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Abstract

We present a sample- and time-efficient differentially private algorithm for ordinary least squares,
with error that depends linearly on the dimension and is independent of the condition number of
X!X , where X is the design matrix. All prior private algorithms for this task require either d3/2

examples, error growing polynomially with the condition number, or exponential time. Our near-
optimal accuracy guarantee holds for any dataset with bounded statistical leverage and bounded
residuals. Technically, we build on the approach of Brown et al. (2023) for private mean estimation,
adding scaled noise to a carefully designed stable nonprivate estimator of the empirical regression
vector.

1. Introduction

We present a sample- and time-efficient differentially private algorithm for ordinary least squares

(OLS) regression. Central throughout the theory and practice of data science, OLS is used in numer-

ous domains, ranging from causal inference, to control theory, to (of course) supervised learning.

Given covariates X ∈ Rn×d and responses y ∈ Rn, the OLS estimator is defined as

βols =
(
X"X

)−1
X"y .

Among the many reasons for the popularity of OLS is the fact that it is a statistically and computa-

tionally efficient way of solving linear regression. Speaking informally, OLS has low excess error

whenever the number of samples n is as large as the problem dimension d. Crucially, its statistical

performance does not depend on the condition number κ(X"X), the ratio between the maximum

and minimum eigenvalues. Furthermore, it can be computed in closed-form using only basic linear-

algebraic operations, with no need for the subtle hyperparameter tuning often inherent in first-order

methods.
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Given its widespread use in the analysis of personal data, there is a long line of work giving

differentially private algorithms to approximate OLS. However, designing practical and efficient

algorithms for this problem has been a particularly challenging endeavor; so far there are no clear

answers even in the d = 1 case when x and y are both scalars (Alabi et al., 2022). Existing al-

gorithms for DP regression suffer from one of three limitations: they either have poor dimension

dependence in their sample complexity, place unnaturally restrictive assumptions on the geometry

of the data, or run in exponential time.

In terms of private algorithm design, one natural and well-established approach is sufficient

statistics perturbation, which privately produces separate estimates of X"X and X"y and then

combines them to produce a single parameter estimate. Such approaches are often efficient and

some versions come with formal accuracy guarantees. An exemplar in this line is the AdaSSP al-

gorithm of Wang (2018). The central drawback in all these algorithms, however, is the sample

complexity as d grows: privately producing an accurate estimate of X"X requires roughly d3/2

samples (Dwork et al., 2014). Furthermore, many approaches within this class add noise propor-

tional to the worst-case sensitivity of X"X and X"y (see, e.g., Sheffet, 2017). To deal with the

fact that this sensitivity is unbounded in the case of real-valued data, these results assume uniform

norm bounds on the covariates x and responses y (e.g., ‖x‖ ≤ By, |y| ≤ By). While conceptu-

ally simple, they fail to capture the intrinsic complexity of the problem and do not satisfy natural

properties like scale invariance.

Another approach comes via private optimization, searching for a parameter estimate that ap-

proximately minimizes the sum of squared errors. Despite a wealth private convex optimization

methods that can be applied directly to linear regression, off-the-shelf approaches again require

d3/2 samples for accurate estimates. A notable exception is the recent work from Varshney et al.

(2022), whose algorithm based on private gradient descent succeeds with only roughly d samples.

However, its error grows with the square of the condition number, a high price to pay for many

problems. A polynomial dependence on κ(X"X) is inherent in private first-order optimization

for linear regression, as the smoothness of the optimization task is directly linked to the condition

number.

The only known approach that avoids these two issues is the exponential-time algorithm of

Liu et al. (2022), which comes from the framework they call high-dimensional propose-test-release

(HPTR), after the propose-test-release (PTR) framework of Dwork and Lei (2009).

We see the mirror of this story in private mean estimation, where Kuditipudi et al. (2023) and

Brown et al. (2023) recently gave the first sample- and time-efficient private algorithms with error

guarantees that adapt to the covariance of the data. All prior private algorithms achieving this

guarantee require d3/2 examples, error growing polynomially with the condition number of the

covariance, or exponential time.

In this work, we build on the work of Brown et al. (2023) and present the first computationally

efficient (in fact, practically implementable) differentially private estimator for linear regression

with sample complexity independent of κ(X"X) and the optimal linear dependence on the dimen-

sion d. Furthermore, we make no use of norm bounds. We establish its utility under the “textbook”

conditions one would typically require to run OLS in the non-private setting. More specifically,

the algorithm is accurate as long no observation has high statistical leverage or a large residual,

formalized in Definition 2.
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(a) Large residual (b) High leverage

Figure 1: As famously illustrated by Anscombe (1973), a point may be influential because of its

large residual (a) or its large leverage (b). Definition 6 controls both quantities.

1.1. Our Results

In this work, we introduce a new algorithm, ISSP, for differentially private linear regression. At a

high level, ISSP works in two main phases. In the first, we search for a reweighting of the dataset

such that running OLS on this reweighted version is roughly stable. Having successfully found

this set of weights, we simply compute the OLS solution on this weighted version of the data and

add appropriately shaped Gaussian noise to the solution. While the approach is conceptually very

simple, establishing its correctness requires several significant technical advances.

Our estimator satisfies differential privacy (DP), the gold standard for privacy protection in

statistical data analysis. DP requires that an algorithm provides approximately the same output on

any datasets that differ in only one entry.

Definition 1 (Dwork et al. (2006)) Let X and Y be sets. An algorithm A : X n → Y is (ε, δ)-
differentially private if for every x = (x1, . . . , xn) ∈ X n and x′ = (x′1, . . . , x

′
n) ∈ X n such that

x, x′ agree on all but one coordinate and for all Y ⊆ Y ,

P
[
A(x) ∈ Y

]
≤ eε P

[
A(x′) ∈ Y

]
+ δ .

One of the core advances we make, in light of most previous results on DP regression, is that

we do not require any norm bounds on the data. We only assume the types of conditions a circum-

spect statistician would always verify to ensure that OLS is a sensible procedure. In particular, we

establish the utility of our estimator whenever the dataset is free of outliers, or “good.”

Definition 2 ((L,R)-goodness) Fix parameters L,R > 0. A dataset (X, y) ∈ Rn×d×Rn is called

(L,R)-good if X"X is invertible and the following conditions hold for all i ∈ [n].

(1) Bounded leverage: x"i (X
"X)−1xi ≤ L.

(2) Bounded residuals:
∣∣〈xi,βols〉 − yi

∣∣ ≤ R.

Note that both of these conditions hold in various natural, well-studied settings. For instance,

when x, y are both subgaussian and drawn from a well-specified linear model with true param-

eter β∗, these conditions hold with high probability when L ≈ d/n and R ≈ σ where σ2 =
E[(y − 〈β∗, x〉)2] (see Theorem 5). This idea, of outliers being observations with high leverage

3
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or large residuals, is quite classical and found across standard texts. For instance, a standard

rule-of-thumb identifies high-leverage points as those with leverage greater than 2d/n or 3d/n
(Hoaglin and Welsch, 1978; Velleman and Welsch, 1981; Mendenhall et al., 2003). The precise

forms of stability we need to ensure privacy, however, are far from classical. They require a carefully

designed algorithm, which we elaborate in Section 1.3. Such a stable estimator, in turn, implies that

we can achieve differential privacy with small amounts of noise.

In these well-behaved instances, our mechanism takes a most straightforward form: it returns

the OLS solution plus a small amount of Gaussian noise.

Claim 3 If (X, y) is (L,R)-good for parameters R > 0 and L ≤ c′ε2 log−2(1/δ), for some

constant c′, then ISSP(X, y; ε, δ, L,R) releases a sample drawn from N
(
βols, c2(X"X)−1

)
, where

c2 = Θ
(
LR2 log(1/δ)/ε2

)
.

Attentive readers will detect a modest sleight-of-hand: (L,R)-goodness is a property of the data and

a priori unknown, yet the algorithm gets L and R as inputs! Nevertheless, an analyst with beliefs

about the data generation process can set these parameters appropriately. The maximum leverage

score does not depend on the scale of the data, only its concentration properties. Since it lies within

[0, 1], one might pick the L hyperparameter adaptively by calling ISSP a handful of times. Similarly,

if the analyst believes the labels are generated by a process such as yi ← 〈xi,β∗〉+N (0,σ2), they

can privately produce an accurate estimate σ using standard tools (see Appendix D). We believe

alternative standardized or studentized definitions could remove this need for prior knowledge about

σ. These alternatives would likely increase the complexity of our proofs.

The difficulty in our work lies in proving that ISSP is differentially private (Theorem 5); rea-

soning about utility is simple once we have Claim 3. More specifically, seeing how the output

distribution on good data matches standard statistical practice (and classical CLT-like analyses

of OLS), we can quickly derive error bounds. For instance, in the simplest case of fixed design,

where we consider only the randomness of the labels generated from a well-specified linear model

yi = 〈xi,β∗〉 + N (0,σ2), we have βols ∼ N (β∗,σ2 · (X"X)−1). Hence, from Claim 3, we see

that, relative to the empirical OLS solution, the private estimator is just a slightly noisier version of

the true parameter (and has the same kind of error covariance).

More formally, we can analyze the mean squared error (MSE) of our algorithm on any good

dataset.

Corollary 4 Fix (X, y), ε > 0, and δ ∈ [0, 1]. If (X, y) is (L,R)-good for L ≤ c′ε2 log−2(1/δ)
for some constant c′ and R > 0, then ISSP(X, y; ε, δ, L,R), releases β̃ such that, for some absolute

constant c′,

E

[
1

n

∥∥y −Xβ̃
∥∥2
]

=
1

n

∥∥y −Xβols
∥∥2 + c′LR2 d

n

log 1/δ

ε2
.

Proof By Claim 3, we have βols − β̃ = c · (X"X)−1/2u for u ∼ N (0, I). We then expand:

Eu

∥∥y −Xβ̃
∥∥2 = Eu

∥∥y −Xβols +X(βols − β̃)
∥∥2

= Eu

∥∥y −Xβols +X · c(X"X)−1/2u
∥∥2

= ‖y −Xβols‖2 + c2 · Eu

[
u"(X"X)−1/2X"X(X"X)−1/2u

]
,

4



INSUFFICIENT STATISTICS PERTURBATION

where the cross terms drop out as u is independent and mean-zero. The matrices cancel and we are

left with E[u"u], which is exactly d.

We emphasize that this result holds without any assumption that the data arises from a specific

family of distributions. It assumes (X, y) is fixed and (L,R)-good to bound the difference from

the empirical OLS solution on (X,Y ). However, if we do add such distributional assumptions, it

is easy to show that our algorithm produces a private parameter estimate that closely approximates

the true regression parameter. We state this fact as part of the following theorem, our main result.

