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Abstract

We study the canonical problem of linear regression under (", �)-differential privacy
when the datapoints are sampled i.i.d. from a distribution and a fraction of response
variables are adversarially corrupted. We provide the first provably efficient – both
computationally and statistically – method for this problem, assuming standard
assumptions on the data distribution. Our algorithm is a variant of the popular
differentially private stochastic gradient descent (DP-SGD) algorithm with two
key innovations: a full-batch gradient descent to improve sample complexity and
a novel adaptive clipping to guarantee robustness. Our method requires only
linear time in input size, and still matches the information theoretical optimal
sample complexity up to a data distribution dependent condition number factor.
Interestingly, the same algorithm, when applied to a setting where there is no
adversarial corruption, still improves upon the existing state-of-the-art and achieves
a near optimal sample complexity.

1 Introduction

Differential Privacy (DP) [33] is a standard notion of privacy widely adopted by both industry
and government [76, 35, 36, 2]. With widespread usage of ML and statistical techniques, DP
becomes even more critical to ensure private information of participating individuals is not revealed
in any form via the learned model. An statistical estimator is said to be (", �)-differentially private
if presence/absence of an individual’s data point in the dataset does not significantly change the
estimated output. Smaller " > 0 and � 2 [0, 1] imply stronger privacy guarantees.

While privacy preserving statistical estimators have been studied extensively in recent past, several
critical questions remain open (see App. A for a survey). Consider the canonical statistical task
of linear regression with n i.i.d. samples, {(xi 2 Rd

, yi 2 R)}ni=1, drawn from xi ⇠ N (0,⌃),
yi = x

>
i w

⇤
+ zi, zi ⇠ N (0,�

2
) and E[xizi] = 0 for some true parameter w⇤ 2 Rd. The error is

measured in (1/�)kŵ � w
⇤k⌃ := (1/�)k⌃1/2

(ŵ � w
⇤
)k, which correctly accounts for the signal-

to-noise ratio in each direction; in the direction of large eigenvalue of ⌃, we have larger signal in xi
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but the noise zi remains the same. We expect smaller errors in those directions, which is accounted
for in the error measure (1/�)kŵ � w

⇤k⌃.

Minimax optimal sample complexity for estimating the optimal linear regression model with DP
was recently established. For the lower bound, using recently introduced score attack technique,
[16, Theorem 3.1] shows that n = ⌦(d/↵

2
+ d/("↵)) samples are necessary to achieve an error of

(1/�)kŵ � w
⇤k⌃ = ↵ (in expectation). For the matching upper bound, High-dimensional Propose-

Test-Release (HPTR) in [61] and Robust-to-Private in [10] show that n = Õ(d/↵
2
+d/("↵)) samples

are also sufficient. The first term of d/↵2 is the fundamental sample complexity even if privacy is not
required, and the second term of d/("↵) is the cost of privacy.

This implies that, statistically, the problem appears to be solved. However, computationally, the
problem is still open despite multiple studies of the problem. That is, the statistical optimal algorithms
still take exponential time.

After a series of efforts in computationally efficient approaches as surveyed in App. A, [81] achieves
the best known sample complexity of n = Õ(d/↵

2
+ d/("↵) + 

2
d/"), where  is the condition

number of the covariance ⌃ of the covariates. Compared to HPTR, the cost of computational
efficiency is factor of  in the second term and the third term that is unnecessary. As the condition
number can be quite large, improving the dependence on  is of utmost importance. Furthermore, the
technique of [81] strictly requires sampling without replacement, whose analysis relies on having an
explicit form of the end-to-end update. In particular, their analysis technique is not applicable to the
case with corrupted samples.

In contrast, we propose a novel method (Alg. 1) that builds upon full-batch gradient descent and
applies a carefully chosen adaptive clipping which is a general technique used in practice as well
[1]. Together with an intuitive but intricate analysis technique, we improve the sample complexity to
n = Õ(d/↵

2
+ 

1/2
d/("↵)).

Corollary 1.1 (Corollary of Thm. 3.1 for sub-Gaussian data). Alg. 1 is (", �)-DP. Let S =

{(xi, yi)}ni=1 be a dataset of i.i.d. samples with xi ⇠ N (0,⌃), yi = x
>
i w

⇤
+ zi and zi ⇠ N (0,�

2
)

for some unknown true parameter w
⇤

= ⌃
�1E[yixi] 2 Rd and unknown ⌃ and �

2. Then
n = Õ(d/↵

2
+ 

1/2
d/("↵)) samples are sufficient for Alg. 1 to achieve (1/�)kŵ � w

⇤k⌃ = Õ(↵)

with high probability, where  := �max(⌃)/�min(⌃).

