
DGCLUSTER: A Neural Framework for Attributed Graph Clustering via
Modularity Maximization

Aritra Bhowmick1, Mert Kosan2*, Zexi Huang2, Ambuj Singh2, Sourav Medya3
1New York University

2University of California, Santa Barbara
3University of Illinois, Chicago

aritra.bhowmick@nyu.edu, mertkosan@gmail.com, zexihuang.phd@gmail.com, ambuj@ucsb.edu, medya@uic.edu

Abstract

Graph clustering is a fundamental and challenging task in
the field of graph mining where the objective is to group
the nodes into clusters taking into consideration the topol-
ogy of the graph. It has several applications in diverse do-
mains spanning social network analysis, recommender sys-
tems, computer vision, and bioinformatics. In this work, we
propose a novel method, DGCLUSTER, which primarily op-
timizes the modularity objective using graph neural networks
and scales linearly with the graph size. Our method does not
require the number of clusters to be specified as a part of the
input and can also leverage the availability of auxiliary node
level information. We extensively test DGCLUSTER on sev-
eral real-world datasets of varying sizes, across multiple pop-
ular cluster quality metrics. Our approach consistently out-
performs the state-of-the-art methods, demonstrating signifi-
cant performance gains in almost all settings.

Introduction and Related Work
Graph clustering is a fundamental problem in network anal-
ysis and plays an important role in uncovering structures
and relationships between the nodes or entities in a graph.
It has numerous applications in several domains such as
community detection in social networks (Newman 2006a),
identifying functional modules in biological systems (Wang
et al. 2010), image segmentation in computer vision (Felzen-
szwalb and Huttenlocher 2004), and recommender systems
(Moradi, Ahmadian, and Akhlaghian 2015). The primary
goal of graph clustering is to group nodes with similar char-
acteristics or functions while maintaining a clear distinction
between different clusters.

Node Attributes: While traditional graph clustering
methods primarily rely on graph topology such as modu-
larity maximization (Newman 2006b; Newman and Girvan
2003), recent research (Wang et al. 2017) has recognized the
importance of incorporating node attributes in the clustering
process, offering a more comprehensive approach for group-
ing nodes. Node attributes provide additional information
associated with each node and provide contextual insights
that can improve the accuracy in the clustering process.

*Work done prior to joining Visa Research.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

GNN-based Clustering: Recently, there have been sev-
eral attempts that use the power of deep learning in the form
of Graph neural networks (GNNs) (Kipf and Welling 2016;
Hamilton, Ying, and Leskovec 2017; Velickovic et al. 2017)
for graph clustering. GNNs provide a powerful tool in graph-
based machine learning that is successful in many diverse
prediction tasks (Zhang and Chen 2018; Ying et al. 2018b,a),
by incorporating the graph topology node features or at-
tributes. For GNN-based graph clustering, MGAE (Wang
et al. 2017) marginalizes the corrupted node features to
learn representations via a graph encoder and applies spec-
tral clustering. Another graph autoencoder based approach
has been proposed in (Park et al. 2019). To improve the effi-
ciency of clustering, contrastive learning methods have been
used recently as well (Liu et al. 2023; Kulatilleke, Portmann,
and Chandra 2022; Xia et al. 2021). For more neural meth-
ods on deep graph clustering, we refer the readers to this
recent survey (Yue et al. 2022).

Neural Modularity Maximization: One of the initial
methods to optimize modularity via deep learning for graph
clustering is proposed by Yang et al. (2016). They de-
sign a nonlinear reconstruction method based on graph au-
toencoders, which also incorporate constraints among node
pairs. Wu et al. (2020) propose a method that obtains a spa-
tial proximity matrix by using the adjacency matrix and the
opinion leaders in the social network. The spatial eigenvec-
tors of the proximity matrix are applied subsequently to op-
timize modularity. Mandaglio, Amelio, and Tagarelli (2018)
is another study that incorporates the modularity metric for
community detection and graph clustering. Choong, Liu,
and Murata (2018); Bhatia and Rani (2018) try to find com-
munities without predefined community structure. Choong,
Liu, and Murata (2018) propose a generative model for com-
munity detection using a variational autoencoder. Bhatia and
Rani (2018) firstly analyze the possible number of commu-
nities in the graph, then fine-tune it using modularity. Later
on, Sun et al. (2021) use a graph neural network that op-
timizes modularity and attributes similarity objectives. An-
other related work in this domain is the method DMoN
by Tsitsulin et al. (2023). This method designs an archi-
tecture to encode cluster assignments and then formulate a
modularity-based objective function for optimizing these as-
signments.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11069



Our Contributions:
A vast majority of these methods have the limitation that
they require the number of clusters to be given as an input
or they do not take full advantage of the associated node at-
tributes along with the additional node level information like
partial availability of labels or samples of known pairwise
memberships. To overcome these challenges, we propose a
framework named Deep Graph Cluster (DGCLUSTER) that
eliminates the need for a predefined number of clusters and
harnesses graph representation learning methods that can
leverage node attributes along with other available auxiliary
information. Our major contributions are as follows.

• DGCLUSTER: We develop a novel framework that uses
pairwise (soft) memberships between nodes to solve the
graph clustering problem via modularity maximization.
The complexity of our framework scales linearly with the
size of the graph.

• Handling Unknown Number of Clusters and Auxil-
iary Information: Our proposed methodology can gen-
eralize well to cases when the number of clusters is not
known beforehand. Our designed loss function is also
flexible towards accommodating the additional local or
node-level information. These are the major strengths of
our approach.

• Extensive Empirical Evaluation: We conduct exten-
sive experiments on seven real-world datasets of different
sizes on four different objectives that quantify the quality
of clusters. Our method shows significant performance
gain against state-of-the-art methods in most of the set-
tings.