Theorem 5 (Main Theorem) Fix ε, η ∈ (0, 1), δ ∈ (0, ε/10], and n, d ∈ N. ISSP takes a dataset

(X, y) ∈ Rn×d × Rn, privacy parameters ε, δ, and outlier thresholds L0, R0.

(1) ISSP is (ε, δ)-differentially private.

(2) Let X ∈ Rn×d be drawn i.i.d. from a d-dimensional subgaussian distribution D with mean

0 and covariance Σ - 0. Let yi = β"xi + zi where the zi are drawn i.i.d. from a sub-

gaussian distribution with mean 0 and variance σ2 (see Definition 29 in Appendix B). 1 If

L0 = Θ̃(d/n), R0 = Θ̃(σ), and

n = Ω̃

(
d

α2
+

d
√

log 1/δ

αε
+

d(log 1/δ)2

ε2

)

,

with a large enough constant for some α > 0, then ISSP returns β̃ such that, with high

probability, ∥∥β̃ − β
∥∥
Σ
≤ σα.

Here, Θ̃ and Ω̃ hide logarithmic factors in 1/α, log(1/ε), and log(1/δ) as well as polynomial

factors of the subgaussian parameters.

(3) Algorithm 1 can be implemented to require one product of the form A"A for A ∈ Rn×d, one

product of the form AB for A ∈ Rn×d and B ∈ Rd×d, one inversion of a positive definite

matrix in Rd×d; and further computational overhead of Õ(nd/ε).

Informally, this running time corresponds to Õ(ndω−1+nd/ε), where ω < 2.38 is the matrix multi-

plication exponent. For modest privacy parameters, the running time of our algorithm is dominated

by the time needed to compute the nonprivate OLS solution itself.

This is the first computationally efficient algorithm whose sample complexity is linear in d
and has no dependence on the condition number κ(X"X). This almost matches the best known

sample complexity of an exponential-time algorithm from Liu et al. (2022); we have an additional

d(log(1/δ))2/ε2 term, but this term does not depend on the final accuracy α.

We now briefly sketch the steps of the proof and discuss the paper’s organization. We establish

Theorem 5’s subclaims in Lemmas 22, 25 and 26. As outlined above, the utility analysis is straight-

forward once we have Claim 3 in hand. The full analysis is presented in Section 5. It is easy to see

that Algorithm 1 runs in polynomial time. In Section 6, we analyze a careful implementation.

1. We state the utility guarantees of our estimator for the case where data is drawn from a well-specified linear model

to simplify the presentation and enable direct comparisons to previous work. However, as per Corollary 4, on good

data our algorithm is always close to the OLS solution. Hence, we can prove closeness to the population quantity

whenever the OLS solution concentrates.

5



BROWN HAYASE HOPKINS KONG LIU OH PERDOMO SMITH

Algorithm 1: InSufficient Statistics Perturbation (ISSP)

Input : dataset (X, y); privacy parameters ε, δ, outlier thresholds (L0, R0)

k ←
⌈
12 log 3/δ

ε

⌉
+ 8; c2 ← 56448 exp

(
432k2L0

)
L0R2

0 ·
log(12/δ)

ε2 ;

if L0 > 1/(96k) or L0 > 3ε/(56 log 12/δ) then

return FAIL;

end

SCORE1, w ← StableLeverageFiltering(X,L0, k); // Algorithm 5

SCORE2, v ← StableResidualFiltering(X, y,w,L0, R0, k); // Algorithm 3

if Mε/3,δ/3
PTR (max{SCORE1, SCORE2}) = FAIL then

return FAIL;

else

Sv ← X" diag(v)X;

β̂ ← (Sv)−1X" diag(v)y; // OLS weighted by v

return β̃ ∼ N
(
β̂, c2S−1

v

)
;

end

The bulk of the work comes in the privacy analysis. In Section 2, we analyze the greedy residual

thresholding algorithm, with the main result about that algorithm being Claim 11, the “intertwining”

property. Then, in Section 3, we establish our guarantees for StableResidualFiltering. The

main results about StableResidualFiltering are Claim 13, which says that the score is low-

sensitivity, and Claim 14, which says that the weights are stable. Section 4 pulls these together to

establish the privacy of ISSP.

Appendix A covers additional related work. Appendix B provides necessary preliminaries.

Appendix C contains proofs deferred from the main text. Appendix D, via standard tools, shows

how to privately estimatie R. Appendix E contains details on the lower bound of Cai et al. (2023).

1.2. Optimality

For modest values of the privacy parameters, the error of our algorithm is dominated by the empirical

error of OLS. Informally speaking, we obtain privacy “for free.”

Formally, our error guarantees are close to tight for random-design regression with subgaussian

covariates and subgaussian label noise. Suppressing constants and logarithmic factors other than

log 1/δ, Theorem 5 says that we can achieve ‖β̃ − β‖Σ ≤ σα with high probability with

n ≈ d

α2
+

d
√

log 1/δ

αε
+

d(log 1/δ)2

ε2
.

Known lower bounds imply this task requires

n !
d

α2
+

d

αε
+

log 1/δ

ε
. (1)

The first term corresponds to the classical analysis of OLS. The second term was established by

Cai et al. (2023) and holds even for parameter estimation in )2 norm; see Appendix E for a more

6



INSUFFICIENT STATISTICS PERTURBATION

detailed discussion. The third term, the minimal number of samples required to produce any esti-

mate, is from Karwa and Vadhan (2018) and holds even for one-dimensional mean estimation with

known variance. The exponential-time algorithm of Liu et al. (2022) nearly matches all three terms.

For constant ε and δ = 1/poly(n), our algorithm’s error guarantee in this setting is tight up to

logarithmic factors. An exciting topic for future work is determining the existence or impossibility

of efficient algorithms with error matching Eq. (1) up to constant factors.

1.3. Techniques

At a high level, our algorithm follows the blueprint for private mean estimation laid out by Brown et al.

(2021) and made computationally efficient by Kuditipudi et al. (2023) and Brown et al. (2023). Our

approach closely follows that of Brown et al. (2023), henceforth BHS. We now sketch our algo-

rithm, discuss how our analysis differs from that of BHS, and investigate how the notions we use

are, in a sense, “correct” for the task of private least squares.

Overview of ISSP Perhaps the most natural approach for private estimation of regression coef-

ficients is to perturb the ordinary least square estimator, βols. However, without restrictions on the

data, the sensitivity of βols is unbounded. Our key observation is that, on datasets with bounded

leverage and bounded residuals, the OLS solution is actually quite stable. If we could restrict

our inputs to only such outlier-free data sets, we might hope to release βols plus noise with shape

(X"X)−1.

While this would provide accuracy, it fails on privacy: we must accommodate worst-case data.

We use the PTR framework of Dwork and Lei (2009) to test if our input contains a large good

subset. We propose a greedy pruning algorithm which, in each iteration, removes the data point

with the largest residual and recomputes OLS on the remaining data. Similar approaches abound in

the literature on robust statistics, but we prove key new properties about how this algorithm behaves

across adjacent data sets and different outlier thresholds.

Adaptively selecting outlier thresholds Our algorithm takes as input target bounds L and R for

the leverage and residuals, respectively. This simplifies our analysis but is not strictly necessary.

The maximum leverage can only lie within the interval [0, 1], so one could imagine calling ISSP

repeatedly within this space (via a well-chosen grid or binary search) to find an appropriate setting,

perhaps via a small validation set. Independently, one could privately learn an appropriate value for

R directly through standard techniques; we give a complete description in Appendix D.

Proof techniques While our work builds on a long line of research connecting robust statistics

and differential privacy, it especially relies on the recent algorithmic approach of BHS, who gave

improved algorithms for private mean and covariance estimation. At a bird’s eye view, our recipe

for private linear regression follows the main ideas behind the mean estimator of BHS. However,

key parts of the implementation and analysis differ significantly in the more complicated linear

regression setting.

We start by discussing the ways in which our main proof strategy is similar to BHS. As men-

tioned previously, we introduce a notion of “good” outlier-free datasets for linear regression. We

repeatedly call a greedy algorithm to find a series of good weight vectors across a range of carefully

chosen outlier thresholds. We use these vectors to privately test that our input data is sufficiently

close to the good set and to finally produce a vector of weights over the input. Crucially, this weight-

7
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finding procedure is stable: if run on any adjacent dataset, it would produce a vector that is close in

)1 distance.

When adapting their analysis, however, we run into immediate issues. For both their definitions

of good set, BHS prove a number of strong properties that are false in the context of regression. For

mean and covariance estimation, the good sets are unique (i.e., for any dataset and outlier threshold,

there exists a unique largest good set), are directly found by the natural greedy algorithm, and enjoy

a form of monotonicity (e.g., introducing a new point to the dataset cannot alter the good set very

much). For the definition we use, there is no unique “largest good set” which introduces significantly

more complexity in the analysis. What’s more, adding a single point may significantly affect the

downstream choices made by the greedy algorithm which further complicate the relevant stability

calculations.

In more detail, a key step in the BHS analysis establishes the following “intertwining” property

in the context of mean and covariance estimation. Suppose we call the greedy algorithm on a dataset

D with outlier threshold B and find a largest good subset S ⊆ [n]. If we then call the same algorithm

on an adjacent dataset D′ with a slightly larger outlier threshold B′, the largest good subset T will

satisfy the property that S ⊆ T (ignoring the index that differs between D and D′).

We establish an analogous statement (Claim 11) about the output of our greedy residual thresh-

olding, Algorithm 2, even though we cannot prove the same uniqueness and monotonicity state-

ments. More specifically, we develop a novel regression-specific argument that uses the closed-

form expressions describing how the least squares solution changes when an observation is added

or removed. The exact arguments are formalized in Claim 7 and Claim 8, but we sketch the ideas

here.

For a dataset (X, y) and index i ∈ [n], let ŷi = x"i βols be the fitted value. We denote by ei the

i-th residual: ei
def
= ŷi − yi. Recall the hat matrix:

H
def
= X(X"X)−1X",

so called because it maps the true labels to their “hat” values: ŷ = Hy. The leverage scores (also

known as sensitivities or self-influences) form its diagonal entries, while its off-diagonal entries will

be called (by us) the cross-leverage scores:

hi = Hi,i = x"i (X
"X)−1xi and Hi,j = x"i (X

"X)−1xj .

Note that, by Cauchy–Schwarz, the cross-leverages are no larger in magnitude than the leverages.

