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ABSTRACT
Transfer learning (TL) has been demonstrated to improve DNN
model performance when faced with a scarcity of training samples.
However, the suitability of TL as a solution to reduce vulnerability
of over�tted DNNs to privacy attacks is unexplored. A class of
privacy attacks called membership inference attacks (MIAs) aim to
determine whether a given sample belongs to the training dataset
(member) or not (nonmember). We introduceDouble-Dip to investi-
gate the use of TL (Stage-1) combined with randomization (Stage-2)
to thwart MIAs on over�tted DNNs without degrading classi�ca-
tion accuracy. Our study examines roles of shared feature space
and parameter values between source and target models, number
of frozen layers, and complexity of pretrained models. Our prelimi-
nary evaluations of Double-Dip demonstrate that Stage-1 reduces
adversary success while also signi�cantly increasing classi�cation
accuracy of nonmembers against an adversary attempting to carry
out SOTA label-only MIAs. After Stage-2, success of an adversary
carrying out a label-only MIA is further reduced to near 50%, bring-
ing it closer to a random guess and showing the e�ectiveness of
Double-Dip. Stage-2 of Double-Dip also achieves lower ASR and
higher classi�cation accuracy than regularization and di�erential
privacy-based methods.
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1 INTRODUCTION
The ability of deep neural networks (DNNs) to classify previously
unseen inputs with high accuracy relies critically on being trained
on large datasets, and requires signi�cant training-time compu-
tational resources [2]. In the absence of an adequate number of
training samples, the DNN model can su�er from over�tting. Over-
�tted DNNs have been shown to ‘memorize’ patterns in the data
and classify samples belonging to the training dataset with high
accuracy, while performing poorly on other samples [16].

Over�tted DNNs have been shown to be vulnerable to privacy
attacks such as a membership inference attack (MIA) [16]. MIAs aim
to determine if a given sample of interest belongs to the training
dataset (member) of a DNN model or not (nonmember) [15]. MIAs
can result in disclosure of sensitive information (e.g., social-security
numbers), resulting in privacy threats. Techniques including dif-
ferential privacy [1], regularization [14], and distillation [18] have
been used as defenses against MIAs. However, these methods can
also lower classi�cation accuracy for over�tted DNNs [15], which
can a�ect model usability. Further, their e�ectiveness on a new
class of MIAs called label-based or label-only MIA [4, 11, 15] is
less understood. Finding solutions to mitigate impacts of label-only
MIAs while improving classi�cation accuracy for over�tted DNNs
remains an open problem.
Our Contribution: We propose Double-Dip, a systematic study
of using transfer learning (TL) to overcome over�tting in the lim-
ited data setting, thus resulting in thwarting of label-only MIAs.
While the usefulness of TL in the general limited data setting is well-
known, we show in this paper that TL will indeed be helpful even
in the case of over�tted DNNs. In Double-Dip Stage-1, we demon-
strate that TL [19] will help embed an otherwise low-dimensional
over�tted model into a high-dimensional target model that will be
less over�tted. In Stage-2, we employ randomization to construct a
region of constant output label centered at a given input sample
such that the DNN model returns the same output label for all data
points inside this region [5, 15]. Stage-2 will help further reduce
success rate of an adversary carrying out a label-only MIA, which
is the most powerful known MIA to date [4], without reducing clas-
si�cation accuracy (relative to Stage-1). Together, the two stages
will help reduce success of an adversary carrying out a label-only
MIA while also yielding a target model with high accuracy. Fig. 1
illustrates the mechanism of Double-Dip.
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Figure 1: Double-Dip Mechanism. Stage-1 uses transfer learning to embed features of a lower dimensional over�tted DNN into a target model that
overcomes over�tting. The target model is learned by ‘freezing’ weights in" layers of a public pretrained model, and using samples from the target dataset to
learn weights of the remaining  �" layers. Stage-2 employs randomization to generate multiple noisy variants of a given sample G . Each noisy variant is
provided to the trained target model from Stage-1 to obtain possible output class labels as probabilities. An averaging mechanism is used to ‘smooth’ these
output class labels to obtain the �nal output class label. Randomization will a�ect estimates of the distance of a data point to a decision boundary. As a result,
the �nal output label ~ will not reveal information about whether G was used to train the target model (member) or not (nonmember).

2 THREAT MODEL
Adversary Assumption and Goals: The adversary is assumed to
have adequate data samples and computational resources, and uses
a SOTA label-only MIA [4] to determine if a given input is contained
in the set used to train the model (member). The magnitude of noise
which enables an adversary to distinguish between members and
nonmembers is based on a heuristic that members are relatively
farther away from a decision boundary and are robust to small
noise perturbations compared to a nonmember [4, 15].
Adversary Actions: We consider two levels of access to the target
DNN: (i) white-box access, where the adversary has access to model
hyperparameters and output labels, and (ii) black-box access, where
the adversary has access only to model outputs. An adversary with
white-box access uses an adversarial learning method, e.g., basic
iterative method (BIM) [10], to estimate a threshold X on noise to be
added to a sample for it to be misclassi�ed by the DNN. An adver-
sary with black-box access uses a query-based SOTA adversarial
learning method (e.g., HopSkipJump [3]) to estimate X .