Due to space constraints, we focus on sub-Gaussian distributions in the main text and provide
comparisons to prior work in Tab. 1. Our analysis in App. H applies to a more general family of
light-tailed distributions, called sub-Weibull. Next, when the noise in the samples is heavy-tailed, a
similar algorithm can be applied with carefully chosen clipping thresholds to account for the heavier
tail. Concretely, for k-th moment bounded distributions, the tail of the distribution gets increasingly
heavier with smaller k. This would require larger number of samples to achieve the same accuracy,
which is captured in our sample complexity of n = Õ(d/↵

2k/(k�1)
+ 

1/2
d/("↵

k/(k�1)
)). We

explain the heavy-tailed setting, provide a detailed analysis and a proof, and discuss the results in
App. L. This is the first efficient algorithm with provable guarantees achieving (", �)-DP.
Corollary 1.2 (informal version of Coro. L.7 for heavy-tailed noise). Alg. 4 is (", �)-DP. Let
S = {(xi, yi)}ni=1 be a dataset of i.i.d. samples with xi ⇠ N (0,⌃), yi = x

>
i w

⇤
+ zi, and the

zero-mean, independent, and heavy-tailed noise zi satisfies E[|z/�|k] = O(1) for some unknown
true parameter w⇤ 2 Rd and unknown ⌃ and �

2. Then n = Õ(d/↵
2k/(k�1)

+ 
1/2

d/("↵
k/(k�1)

))

samples are sufficient for Alg. 4 in App. L to achieve an error rate of (1/�)kŵ � w
⇤k⌃ = Õ(↵) with

high probability, where  := �max(⌃)/�min(⌃).

Perhaps surprisingly, we show that Alg. 1 is also robust against label-corruption, where an adversary
selects an arbitrary ↵corrupt fraction of the data points and changes their response variables arbitrarily.
Ideally, we want a robust algorithm against a stronger adversary who can corrupt the covariates also.
However, even for a simpler problem of private mean estimation, achieving robustness against such a
strong adversary with O(d) samples requires heavy machinery (convex relaxations of sum-of-squares
optimization) with significantly more computations (although polynomial) [45].

Our lower bound in Prop. 3.9, together with the lower bound in [16] on the uncorrupted case, shows
that n = ⌦(d/↵

2
+ d/("↵)) samples are necessary to achieve an error rate of (1/�)kŵ � w

⇤k⌃ =

O(↵ + ↵corrupt). In particular, it is impossible to achieve an error below ↵corrupt even if we have
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Table 1: Suppose data is drawn from a linear model in d-dimensions from sub-Gaussian covariates
with covariance ⌃ and sub-Gaussian noise with variance �

2. To achieve an error rate of (1/�)kŵ �
w

⇤k⌃ = ↵ with (", �)-DP, DP-RobGD requires the least number of samples among computationally
efficient algorithms. This improves over [81] by a factor of 1/2 in the second term, where  is the
condition number of ⌃. We hide polylogarithmic factors in d,  and 1/�. �DP-Theil-Sen is only
analyzed when  = 1 and its dependence 

c is unknown.

Algorithm Runtime Sample Complexity

TukeyEM [6] poly no guarantee
DP-Theil-Sen [74] � poly d2

↵2 +
d
"↵

c

DP-AMBSSGD [81] poly d
↵2 +

d
"↵+

2d
"

DP-RobGD [Theorem 3.8] poly d
↵2 +

d
"↵

1/2

HPTR [61], Robust-to-private [10] exp d
↵2 +

d
"↵

Lower Bound [16] d
↵2 +

d
"↵

infinite samples (Prop. 3.9), and hence there is no need to aim for ↵ < ↵corrupt. This lower bound is
matched by exponential time approaches, HPTR in [61] and Robust-to-Private in [10], which also
guarantee robustness. Currently, there is no efficient algorithm that can guarantee both privacy and
robustness for linear regression. To this end, we provide the first efficient algorithm guaranteeing
both, with a sample complexity that is optimal up to a 

1/2 factor.
Corollary 1.3 (Corollary of Thm. H.3 for sub-Gaussian data with adversarial label corruption).
Under the hypotheses of Coro. 1.1, suppose ↵corrupt-fraction of the labels are corrupted arbitrarily.
Then n = Õ(d/↵

2
+ 

1/2
d/("↵)) samples are sufficient for Alg. 1 to achieve an error rate of

(1/�)kŵ � w
⇤k⌃ = Õ(↵+ ↵corrupt) with high probability, where  := �max(⌃)/�min(⌃).

When ↵corrupt = 0, this recovers the non-robust result from Coro. 1.1. A similar robustness guarantee
also holds for heavy-tailed settings. We provide a formal statement in App. L

Contributions. For a canonical problem of private linear regression under sub-Gaussian distributions,
the best known efficient algorithm [81] requires

n = Õ

✓
d

↵2
+

d

"↵
+


2
d

"

◆
,

to achieve (1/�)kŵ � w
⇤k⌃ = ↵. We provide the first efficient algorithm that improves this to

n = Õ

✓
d

↵2
+


1/2

d

"↵

◆
,

which nearly matches the exponential-time algorithms [61, 10] and the lower bound [16] up to 
1/2

in the second term. For the same problem, we show that the same algorithm is the first to achieve
robustness against adversarial corruption of the labels.