What happens if we remove an observation, say, (xj , yj), from the dataset? This takes the

form of a rank-one update. Applying the Sherman-Morrison formula we can derive closed-form

expressions for the changes in the OLS solution as well as (for any i ∈ [n]) the leverage score and

residual of point i after removing j. Using the subscript “(−j)” to denote the quantity after removal,

we have

hi − hi(−j) = −
H2

i,j

1− hj

βols − βols(−j) =
(X"X)−1xj

1− hj
·
(
〈xj ,βols〉 − yj

)

ei − ei(−j) = Hi,j ·
ej

1− hj
.

8



INSUFFICIENT STATISTICS PERTURBATION

These well-known formulas have elementary derivations; the second and third correspond to the

DFBETA (“difference in β”) and DFFITS (“difference in fits”) regression diagnostics (see textbooks

such as Mendenhall et al., 2003; Belsley et al., 2005; Huber, 2011). All three seamlessly generalize

to the case where the points are weighted. We can reuse them to reason about what happens when

we add points to the dataset.

Beyond their use in our formal arguments, these formulas show how our goodness definition in

Definition 6 is essentially the “right” one to analyze stability. The leverage score and the magnitude

of the residual exactly determine the sensitivity of the least-squares solution to adding or removing

that data point. To see this in more detail, consider the effect of dropping a point from a typical

dataset:

∥∥(X"X)1/2(βols − βols(−j))
∥∥2 =

∥∥∥∥(X
"X)1/2 · (X

"X)−1xj
1− hj

· (yj − 〈xj,βols〉)
∥∥∥∥
2

=
hj · e2j

(1− hj)2
= ∆.

Arguing heuristically for now, if removing a point changes the OLS solution by ∆, to ensure privacy

one must ensure noise of magnitude at least ∆. It is impossible to do any better. Note that by work-

ing with (L,R)-good sets we can guarantee that the noise we add for privacy, N (0, c2(X"X)−1)

where c2 ≥ LR2 · log 1/δ
ε2 , has magnitude roughly ∆. This insight shows our accuracy guarantees

are sharp.

1.4. Notation

We use [n] to denote the set {1, . . . , n} and N = {1, 2, . . .}. For a vector v ∈ Rn its support is

supp(v) = {i ∈ [n] | vi /= 0}. If we have a set S ⊆ [n], then ΠS(v) ∈ Rn has (ΠS(v))i = vi
for i ∈ S and (ΠS(v))i = 0 otherwise. Also we define S = [n] \ S. We use ‖v‖ def

= ‖v‖2 and

‖v‖S
def
= ‖S1/2v‖. If M ∈ Rn×n is a matrix, then ‖M‖2 denotes its spectral norm.

2. Analysis of Greedy Residual Thresholding

Algorithm 2: ResidualThresholding

input : dataset X, y; outlier threshold R; starting weights w

while TRUE do

βw ← WeightedOLS(X, y,w);

i∗ ← argmaxi∈supp(w)

∣∣yi − x"i βw
∣∣ ;

if |yi∗ − x"i∗βw| > R then

wi∗ ← 0;

else

return w;

end

end

9
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In this section we establish the key properties of our greedy residual-thresholding algorithm.

This analysis contains the bulk of the technical novelty in our work. The main result is Claim 11, the

“intertwining” property that relates the outputs of ResidualThresholding on adjacent datasets.

Since we will be dealing extensively with weighted sets from now on, we expand the definition

of good sets in Definition 2 to vectors of weights.

Definition 6 ((L,R)-goodness, weighted) Fix a dataset (X, y) ∈ Rn×d × Rn and parameters

L,R > 0. A vector w ∈ [0, 1]n is (L,R)-good for (X, y) if, denoting W = diag(w), X"WX is

invertible and the following two conditions hold for all i ∈ supp(w).

(1) Bounded leverage: x"i (X
"WX)−1xi ≤ L.

(2) Bounded residuals:
∣∣〈xi,βw〉 − yi

∣∣ ≤ R, where βw = (X"WX)−1X"Wy.

Furthermore, we will say that w is (L,∞)-good for (X, y) if (1) holds, but not (2).

2.1. Stability and Goodness for Ordinary Least Squares

Our analyses rely on how goodness is affected when adding and or removing mass. As dis-

cussed in Section 1.3, closed-form expressions characterize the effects of removing a single point

(Mendenhall et al., 2003; Belsley et al., 2005; Huber, 2011). The following claim generalizes these

results to removing multiple weighted points, or adding weight to points already included in the

regression. In addition, it shows how these results interact with goodness. We defer the proof to

Appendix C.

Claim 7 (Changing Weight Within Support) Let w,w′ ∈ [0, 1]n satisfy supp(w′) ⊆ supp(w)
and ‖w − w′‖1L ≤ 1

2 . If w is (L,∞)-good for (X, y), then for all i ∈ supp(w),

x"i (X
" diag(w′)X)−1xi ≤ (1 + 2L‖w − w′‖1)L. (2)

If, in addition to the previous conditions, it also holds that w is (L,R)-good for (X, y), then

|x"i βw − x"i βw′ | ≤ 2‖w − w′‖1LR. (3)

In particular, since supp(w′) ⊆ supp(w), Equations (2) and (3) apply to all i ∈ supp(w′). Conse-

quently, w′ is (ηL, ηR)-good for (X, y), where η = 1 + 2L‖w − w′‖1.

We next present a claim about adding a point to existing good weights: either the expanded

weights are good or the new point has a large residual (in which case our greedy algorithm, presented

later, will identify it). We illustrate these cases in Fig. 2. Such a claim also holds when we add sets

of points.

Mathematically, this proof contains little innovation beyond Claim 7. However, it provides a

key conceptual bridge. We see that it connects directly to our greedy algorithm, which removes

large residuals.

Claim 8 (Adding Weight Outside Support) Let w′ ∈ [0, 1]n be an (L,R)-good vector for a

dataset (X, y) and let v ∈ [0, 1]n be a vector such that supp(w′)∩supp(v) = ∅. Define w = w′+v
and η = 1 + 8‖v‖1L. Assume the following two conditions hold:

10
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βOLS

R

(a) A good dataset.

βOLS

R′
"

(b) Add star with small residual.

βOLSR′

"

(c) Add star with large residual.

Figure 2: We illustrate our analysis of adding a new observation (star) to an (L,R)-good dataset

(a). In (b), the added star is close to the original regression line. The new largest residual

may be greater than R but is less than R′. In (c), we instead add a significant outlier.

Multiple points may have residuals larger than R′, but the largest belongs to the star. In

this case, residual thresholding discards the star and recovers the original dataset.

(1) The matrix X" diag(w)X is invertible and for all j ∈ supp(w),

x"j (X
" diag(w)X)−1xj ≤ 2L.

(2) The weights v satisfy ‖v‖1 · L ≤ 1
8

If maxi∈supp(w)

∣∣yi − x"i βw
∣∣ > ηR, then argmaxi∈supp(w)

∣∣yi − x"i βw
∣∣ ⊆ supp(v).

Proof We prove the contrapositive: if there exists j∗ ∈ argmaxi∈supp(w)|yi − x"i βw| with j∗ /∈
supp(v), then for all i ∈ supp(w), |yi − x"i βw| ≤ ηR.

Note that since supp(w) = supp(w′) ∪ supp(v) and supp(w′) ∩ supp(v) = ∅, j∗ /∈ supp(v)
implies j∗ ∈ supp(w′). We first produce a lower bound on the j∗ residual under w′. By the triangle

inequality,
∣∣e′j∗

∣∣ =
∣∣yj∗ − x"j∗βw′

∣∣ =
∣∣yj∗ − x"j∗βw + x"j∗β − x"j∗βw′

∣∣

≥
∣∣yj∗ − x"j∗βw

∣∣−
∣∣x"j∗β − x"j∗βw′

∣∣

=
∣∣ej∗

∣∣−
∣∣x"j∗βw − x"j∗βw′

∣∣.

Note that by assumption, w is (2L, |ej∗ |)-good for (X, y). Since supp(w′) ⊆ supp(w), and ‖w −
w′‖1 = ‖v‖1 ≤ 1

8L , we can apply Claim 7 to get that |x"j∗βw − x"j∗βw′ | ≤ 2‖w − w′‖1(2L)|ej∗ |.
Using this upper bound, we get that:

∣∣e′j∗
∣∣ ≥

∣∣ej∗
∣∣− 4

∥∥w − w′
∥∥
1
L
∣∣ej∗

∣∣

To complete the proof, we use the upper bound |e′j | ≤ R, which holds by the assumption that

j ∈ supp(w′) (and that w′ is (L,R)-good). Rearranging our previous inequality, we get that for all

i ∈ supp(w),

|yi − x"i βw| ≤ |ej∗ | ≤
|e′j∗ |

1− 4L‖w − w′‖1
≤
(
1 + 8L‖w − w′‖1

)
· R,

where we have used the inequality (1− z)−1 ≤ 1 + 2z, which holds for all z ∈ (0, 1/2].

11
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2.2. Guarantees for Leverage Filtering

ResidualThresholding receives as input a vector w, the “starting weights,” and iteratively zeros

out any weights corresponding to residual outliers, recomputing the weighted OLS solution as it

goes. These starting weights w will come from the StableLeverageFiltering subroutine of

BHS, which filters out high-leverage outliers. The exact algorithm we use differs superficially

from the version in BHS, who use it for covariance estimation and call it “Stable Covariance.”

Our application only needs its properties as a leverage-filtering procedure. We give a complete

description of our variant in Appendix B.2.

The filtering algorithm has “goodness” guarantees (when the score is modest, many points re-

ceive weight and no point with weight has high leverage), utility guarantees (on outlier-free data, all

points receive full weight), and stability guarantees on adjacent datasets (the score is low-sensitivity

and the weights are stable). We now give the formal statement.

Theorem 9 (Guarantees for StableLeverageFiltering, Brown et al. (2023)) There is a de-

terministic algorithm StableLeverageFiltering receiving as input a list of vectors X ∈ Rn×d,

a leverage threshold L, and a discretization parameter k ∈ Z and returning as output an integer

SCORE and a vector w ∈ [0, 1]n. Let W = diag(w). Assume kL ≤ 1. If SCORE < k the following

hold.

(1) ‖w‖1 ≥ n− k. As a consequence, |supp(w)| ≥ n− k.

(2) For all i ∈ supp(w), we have x"i (X
"WX)−1xi ≤ L.

On “outlier-free” data as defined below, the algorithm’s output is as follows.

(3) If x"i (X
"X)−1xi ≤ L/2e2 for all i ∈ [n] then SCORE = 0 and w = 1.

To present the stability guarantees, let X and X ′ be datasets that differ in one entry. For any values

of k and L, consider

SCORE, w ← StableLeverageFiltering(X,L, k)

SCORE′, w′ ← StableLeverageFiltering(X ′, L, k).