Problem Definition
We consider an undirected and unweighted graph G =
(V,E), where V = {v1, v2, v3, ..., vn} is the set of n ver-
tices/nodes, and E = {eij = (vi, vj)} is the set of m
edges. The adjacency matrix of G can be represented as a
non-negative symmetric matrix A = [Aij ] ∈ Rn×n

+ where
Aij = 1 if there is an edge between vertices i and j, and
Aij = 0. The degree of vertex i is defined as di =

∑
j aij .

In addition, we have features (or attributes) associated with
each node in the graph, X0 ∈ Rn×r where r is the size of
the feature vector on nodes.

Graph Clustering: Our objective is to have a disjoint
clustering of the nodes in the graph. More specifically, the
problem of graph clustering is to partition the set of nodes
into k clusters or groups {Vi}ki=1 (Vi ∩ Vj = ∅ for i $= j),
such that the nodes within a cluster are more densely con-
nected than nodes belonging to different clusters. Further-
more, in this work, we aim to incorporate node attributes in
addition to the graph topology for graph clustering.

While there exist several metrics to measure the quality of
clustering such as conductance (Yang and Leskovec 2012)
and normalized cut-ratio (Shi and Malik 2000), modularity
remains the most popular and widely used metric for graph
clustering in the literature (Fortunato and Hric 2016).

Modularity: The approach of graph clustering based on
maximizing the modularity of the graph has been introduced

by Newman (Newman 2006b). As a graph topology-based
measure, modularity (Newman 2006b) quantifies the differ-
ence between the fraction of the edges that fall within the
clusters and the expected fraction assuming the edges have
been distributed randomly. Formally, modularity (Q) is de-
fined as follows:

Q =
1

2m

∑

ij

(Aij −
didj
2m

)δ(ci, cj) (1)

where δ(ci, cj) is the Kronecker delta, i.e., δ(ci, cj) = 1 if
ci = cj and 0 otherwise, and ci is the community to which
node i is assigned.

The value of modularity for unweighted and undirected
graphs lies in the range [−1/2, 1]. The Q value close to 0
implies that the fraction of edges inside communities is no
better than a random distribution, and higher values usually
correspond to a stronger cluster structure. The modularityQ
can also be expressed in the matrix form as follows:

Q =
1

2m

∑

ij

B &M =
1

2m
Tr(BMT ) =

1

2m
Tr(BM)

(2)
whereM is a n× n symmetric matrix withMij = δ(ci, cj)

and Bij = (Aij − didj

2m ) is called the modularity matrix.

Modularity Maximization: Since a larger Q implies
a prominent cluster structure, optimizing the modularity is
a popular way of finding good clusters. While modular-
ity optimization is known to be NP-Hard (Brandes et al.
2006), there exist techniques such as spectral relaxation and
greedy algorithms, which permit efficient solutions (New-
man 2006a; Blondel et al. 2008).

Our Goal: We achieve graph clustering via modularity
maximization. The definition of modularity brings the idea
of computing pairwise memberships allowing a natural in-
terpretation without knowing the number of clusters. We aim
to take advantage of that and the power of graph representa-
tion learning techniques that can exploit both structural and
non-structural information from graphs. In the experiments,
we show the efficacy of our method on four different ob-
jectives that quantify the quality of the clusters: modularity
(Newman 2006b), conductance (Yang and Leskovec 2012),
Normalized mutual information (NMI), and F1 score.

Method: DGCLUSTER
We present DGCLUSTER, a fully differentiable method
which performs deep graph clustering based on the graph
structure and node attributes, without the need to pre-
define the number of communities. The key rationale of
our method is to parameterize a relevant clustering objective
(e.g., Modularity) with similarity between nodes computed
based on graph neural network (GNN)-based embeddings.
Our method DGCLUSTER consists of four steps:
• Node Embeddings: As the first step, DGCLUSTER ob-
tains the node embeddings as the output of the GNN fol-
lowed by some transformations that helps to perform ef-
ficient clustering.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11070



• Modularity via Similarity: We evaluate the similarity
between all node pairs from the embeddings and treat
them as soft community pairwise memberships.

• Objectives: Subsequently, it builds the cluster detection
objectives based on the soft memberships and train the
GNN parameters in a differentiable manner.

• Final Clustering: Finally, it computes the community
memberships by clustering the GNN node embeddings.

We introduce each step of our method DGCLUSTER in
the following subsections.

Node Embeddings Using GNN

We begin with a brief introduction of graph neural net-
works (GNNs). GNNs are powerful graph machine learn-
ing paradigms that combine the graph structure and node
attribute information into node embeddings for different
downstream tasks. A key design element of GNNs is mes-
sage passing where the nodes iteratively update their rep-
resentations (embeddings) by aggregating information from
their neighbors. In the literature, several different GNN ar-
chitectures have been proposed (Scarselli et al. 2008; Kipf
and Welling 2016; Hamilton, Ying, and Leskovec 2017;
Velickovic et al. 2017) which implement different schemes
of message passing. A comprehensive discussion on the
methods and applications of GNNs are described here (Zhou
et al. 2020).