Under a heavy-tailed distribution of the noise, we provide the first computationally efficient algorithm,
to the best of our knowledge, that achieves a sample complexity close to that of an exponential-time
algorithm of [61]. There is no matching lower bound in the heavy-tailed setting. This is also the
first efficient algorithm to achieve robustness against adversarial corruption of the labels under
heavy-tailed noise.

2 Problem formulation and background

When there is no adversary, we present our results under the standard linear model with sub-Gaussian
covariates and noise. In App. H, we present a more general family of (K, a)-sub-Weibull distributions
that recovers the standard sub-Gaussian family as a special case when a = 0.5. The necessity of such
assumptions on the tail is explained in Sec. 3.4.
Assumption 2.1 (sub-Gaussian model). We have i.i.d. samples S = {(xi 2 Rd

, yi 2 R)}ni=1 from
a distribution P⌃,w⇤,�2 of a linear model yi = hxi, w

⇤i + zi, where the input vector xi has zero
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mean E[xi] = 0 and a positive definite covariance ⌃ := E[xix
>
i ] � 0, and the (input dependent)

label noise zi has zero mean E[zi] = 0 and variance �
2
:= E[z2i ]. We further assume E[xizi] = 0,

which is equivalent to assuming that the true parameter w⇤
= ⌃

�1E[yixi]. We assume the marginal
distributions of xi and zi are K-sub-Gaussian with K = O(1), as defined below.

Definition 2.2. x 2 Rd is K-sub-Gaussian if for all v 2 Rd, E
h
exp

⇣
hv,xi2

K2E[hv,xi2]

⌘i
 2.

Given a dataset S that is i.i.d. sampled from P⌃2,w⇤,�2 satisfying Asmp. 2.1, our goal is to estimate
w

⇤ that minimizes (1/�)kŵ �w
⇤k⌃ which is also equivalent to minimize the excess population risk,

i.e., L(w⇤
)� L(ŵ) where L(w) := E(x,y)⇠P⌃,w⇤,�2 [(y � hw, xi)2].

Notations. A vector x 2 Rd has the Euclidean norm kxk. For a matrix M , we use kMk2 to denote
the spectral norm. The error is measured in kŵ � w

⇤k⌃ := k⌃1/2
(ŵ � w

⇤
)k for some PSD matrix

⌃. The identity matrix is denoted by Id 2 Rd⇥d. Let [n] = {1, 2, . . . , n}. Õ(·) hides some constants
terms, K = ⇥(1), and poly-logarithmic terms in n, d, 1/", log(1/�), 1/⇣, and 1/↵corrupt. For a
vector x 2 Rd, we define clipa(x) := x ·min{1, a/kxk}.

Background on DP. Differential Privacy is a standard measure of privacy leakage when data is
accessed via queries, introduced by [33]. Two datasets S and S

0 are said to be neighbors if they
differ at most by one entry, which is denoted by S ⇠ S

0. A stochastic query q is said to be (", �)-
differentially private for some " > 0 and � 2 [0, 1], if P(q(S) 2 A)  e

"P(q(S) 2 A) + �, for
all neighboring datasets S ⇠ S

0 and all subset A of the range of the query. We build upon two
widely used DP primitives, the Gaussian mechanism and the private histogram. A central concept in
DP mechanism design is the sensitivity of a query, defined as �q := supS⇠S0 kq(S)� q(S

0
)k. We

describe Gaussian mechanism and private histogram in App. B.

2.1 Comparisons with the prior work

The state-of-the-art approach introduced by [81] is based on DP-SGD [71], where privacy is ensured
by gradient norm clipping and the Gaussian mechanism. Two additional technical components are
adaptive clipping and streaming SGD. Adaptive clipping with an appropriate threshold ✓t ensures
that no data point is clipped (under the sub-Gaussian assumption), while providing a bound on
the sensitivity of the average mini-batch gradient (to ensure we do not add too much noise). The
streaming approach, where each data point is only touched once and discarded, ensures independence
between the past iterate wt and the gradients at round t + 1, which the analysis critically relies
on. For T = ⇥̃() iterations where  is the condition number of the covariance ⌃, the dataset
S = {(xi, yi)}ni=1 is partitioned into {Bt}T�1

t=0 subsets of equal size: |Bt| = ⇥̃(n/). At each round
t, the gradients are clipped and averaged with additive Gaussian noise chosen to satisfy (", �)-DP:

wt+1  wt � ⌘

⇣
1

|Bt|
X

i2Bt

clip✓t(xi(w
>
t xi � yi)) +

✓t

p
2 log(1.25/�)

"|Bt|
⌫t

⌘
, (1)

where ⌫t ⇠ N (0, Id). In [81], a slight variation of this streaming SGD is shown to achieve an error
of (1/�)kwT � w

⇤k⌃ = ↵ with n = Õ(d/↵
2
+ d/("↵) + 

2
d/") samples (Row 3 in Tab. 1).