We have the following sensitivity bounds.

(4) |SCORE− SCORE′| ≤ 2.

(5) If SCORE, SCORE′ < k then ‖w − w′‖1 ≤ 2.

2.3. Properties of ResidualThresholding

The first claim we prove says that, when we run StableLeverageFiltering followed immedi-

ately by ResidualThresholding, the returned weights are good.

Claim 10 Let (X, y) be a dataset, k ∈ N be a discretization parameter, and L,R > 0 be outlier

thresholds. Assume kL ≤ 1/2. Consider the outputs of the following calls, where the latter uses the

output of the former:

SCORE, w ← StableLeverageFiltering(X,L, k) ,

u← ResidualThresholding(X, y,R,w).

If SCORE < k and ‖u‖1 ≥ n− k then u is (2L,R)-good for X, y.

12
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Proof By the guarantees of StableLeverageFiltering, Theorem 9, when SCORE < k the

weights w give us a bound of L on leverage. That is, for all i ∈ supp(w),

x"i (X
"WX)−1xi ≤ L.

Furthermore, since ResidualThresholding only alters w by setting some entries to 0, we have

that ‖u‖1 = ‖w‖1 − ‖w − u‖1. Using the assumption that ‖u‖1 ≥ n − k and the trivial bound

‖w‖ ≤ n, we get that ‖w − u‖1 ≤ k. Thus, setting U = diag(u), by the first part of †Claim 7, we

have for all i ∈ supp(u) that

x"i (X
"UX)−1xi ≤

(
1 + 2L‖w − u‖1

)
· L ≤ 2L,

where we used the assumption that Lk ≤ 1/2. Since ResidualThresholding only returns a

vector when the largest absolute residual is no greater than R, we are done.

Our next claim relates the runs of residual thresholding on adjacent datasets at nearby residual

thresholds. This is the main result about our thresholding procedure.

Claim 11 (Intertwining) Let (X, y) and (X ′, y′) be adjacent datasets that differ on index i∗. Let

k ∈ N be a discretization parameter. Let L,R, and R′ > 0 be any outlier thresholds such that

kL ≤ 1
96 and R′ ≥ exp(108kL)R. Consider the outputs of the following calls:

w, SCORE← StableLeverageFiltering(X,L, k)

w′, SCORE′ ← StableLeverageFiltering(X ′, L, k),

which we feed into:

u← ResidualThresholding(X, y,R,w)

u′ ← ResidualThresholding(X ′, y′, R′, w′).

Define I = supp(u)∩supp(w′)\{i∗}. If SCORE, SCORE′ < k and ‖u‖1 ≥ n−k then I ⊆ supp(u′).

As we will see in Section 3, where StableResidualFilteringuses ResidualThresholding

to obtain stable weights, many indices of the weights are easily accounted for. This includes i∗,

which can be handled as a special case, as well as supp(w) \ supp(w′) and supp(w′) \ supp(w)
whose stability is established by Theorem 9. Ignoring those cases for now, we wish to show that

any point that is not filtered under (X, y) will also not be filtered under (X ′, y′) provided that the

threshold used to filter (X ′, y′) is sufficiently large. We illustrate these cases in Fig. 3. Now we are

ready to state the proof of Claim 11.

Proof Our first goal will be to show that ΠI(w′) is sufficiently good. (Recall our notation: ΠI(w′) ∈
[0, 1]n takes the value w′

i for i ∈ I and 0 elsewhere.) First, we see that u is (2L,R)-good for (X, y)
by noting that SCORE < k, ‖u‖1 ≥ n − k, and kL ≤ 1/2 and applying Claim 10. Next, we show

that ΠI(w′) is close to u in )1 distance. In particular, by definition of ResidualThresholding, if

i ∈ supp(u) then ui = wi. Hence,

∥∥u−ΠI(w
′)
∥∥
1
=

n∑

i=1

∣∣ui −
(
ΠI(w

′)
)
i

∣∣

=
∑

i∈supp(u)

∣∣ui −
(
ΠI(w

′)
)
i

∣∣+
∑

i '∈supp(u)

∣∣ui −
(
ΠI(w

′)
)
i

∣∣

13
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supp(u′)supp(u)supp(w) supp(w′)

Figure 3: Graphical depiction of Claim 11’s “intertwining.” Here w represents the weights on

dataset (X, y) after leverage filtering and u the weights on (X, y) after residual filtering.

w′ and u′ represent the analogous weights on an adjacent dataset (X ′, y′). By Theo-

rem 9’s guarantees for leverage filtering, the yellow, vertically hatched regions represent

a small amount of weight. The blue, horizontally hatched regions represent identical out-

comes after residual filtering (either kept on both (X, y) and (X ′, y′) or discarded on

both). The claim’s main consequence is that only one index can fall in the magenta, solid

region, which receives weight under u and w′ but not u′. This is i∗, the index that differs

between (X, y) and (X ′, y′).

If i /∈ supp(u), then ui = 0 and hence (ΠI(w′))i = 0 since ΠI(w′) is by definition only nonzero

outside the support of u. Hence, the second term in the last equation is 0. Moving on, by definition

of the set I ,

∥∥u−ΠI(w
′)
∥∥
1
=

∑

i∈supp(u)

∣∣wi −
(
ΠI(w

′)
)
i

∣∣

=
∑

i∈supp(u)

∣∣wi −
(
Πsupp(w′)\{i∗}(w

′)
)
i

∣∣

≤
∣∣wi∗ −

(
Πsupp(w′)\{i∗}(w

′)
)
i∗

∣∣+
∑

i∈supp(u)

∣∣wi −
(
Πsupp(w′)(w

′)
)
i

∣∣

= |wi∗ − 0|+
∑

i∈supp(u)

|wi −w′
i|

≤ |wi∗ |+ ‖w − w′‖1
≤ 3 .

The the last inequality follows from the last part of Theorem 9.

Since I ⊆ supp(u), and L ≤ kL ≤ 1/12 by assumption, it holds that ‖u−ΠI(w′)‖1 ≤
3 ≤ 1/(2L), and we can apply Claim 7 to show that ΠI(w′) is (2η1L, η1R)-good for (X, y) where

η1 = 1 + 12L. Furthermore, ΠI(w′) is (2η1L, η1R)-good for (X ′, y′) because (ΠI(w′))i∗ = 0.

Now, we will show that during the execution of ResidualThresholding(X ′, y′, R′, w′) we

will never discard any i ∈ I . Let w′(j) denote the weights obtained in the jth iteration of the while-

14
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loop out of m total iterations, such that w′(0) = w′ and w′(m) = u′. We proceed to show the loop

invariant ΠI(w′(j)) = ΠI(w′) for j ∈ {0, . . . ,m}. Since w′ = w′(0), the invariant holds initially.

In each iteration, by the loop invariant we can decompose w′(j−1) as

w′(j−1) = ΠI(w
′(j−1)) +ΠI(w

′(j−1)) = ΠI(w
′) +ΠI(w

′(j−1)).

Now, we note that we have |supp(u)| ≥ ‖u‖1 ≥ n − k by assumption and since SCORE′ < k, we

also have |supp(w′)| ≥ n − k by Theorem 9. Therefore by inclusion-exclusion,
∣∣I
∣∣ ≤ 2k + 1 and

so
∥∥ΠI(w

′(j−1))
∥∥ ≤ 2k + 1. Now since 96kL ≤ 1 by assumption, we note that

2
∥∥ΠI(w

′(j−1))
∥∥η1L ≤ 2(2k + 1)η1L ≤ 2(2k + 1)(1 + 12L)L ≤ 12kL ≤ 1

8

and for η2 = 1 + 16(2k + 1)η1L,

η2η1R = (1 + 16(2k + 1)(1 + 12L)L)(1 + 12L)R

≤ (1 + 96kL)(1 + 12L)R

≤ exp(96kL) exp(12L)R

≤ exp(108kL)R

≤ R′.

Thus by the (2η1L, η1R)-goodness of ΠI(w′) and Claim 8, if max|yi − x"i βw′(j−1) | ≥ R′ then

argmax|yi−x"i βw′(j−1) | /∈ I and so ΠI(w′(j)) = ΠI(w′). Finally, it follows that ΠI(u′) = ΠI(w′).
Therefore, since I ⊆ supp(w′), we have I ⊆ supp(u′).

We now observe that our greedy residual thresholding subroutine only removes more points

when run with smaller thresholds. We now state this simple fact for future reference.

Observation 12 Fix a dataset (X, y) and starting weights w. For outlier thresholds R ≤ R′,

consider running

u← ResidualThresholding(X, y,R,w)

u′ ← ResidualThresholding(X, y,R′, w).

For all i ∈ [n], ui ≤ u′i.

3. Analysis of StableResidualFiltering

In this section, we prove the stability guarantees for Algorithm 3, our new regression estimator.

Algorithm 3 repeatedly calls Algorithm 2, ResidualThresholding, over a range of slowly in-

creasing outlier thresholds. These thresholds are indexed by a number j ∈ {0, 1, . . . , 2k}, where k
is a discretization parameter. (Later, we connect this discretization to the privacy parameters, setting

k ≈ log(1/δ)/ε.) The key lemma used in these proofs is Claim 11, which relates the weights found

on a dataset (X, y) at level j to the weights found on an adjacent dataset (X ′, y′) at level j + 1.

We start by showing that the SCORE value and the weight vector, v, returned by Algorithm 3 are

low-sensitivity.
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Algorithm 3: StableResidualFiltering

input : dataset X, y; base outlier thresholds L0, R0; weights w; discretization parameter k

∀j ∈ [2k], Rj ← (exp(108kL))j · R0;

for j ∈ {0, . . . , 2k} do

u(j) ← ResidualThresholding(X, y,Rj , w);

SCORE(j) ← min{k, n− ‖u(j)‖1 + j};

end

SCORE← minj∈{0,...,k} SCORE
(j);

v ← 1
k

∑2k
j=k+1 u

(j);

return SCORE, v

Claim 13 (Score is Low-Sensitivity) Let (X, y) and (X ′, y′) be adjacent datasets. Fix outlier

thresholds L,R and discretization parameter k. Assume kL ≤ 1
96 . Let

SCORE1, w ← StableLeverageFiltering(X,L, k)

SCORE′1, w
′ ← StableLeverageFiltering(X ′, L, k)

and

SCORE2, v ← StableResidualFiltering(X, y,w,L,R, k)

SCORE′2, v
′ ← StableResidualFiltering(X ′, y′, w′, L,R, k).

If SCORE1, SCORE′1 < k, then |SCORE2 − SCORE′2| ≤ 4.

