100.0 SE 0.00)
Mechanic Adam (100.0 SE 0.00)

Figure 4: Comparing MECHANIC with D-adaptation and manually tuned learning rates on a suite of
convex tasks.

0 50 100 150 200 250 300
Epoch

10 2

100

102

Tr
ai

n
Lo

ss

CIFAR-10 (WRN-16-8)

D-Adapt SGD (1.3e-03 SE 4.9e-05)
SGD (1.6e-03 SE 4.6e-05)
Mechanic (2.9e-03 SE 9.1e-05)

0 50 100 150 200 250 300
Epoch

10 1

101

Tr
ai

n
Lo

ss

CIFAR-100 (DenseNet)

D-Adapt SGD (1.3e-02 SE 5.0e-04)
SGD (1.3e-02 SE 5.2e-04)
Mechanic (9.9e-03 SE 5.4e-04)

0 10000 20000 30000 40000 50000 60000
Step

20

40

60

80

100

Tr
ai

ni
ng

 P
er

pl
ex

ity

BookWiki (GPT Transformer)

Adam (20.19 SE 0.084)
D-Adapt Adam (20.16 SE 0.093)
Mechanic Adam (19.29 SE 0.103)

0 10 20 30 40 50
Epoch

0.4

0.5

0.6

0.7

0.8

Tr
ai

n
lo

ss

fastMRI Knee

Adam (0.4281 SE 0.00021)
Mechanic Adam (0.4810 SE 0.02901)
D-Adapt Adam (0.4276 SE 0.00028)

0 10000 20000 30000 40000 50000 60000
Step

5.0

7.5

10.0

12.5

Tr
ai

ni
ng

 L
os

s

IWSLT14 (LSTM)

Adam (4.27 SE 0.003)
Mechanic Adam (4.18 SE 0.004)
D-Adapt Adam (4.03 SE 0.002)

Figure 5: Complementary train set results of MECHANIC with D-adaptation and manually tuned
learning rates on vision and language tasks.

17

Algorithm 2 TUNER(theoretically tractable version

1: Input: β ∈ [0, 1], W0: initial “wealth”.
2: v0 ← 0 ∈ R, r0 ← 0 ∈ R, qt ← 0 ∈ R, m0 ← 0 ∈ R, s1 ← 0 ∈ R
3: for t = 1 . . . T do
4: Output st.
5: Receive ht.
6: mt ← max(βmt−1, ht)

7: ĥt = clip(ht,−mt−1,mt−1) // Red text are steps that we omit in practice (see Algorithm 1)
8: qt ← βqt−1 + ĥt

9: rt ← βrt−1 − st−1ĥt

10: Wt ←W0 + rt // Blue text is changed in practice (see Algorithm 1)
11: vt ← β2vt−1 + ĥ

2

t

12: st+1 ← Wt√
4m2

t+vt+ϵ
· clip(qt/

√︁
4m2

t + vt, 0, 1)

13: end for

First, we conjecture that the clip operation using qt/
√
vt may even be unnecessary in theory2: we

observed no change from removing this operation in practice, and observe that the update has an
intuitive interpretation via the Taylor expansion discussed in Section 3.

Second, the clip operation on ht using mt−1 is essentially designed to prevent the wealth Wt from
becoming negative or zero using the gradient truncation technique employed by [44, 45, 12]. While
less consistent with known theory, we found it simpler to ensure the wealth Wt does become negative
simply by clipping rt directly (we did not clip Wt to be nonnegative as Wt = 0 would cause the
algorithm to output st = 0 for all future iterations). We found these changes simplified the algorithm
while having no noticeable effect on the performance. Although these deviations technically do not
come with guarantees, the accomplish similar intuitive goals and so we expected (and observed) that
they simplified the implementation while not damaging performance.

D.2 Eliminating W0 in favor of sinit

While TUNER makes use of the “initial wealth” value W0, MECHANIC instead adopts a varying
value for W0 proportional to sinit ·mt. This makes the first s value proposed by MECHANIC equal
to sinit, which is more intuitive to set than W0. The exponential growth in s allows us to set sinit to
a very small value of 10−8. It also makes the values for s “scale-free” in the sense that rescaling the
updates ut by any constant will have no effect on the resulting st.

D.3 Regret Bound

Theorem 2. With β = 1, Algorithm 2 guarantees for all s̊ ≥ 0:

T∑︂
t=1

ht(st − s̊) ≤W0 + (s̊+max
t

st) ·mT +O

⎛⎝s̊ · log(T s̊mT /m1W0)

⌜⃓⃓⎷ T∑︂
t=1

h2
t

⎞⎠ .