Our technical innovations. Our approach builds upon such gradient based methods but makes
several important innovations. First, we use full-batch gradient descent, as opposed to the streaming
SGD above. Using all n samples reduces the sensitivity of the per-round gradient average by a
 factor, and thus decreases the privacy noise added in each iteration. This improves the second
term of sample complexity from d/("↵) to 

1/2
d/("↵) and removes the third term completely.

However, full-batch GD loses the independence that the streaming SGD enjoyed between wt and the
samples used in the round t+ 1. This dependence makes the analysis more challenging. We instead
propose using the resilience to precisely track the bias and variance of the (dependent) full-batch
average gradient. Resilience is a central concept in robust statistics that links the tail-property of the
distribution to the bias, which we explain in Sec. 5.

Next, one critical component in achieving this improved sample complexity is the new analysis
technique we introduce for tracking the end-to-end gradient updates. Since our gradient descent
algorithm is not guaranteed to make progress every step, we cannot use the vanilla one-step analysis.
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Taking the full end-to-end analysis by expanding the whole gradient trajectory will introduce too
many correlated cross-terms which are very hard to control. Therefore, we leverage an every -step
analysis and show that the objective function at least decreases geometrically every  steps. To be
more specific, our analysis technique in App. H (steps 3 and 4) opens up the iterative updates from the
beginning to the end, and exploits the fact that �max((⌘⌃)

1/2
(1� ⌘⌃)

i
(⌘⌃)

1/2
) is upper bounded

by 1/(i+ 1) when k⌘⌃k  1. This technique is critical in achieving the near-optimal dependence in
. This might be of independent interest to other analysis of gradient-based algorithms. We refer to
the beginning of step 3 in App. H for a detailed explanation.

Finally, we propose a novel clipping that separately clips xi and (w
>
t xi � yi) in the gradient,

(w
>
t xi � yi)xi. This is critical in achieving robustness to label-corruption, as we explain in Sec. 3.1.

3 Label-robust and private linear regression

We introduce a novel gradient descent approach. This achieves an improved sample complexity
compared to the state-of-the-art algorithm and robustness against label corruption.

3.1 Algorithm

The skeleton of our approach in Alg. 1 is the general DP-SGD [1, 71] with adaptive clipping [7].
We partition the dataset into three equal-sized subsets: S1, S2, S3. S1 and S2 are used in adaptively
estimating the clipping thresholds, and S3 is re-used every step to compute the average gradient.

The standard adaptive clipping, e.g., [7, 81], is not robust against label-corruption. Under sub-
Gaussian distribution, a positive fraction of the covariates, xi’s, can be close to the origin. If the
adversary chooses to corrupt those points with small norm, kxik, they can make large changes in the
corrupted residual, (yi �w

>
t xi), while evading the standard clipping by the norm of the gradient; the

norm of the gradient, kxi(yi � w
>
t xi)k = kxik |yi � w

>
t xi|, can remain under the threshold. This is

problematic, since the bias due to the corrupted samples in the gradient scales proportionally to the
magnitude of the residual (after clipping). To this end, we propose clipping the norm and the residual
separately: clip⇥(xi)clip✓t

�
w

>
t xi � yi

�
. This keeps the sensitivity of gradient average bounded by

⇥(✓t). The subsequent Gaussian mechanism in line 11 ensures ("0, �0)-DP at each round. Applying
advanced composition in Lemma B.5 of T rounds, this ensures end-to-end (", �)-DP.

Novel adaptive clipping. When clipping with clip⇥(xi), the only purpose of clipping the covariate
by its norm, kxik, is to bound the sensitivity of the resulting clipped gradient. In particular, we do
not need to make it robust as there is no corruption in the covariates. Ideally, we want to select
the smallest threshold ⇥ that does not clip any of the covariates. Since the norm of a covariate is
upper bounded by kxik2  K

2
Tr(⌃) log(1/⇣) with probability 1 � ⇣ (Lemma J.3), we estimate

the unknown Tr(⌃) using Private Norm Estimator in Alg. 3 in App. F and set the norm threshold
⇥ = K

p
2� log(n/⇣) (Alg. 1 line 4). The n in the logarithm ensures that the union bound holds.