Proof We observe that all SCORE variables are at most k by construction. Without loss of generality,

assume SCORE2 ≤ SCORE′2. First, we consider the case when SCORE2 = k. In this setting, since

SCORE′2 ≤ k we must have SCORE2 = SCORE′2, hence |SCORE2 − SCORE′2| = 0 and we are done.

Now, consider the case when SCORE2 < k. Then, by definition of the StableResidualFiltering

algorithm, there must exist a j∗ ∈ {0, . . . , k} such that n−‖u(j∗)‖1+j∗ = SCORE2, where u(j
∗) are

the weights returned by the ResidualThresholding subroutine (run within StableResidualFiltering)

at outlier threshold Rj∗ .

Let u = u(j
∗) and u′ = (u′)(j

∗+1) denote the weights returned by ResidualThresholding

on dataset and outlier thresholds (X, y), Rj∗ and (X ′, y′), Rj∗+1 respectively. Defining I as in

Claim 11, we note that

‖u′‖1 ≥
∥∥ΠI(u

′)
∥∥
1
=
∥∥u− (u−ΠI(u

′))
∥∥
1
≥ ‖u‖1 − ‖u−ΠI(u

′)‖1.

Now, seeking to bound the last term using Claim 11, we note that

(1) Rj∗+1/Rj∗ ≥ exp(108kL) by the definition in Algorithm 3,

(2) kL ≤ 1
96 by assumption

(3) Since, ‖u(j∗)‖1 = ‖u‖1 and SCORE2 = n− ‖u(j∗)‖1 + j∗ < k, it holds that

‖u‖1 > n− k + j∗ ≥ n− k.
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Therefore, we can apply Claim 11, which implies that ΠI(u′) = ΠI(w′). This gives

‖u−ΠI(u
′)‖ =

∥∥Πsupp(u)(w) −ΠI(w
′)
∥∥

=
∥∥Πsupp(u)(w) −Πsupp(u)\{i∗}(w

′)
∥∥

≤
∥∥Πsupp(u)(w − w′)

∥∥+ 1

≤ 3.

Finally, combining the previous results gives

SCORE′2 ≤ n−
∥∥∥(u′)(j

∗+1)
∥∥∥
1
+ (j∗ + 1)

≤ n− (‖u(j∗)‖1 − 3) + j∗ + 1

= (n− ‖u(j∗)‖1 + j∗) + 4

= SCORE2 + 4.

The first inequality in the calculation about holds by definition of StableResidualFiltering.

The second one uses our previous two calculations.

Claim 14 (Weights are Stable) Let (X, y) and (X ′, y′) be adjacent datasets. Fix outlier thresh-

olds L,R and discretization parameter k. Assume kL ≤ 1
96 . Let

SCORE1, w ← StableLeverageFiltering(X,L, k)

SCORE′1, w
′ ← StableLeverageFiltering(X ′, L, k)

and

SCORE2, v ← StableResidualFiltering(X, y,w,L,R, k)

SCORE′2, v
′ ← StableResidualFiltering(X ′, y′, w′, L,R, k).

If SCORE1, SCORE′1, SCORE2, SCORE
′
2 < k, then ‖v − v′‖1 ≤ 5.

Proof Consider the execution of ResidualThresholding resulting in a weight vector u. We ob-

serve that ResidualThresholding receives weight vector w as input and modifies it by setting a

subset of the weights to zero. Thus we can write the weight ui = wi · 1{ui /= 0}. This (rather triv-

ial) modification allows us to write the output of StableResidualFiltering in terms of counts:

letting ci =
∑2k

j=k+1 1{u
(j)
i /= 0}, we have

vi =
1

k

2k∑

j=k+1

u(j)i =
wi

k

2k∑

j=k+1

1{u(j)i /= 0} =
wici
k

.

Now note that by Observation 12, for j ∈ {k+1, . . . , 2k} we can have u(j−1)
i /= 0 only if u(j)i /= 0.

This implies that u(2k−ci)
i /= 0 and u(2k−ci−1)

i = 0.

Now, since SCORE2 < k, we know that there exists some j∗ ∈ {0, . . . , k} such that n −∥∥u(j∗)
∥∥
1
+ j∗ < k. Applying, Observation 12 again, we see that ‖u(j)‖1 ≥ ‖u(j

∗)‖1 > n − k
for all j ≥ j∗. From this, we can conclude that |{i | ci /= k}| < k.
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Now, define c′ analogously as the counts under (X ′, y′) and note that all of the previous obser-

vations apply under (X ′, y′) as well. Consider some i ∈ supp(w) ∩ supp(w′) \ {i∗} and suppose

without loss of generality that ci ≥ c′i. Our goal will be to show that c′i ≤ ci ≤ c′i + 1. If we have

ci = k, then ci = c′i, so we turn our attention to the case where ci < k. We know that u(2k−ci)
i /= 0.

Now, seeking to show that (u′i)
(2k−ci+1) /= 0 using Claim 11, we note that

(1) u(2k−ci)
i and (u′i)

(2k−ci+1) were computed using outlier thresholds R2k−ci and R2k−ci+1

which satisfy R2k−ci+1/R2k−ci ≥ exp(108kL) by the definition in Algorithm 3,

(2) we have kL ≤ 1
96 by assumption, and

(3) we have
∥∥u(2k−ci)

i

∥∥
1
> n− k as we observed previously.

Therefore we can apply Claim 11, which implies that (u′i)
(2k−ci+1) /= 0. Recalling our previous

observation, we obtain ci ≤ c′i + 1 as desired. In summary, if i ∈ supp(w) ∩ supp(w′) \ {i∗} then

we can write c′i = ci +∆i where |∆i| ≤ 1.

Now, define D = {i ∈ supp(w) ∩ supp(w′) \ {i∗} | ∆i /= 0} and note that |D| ≤ 2k since ci
and c′i both contain at most k elements not equal to k.

Now, we are ready to complete the proof by noting that we can decompose the quantity we wish

to bound into four terms

k‖v − v′‖1 =
∣∣ci∗wi∗ − c′i∗w

′
i∗
∣∣+

∑

i∈supp(w)
i '∈supp(w′)

i '=i∗

|ciwi|+
∑

i '∈supp(w)
i∈supp(w′)

i '=i∗

|c′iw′
i|+

∑

i∈supp(w)
i∈supp(w′)

i '=i∗

|ciwi − c′iw
′
i|

This is valid because |ciwi − c′iw
′
i| appears exactly once on the right for each i. Now we will

consider each term separately. The first term is at most k because ci, c′i are bounded by k and wi, w′
i

are bounded by 1. The summands of the second and third terms can be rewritten as ci|wi −w′
i| and

c′i|wi − w′
i| and are thus bounded by k|wi − w′

i| and k|wi − w′
i| respectively. Now focusing on the

last term, we have

∑

i∈supp(w)
i∈supp(w′)

i '=i∗

|ciwi − c′iw
′
i| ≤

∑

i∈supp(w)
i∈supp(w′)

i '=i∗

(
|ciwi − ciw

′
i|+ |∆iw

′
i|
)

≤
∑

i∈supp(w)
i∈supp(w′)

i '=i∗

|ciwi − ciw
′
i|+

∑

i∈supp(w)
i∈supp(w′)

i '=i∗

i∈D

|∆iw
′
i|

≤
∑

i∈supp(w)
i∈supp(w′)

i '=i∗

k|wi − w′
i|+ 2k.
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Combining the bounds for each term, we have

k‖v − v′‖1 ≤ 3k +
∑

i∈supp(w)
i '∈supp(w′)

i '=i∗

k|wi − w′
i|+

∑

i '∈supp(w)
i∈supp(w′)

i '=i∗

k|wi − w′
i|+

∑

i∈supp(w)
i∈supp(w′)

i '=i∗

k|wi − w′
i|

≤ 3k + k
∑

i

|wi −w′
i|

= 3k + k‖w −w′‖1
≤ 5k

where the last line is an application of Theorem 9.

The previous claim shows that the weights produced by StableResidualFiltering on ad-

jacent datasets are close in )1 (when SCORE is less than k). In the next claim, we prove that the

weights are good. Note that this does not follow immediately from Claim 10, which says that the

weights returned by ResidualThresholding are good. Since StableResidualFiltering re-

turns an average of the vectors returned by ResidualThresholding, we have to argue that the

average of good sets is good.

Claim 15 (Weights are Good) Fix a dataset (X, y), outlier thresholds L,R, and discretization

parameter k. Assume Lk ≤ 1
4 . Consider the following calls:

SCORE1, w ← StableLeverageFiltering(X,L, k)

SCORE2, v ← StableResidualFiltering(X, y,w,L,R, k).

Then the vector v is (4L, 2R2k)-good for (X, y), where R2k = exp(216k2L) · R.

Proof StableResidualFiltering calls ResidualThresholding repeatedly, producing a vector

u(j) for each residual threshold Rj . Recall from Observation 12 that for all i ≤ j, since Ri ≤
Rj (within StableResidualFiltering) we have that u(i) ≤ u(j) elementwise. This implies

that the support of u(2k) contains all other supports, including that of the average v. Additionally,

since SCORE2 < k (by construction within the algorithm), there exists some j∗ ∈ {0, . . . , k} with

‖u(j∗)‖1 ≥ n − k, so the same lower bound holds for all j ≥ k. Together, these facts imply that

‖u(2k) − u(j)‖1 ≤ k for all j ≥ k. Since the )1 norm is convex and v = Ej[u(j)], by Jensen’s

inequality we have ‖u(2k) − v‖1 ≤ k as well.

To finish the proof, we apply Claim 7: since supp(v) ⊆ supp
(
u(2k)

)
, ‖u(2k) − v‖1 ≤ k, and

u(2k) is (2L,R2k)-good, we conclude that v is (L′, R′)-good for

L′ ≤ (1 + 4Lk) · 2L ≤ 4L

R′ ≤ (1 + 4Lk) ·R2k ≤ 2R2k.

Recalling that R2k = (exp(108kL))2k · R0, we finish the proof.
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4. Privacy Analysis of Algorithm 1

Our privacy analysis follows the blueprint established by Brown et al. (2021); Kuditipudi et al.

(2023); Brown et al. (2023). We use the well-known propose-test-release (PTR) framework of

Dwork and Lei (2009) and first privately check (via our low-sensitivity SCORE) if it is safe to pro-

ceed. If this check passes, we compute a vector of weights v ∈ [0, 1]n. We use this vector to compute

a weighted covariance Sv and weighted least squares solution β̂v . The output is then drawn from

N (β̂v , c2S−1
v ) for some appropriate constant c.