3 DOUBLE-DIP: A TWO-STAGE APPROACH
We describe the two-stage procedure of Double-Dip. Performance
of Double-Dip will be assessed in terms of adversary success rate
(ASR- closer to 50.0% is better) and classi�cation accuracy of non-
members (ACC- higher is better). Stage-1 uses transfer learning
(TL) [19] to embed a lower dimensional DNN into a high-dimensional
target model to overcome over�tting. Stage-2 employs randomiza-
tion based on noise perturbation of a given input to construct a
high-dimensional region of constant output label such that the
DNN returns the same label for samples in this sphere [5, 15].
Stage-1: When a user possesses only a limited number of samples
to train a DNN, the resulting model becomes over�tted, lowering
classi�cation accuracy for nonmembers while having high accuracy
for members. Our insight is that TL helps embed an otherwise low-
dimensional over�tted model into a high-dimensional model that
will no longer be over�tted. The success of Stage-1, however, will
depend on an interplay among several design choices, including the
type of pretrained model, source and target datasets, and number
of frozen layers of the pretrained model.

To examine roles of these design choices, we consider two target
datasets- CIFAR-10 [9] and GTSRB [8]- to learn a target model from
a pretrained model that has been trained on ImageNet [6] as source
dataset. These target datasets have di�erent levels of similarity in
their features with those of the source dataset.
Stage-2: The use of transfer learning in Stage-1 yields a target
model embedded in a higher dimensional space that is less over-
�tted, thus readily reducing success rate of an adversary carrying
out a MIA[15, 16]. Stage-2 employs a lightweight post-processing
module that seeks to further reduce ASR of label-only MIAs without
needing to retrain target models. A given sample G is perturbed by a
zero-mean Gaussian noise with variance f2. Stage-2 of Double-Dip
tunes the value of f to lower ASR while maintaining high accuracy.
We hypothesize that using Stages-1 & 2 together will result in a
lower ASR compared to using Stage-1 alone. We compare perfor-
mance of Double-Dip with SOTA training-phase defenses against
MIAs, including regularization [14] and distillation training [18].

4 DOUBLE-DIP: PRELIMINARY EVALUATIONS
We evaluate Double-Dip Stage-1 by examining e�ectiveness of TL
when the adversary carries out a label-only MIA to estimate a
threshold X that will result in a given sample being misclassi�ed by
the target model. We then evaluate Double-Dip Stage-2 to investi-
gate if ASR can be reduced further, without reducing accuracy. Our
preliminary results shown in Table 1 and Fig. 2 demonstrate that
Stages-1&-2 of Double-Dip e�ectively thwarts label-only MIAs.

5 CONCLUSION
This paper presented a work-in-progress in developing Double-
Dip, a systematic empirical study of the role of transfer learning
(TL) in thwarting label-only membership inference attacks (MIAs)
on over�tted deep neural networks (DNNs). Our preliminary ex-
periments have shown e�cacy of Stages-1&-2 of Double-Dip in
thwarting label-only MIAs. The complete study of Double-Dip’s
performance will include detailed examination on a complex face
recognition task using CelebA [13] to learn a target model, and the
e�ect of di�erent SOTA pretrained models trained on ImageNet-
e.g., VGG-19 [17], ResNet-18 [7], and Swin-T [12].
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Table 1: Stage-1 of Double-Dip, Pretrained VGG-19 Model: Adversary success rate (ASR, lower is better) and classi�cation accuracy (ACC, higher is
better) for CIFAR-10 and GTSRB datasets with training sets of sizes 500 and 1000. We compare (i) no transfer learning (NTL), (ii) regularization (L1, L2), and
(iii) transfer learning (TL). TL-X indicates that X layers of the pretrained model are frozen. We examine scenarios when an adversary carrying out an MIA has
(a) white-box model access (BIM), and (b) black-box model access (HSJ). The best ASR and ACC values for a given training set size across both datasets is in
bold; best ASR and ACC values in each cell are underlined. TL yields lowest ASR values while also ensuring signi�cantly higher accuracy.

500 1000
Dataset Setting %ASR(BIM) %ASR(HSJ) %ACC %ASR(BIM) %ASR(HSJ) %ACC

CIFAR-10

NTL 87.5 87.5 24.6 88.7 88.5 27.7
L1(0.001) 90.1 88.9 23.6 86.5 85.8 28.0
L2(0.1) 89.7 88.9 23.0 83.8 84.9 30.3
TL-0 60.1 60.6 79.2 59.9 61.5 80.9
TL-20 59.9 60.3 78.6 59.4 61.5 80.0
TL-35 62.9 63.5 72.2 63.7 63.9 76.1

GTSRB

NTL 76.0 76.7 40.8 76.7 74.8 54.3
L1 (0.001) 82.0 81.5 37.2 69.7 69.5 61.9
L2 (0.1) 76.2 76.2 43.8 67.8 67.3 62.9
TL-0 63.0 63.0 73.2 58.7 57.0 85.9
TL-20 63.0 63.0 73.6 61.3 62.0 81.5
TL-35 70.0 70.0 59.0 67.3 68.8 64.4

Figure 2: Stages-1&2 of Double-Dip vs. SOTA: ASR (lower is better) and
ACC (higher is better) for 500 training samples fromGTSRBwith a pretrained
VGG-19 model when using (i) no transfer learning (NTL), (ii) regularization
(L1/ L2), (iii) Double-Dip Stage-1, (iv) Double-Dip Stage-1 + di�. privacy
(Stage-1+DP), (v) Double-Dip Stage-1 + regularization (Stage-1+L1/ L2),
and (vi) Stages-1&2 of Double-Dip. Stages-1&2 of Double-Dip achieves low
ASR values while simultaneously ensuring high ACC. While Stage-1+DP
achieves lowest ASR, it comes with a signi�cant drop in accuracy.
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