When clipping with clip✓t(w
>
t xi � yi), the purpose of clipping the residual by its magnitude,

|yi � w
>
t xi| = |(w⇤ � wt)

>
xi + zi|, is to bound the sensitivity of the gradient and also to provide

robustness against label-corruption. We want to choose a threshold that only clips corrupt data points
and at most a few clean data points. In order to achieve an error (1/�)kwT�w⇤k⌃ = ↵, we know that
any set of (1� ↵) fraction of the clean data points is sufficient to get a good estimate of the average
gradient. By clipping at |(w⇤�wt)

>
xi + zi|2  (kwt�w

⇤k2⌃ + �
2
)CK

2
log(1/(2↵)), Lemma J.3

guarantees that the unclipped subset will be large enough, i.e., (1 � ↵)n. At the same time, this
threshold on the residual is small enough to guarantee robustness against the label-corrupted samples.
We introduce the robust and DP Distance Estimator in Alg. 2 to estimate the unknown (squared and
shifted) distance, kwt�w⇤k2⌃+�

2, and set the distance threshold ✓t = 2
p
2�t

p
9C2K

2 log(1/(2↵))

(Alg. 1 line 7). Both norm and distance estimation rely on DP histogram (Lemma B.2), but over a set
of statistics computed on partitioned datasets, which we explain in detail in App. C.
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Algorithm 1: Robust and Private Linear Regression
Input: S = {(xi, yi)}3ni=1, DP parameters (", �), T , learning rate ⌘, failure probability ⇣, target

error ↵, distribution parameter K
1 Partition dataset S into three equal sized disjoint subsets S = S1 [ S2 [ S3.
2 �0  �

2T , "0  "

4
p

T log(1/�0)
, ⇣0  ⇣

3 , w0  0

3 � PrivateNormEstimator(S1, "0, �0, ⇣0) // using Alg. 3, App. F

4 ⇥ K
p
2� log

a
(n/⇣0)

5 for t = 0, 1, 2, . . . , T � 1 do
6 �t  PrivateDistanceEstimator(S2, wt, "0, �0,↵, ⇣0) // using Alg. 2, App. C

7 ✓t  2
p
2�t ·

p
9C2K

2 log(1/(2↵)).
8 Sample ⌫t ⇠ N (0, Id)

9 g̃
(t)
i  clip⇥(xi)clip✓t(x

>
i wt � yi)

10 �t = (

p
2 log(1.25/�0)⇥✓t)/("0n)

11 wt+1  wt � ⌘

⇣
1
n

P
i2S3

g̃
(t)
i + �t⌫t

⌘

12 Return wT

3.2 Analysis without adversarial corruption

We show that Alg. 1 achieves an improved sample complexity. We provide the proof for a more
general class of distributions in App. H and a sketch of the proof in Sec. 5. We address the necessity
of the assumptions in Sec. 3.4, along with some lower bounds.
Theorem 3.1. Alg. 1 is (", �)-DP. Under sub-Gaussian model of Asmp. 2.1, for any failure probability
⇣ 2 (0, 1) and target error rate ↵, if the sample size is large enough such that

n = Õ

0

@K
2
d log

2
⇣
1

⇣

⌘
+

d+ log(1/⇣)

↵2
+

K
2
dT

1/2
log(

1
� )

q
log(

1
⇣ )

"↵

1

A , (2)

with a large enough constant, then the choices of a step size ⌘ = 1/(C�max(⌃)) for any C � 1.1

and the number of iterations, T = ⇥̃ ( log (kw⇤k)) for a condition number of the covariance
 := �max(⌃)/�min(⌃), ensures that, with probability 1� ⇣, Alg. 1 achieves

E⌫1,··· ,⌫T⇠N (0,Id)

⇥
kwT � w

⇤k2⌃
⇤
= Õ

⇣
K

4
�
2
↵
2
log

2
⇣
1

↵

⌘⌘
, (3)

where the expectation is taken over the noise added for DP, and Õ and ⇥̃(·) hide logarithmic terms
in K,�, d, n, 1/", log(1/�), 1/↵, and .
Remark 3.2. Omitting some constant and logarithmic terms, Alg. 1 requires

n = Õ

⇣
d

↵2
+


1/2

d

"↵

⌘
, (4)

samples to ensure an error rate of (1/�2
)E[kwT � w

⇤k2⌃] = Õ(↵
2
). From [16, Theorem 3.1], there

exists an n = ⌦(d/↵
2
+ d/("↵)) lower bound, and our upper bound matches this lower bound up

to a factor of 1/2 in the second term and other logarithmic factors. Eq. (4) is the best known rate
among all efficient private linear regression algorithms, strictly improving upon the state-of-the-art.
The best existing efficient algorithm by [81] requires n = Õ(d/↵

2
+ d/("↵) + 

2
d/") to achieve

the same error rate. Compared to Eq. (4), the second term is larger by a factor of 1/2 compared to
the second term in Eq. (4). Further, [81] requires 2

d/", which is not needed in Eq. (4).
Remark 3.3. Consider the standard settings of linear regression with xi ⇠ N (0, Id) and zi ⇠
N (0,�

2
) such that the condition number is one, our bound given by Eq. (4) nearly matches the lower

bound ([16, Theorem 3.1]) up to logarithmic factors.
Remark 3.4. Note that the leading term in Eq. (4) is the first term d/↵

2 when target error ↵  "/
1/2.