On adjacent datasets, we may compute different weights v, v′. We know that, when the PTR

checks pass, these vectors are close in )1. The main work in this section, then, lies in connect-

ing this stability of weights to stability of parameters, which in turn implies N (β̂v , c2S−1
v ) ≈(ε,δ)

N (β̂v′ , c2S
−1
v′ ). Note that this is more complicated than the standard Gaussian mechanism, since

both the shape and location of the noise change.

Before proving Lemma 22, our main privacy claim, we collect the necessary statements. First,

we recall the privacy check of BHS, which (in place of the standard Laplace-noise-and-threshold)

simplifies our analysis.

Claim 16 (PTR Mechanism) Fix 0 < ε ≤ 1, 0 < δ ≤ ε
10 , and 0 < ∆. There is an algorithm

Mε,δ
PTR : R→ {PASS, FAIL} that satisfies the following conditions:

(1) Let U be a set and g : Un → R≥0 a function. If, for all x, x′ ∈ Un that differ in one entry,

|g(x) − g(x′)| ≤ ∆, then Mε,δ
PTR(g(·)) is (ε, δ)-DP.

(2) Mε,δ
PTR(0) = PASS.

(3) For all z ≥ ∆ log 1/δ
ε + 2∆, Mε,δ

PTR(z) = FAIL.

The next claim relates bounded leverage, )1 closeness, and covariance closeness. This state-

ment comes directly from BHS, Lemma 23; similar claims were used in Brown et al. (2021);

Kuditipudi et al. (2023). We use the notation dPD(S1, S2) to denote the maximum of
∥∥∥S−1/2

1 S2S
−1/2
1 − I

∥∥∥
tr

and
∥∥∥S−1/2

2 S1S
−1/2
2 − I

∥∥∥
tr

. Recall that dPD(S1, S2) = dPD(S
−1
1 , S−1

2 ) (Fact 27).

Claim 17 Let L ∈ (0, 1) and let X,X ′ ∈ Rn×d be adjacent (i.e., they differ in one out of n
rows). For vectors v,w ∈ [0, 1]n, let Sv = X" diag(v)X and Sw = (X ′)" diag(w)X ′. Sup-

pose v and w both have bounded leverage: for all i ∈ supp(v), x"i S
−1
v xi ≤ L and for all

j ∈ supp(w), x"j S
−1
w xj ≤ L. Then Sv and Sw are positive definite and, if (1 + ‖v − w‖1)L ≤ 1

2 ,

satisfy

dPD(Sv, Sw) ≤ 2
(
2 + ‖v −w‖1

)
L.

An analogous claim says that, if we have two vectors v and v′ that are (L,R)-good on adjacent

datasets and are close in )1, then the regression parameters they induce are close. We defer the

proof to Appendix C, as similar claims appear in the robust statistics literature (Klivans et al., 2018;

Bakshi and Prasad, 2021).

Claim 18 Let (X, y) and (X ′, y′) be datasets differing in one entry. Let vector v be (L,R)-
good for (X, y) and let vector w be (L,R)-good for (X ′, y′). Set V = diag(v) and likewise W .

Let Sv = X"V X, βv = (X"V X)−1X"V y, and βw = ((X ′)"WX ′)−1(X ′)"Wy′. Assume

(‖v − w‖1 + 2)L ≤ 1
4 . We have ‖S1/2

v (βv − βw)‖2 ≤ 4(‖v − w‖1 + 2)2LR2.
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We use the following relationship between the closeness of covariance matrices and the indistin-

guishability of their induced Gaussians (as in Brown et al., 2021; Alabi et al., 2023; Kuditipudi et al.,

2023; Brown et al., 2023).

Claim 19 Fix ε ∈ (0, 1) and δ ∈ (0, 1/10] and let S1, S2 ∈ Rd×d be positive definite matrices. If

dPD(S1, S2) ≤ ε
3 log 2/δ then N (0, S1) ≈(ε,δ) N (0, S2).

We also need two standard privacy facts: privacy of the Gaussian mechanism and the DP almost-

triangle inequality.

Fact 20 (Gaussian Mechanism) Fix ε, δ ∈ (0, 1) and let u, v be vectors. If ‖u − v‖2 ≤ ∆, then

for any c2 ≥ ∆2 · 2 log 2/δ
ε2 we have N (u, c2I) ≈(ε,δ) N (v, c2I).

Fact 21 (See Vadhan (2017)) Suppose for some ε and δ that distributions p1, p2, and p3 satisfy

p1 ≈(ε,δ) p2 and p2 ≈(ε,δ) p3. Then p1 ≈(2ε,(1+eε)δ) p3.

We are now ready to prove our main privacy claim.

Lemma 22 (Main privacy guarantee) For ε ∈ (0, 1), δ ∈ (0, ε/10], and L0, R0 > 0, Algorithm 1

is (ε, δ)-differentially private.

Proof Consider the execution of Algorithm 1 on two adjacent datasets (X, y) and (X ′, y′), yielding

SCORE1, SCORE2, v, β̂ and SCORE′1, SCORE
′
2, v

′, β̂′ respectively. Note that in order to not immediately

fail, we must have

L0 ≤ min

{
1

96k
,

3ε

56 log 12/δ

}

where k = 5(12 log 3/δ)/ε6 + 8.

Privacy of the test First, we will show that

∣∣max{SCORE1, SCORE2}−max{SCORE′1, SCORE′2}
∣∣ ≤ 4.

By Theorem 9, we have |SCORE1− SCORE′1| ≤ 2. Without loss of generality, assume that SCORE1 ≥
SCORE′1.

Considering the case where SCORE1 = k, we have max{SCORE1, SCORE2} = k and

max{SCORE′1, SCORE′2} ≥ SCORE′1 ≥ SCORE1 − 2 ≥ k − 2

so in this case, |max{SCORE1, SCORE2}−max{SCORE′1, SCORE′2}| ≤ 2.

Now if SCORE1 < k then SCORE′1 < k as well, so we can apply Claim 13 to get |SCORE2 −
SCORE′2| ≤ 4. Then by noting that max is 1-Lipschitz in the∞-norm, we have

∣∣max{SCORE1, SCORE2}−max{SCORE′1, SCORE′2}
∣∣

≤ max
{
|SCORE1 − SCORE′1|, |SCORE2 − SCORE′2|

}

≤ max{2, 4}
≤ 4.

Finally we see that Mε/3,δ/3
PTR (max{SCORE1, SCORE2}) is (ε/3, δ/3)-DP by Claim 16.
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Privacy of the parameter estimate Now we will proceed under the assumption that

Mε/3,δ/3
PTR (max{SCORE1, SCORE2}) = Mε/3,δ/3

PTR (max{SCORE′1, SCORE′2}) = PASS,

with the goal of showing that N (β̂, c2S−1
v ) ≈2ε/3,2δ/3 N (β̂′, c2S−1

v′ ). Since the PTR checks passed,

Claim 16 says that

SCORE1, SCORE2, SCORE
′
1, SCORE

′
2 < k

where k = 5(12 log 3/δ)/ε6+8, which matches the assignment in Algorithm 1. Now we can apply

Claim 14 to obtain ‖v − v′‖1 ≤ 5 and observe that v, v′ are both (4L0, 2 exp(216k2L0)R0)-good

by Claim 15. We will use the stability and goodness of the weights to establish the stability of both

β̂ and Sv.

Claim 18 requires 28L0 ≤ 7
24k ≤

1
4 , which is true by assumption. The claim implies that

‖S1/2
v (β̂ − β̂)‖2 ≤ ∆2 where ∆2 = 3136 exp(432k2L0)L0R2

0. Next, we see that transforming

β,β′ by (Sv)−1/2 allows us to apply Fact 20, giving

N (β̂, c2S−1
v ) ≈ε/3,δ/6 N (β̂′, c2S−1

v ).

as long as c2 ≥ ∆2 · 18 log 12/δ
ε2 , which is satisfied by construction in Algorithm 1.

Then, since 24L0 ≤ 1/(4k) ≤ 1/2 by assumption, Claim 17 tells us that dPD(Sv, Sv′) ≤ 56L0.

We apply Fact 27 and Claim 19 to obtain

N (β̂′, c2S−1
v ) ≈ε/3,δ/6 N (β̂′, c2S−1

v′ ),

since 56L0 ≤ 3ε/(log 12/δ), which we assumed to be true. Finally, we apply Fact 21 to combine

the two results, observing that eε < e < 3, to complete the proof.

5. Utility Analysis of Algorithm 1

Given the privacy guarantee of Lemma 22, we analyze the utility of Algorithm 1 under the standard

subgaussian linear model. The definition of subgaussian variables and necessary concentration

inequalities are provided in Appendix B.1. We first note that data from the standard subgaussian

linear model is good with high probability.

Lemma 23 (Subgaussian data is good) Let X ∈ Rn×d be drawn i.i.d. from a d-dimensional sub-

gaussian distribution D with mean 0, (full-rank) covariance Σ, and subgaussian parameter KD.

Let yi = β"xi + zi where the zi are drawn i.i.d. from a subgaussian distribution with mean 0,

variance σ2, and subgaussian parameter Kσ. There exists constants KL,KR,Kn > 0 such that for

any η ∈ (0, 1), if n ≥ KnK4
D(d+ log(3/η)) then (X, y) is (L,R)-good, where

L = KLK
2
D · d+ log(3n/η)

n
and R = KRKσσ

√
log(3n/η),

with probability at least 1− η.
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Proof [Proof Sketch] Identical calculations about leverage appeared in Brown et al. (2021); Kuditipudi et al.

(2023); Brown et al. (2023).

Recall that we can write the vector of residuals e = ŷ−y = (H−I)z, where H is the hat matrix

and z the noise vector. Denote by ri the i-th row of H − I. Then ei = r"i z, which (for any fixed H)

implies ei has subgaussian norm ‖ri‖Kσ. We know that ‖ri‖ ≤ 1, since I −H is idempotent and

symmetric: 1 ≥ (I−H)i,i = r"i ri. Thus all |ei| will be bounded with high probability.

As we noted in Claim 3, when the input data is good ISSP returns the OLS estimate plus noise.

We use a bound on the error of the OLS estimate from prior work.

Lemma 24 (OLS error under random design, restatement of Theorem 1, Hsu et al. (2011)) Un-

der the distributional assumption of Lemma 23, there exists an absolute constant KOLS such that,

for any δ ∈ (0, 1), if n > KOLSKD(d+ log(1/δ)), then with probability 1− δ, we have

∥∥β̂OLS − β
∥∥2
Σ
≤ KOLSK2

σσ
2(d+ log(1/δ))

n
.

Now, we are ready to prove the main accuracy lemma by bounding the norm of the added noise.