In this paper, we leverage the widely used Graph Convolu-
tional Network (GCN) (Kipf and Welling 2016) to produce
node embeddings, noting that our model can be equipped
with other GNNs. With the initial node features asX(0), the
layer-wise message passing rule for layer l (l = 0, · · · , L−
1) is as follows:

X(l+1) = σ(ÃX(l)W (l)) (3)

where Ã = D− 1
2AD

1
2 is the normalized adjacency matrix,

D is the diagonal node degree matrix, X l is the embedding
output of the l-th layer, W l is the learnable weight matrix
of the lth layer, and σ is the activation function which intro-
duces the non-linearity in the feature aggregation scheme.
We do not use any self loop creation in the adjacency matrix
and we choose the SELU (Klambauer et al. 2017) as the acti-
vation function for better convergence. The SELU activation
is given as:

SELU(x) =

{
βx, if x ≥ 0
βα(ex − 1), otherwise

(4)

where β ≈ 1.05 and α ≈ 1.67.

Transformation of the Embeddings: Let X = XL =
[X1, · · · , Xn]T be the output embeddings of the last layer
readout from the GNN.We introduce the following problem-
specific transformations on the embeddings (where Z◦2 de-

notes the element-wise square operation):

Xi ←
Xi∑
j Xij

,

Xi ← tanh(Xi),

Xi ← X◦2
i ,

Xi ←
Xi

‖Xi‖2

(5)

Specifically, the first normalization is used so as to
prevent vanishing gradients because of the tanh activation
function for large values. Next, after the activation, doing
the element-wise square ensures the output is constrained
within the positive coordinate space. The final L2 normal-
ization reduces the cosine similarity computation of node
pairs (introduced in next subsection) to corresponding dot
products. Thus, the final embeddings lie on the surface
of the unit sphere constrained in the positive space. More
detailed intuitions behind these will be explained in details
in the following sections.

Modularity via Embedding Similarity
After obtaining the transformed GNN embeddings X , we
demonstrate how to compute the modularity Q based on
them via pairwise node similarities.

To achieve this, we focus on M which is defined in Eq. 2
as a binary matrix that encodes the pairwise memberships
(via δ) of the nodes in a cluster. This pairwise relationship
is transitive, i.e., δ(cu, cv) = 1 and δ(cv, cw) = 1 implies
δ(cu, cw) = 1. However, as stated before, the problem of
finding the optimalM which maximizes Q is NP-Hard. The
main idea is to replace M with a soft pairwise community
membership matrix. We choose to replace M with a simi-
larity matrix which is defined based on node embeddings,
where the similarity (fsim(Xu, Xv) ∈ [0, 1]) can be viewed
as soft membership between the nodes {u, v}. Higher val-
ues of fsim(Xu, Xv) corresponds to higher similarity or
stronger relationship between the nodes. Although there can
be many choices for the similarity function, we choose fsim
as the cosine similarity, fsim(Xu, Xv) = cos(Xu, Xv).

Here, we also emphasize our rationale for the transforma-
tions of the embeddings earlier. Specifically, the original M
only takes binary values (i.e., 0 or 1). Our embedding trans-
formation allows cos(Xu, Xv) ∈ [0, 1] by limiting them in
the positive coordinate space, and enables its computation
via dot products cos(Xu, Xv) = XT

u Xv , which in turn leads
to an efficient computation as discussed later.

Objective Function
We introduce a novel joint objective function that performs
clustering based on both the community structure quality
measure (i.e., modularity) and local auxiliary information.

Modularity Optimization. We first define our primary
objective function, i.e., modularity optimization by approxi-
mating the pairwise community membership computed with
embedding similarity:

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11071



L1 = −Q̃ = − 1

2m
Tr(BXXT ) (6)

whereB is the modularity matrix,m is the number of edges,
and XXT is the similarity matrix obtained from the trans-
formed node embeddings.

Auxiliary Information Loss. We now discuss how our al-
gorithm can be made more flexible by accounting for addi-
tional local information.

Specifically, let S ⊆ V be the subset of nodes whose lo-
cal information is available, and H ∈ R|S|×|S| be the pair-
wise information matrix. We consider different types of ad-
ditional information. In the semi-supervised setting, partial
node labels (e.g. cluster labels, class labels) are available,
and we can construct H based on the pairwise membership:

Hij =

{
1, if ci = cj
0, otherwise

(7)

where ci is the label of the node i. Alternatively, by collect-
ing all available labels in one-hot matrix form C ∈ R|S|×p,
we can rewrite H as:

H = CCT (8)

When those ground-truth information is not available, we
can also leverage traditional structure-based graph partition-
ing heuristics, such as Louvain (Blondel et al. 2008), and
treat their generated clusters as the node labels. In general,
any pairwise node information similarity which can be ap-
proximated as 〈Ci, Cj〉 ∈ [0, 1], can be effectively used.

With the local information matrix H , the secondary ob-
jective function which minimizes the difference between H
and the embedding similarity matrix is given as :

L2 =
1

|S|2 ‖H −XSX
T
S ‖2F (9)

where XS is the submatrix of node embeddings with only
nodes in S.

The final objective function is a weighted combination of
the two objectives:

L = L1 + λL2 (10)

where λ is a hyperparameter. The GNN parameters are
trained in an end-to-end based on the total loss L with the
stochastic gradient descent algorithm.

When instead of individual node labels, samples of pair-
wise node memberships are available, L2 can be written as
follows:

L2 =
1

|S|
∑

pij∈S

(1− 〈Xi, Xj〉)2 (11)

where pij are the node pairs which belong to the same com-
munity and S is a set of such pairs.

Clustering Node Embeddings
In this section, we illustrate how to obtain the hard cluster
partitions based on the soft pairwise memberships obtained
in the previous section.