Our first term is independent of , which matches the lower bound for non-private linear regression.
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Remark 3.5. The third term 
2
d/" in [81] is independent of error rate ↵ but scales as 2. This term

is required to ensure the privacy noise added in each iteration is small enough for their DP-SGD
to make progress (Appendix. B.2.2 in [81]). Our algorithm is based on full-batch gradient descent,
which uses all n samples and thus reduces the sensitivity of gradient average by a  factor. As a result,
we show in Eq. (59) that our algorithm only requires n = Õ((1/")

p
1/2d/↵) to make progress for

each iteration. This is strictly smaller than our dominant term 
1/2

d/("↵) and does not show up in
our final guarantee. We provide a formal proof in App. H.
Remark 3.6. One of the key innovations in Alg. 1 is the adaptive distance estimator (Alg. 2 in App. C).
The goal is to privately estimate the (shifted) distance of the current estimate, i.e., kwt � w

⇤k⌃ + �
2,

without the knowledge of w⇤. We show in Thm. C.1 that our novel distance estimator only requires
an error-independent sample complexity n = Õ(

1/2
d/") to achieve a constant multiplicative error.

Note that the DP-STAT (Algorithm 3 in [81]) can also be used to estimate the distance. But it requires
the knowledge of domain size kw⇤k⌃ + �. We completely remove this requirement, improve the
dependence on K and log(n), and show it is also robust, as introduced in the next section. We provide
the algorithms and analysis in App. C and the formal proof in App. D.

3.3 Robustness against label corruption

We assume there exists a good dataset Sgood that satisfies Asmp. 2.1. We only get access to a label-
corrupted dataset under the standard definition of label corruption, e.g., [15]. There are variations in
literature on the definition, which we survey in App. A.
Assumption 3.7 (↵corrupt-corruption). Given a dataset Sgood = {(xi, yi)}ni=1, an adversary inspects
all the data points, selects ↵corruptn data points denoted as Sr, and replaces the labels with arbitrary
labels while keeping the covariates unchanged. We let Sbad denote this set of ↵corruptn newly
labelled examples by the adversary. Let the resulting set be Scorrupt := Sgood [ Sbad \ Sr.

Our goal is to estimate the unknown parameter w⇤, given corrupted dataset Scorrupt, distribution
parameter K, and (an upper bound on) the corruption level ↵corrupt.

Under the non-private scenario, i.e., " = 1, recent advances led to optimal algorithms for linear
regression that are robust to label corruptions [15, 21]; if the corruption level is smaller than the
target error rate, i.e., ↵corrupt  ↵, then n = Õ(d/↵

2
) samples are sufficient to achieve an error rate

of (1/�)kŵ � w
⇤k⌃ = ↵. The sample complexity of d/↵2 is optimal as it matches the information

theoretic lower bound. The condition ↵corrupt  ↵ is necessary since it is information theoretically
impossible to achieve error ↵ less than ↵corrupt, as we prove in Prop. 3.9. Setting the target error to
the minimum possible value of ↵ = ↵corrupt, we say that these algorithms achieve optimal robustness
since the minimum robust error rate of (1/�)kŵ � w

⇤k⌃ = O(↵corrupt) can be achieved with
minimal sample complexity of n = Õ(d/↵

2
corrupt). We aim to achieve such optimal robustness

simultaneously with differential privacy in a computationally efficient manner.
Theorem 3.8. Under sub-Gaussian model of Asmp. 2.1 and ↵corrupt-corruption of Asmp. 3.7, if
the corruption level is below the target error rate, ↵ � ↵corrupt, then n = Õ(d/↵

2
+ 

1/2
d/("↵))

samples are sufficient for Alg. 1 to achieve an error rate of (1/�2
)E[kŵ � w

⇤k2⌃] = Õ(↵
2
).

This is the first efficient approach to achieve robustness and (", �)-DP simultaneously. The existing
such algorithms take exponential time [61, Corollary C.2] and [10], but achieve optimal sample
complexity of n = O(d/↵

2
+ d/("↵)). Notice that there is no dependence on . It remains an open

question if computationally efficient private linear regression algorithms can achieve such an optimal
-independent sample complexity. We make the first advance towards this ambitious goal with the
above theorem. Our sample complexity is sub-optimal only by a factor of

p
 in the second term.

This is achieved by individually clipping the covariate, xi, and the residual, (w>
t xi � yi), in Alg. 1

and carefully tracking the bias of clipping with the use of resilience in the analysis in App. H.

3.4 Lower bounds

Necessity of our assumptions. A tail assumption on the covariate xi such as Asmp. 2.1 is necessary
to achieve n = O(d) sample complexity in Eq. (4). Even when the covariance ⌃ is close to
identity, without further assumptions on the tail of covariate x, the result in [13] implies that for
� < 1/n, it is necessary for an (", �)-DP estimator to have n = ⌦(d

3/2
/("↵)) samples to achieve
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Figure 1: Performance of various techniques on DP linear regression. d = 10 in all the experiments.
n = 10

7
, = 1 in the 2

nd experiment. n = 10
7
,� = 1 in the 3

rd experiment, where  is the
condition number of ⌃ and �

2 is the variance of the label noise zi.

kŵ � w
⇤k⌃ = Õ(↵) (see Eq. (3) in [83]). Note that this lower bound is a factor d1/2 larger than our

upper bound that benefits from the additional tail assumption.