Lemma 25 (Main accuracy guarantee) Let X ∈ Rn×d be drawn i.i.d. from a d-dimensional

subgaussian distribution D with mean 0, (full-rank) covariance Σ, and subgaussian parameter

KD. Let yi = β"xi + zi where the zi are drawn i.i.d. from a subgaussian distribution with mean 0,

variance σ2, and subgaussian parameter Kσ. There exists constants KL,KR > 0 such that for any

η ∈ (0, 1), if

L0 = KLK
2
D · d+ log(3n/η)

n
, R0 = KRKσσ

√
log(3n/η),

and

n = Ω̃

(
K4

D

(
d+ log

(
1

εη

))
(log 1/δ)2

ε2

)
,

then with probability at least 1− η Algorithm 1 successfully returns β̃ such that

∥∥β̃ − β
∥∥
Σ
≤ O

(

Kσσ

√
d+ log(1/η)

n
+KDKσσ ·

(d+ log(n/η))
√

log(n/η) log(1/δ)

εn

)

,

where Ω̃ hides log factors in KD and log 1/δ.

Proof We begin by determining how many samples are needed to ensure that (i) the algorithm

does not fail immediately and (ii) the data is (L0, R0)-good (for the specified values) with high

probability.

In order to not fail, we require L0 = O(ε/ log(1/δ)). Meanwhile, in order to apply Claim 3, we

require L0 = O((ε/ log(1/δ)2)). It is clear that the second requirement implies the first. Thus, we

can expand our choice of L0 to get

L0 = KLK
2
D · d+ log(3n/η)

n
= O

(
ε2

(log 1/δ)2

)
.
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Using the fact that a/ log a = Ω(b) implies a = Ω(b log b), this translates to

n = Ω

(
K2

D(log 1/δ)
2

ε2

(
d+ log

(
K2

D(log 1/δ)
2

ε2η

)))
.

We note that this implies n = Ω
(
KD(d + log(1/δ))

)
as required by Lemma 24. Now, in order

to apply Lemma 23, we additionally require n = Ω
(
K4

D(d+ log(1/η))
)
. As in Lemma 23, this

requirement gives us
∥∥Σ−1/2Σ̂Σ−1/2−I

∥∥
2
≤ 1/2 by Claim 31, which we will use later. Combining

the two outstanding requirements and dropping lower order terms gives

n = Ω

(
K4

D

(
d+ log

(
K2

D(log 1/δ)
2

ε2η

))
(log 1/δ)2

ε2

)
.

This ensures that (X, y) is (L0, R0)-good with probability 1 − O(η). When this happens the

PTR check passes deterministically. Thus, we now turn to evaluating the accuracy of our regression

estimate. We apply the triangle inequality about βols:

‖β − β̃‖Σ ≤ ‖β − βols‖Σ + ‖βols − β̃‖Σ. (4)

We analyze these terms separately.

The first term in Eq. (4) is solely about the empirical quantity. By Lemma 24, with probability

at least 1−O(η) we have

‖βols − β‖Σ = O

(

Kσσ

√
d+ log(1/η)

n

)

.

To bound the second term in Eq. (4), we apply Claim 3, which states that on good data β̃
is drawn from N (βols, c2(X"X)−1) where c2 = Θ(L0R2

0 log(1/δ)/ε
2). Equivalently, we draw

z ∼ N (0, I) and set β̃ ← βols + c(X"X)−1/2z. Plugging this in, we have

‖βols − β̃‖Σ = ‖c(X"X)−1/2z‖Σ
= c · ‖Σ1/2(X"X)−1/2z‖2.

We plug in Σ̂ = 1
nX

"X the empirical covariance and apply Cauchy–Schwarz:

‖βols − β̃‖Σ ≤
c√
n
· ‖Σ1/2Σ̂−1/2‖2 · ‖z‖2.

By Claim 31 the matrix norm is at most a constant, and by Claim 30 we can bound ‖z‖22 = O(d+
log 1/η) with probability at least 1−O(η). Plugging these in, along with our expressions for c, L0,
and R0, we arrive at the expression in the lemma. Applying a union bound over the three failure

cases finishes the proof.
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6. Running-Time Analysis of Algorithm 1

In this section we prove the following guarantee about the running time of ISSP, whose computa-

tional requirements are quite lightweight. The core ideas in this proof appeared in the analogous

claim of BHS.

Lemma 26 (Running Time) Algorithm 1 can be implemented to require

(1) one product of the form A"A for A ∈ Rn×d,

(2) one product of the form AB for A ∈ Rn×d and B ∈ Rd×d,

(3) one inversion of a positive definite matrix in Rd×d; and

(4) further computational overhead of Õ(nd/ε).

Ignoring bit complexity, this corresponds to time Õ(ndω−1 + nd/ε), where ω < 2.38 is the ma-

trix multiplication exponent. For modest privacy parameters, the running time of our algorithm is

dominated by the time needed to compute the nonprivate OLS solution itself.

To establish this claim, we provide a second version of StableResidualFiltering, Algo-

rithm 4, which is more computationally efficient. We show that this alternative algorithm is func-

tionally equivalent.

Proof [Proof of Lemma 26] From BHS, Lemma 20 in Section 2.3, we see that we can implement

StableLeverageFiltering using one product A"A, one product AB, one matrix inversion, and

at most O(log(1/δ)/ε) additional operations, each of which requires Õ(nd) time. We need two

additional conclusions from their analysis: StableLeverageFiltering can be implemented to

return the inverse weighted covariance (X"WX)−1 in the same asymptotic running time and we

can update all leverage scores in time Õ(nd) when removing a single observation.

With the weights w and inverse covariance in hand, we call StableResidualFiltering. The

initial regression parameter can be computed in Õ(nd) time, as we compute the vector X"Wy
with a matrix-vector product (since W is diagonal) and multiply it with the inverse covariance.

Computing all residuals is linear-time.

Each outlier removal and associated set of updates can also be implemented in Õ(nd) time. This

is because the removal of a single point corresponds to a rank-one update, which can be done effi-

ciently. Recall from Section 1.3 the equation for updating the least squares solution after removing

a data point:

βols(−j) = βols +
(X"X)−1xj

1− hj
·
(
yj − 〈xj,βols〉

)
.

(A nearly identical formula applies when the data are weighted.) Since we have the previous lever-

age scores and inverse covariance, this update can be performed in time O(nd). As before, with the

new regression parameter all the residuals can be recalculated in linear time.

Setting these details aside, we turn to the crux of the analysis: StableResidualFiltering is

functionally equivalent to Algorithm 4, our efficient version.

Algorithm 4 iterates through the residual thresholds in decreasing order. This is identical to inde-

pendently calling the greedy algorithm repeatedly from scratch, since the removal process is deter-

ministic (we can break ties in a consistent manner, e.g., using the index of the points). Formally, for
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Algorithm 4: StableResidualFiltering, More Efficient Implementation

input : dataset X, y; base outlier thresholds L0, R0; weights w; discretization parameter k

∀j ∈ [2k], Rj ← (exp(108kL))j · R0;

COUNT← 0;

for j ∈ {2k, 2k − 1, . . . , 0} do

while TRUE do

// check for large residuals

βw ← WeightedOLS(X, y,w); /* via rank-one update */

i∗ ← argmaxi∈supp(w)

∣∣yi − x"i βw
∣∣ ;

if |yi∗ − x"i∗βw| ≤ Rj or COUNT ≥ k then

break; /* too many outliers or no large residuals */

end

wi∗ ← 0; /* otherwise, remove weight */

COUNT← COUNT+ 1;

end

if COUNT ≥ k then

// too many outliers

∀i ≤ j, SCORE(i) ← k;

∀i ≤ j, u(i) ← 0n;

break;

end

// store result and move to next threshold

u(j) ← w;

SCORE(j) ← min{k, n− ‖u(j)‖1 + j};

end

SCORE← minj∈{0,...,k} SCORE
(j);

v ← 1
k

∑2k
j=k+1 u

(j);

return SCORE, v
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any R > R′ and any fixed X, y,w, the result of ResidualThresholding(X, y,R′, w) is identical

to calling u← ResidualThresholding(X, y,R,w) and then ResidualThresholding(X, y,R′, u).
Algorithm 4 also tracks a count of observations it removes and halts if that number reaches k.

If it halts at level ), for all j ≤ ) it sets u(j) = 0n and SCORE(j) = k. To show that this has no effect

on the outcome of the algorithm, we suppose Algorithm 4’s count reaches k and analyze two cases.

Let ) ∈ {0, . . . , 2k} be the residual threshold index at which the count k was reached. We know

that u(%) returned by ResidualThresholding(X, y,R%, w) in Algorithm 3, the main version of

StableResidualFiltering, satisfies ‖u(%)‖1 ≤ n−k, since after any removal the weight is zero.

This also holds for all u(j) with j ≤ ).
Case 1: Suppose ) > k, i.e., ) falls among the indices used to compute the weights. Then

for all j ∈ {0, . . . , k}, the indices used to compute the scores, Algorithm 3 computes u(j) with

‖u(j)‖1 ≤ n− k. This means Algorithm 3 computes SCORE = k, as does Algorithm 4 (since it sets

SCOREj = k for all j ≤ k). (Recall that this causes ISSP to fail deterministically, so the weights do

not impact the output.)

Case 2: If ) ≤ k, then ) falls among the indices used to compute the score. (Thus, Algorithms 3

and 4 return the same weights.) Algorithm 4 sets SCORE(j) = k for all j ≤ ). We claim that

Algorithm 3 also computes SCORE(j) = k for all j ≤ ). To see this, recall that on these indices

Algorithm 3 computes u(j) with ‖u(j)‖1 ≤ n− k.

To finish the proof, we note that the final βv and S−1
v computed by ISSP can be computed with

at most k rank-one updates from their initial values. Since k = O(log(1/δ)/ε), we are done.
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Appendix A. Additional Related Work

Private Mean Estimation Many of the developments in private linear regression have analogs in

private mean estimation, albeit rearranged chronologically. Consider the canonical mean estimation

problem with “covariance-adaptive” error guarantees, which respect the shape of the dataset: the

error is measured in Mahalanobis norm with respect to the covariance matrix Σ of the data X,

‖Σ−1/2(µ̂−µ)‖. This scales each direction according to the directional variance, providing a more

relevant measure of utility. This is closely related to how linear regression error corresponds to the

Σ-norm, ‖β̂ − β‖Σ.
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For non-private mean estimation, the distinction between Euclidean and Mahalanobis norm

error are minor. For example, the empirical mean achieves such a geometry-aware guarantee and,

like the OLS estimator, is accurate with roughly d samples with no dependence on the condition

number of the covariance of the data.