Proof. First, we employ an argument developed by [44]:

T∑︂
t=1

ht(st − s̊) ≤
T∑︂

t=1

ĥt(st − s̊) +

T∑︂
t=1

|ĥt − ht|(|st|+ |s̊|)

≤
T∑︂

t=1

ĥt(st − s̊) + (max
t
|st|+ |s̊|)

T∑︂
t=1

|ĥt − ht|

=

T∑︂
t=1

ĥt(st − s̊) +mT (max
t
|st|+ |s̊|).

2Removing the clip in theory may requiring some additional non-worst-case assumption.

18

So, in the following, it suffices to bound
∑︁T

t=1 ĥt(st − s̊). This is helpful because we will be able
to use the bound |ĥt| ≤ mt−1, and mt−1 is known before ĥt is revealed.

As is typical in the analysis of parameter-free algorithms, the proof proceeds by lower-bounding the
wealth. Define a function a(x) piecewise by:

a(x) =

⎧⎨⎩ 0 x ≤ 0
x2/2 x ∈ [0, 1]
x− 1/2 x ≥ 1

Notice that a(x) is differentiable, monotonically increasing and 1-Lipschitz. We are going to roughly
show that Wt ≥ Ω(exp(a(−

∑︁t
k=1 ĥk/

√
vt))), after which the regret bound will follow from the

wealth-regret duality [10].

The key technical inequality in the proof is the following: for any A, B, m with B ≥ 4m2, and any
|x| ≤ m, we have:

a

(︃
−A√
B

)︃
− x√

B
clip

(︃
−A√
B
, 0, 1

)︃
≥ a

(︃
−A− x√
B + x2

)︃
− x2

B
. (6)

Once (6) is established, we proceed as follows: defining ct =
clip(

∑︁t−1
k=1 ĥk/

√
4m2

t−1+vt−1,0,1)√
vt

, we
have:

log(Wt) = log(Wt−1) + log(1− ĥtct)

≥ log(Wt−1)− ĥtct − ĥ
2

t c
2
t ,

where we have used ct ≤ 1/2 and the identity log(1 − x) ≥ −x − x2 for x ≤ 1/2 (which applies
since ĥt ≤ mt−1 by definition). Now, set A =

∑︁t−1
k=1 ĥk and B = 4m2

t−1 + vt−1 and x = ĥt in (6),
we see that:

log(Wt)− log(Wt−1) ≥ −
x√
B

clip
(︃
−A√
B
, 0, 1

)︃
− ĥ

2

t

4m2
t−1 + vt−1

≥ a

(︃
−A− x√
B + x2

)︃
− a

(︃
−A√
B

)︃
− x2

B
− ĥ

2

t

4m2
t−1 + vt−1

≥ a

⎛⎝ −
∑︁t

k=1 ĥk√︂
4m2

t−1 + vt

⎞⎠− a

⎛⎝ −
∑︁t−1

k=1 ĥk√︂
4m2

t−1 + vt−1

⎞⎠− 2ĥ
2

t

4m2
t−1 + vt−1

≥ a

(︄
−
∑︁t

k=1 ĥk√︁
4m2

t + vt

)︄
− a

⎛⎝ −
∑︁t−1

k=1 ĥk√︂
4m2

t−1 + vt−1

⎞⎠− 2ĥ
2

t

4m2
t−1 + vt−1

.

Thus by telescoping the sum, we have:

log(WT) ≥ log(W0) + a

(︄
−
∑︁T

k=1 ĥk√
vT

)︄
−

T∑︂
t=1

2ĥ
2

t

4m2
t−1 + vt−1

.

Now, observe that 2ĥ
2
t

4m2
t−1+vt−1

≤ 2ĥ
2
t

vt
≤ 2(log(vt) − log(vt−1)), so we have

∑︁T
t=1

ĥ
2
t

vt−1
≤

2 log(TmT /m1) so that overall:

WT ≥
W0m1

T 2mT
exp

[︄
a

(︄
−
∑︁T

k=1 ĥk√
vT

)︄]︄
.

19

Thus, if we define p(H) = W0m1

T 2mT
exp

[︂
a
(︂

H√
vT

)︂]︂
, we have WT ≥ p(−

∑︁T
k=1 ĥk). Now, we

employ the reward-regret duality:

T∑︂
t=1

ĥt(st − s̊) = sinit ·m+ s̊

T∑︂
t=1

(−ĥt)−WT

≤W0 + sup
G

s̊ ·G− p(G)

= W0 + p⋆(s̊)

≤W0 +O(s log(sT/sinit)
√
vT).

Where p⋆ is the Fenchel conjugate of p and the evaluation of the conjugate follows from direct
calculation (see, e.g. [10, 28, 46]).

Thus, to prove the theorem we need only show (6). This is established via casework in a manner
similar to [46].