A tail assumption on the noise zi such as Asmp. 2.1 is necessary to achieve n = O(d/("↵))

dependence on the sample complexity in Eq. (4). For heavy-tailed noise, such as k-th moment
bounded noise, the dependence can be significantly larger. [61, Proposition C.5] implies that for
� = e

�⇥(d) and 4-th moment bounded xi and zi, any (", �)-DP estimator requires n = ⌦(d/("↵
2
)),

which is a factor of 1/↵ larger, to achieve (1/�
2
)kŵ � w

⇤k⌃ = Õ(↵).

The assumption that only labels are corrupted is critical for Alg. 1. The average of the clipped
gradients can be significantly more biased, if the adversary can place the covariates of the corrupted
samples in the same direction. In particular, the bound on the bias of our gradient step in Eq. (44)
in App. H would no longer hold. Against such strong attacks, one requires additional steps to
estimate the mean of the gradients robustly and privately, similar to those used in robust private mean
estimation [60, 56, 44, 8]. There is no known linear-time algorithm to achieve this, and this is outside
the scope of this paper.

Lower bounds under label corruption. Under the ↵corrupt label corruption setting (Asmp. 3.7),
even with infinite data and without privacy constraints, no algorithm is able to learn w

⇤ with `2 error
better than ↵corrupt. We provide a formal derivation for completeness.
Proposition 3.9. Let D⌃,�2,w⇤,K be a class of distributions on (xi, yi) from sub-Gaussian model
in Asmp. 2.1. Let Sn,↵ be an ↵-corrupted dataset of n i.i.d. samples from some distribution D 2
D⌃,�2,w⇤,K under Asmp. 3.7. Let M be a class of estimators that are functions over Sn,↵. Then there
exists a constant c such that minn,ŵ2M maxSn,↵,D2D⌃,�2,w⇤,K ,w⇤,K E[kŵ � w

⇤k2⌃] � c↵
2
�
2.

A proof is provided in App. I.1. A similar lower bound can be found in [11, Theorem 6.1].

4 Experimental results

4.1 DP Linear Regression

We present experimental results comparing our proposed technique (DP-ROBGD) with other base-
lines. We consider non-corrupted regression in this section and defer corrupted regression to the
App. K. We begin by describing the problem setup and the baseline algorithms first.
Experiment Setup. We generate data for all the experiments using the following generative model.
The parameter vector w⇤ is uniformly sampled from the surface of a unit sphere. The covariates
{xi}ni=1 are first sampled from N (0,⌃) and then projected to unit sphere. We consider diagonal
covariances ⌃ of the following form: ⌃[0, 0] = , and ⌃[i, i] = 1 for all i � 1. Here  � 1 is the
condition number of ⌃. We generate noise zi from uniform distribution over [��,�]. Finally, the
response variables are generated as follows yi = x

>
i w

⇤
+ zi. All the experiments presented below

are repeated 5 times and the averaged results are presented. We set the DP parameters (✏, �) as
✏ = 1, � = min(10

�6
, n

�2
). Experiments for ✏ = 0.1 can be found in Fig. 2 in the App. K.

Baseline Algorithms. We compare our estimator with the following baseline algorithms:
• Non private algorithms: ordinary least squares (OLS), one-pass stochastic gradient descent

with tail-averaging (SGD). For SGD, step-size is 1/(2�max) and minibatch size is n/T , where
T = 3 log n.
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• Private algorithms: sufficient statistics perturbation (DP-SSP) [38, 83], differentially private
stochastic gradient descent (DP-AMBSSGD) [81]. DP-SSP had the best empirical performance
among numerous techniques studied by [83], and DP-AMBSSGD has the best known theoretical
guarantees. The DP-SSP algorithm involves releasing X

T
X and X

Ty differentially privately
and computing (\XTX)

�1[XTy. DP-AMBSSGD is a private version of SGD where the DP
noise is set adaptively according to the excess error in each iteration. For both algorithms, we use
the hyper-parameters recommended in their respective papers. To improve the performance of
DP-AMBSSGD, we reduce the theoretical clipping threshold by a constant factor.

DP-ROBGD. We implement Alg. 1 with the following key changes. Instead of relying on
PrivateNormEstimator to estimate �, we set it to its true value Tr(⌃). This is done for a fair
comparison with DP-AMBSSGD which assumes the knowledge of Tr(⌃). Next, we use 20% of
the samples to compute �t in line 5 (instead of the 50% stated in Alg. 1). In our experiments we
also present results for a variant of our algorithm called DP-ROBGD* which outputs the best iterate
based on �t, instead of the last iterate. One could also perform tail-averaging instead of picking the
best iterate. Both these modifications are primarily used to reduce the variance in the output of Alg. 1
and achieved similar performance in our experiments.