One way is to directly apply clustering algorithms based
on the pairwise node similarity matrix, such as affinity prop-
agation (Frey and Dueck 2007). However, computing the
full similarity matrix from the embeddings is computation-
ally prohibitive. Instead, we take advantage of the following
observation. Since our embeddings are L2 normalized (i.e.,
‖Xu‖2 = 1), the cosine similarity is directly related to the
Euclidean distance in the embedding space:

‖Xu −Xv‖22 = ‖Xu‖22 + ‖Xv‖22 − 2‖Xu‖2‖Xv‖2 cos(Xu, Xv)

= 2(1− cos(Xu, Xv))
(12)

This allows us to apply clustering algorithms based on the
euclidean distance in the embedding space without comput-
ing the full pairwise similarity matrix.

Specifically, we apply the Balanced Iterative Reducing
and Clustering using Hierarchies (BIRCH) (Zhang, Ramakr-
ishnan, and Livny 1996). BIRCH is a scalable, memory-
efficient, online clustering algorithm that can cluster large
datasets by first generating a small and compact summary
of the dataset that retains as much information as possible.
Unlike other popular choices such as k-means (Hartigan and
Wong 1979), BIRCH does not require the number of clusters
beforehand.

Complexity Analysis
In this section, we analyze the complexity of our proposed
model. The forward pass requires us to compute two objec-
tive functions. Specifically, modularity optimization loss L1

can be evaluated with

L1 = − 1
2m

Tr(BXXT ) = − 1
2m

Tr(XTBX)

= − 1
2m

(Tr(XTAX)− 1
2m

Tr(XT ddTX))
(13)

We can see that L1 can be computed with sparse matrix
multiplications between X and A and matrix vector multi-
plications between X and d. These multiplications lead to
an overall computation cost of O(k2n), where k is the di-
mension of the embeddings X .

For the auxiliary information loss, we have

‖H −XSX
T
S ‖2F =

∑

ij

(Hij − (XXT )ij)
2

=
∑

ij

H2
ij +

∑

ij

(XXT )2ij − 2
∑

ij

Hij(XXT )ij

=
∑

ij

(CCT )2ij +
∑

ij

(XXT )2ij − 2
∑

ij

(CCT )ij(XXT )ij

= Tr(CTCCTC)− Tr(XT
S XSX

T
S XS)− 2Tr(XT

S CCTXS)
(14)

Computing CTC, XT
S XS , and XT

S C requires O(p2n),
O(k2n), and O(knp) respectively via matrix multiplica-
tions, assuming |S| = n, since |S| can be atmost n.
Here, p is the dimension of the auxiliary information (note,
C ∈ Rn×p ). Thus, the overall complexity of our model is
O(k2n+ p2n), where k, p/ n. This shows that our model
scales linearly with the size of the graph.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11072



Experimental Results
In this section, we present the performance comparison of
DGCLUSTER with other clustering and neural community
detection methods on 7 well-known real-world datasets.
We evaluate the algorithms using various metrics, includ-
ing graph conductance, modularity, NMI (Normalized Mu-
tual Information), and F1 score where higher scores are de-
sired for the last three. Furthermore, we demonstrate the
robustness of our method against different GNN architec-
tures and assess the impact of adding auxiliary information.
We also introduce an additional regularization objective and
show its effect on our method. Lastly, we illustrate the num-
ber of communities our method identifies for each dataset.
Our code and implementation of DGCLUSTER is available
at https://github.com/pyrobits/DGCluster

Datasets. We use seven publicly available real-world
datasets in our experiments. Table 1 presents a summary
of the dataset statistics. Our experiments include datasets
from well-known citation networks, namely CORA, CITE-
SEER, and PUBMED (Sen et al. 2008). In these networks,
nodes correspond to individual papers, edges represent ci-
tations between papers, and features are extracted using a
bag-of-words approach applied to paper abstracts. The topic
of each paper is captured through node labels. Besides ci-
tation networks, we use two co-purchase networks, AMA-
ZON PC and AMAZON PHOTO (Shchur et al. 2018). These
networks include products as nodes, with edges denoting
co-purchase relationships. Features are extracted from prod-
uct reviews, while node labels show product categories. Our
last two datasets, COAUTHOR CS and COAUTHOR PHY
(Shchur et al. 2018; Shchur and Günnemann 2019), are co-
authorship networks for computer science and physics, re-
spectively. Within these networks, nodes correspond to au-
thors, and edges indicate co-authorship between them. Node
features are keywords extracted from authors’ publications
and node labels are their fields of study.

|V | |E| |X| |Y |
CORA 2708 5278 1433 7

CITESEER 3327 4552 3703 6
PUBMED 19717 44324 500 3

AMAZON PC 13752 245861 767 10
AMAZON PHOTO 7650 119081 745 8
COAUTHOR CS 18333 81894 6805 15
COAUTHOR PHY 34493 247962 8415 5

Table 1: Statistics of the datasets. |V |, |E|, |X|, and |Y | de-
note the number of nodes, edges, features, and node labels.

Baselines. Our baseline methods consist of a range of clas-
sical clustering algorithms, such as k-means, as well as state-
of-the-art graph community detection algorithms. For con-
sistent comparison, we adopted the same baseline setting
as in the recent DMoN (Tsitsulin et al. 2023): k-means
based on features, SBM by Peixoto (2014), k-means based
on DeepWalk by Perozzi, Al-Rfou, and Skiena (2014), k-
means(DGI) by Veličković et al. (2018), DAEGC by Wang

et al. (2019), SDCN by Bo et al. (2020), NOCD by Shchur
and Günnemann (2019), DiffPool by Ying et al. (2018a),
MinCutPool by Bianchi, Grattarola, and Alippi (2020), and
Ortho by Bianchi, Grattarola, and Alippi (2020).

Performance Measures. We use our primary objective,
modularity, as our main evaluation metric. Additionally,
we evaluate the performance using other important metrics,
namely NMI, conductance, and F1 score. In cases where a
dataset lacks ground truth cluster labels, we assign node la-
bels as their respective cluster labels. We multiply the met-
rics by 100 for better readability.