Case 1. −A√
B
≤ 0: In this case, the statement is equivalent to: x2

B ≥ a
(︂

−A−x√
B+x2

)︂
. Note that since

−A√
B
≤ 0, we have A ≥ 0. Therefore:

−A− x√
B + x2

=
−A√
B + x2

− x√
B + x2

≤ − x√
B + x2

.

Further, we clearly have − x√
B+x2

≤ 1 so that:

a

(︃
−A− x√
B + x2

)︃
≤ a

(︃
− x√

B + x2

)︃
=

x2

2(B + x2)
≤ x2

B
.

So, in the following we assume −A√
B
≥ 0.

Case 2. −A−x√
B+x2

≤ 0: In this case, it suffices to show −x√
B

clip
(︂

−A√
B
, 0, 1

)︂
≥ −x2

B . The case

assumption implies m2 ≥ x ≥ −A ≥ 0. Therefore, since B ≥ 4m2, clip
(︂

−A√
B
, 0, 1

)︂
= −A√

B
so that

−x√
B

clip
(︂

−A√
B
, 0, 1

)︂
= xA

B ≥
−x2

B as desired.

So, in the following we now further assume −A−x√
B+x2

≥ 0.

Case 3. −A√
B
∈ [0, 1]: We have a

(︂
−A√
B

)︂
= A2

2B , and also since a(z) ≤ 1
2z

2 for all z, a
(︂

−A−x√
B+x2

)︂
≤

(A+x)2

2(B+x2) . Thus, it suffices to show that A2

2B + xA
B ≥

(A+x)2

2(B+x2) −
x2

B , but this is equivalent to (A+x)2

2B ≥
(A+x)2

2(B+x2) −
x2

2B , which clearly holds.

Case 4: −A√
B
≥ 1 and −A−x√

B+x2
≥ 1: In this case it suffices to show −A√

B
− x√

B
≥ −A−x√

B+x2
− x2

B . To
see this, we have:

−A− x√
B + x2

=
−A√
B + x2

− x√
B + x2

≤ −A√
B
− x√

B
+ x

(︃
1√
B
− 1√

B + x2

)︃
≤ −A√

B
− x√

B
+

2x3

3B3/2

≤ −A√
B
− x√

B
+

x2

B
,

20

where in the second-to-last line we have used the fact that h ↦→ 1√
B+h

is a convex in h, and in the

last line we have used
√
B ≥ m ≥ x.

Case 5: −A√
B
≥ 1 and −A−x√

B+x2
∈ [0, 1): In this case we need to show −A√

B
− 1

2 ≥
(A+x)2

2(B+x2)−
x2

B + x√
B

.

To see this, we first observe that since −A−x√
B+x2

∈ [0, 1), we have

A2 + 2Ax+ x2 ≤ B + x2

A2 + 2Ax ≤ B.

Thus, by quadratic formula, A ≥ −x−
√
x2 +B, so that we have A ∈ [−x−

√
x2 +B,−

√
B].

Next, our target identity can be rearranged into an equivalent form as follows:

−A√
B
− 1

2
≥ (A+ x)2

2(B + x2)
− x2

B
+

x√
B

0 ≥ (A+ x)2

2(B + x2)
+

A√
B

+
1

2
− x2

B
+

x√
B
,

so that it suffices to show the second line above. Notice that the RHS of this expression is convex in
A and so is maximized at the boundary of the range [−x−

√
x2 +B,−

√
B]. When A = −

√
B we

have:

(A+ x)2

2(B + x2)
+

A√
B

+
1

2
− x2

B
+

x√
B
≤ (A+ x)2

2B
+

A√
B

+
1

2
− x2

B
+

x√
B

= − x2

2B
≤ 0.

Alternatively, when A = −x−
√
x2 +B, we have

(A+ x)2

2(B + x2)
+

A√
B

+
1

2
− x2

B
+

x√
B

= 1−
√
x2 +B√

B
− x2

B

≤ 0.

This establishes the claimed inequality (6) and completes the proof.

21

	Introduction
	Background: Online Convex Optimization
	Learning the Scale in OCO
	Parameter-Free Online Optimization

	The mechanic algorithm
	The use of β
	Weight decay
	Runtime and Memory Cost

	Experiments
	Masked Language Modeling
	Image Classification
	Comparison with D-adaptation

	Conclusion
	Limitations
	Additional Ablations
	Setting BASE learning rate with Mechanic
	Robustness to sinit
	Ablation of λ
	Number of β values

	Additional Experimental Details
	Hyperparams for BERT
	Hyperparams for Image Classification
	Hyperparams and additional results on comparisons with D-adaptation

	Theoretical Analysis
	Algorithmic Simplifications
	Eliminating W0 in favor of sinit
	Regret Bound