Results. Figure 1 presents the performance of various algorithms as we vary n,,�. It can be
seen that DP-ROBGD outperforms DP-AMBSSGD in almost all the settings (and DP-ROBGD*
outperforms DP-ROBGD in all cases). DP-SSP has poor performance when the noise � is low, but
performs slightly better than DP-ROBGD in other settings. A major drawback of DP-SSP is its
computational complexity which scales as O(nd

2
+ d

!
). In contrast, the computational complexity

of DP-ROBGD has smaller dependence on d and scales as Õ(nd). Thus the latter is more compu-
tationally efficient for high-dimensional problems. More experimental results on both robust and
private linear regression can be found in the App. K.

5 Sketch of the main ideas in the analysis

We provide the main ideas behind the proof of Thm. 3.1. The privacy proof is straightforward since
no matter what clipping threshold we use the noise we add is always proportionally to the clipping
threshold which guarantees privacy. In the remainder, we focus on the utility analysis.

The proof of the utility heavily relies on the resilience [73] (also known as stability [27]), which states
that given a large enough sample set S, various statistics (for example, sample mean and sample
variance) of any large enough subset of S will be close to each other. We define resilience as follows.

Definition 5.1 ([61, Definition 23]). For some ↵ 2 (0, 1), ⇢1 2 R+, ⇢2 2 R+, and ⇢3 2 R+,
⇢4 2 R+, we say dataset Sgood = {(xi 2 Rd

, yi 2 R)}ni=1 is (↵, ⇢1, ⇢2, ⇢3, ⇢4)-resilient with
respect to (w

⇤
,⌃,�) for some w

⇤ 2 Rd, positive definite ⌃ � 0 2 Rd⇥d, and � > 0 if for any
T ⇢ Sgood of size |T | � (1� ↵)n, the following holds for all v 2 Rd:

���
1

|T |
X

(xi,yi)2T

hv, xii(yi � x
>
i w

⇤
)

���  ⇢1

p
v>⌃v � , (5)

���
1

|T |
X

xi2T

hv, xii2 � v
>
⌃v

���  ⇢2v
>
⌃v , (6)

���
1

|T |
X

(xi,yi)2T

(yi � x
>
i w

⇤
)
2 � �

2
���  ⇢3�

2
, (7)

���
1

|T |
X

(xi,yi)2T

hv, xii
���  ⇢4

p
v>⌃v . (8)

We give an overview of the proof for non-robust case as follows. First, we introduce some notations.
Let g(t)i := (x

>
i wt�yi)xi be the raw gradient and g̃

(t)
i := clip⇥(xi)clip✓t(x

>
i wt�yi) be the clipped

gradient. Note that when the data follows from our distributional assumption, with high probability,
samples are not clipped by the norm: clip⇥(xi) = xi. We can write down one step of gradient update
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(see Alg. 1) as follows:

wt+1 � w
⇤
=

 
I� ⌘

n

X

i2S

xix
>
i

!
(wt � w

⇤
)

| {z }
(i)

+
⌘

n

X

i2S

xizi

| {z }
(ii)

+
⌘

n

X

i2S

(g
(t)
i � g̃

(t)
i )

| {z }
(iii)

� ⌘�t⌫t| {z }
(iv)

.

In the above equation, the first term is a contraction, meaning wt is moving toward w
⇤. The second

term captures the noise from the randomness in the samples. The third term captures the bias
introduced by the clipping operation, and the fourth term captures the added noise for privacy. The
second term is standard and relatively easy to control, and our main focus is on the last two terms.

The third term (⌘/n)
P

i2S(g
(t)
i � g̃

(t)
i ) can be controlled using the resilience property. We prove

that with our estimated threshold, the clipping will only affect a small amount of datapoints, whose
contribution to the gradient is small collectively.

Now we have controlled the deterministic bias. Then, we upper bound the fourth term, which is the
noise for the purpose of privacy, and show the expected prediction error decrease in every gradient
step. The difficulty is that, since our clipping threshold is adaptive, the decrease of the estimation
error depends on the estimation error of all the previous steps. This causes that in some iterations, the
estimation error actually increases. In order to get around this, we split the iterations into length 

chunks, and argue that the maximum estimation error in a chunk must be a constant factor smaller
than the previous chunk. This implies we will reach the desired error within Õ() steps.

6 Conclusion

We provide a novel variant of DP-SGD algorithm for differentially private linear regression under
label corruption. We show the first near-optimal rate that achieves privacy and robustness to label
corruptions simultaneously. When there is no label corruption, our result also improves upon the
state-of-the-art method [81] in terms of the condition number . Compared to [81], our algorithm has
two innovations: 1) we introduce a novel adaptive clipping, which is critical in achieving robustness
against label corruptions; and 2) we use full batch gradient descent and a novel convergence analysis
to get the near-optimal sample complexity.
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