• Modularity (Q) (Newman 2006b): This serves as the pri-
mary objective, aiming to quantify the strength of the
community. It achieves this by contrasting the propor-
tion of edges within the community with a correspond-
ing fraction generated from random connections between
nodes. Higher values mean better community partitions.

• Conductance (C) (Yang and Leskovec 2012): The
graph’s conductance measures the portion of total edges
that goes outside the community. Lower values indicate
better community partitions.

• Normalized mutual information (NMI): We use the NMI
as a label-based metric between the cluster assignments
and true labels of the nodes. Higher values mean better
community partitions.

• F1 score: We calculate the pairwise F1 score based on
found pairwise node memberships and their correspond-
ing clusters. Since it is O(N2), we sample 1000 nodes to
calculate this. Higher values indicate better community
partitions.

Other Settings. In our experiments, we employ a GCN
having two hidden layers of 256 and 128 nodes and an
output dimension of 64, across all datasets. We showcase
outcomes for various λ values. This enables a compara-
tive analysis among the graph structure-based metrics and
graph attribute-based metrics. We use Adam optimizer with
a learning rate set to 0.001, and we set the number of epochs
to 300. Our tables and figures report average scores over
10 different runs, using different seeds, for our method. For
baselines, we report the results from Tsitsulin et al. (2023).

Performance
Table 2 and 3 show that our method achieves superior or
comparable results compared to the baselines across all eval-
uation metrics and datasets. Notably, our method stands out
with significant improvements in unsupervised graph eval-
uation topology-based metrics such as graph conductance,
and modularity (Table 2). Our auxiliary objective also pro-
vides flexibility by tuning the hyperparameter λ to optimize
NMI and F1 score to have better results compared to the
baselines (Table 3). While our method has a superior per-
formance in co-purchase and co-authorship networks under
all four metrics, it has a reasonably good performance in the
citation networks. This shows the generalizability of our al-
gorithm in different types of networks.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11073



(C ↓, Q ↑) CORA CITESEER PUBMED AMA. PC AMA. PHOTO COA. CS COA. PHY

Method C Q C Q C Q C Q C Q C Q C Q

k-m(feat) 61.7 19.8 60.5 30.3 55.8 33.4 84.5 5.4 79.6 10.5 49.1 23.1 57.0 19.4
SBM 15.4 77.3 14.2 78.1 39.0 53.5 31.0 60.8 18.6 72.2 20.3 72.7 25.9 66.9

k-m(DW) 62.1 30.7 68.1 24.3 16.6 75.3 67.6 11.8 60.6 22.9 33.1 59.4 44.7 47.0
SDCN 37.5 50.8 20.0 62.3 22.4 50.3 25.1 45.6 19.7 53.3 33.0 55.7 32.1 52.8
DAEGC 56.8 33.5 47.6 36.4 53.6 37.5 39.0 43.3 19.3 58.0 39.4 49.1 N/A N/A
k-m(DGI) 28.0 64.0 17.5 73.7 82.9 9.6 61.9 22.8 51.5 35.1 35.1 57.8 38.6 51.2
NOCD 14.7 78.3 6.8 84.4 21.7 69.6 26.4 59.0 13.7 70.1 20.9 72.2 25.7 65.5
DiffPool 26.1 66.3 26.0 63.4 32.9 56.8 35.6 30.4 26.5 46.8 33.6 59.3 N/A N/A

MinCutPool 23.3 70.3 14.1 78.9 29.6 63.1 N/C N/C N/C N/C 22.7 70.5 27.8 64.3
Ortho 28.0 65.6 18.4 74.5 57.8 32.9 N/C N/C N/C N/C 27.8 65.7 33.0 59.5
DMoN 12.2 76.5 5.1 79.3 17.7 65.4 18.0 59.0 12.7 70.1 17.5 72.4 18.8 65.8

DGCLUSTERλ=0.0 8.4 80.7 5.5 87.2 20.6 72.5 17.4 61.3 7.5 70.9 14.6 74.3 20.6 67.5
DGCLUSTERλ=0.2 9.7 80.8 4.1 87.4 20.4 72.8 17.7 61.5 8.6 71.6 15.3 74.2 22.3 67.3
DGCLUSTERλ=0.8 14.5 78.6 6.5 86.3 24.6 71.2 27.3 60.3 12.4 71.6 18.1 73.3 21.3 66.0

Table 2: Conductance C and modularityQ of baselines and our method with three λ settings (0, 0.2, 0.8). The best and second-
best methods are highlighted. We fixed the optimal λ value per dataset in our method (i.e., 0.0 or 0.2) during comparison, and
our method demonstrates the best or comparable performance to the baselines. Unavailable: N/A, Non-convergence: N/C.

(NMI ↑, F1 ↑) CORA CITESEER PUBMED AMA. PC AMA. PHOTO COA. CS COA. PHY

Method NMI F1 NMI F1 NMI F1 NMI F1 NMI F1 NMI F1 NMI F1

k-m(feat) 18.5 27.0 24.5 29.2 19.4 24.4 21.1 19.2 28.8 19.5 35.7 39.4 30.6 42.9
SBM 36.2 30.2 15.3 19.1 16.4 16.7 48.4 34.6 59.3 47.4 58.0 47.7 45.4 30.4

k-m(DW) 24.3 24.8 27.6 24.8 22.9 17.2 38.2 22.7 49.4 33.8 72.7 61.2 43.5 24.3
SDCN 27.9 29.9 31.4 41.9 19.5 29.9 24.9 45.2 41.7 45.1 59.3 54.7 50.4 39.9
DAEGC 8.3 13.6 4.3 18.0 4.4 11.6 42.5 37.3 47.6 45.0 36.3 32.4 N/A N/A
k-m(DGI) 52.7 40.1 40.4 39.4 22.0 26.4 22.6 15.0 33.4 23.6 64.6 51.9 51.0 30.6
NOCD 46.3 36.7 20.0 24.1 25.5 20.8 44.8 37.8 62.3 60.2 70.5 56.4 51.9 28.7
DiffPool 32.9 34.4 20.0 23.5 20.2 26.3 22.1 38.3 35.9 41.8 41.6 34.4 N/A N/A
MinCut 35.8 25.0 25.9 20.1 25.4 15.8 N/C N/C N/C N/C 64.6 47.8 48.3 24.9
Ortho 38.4 26.6 26.1 20.5 20.3 13.9 N/C N/C N/C N/C 64.6 46.1 44.7 23.7
DMoN 48.8 48.8 33.7 43.2 29.8 33.9 49.3 45.4 63.3 61.0 69.1 59.8 56.7 42.4

DGCLUSTERλ=0.0 49.9 42.0 26.3 20.0 24.9 29.0 51.0 47.5 68.0 64.3 72.0 72.3 54.7 40.7
DGCLUSTERλ=0.2 53.0 43.5 30.3 22.2 27.6 30.1 53.8 49.5 73.0 70.7 76.1 77.3 59.0 41.9
DGCLUSTERλ=0.8 62.1 54.5 41.0 32.2 32.6 34.6 60.4 52.2 77.3 75.9 82.1 83.5 65.7 49.2

Table 3: NMI and F1-score of baselines and our method with three λ settings (0, 0.2, 0.8). The best and second-best methods are
highlighted. We fixed the optimal λ value per dataset in our method (i.e., 0.8) during comparison, and our method demonstrates
the best or comparable performance across most datasets. Unavailable: N/A, Non-convergence: N/C.

Q NMI F1
Dataset GCN GAT GIN SAGE GCN GAT GIN SAGE GCN GAT GIN SAGE

CORA 80.8 80.8 80.2 78.4 53.0 51.9 53.2 53.4 43.5 41.3 46.7 51.9
CITESEER 87.4 87.4 87.3 84.8 30.3 29.4 29.5 32.5 22.2 21.9 21.9 34.0
PUBMED 72.8 73.8 75.0 72.4 27.6 26.1 25.7 27.9 30.1 26.8 29.2 40.5
AMA. PC 61.5 61.4 54.3 55.1 53.8 52.9 35.4 45.0 49.5 45.3 42.3 52.2

AMA. PHOTO 71.6 72.1 69.9 63.8 73.0 72.1 61.8 60.6 70.7 69.4 60.6 58.2
COA. CS 74.2 74.0 73.8 73.0 76.1 75.7 71.8 72.4 77.3 79.0 72.6 74.4

COA. PHYSICS 67.3 67.1 66.7 66.0 59.0 59.2 59.7 64.0 41.9 43.4 48.7 55.9
Average 73.6 73.8 72.5 70.5 53.3 52.5 48.2 50.8 47.9 46.7 46.0 52.4

Table 4: Performance of our method with various GNNs. Notably, the performance remains consistent across different GNN.
This shows the robustness of our model in adapting to diverse GNN architectures. For each dataset, we emphasize notable
performance increase and decrease compared to GCN. For the average, we identify the best and second-best GNN base model.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11074



Robustness on Different Base GNNs
We conduct experiments to test the robustness of our method
towards different GNNs including GAT (Velickovic et al.
2017), GIN (Xu et al. 2018), and GraphSAGE (Hamilton,
Ying, and Leskovec 2017). Table 4 indicates that the selec-
tion of the GNN model does not significantly alter the per-
formance of our method in terms of the evaluation measures.
The average performance across datasets for different met-
rics and GNN bases reveals specific enhancements: GAT im-
provesQ, GraphSAGE enhances F1 scores on average. Con-
versely, GIN results into general performance degradation.

��� ��� ��� ��� ��� ��� ��� ��� ���

����

����

����

����

����

����

�

&RUD
&LWH6HHU

3XE0HG
$PD]RQ�3&

$PD]RQ�3KRWR
&RDXWKRU�&6

&RDXWKRU�3+<

��� ��� ��� ��� ��� ��� ��� ��� ���

���

���

���

���

���

���

10,

��� ��� ��� ��� ��� ���
͏

���

���

���

���

���

���

Figure 1: Effect of auxiliary information on different metrics
and datasets with varying λ. As expected, Q tends to de-
crease as λ increases sinceQ is dependent only on the graph
structure whereas λ adds weight to the label-based loss. The
NMI increases as λ increases since NMI is directly related
to labels.

Auxiliary Information Effect
To check the effect of our auxiliary information, we vary the
λ hyperparameter in our additional experiments. Figure 1 il-
lustrates the impact of the hyperparameter on different met-
rics and datasets. The main goal of the λ parameter is to find
the best underlying partition leveraging both graph structure
and auxiliary information. We can see modularity Q has a
consistent value over increased λ, while NMI values are in-
creasing with a good amount. This shows the power of our
auxiliary objective which ensures flexibility to the user aim-
ing to optimize their desired metric. Additionally, the stan-
dard deviation of our results is small showing the stability of
our algorithm.

(Q ↑, NMI ↑) CORA CITESEER PUBMED

DGCLUSTER Q NMI Q NMI Q NMI

α = 0.0 80.8 43.5 87.4 22.2 72.8 30.1
α = 0.5 80.8 40.3 87.3 20.3 72.1 28.1
α = 1.0 80.8 38.5 87.4 19.5 71.7 26.3

Table 5: Performance of our method with varying α regular-
ization parameter. Additional regularization has a negligible
effect while avoiding potential trivial clustering.

Additional Regularization. In addition to the primary
and the auxiliary information objective terms, we propose
another regularization term, the squared average node simi-
larity, α( 1

n2

∑
ij〈XiXj〉)2 = α‖X̄‖42, where X̄ is the mean

of the node embedding vectors and α is a tunable parame-
ter. This regularizer can be used to avoid the formation of a
trivial clustering where all the nodes form a single cluster.
Table 5 shows that adding this regularizer have a negligible
effect on our main objectives while avoiding potential trivial
clustering.

��� ��� ��� ��� ��� ��� ��� ��� ���

��

��

��

��

��

�
&R
P
P
XQ
LWL
HV

&RUD
&LWH6HHU

3XE0HG
$PD]RQ�3&

$PD]RQ�3KRWR
&RDXWKRU�&6

&RDXWKRU�3+<

��� ��� ��� ��� ��� ���
͏

���

���

���

���

���

���

Figure 2: The number of communities varying λ hyperpa-
rameter for different datasets. We observe that the number
of communities found is similar across different λ values
except in some cases.

Number of Communities
Our method does not assume the number of communities in
the data, which is one of its main strengths. The number of
communities in real-world data is generally unknown, and it
is nontrivial to estimate it. To share some insight, we provide
the number of communities our method finds across differ-
ent datasets and λ values. Figure 2 demonstrates the number
of communities varies for different datasets, and the results
are consistent across different λ values.

Conclusion
In this paper, we have studied the problem of graph clus-
tering via maximizing modularity. The existing techniques
often require the number of clusters beforehand or they fail
to capitalize on the potential benefits of associated node at-
tributes and availability of supplementary information. To
address these, we have introduced DGCLUSTER, a novel
neural framework that works well without a predefined num-
ber of clusters. Moreover, our framework uses graph neural
networks (GNNs) to leverage the node attributes and addi-
tional information present within the graph. The computa-
tional complexity of DGCLUSTER scales linearly with the
graph size. Through extensive experimentation across seven
real-world datasets of varying sizes and employing multiple
distinct cluster quality evaluation metrics, we have show-
cased the superior performance of DGCLUSTER: it consis-
tently has outperformed state-of-the-art approaches across
most of the settings.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11075



Acknowledgments
This material is based upon work partially supported by the
National Science Foundation under grant no. 2229876 and in
part by funds provided by the National Science Foundation,
Department of Homeland Security, and IBM.

References
Bhatia, V.; and Rani, R. 2018. Dfuzzy: a deep learning-based
fuzzy clustering model for large graphs. Knowledge and
Information Systems, 57: 159–181.
Bianchi, F. M.; Grattarola, D.; and Alippi, C. 2020. Spectral
clustering with graph neural networks for graph pooling. In
International Conference on Machine Learning, 874–883.
PMLR.
Blondel, V. D.; Guillaume, J.-L.; Lambiotte, R.; and Lefeb-
vre, E. 2008. Fast unfolding of communities in large net-
works. Journal of statistical mechanics: theory and experi-
ment, 2008(10): P10008.
Bo, D.; Wang, X.; Shi, C.; Zhu, M.; Lu, E.; and Cui, P. 2020.
Structural deep clustering network. In Proceedings of the
web conference 2020, 1400–1410.
Brandes, U.; Delling, D.; Gaertler, M.; Görke, R.; Hoefer,
M.; Nikoloski, Z.; and Wagner, D. 2006. Maximizing mod-
ularity is hard. arXiv preprint physics/0608255.
Choong, J. J.; Liu, X.; and Murata, T. 2018. Learning com-
munity structure with variational autoencoder. In 2018 IEEE
international conference on data mining (ICDM), 69–78.
IEEE.
Felzenszwalb, P. F.; and Huttenlocher, D. P. 2004. Efficient
graph-based image segmentation. International journal of
computer vision, 59: 167–181.
Fortunato, S.; and Hric, D. 2016. Community detection in
networks: A user guide. Physics reports, 659: 1–44.
Frey, B. J.; and Dueck, D. 2007. Clustering by passing mes-
sages between data points. science, 315(5814): 972–976.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. Advances in neural
information processing systems, 30.
Hartigan, J. A.; and Wong, M. A. 1979. Algorithm AS 136:
A k-means clustering algorithm. Journal of the royal statis-
tical society. series c (applied statistics), 28(1): 100–108.
Kipf, T. N.; and Welling, M. 2016. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907.
Klambauer, G.; Unterthiner, T.; Mayr, A.; and Hochreiter, S.
2017. Self-normalizing neural networks. Advances in neural
information processing systems, 30.
Kulatilleke, G. K.; Portmann, M.; and Chandra, S. S. 2022.
SCGC: Self-supervised contrastive graph clustering. arXiv
preprint arXiv:2204.12656.
Liu, Y.; Yang, X.; Zhou, S.; Liu, X.; Wang, S.; Liang, K.;
Tu, W.; and Li, L. 2023. Simple contrastive graph cluster-
ing. IEEE Transactions on Neural Networks and Learning
Systems.

Mandaglio, D.; Amelio, A.; and Tagarelli, A. 2018. Con-
sensus community detection in multilayer networks using
parameter-free graph pruning. In Advances in Knowledge
Discovery and Data Mining: 22nd Pacific-Asia Conference,
PAKDD 2018, Melbourne, VIC, Australia, June 3-6, 2018,
Proceedings, Part III 22, 193–205. Springer.
Moradi, P.; Ahmadian, S.; and Akhlaghian, F. 2015. An ef-
fective trust-based recommendation method using a novel
graph clustering algorithm. Physica A: Statistical mechan-
ics and its applications, 436: 462–481.
Newman, M. E. 2006a. Finding community structure in net-
works using the eigenvectors of matrices. Physical review
E, 74(3): 036104.
Newman, M. E. 2006b. Modularity and community struc-
ture in networks. Proceedings of the national academy of
sciences, 103(23): 8577–8582.
Newman, M. E.; and Girvan, M. 2003. Mixing patterns and
community structure in networks. In Statistical mechanics
of complex networks, 66–87. Springer.
Park, J.; Lee, M.; Chang, H. J.; Lee, K.; and Choi, J. Y.
2019. Symmetric graph convolutional autoencoder for un-
supervised graph representation learning. In Proceedings of
the IEEE/CVF international conference on computer vision,
6519–6528.
Peixoto, T. P. 2014. Efficient Monte Carlo and greedy
heuristic for the inference of stochastic block models. Phys-
ical Review E, 89(1): 012804.
Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk:
Online learning of social representations. In Proceedings of
the 20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, 701–710.
Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuchner, M.; and
Monfardini, G. 2008. The graph neural network model.
IEEE transactions on neural networks, 20(1): 61–80.
Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.;
and Eliassi-Rad, T. 2008. Collective classification in net-
work data. AI magazine, 29(3): 93–93.
Shchur, O.; and Günnemann, S. 2019. Overlapping commu-
nity detection with graph neural networks. arXiv preprint
arXiv:1909.12201.
Shchur, O.; Mumme, M.; Bojchevski, A.; and Günnemann,
S. 2018. Pitfalls of graph neural network evaluation. arXiv
preprint arXiv:1811.05868.
Shi, J.; and Malik, J. 2000. Normalized cuts and image seg-
mentation. IEEE Transactions on pattern analysis and ma-
chine intelligence, 22(8): 888–905.
Sun, J.; Zheng, W.; Zhang, Q.; and Xu, Z. 2021. Graph neu-
ral network encoding for community detection in attribute
networks. IEEE Transactions on Cybernetics, 52(8): 7791–
7804.
Tsitsulin, A.; Palowitch, J.; Perozzi, B.; and Müller, E. 2023.
Graph clustering with graph neural networks. Journal of
Machine Learning Research, 24(127): 1–21.
Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; Bengio, Y.; et al. 2017. Graph attention networks. stat,
1050(20): 10–48550.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11076



Veličković, P.; Fedus, W.; Hamilton, W. L.; Liò, P.; Bengio,
Y.; and Hjelm, R. D. 2018. Deep graph infomax. arXiv
preprint arXiv:1809.10341.
Wang, C.; Pan, S.; Hu, R.; Long, G.; Jiang, J.; and Zhang,
C. 2019. Attributed graph clustering: A deep attentional em-
bedding approach. arXiv preprint arXiv:1906.06532.
Wang, C.; Pan, S.; Long, G.; Zhu, X.; and Jiang, J. 2017.
Mgae: Marginalized graph autoencoder for graph clustering.
In Proceedings of the 2017 ACM on Conference on Informa-
tion and Knowledge Management, 889–898.
Wang, J.; Li, M.; Chen, J.; and Pan, Y. 2010. A fast hierar-
chical clustering algorithm for functional modules discovery
in protein interaction networks. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 8(3): 607–620.
Wu, L.; Zhang, Q.; Chen, C.-H.; Guo, K.; and Wang, D.
2020. Deep learning techniques for community detection
in social networks. IEEE Access, 8: 96016–96026.
Xia, W.; Wang, Q.; Gao, Q.; Zhang, X.; and Gao, X. 2021.
Self-supervised graph convolutional network for multi-view
clustering. IEEE Transactions on Multimedia, 24: 3182–
3192.
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2018.
How powerful are graph neural networks? arXiv preprint
arXiv:1810.00826.
Yang, J.; and Leskovec, J. 2012. Defining and evaluating
network communities based on ground-truth. In Proceed-
ings of the ACM SIGKDD Workshop on Mining Data Se-
mantics, 1–8.
Yang, L.; Cao, X.; He, D.; Wang, C.; Wang, X.; and Zhang,
W. 2016. Modularity based community detection with deep
learning. In IJCAI, volume 16, 2252–2258.
Ying, R.; He, R.; Chen, K.; Eksombatchai, P.; Hamilton,
W. L.; and Leskovec, J. 2018a. Graph convolutional neural
networks for web-scale recommender systems. In Proceed-
ings of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining, 974–983.
Ying, Z.; You, J.; Morris, C.; Ren, X.; Hamilton, W.; and
Leskovec, J. 2018b. Hierarchical graph representation learn-
ing with differentiable pooling. Advances in neural informa-
tion processing systems, 31.
Yue, L.; Jun, X.; Sihang, Z.; Siwei, W.; Xifeng, G.; Xihong,
Y.; Ke, L.; Wenxuan, T.; Wang, L. X.; et al. 2022. A survey
of deep graph clustering: Taxonomy, challenge, and applica-
tion. arXiv preprint arXiv:2211.12875.
Zhang, M.; and Chen, Y. 2018. Link prediction based on
graph neural networks. Advances in neural information pro-
cessing systems, 31.
Zhang, T.; Ramakrishnan, R.; and Livny, M. 1996. BIRCH:
an efficient data clustering method for very large databases.
ACM sigmod record, 25(2): 103–114.
Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang,
L.; Li, C.; and Sun, M. 2020. Graph neural networks: A
review of methods and applications. AI open, 1: 57–81.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11077