For private estimation, geometry-aware estimation is significantly more challenging, since the

privately learning the geometry, i.e., the covariance matrix, is more sample expensive than the pri-

mary task of mean estimation. At the same time, it seemed like it was necessary to design the privacy

noise that matches the shape of the data covariance. The standard Gaussian mechanism privately

estimates the mean with only d samples but its error depends polynomially on the condition number,

a high price to pay when the estimator does not respect the geometry. The work of Kamath et al.

(2019) allows us to privately learn the covariance and apply the Gaussian mechanism on whitened

data, but, as with the SSP approaches for linear regression, this requires d3/2 samples. A long line of

work that follows either makes more strict assumptions on the geometry or pays a price in the sample

complexity (Karwa and Vadhan, 2017; Biswas et al., 2020; Cai et al., 2021; Aden-Ali et al., 2021;

Bun et al., 2019; Bun and Steinke, 2019; Liu et al., 2021; Kamath et al., 2022; Hopkins et al., 2022;

Alabi et al., 2023). Of particular relevance for our work are frameworks introduced by Tsfadia et al.

(2022) and Ashtiani and Liaw (2022), which remove outliers in a way that depends on the rest of the

dataset (e.g., asking that inliers be close to a large number of other examples). These frameworks

bear some similarity to our techniques and to those of Brown et al. (2023), especially their “Stable

Mean” estimator. Informally, our approach improves over theirs in the ability to adapt the definition

of outlier and the resulting geometry as points are removed.

Brown et al. (2021) was the first to address this geometry-aware challenge in private mean es-

timation. They termed it the covariance estimation bottleneck and gave two exponential-time ap-

proaches for avoiding it, achieving accurate estimation with Õ(d) samples and no dependence on

the condition number. The first, which combined the exponential mechanism with PTR (Propose-

Test-Release), served as a direct inspiration to the HPTR (High-dimensional PTR) framework of

Liu et al. (2022). The concurrent works of Kuditipudi et al. (2023) and Brown et al. (2023) built

on the second algorithm of Brown et al. (2021), giving time-efficient algorithms matching the guar-

antees of the exponential-time approaches. The sample complexity has linear dependence on the

dimension d and no dependence on the condition number κ(X"X). As in Kuditipudi et al. (2023)

and Brown et al. (2023), our goal is to achieve the same for linear regression.

Private Linear Regression. Commensurate with its centrality in statistical theory and practice,

significant effort has gone into producing differentially private algorithms for least squares (Vu and Slavkovic,

2009; Kifer et al., 2012; Mir, 2013; Dimitrakakis et al., 2014; Bassily et al., 2014; Wang et al., 2015;

Foulds et al., 2016; Minami et al., 2016).

One standard theme in many of these works is the class of assumptions that directly enable

global sensitivity analysis. Prime examples include assuming that the covariates satisfy an )2 norm

bound or that the true parameter lies in some ball about the origin. Such guarantees are incomparable

with our definition of goodness (for example, our definition allows arbitrarily large covariates, but

covariates with bounded norms may still have high leverage). Under some collections of these

assumptions, state-of-the-art guarantees are achieved in (Wang, 2018; Sheffet, 2019), which in our

setting translates into a sample complexity of n = Ω(d1.5/(αε)) to achieve (1/σ)‖β̂ − β‖Σ ≤ α.

Both these prior algorithms and ours analyze accuracy under the assumption that the input data is

“outlier-free." The prior work uses conditions on the norm of the covariates or the magnitude of the
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labels. These assumptions lend themselves handily to global sensitivity calculations. In contrast,

our work uses a notion of outlier-freeness which is more in line with standard statistical practice:

we ask that the dataset have no high-leverage or high-residual points.

When applied to data from the standard sub-Gaussian linear models, ISSP is the first compu-

tationally efficient algorithm to achieve linear dependence in the dimension d and no dependence

on the condition number κ(X"X) (see Theorem 5). This nearly matches the best known sam-

ple complexity of Liu et al. (2022) that relies on an exponential time approach of HPTR: n =
Õ(d/α2 + (d + log(1/δ))/(αε)) samples suffice to achieve an error of (1/σ)‖β̂ − β‖Σ ≤ α. Ex-

isting computationally efficient approaches based on gradient descent either assume the covariance

matrix is close to identity (Cai et al., 2021; Brown et al., 2024) or have polynomial dependence

on the condition number κ(X"X) (Varshney et al., 2022; Liu et al., 2023). The best known sample

complexity of an efficient algorithm is by Liu et al. (2023): n = Õ(d/α2+(κ1/2d log(1/δ))/(αε)).

Iterative Thresholding. Our ResidualThresholding algorithm is a special case of the family

of iterative thresholding algorithms, a longstanding heuristic for robust linear regression that dates

back to Legendre. Its theoretical properties in the non-asymptotic regime have been extensively

studied recently in Bhatia et al. (2015, 2017); Suggala et al. (2019); Pensia et al. (2020); Chen et al.

(2022). Shen and Sanghavi (2019b) and Awasthi et al. (2022) studied the iterative trimmed esti-

mator under generalized linear models and Shen and Sanghavi (2019a) studied the mixed linear

regression setting. It is worth noting that most iterative thresholding algorithm in the robust linear

regression setting will alternate between finding the OLS solution of the current set and finding the

set with the smallest residual under the current regression coefficient, and no data point is perma-

nently removed in each iteration. In contrary, our algorithm will permanently remove one data point

in each iteration before recomputing the OLS solution.

Appendix B. Preliminaries

We collect here known preliminary results that we use in our analyses.

Fact 27 Let S1, S2 be positive-definite matrices and define

dPD(S1, S2) = max
{∥∥∥S−1/2

1 S2S
−1/2
1 − I

∥∥∥
tr
,
∥∥∥S−1/2

2 S1S
−1/2
2 − I

∥∥∥
tr

}
.

Then dPD(S1, S2) = dPD(S
−1
1 , S−1

2 ).

Proof Note that S−1/2
1 S2S

−1/2
1 and S1/2

2 S−1
1 S1/2

2 are similar and likewise, S−1/2
2 S1S

−1/2
2 and

S1/2
1 S−1

2 S1/2
1 are similar. Thus,

dPD(S1, S2) = max
{∥∥∥S−1/2

1 S2S
−1/2
1 − I

∥∥∥
tr
,
∥∥∥S−1/2

2 S1S
−1/2
2 − I

∥∥∥
tr

}

= max
{∥∥∥S1/2

2 S−1
1 S1/2

2 − I

∥∥∥
tr
,
∥∥∥S1/2

1 S−1
2 S1/2

1 − I

∥∥∥
tr

}

= dPD(S
−1
2 , S−1

1 )

= dPD(S
−1
1 , S−1

2 )

as desired.
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B.1. Subgaussian Random Variables and Concentration Inequalities

For formal proofs of claims and further discussion we refer to Vershynin (2018).

Definition 28 (Subgaussian Norm) Let y ∈ R be a random variable. The subgaussian norm of y,

denoted ‖y‖ψ2 , is ‖y‖ψ2 = inf
{
t > 0 : E exp

(
y2/t2

)
≤ 2
}

.

Definition 29 (Subgaussian Random Variable) Let y ∈ Rd be a random variable with mean µ
and covariance Σ. Call y subgaussian with parameter K if there exists K ≥ 1 such that for all

v ∈ Rd we have

‖〈y − µ, v〉‖ψ2 ≤ K
√
v"Σv.

For example, the Gaussian distribution N (µ,Σ) is subgaussian with parameter K = O(1).

Claim 30 (Concentration of Norm) Let y1, . . . , yn be drawn i.i.d. from a d-dimensional subgaus-

sian distribution with parameter Ky > 0, mean µ, and (full-rank) covariance Σ. There exists a

constant K1 > 0 such that, with probability at least 1− β, we have both

∥∥∥Σ−1/2(y1 − µ)
∥∥∥
2
≤ K1K

2
y (d+ log 1/β) and

∥∥∥∥∥Σ
−1/2

(
1

n

n∑

i=1

yi − µ

)∥∥∥∥∥

2

≤ K1K
2
y · d+ log 1/β

n
.

Claim 31 (Concentration of Covariance) Let y1, . . . , yn be drawn i.i.d. from a d-dimensional

subgaussian distribution with parameter Ky > 0, mean µ = 0, and (full-rank) covariance Σ. Let

Σ̂ = 1
n

∑n
i=1 yiy

"
i be the empirical covariance. There exist positive absolute constants K1 and K2

such that, for any β ∈ (0, 1), if n ≥ K2(d+ log 1/β), then with probability at least 1− β we have

‖Σ−1/2Σ̂Σ−1/2 − I‖2 ≤ K1K
2
y

√
d+ log 1/β

n
.

B.2. Details on StableLeverageFiltering

As a preprocessing step, ISSP performs a leverage-score filtering routine introduced by BHS. The

algorithm we use differs only superficially from their version. (For instance, they compute a set

of weights w ∈ [0, 1]n and a weighted covariance estimate, while we only care about the weights

themselves.) For completeness, we now state the version we use here. Recall that Theorem 9

contains the relevant guarantees proved by BHS.

Appendix C. Deferred Proofs

We now give the proof for Claim 7, which characterizes the effect of removing weighted points

from a least squares model. This is a natural generalization of standard results (Mendenhall et al.,

2003; Belsley et al., 2005; Huber, 2011).

Proof [Proof of Claim 7] We start by setting up notation and bounding a term useful in proving both

(2) and (3).
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Algorithm 5: Stable Leverage Filtering (StableLeverageFiltering), BHS

Input: dataset X ∈ Rn×d; outlier threshold L0; discretization parameter k ∈ N

A← [n];
for j = 2k, 2k − 1, . . . , 0 do

Lj = exp{j/k} · L0;

repeat

SA ←
∑

i∈A xix"i ;

OUT←
{
i ∈ A : x"i (SA)

−1xi > Lj

}
;

A← A \ OUT
until OUT = ∅;
Aj ← A;

end

SCORE← min{k,min0≤j≤k{n− |Aj |+ j}};

for i = 1, . . . , n do

wi ← 1
k

∑2k
j=k+1 {i ∈ Aj};

end

return SCORE, w;

Setup Assume without loss of generality that supp(w) = [n], as any points outside the support

of w are irrelevant. Let v = w′ − w, ‖v‖1 = ρ, W = diag(w) (likewise W ′ and V ), and C =
X"WX. Decompose V = PN (for “positive” and “negative”) where P,N are diagonal matrices

with Pi,i =
√

|vi| and Ni,i = sign(vi) ·
√

|vi|.
Let ∆ = I + Y where Y = NXC−1X"P . If ‖Y ‖2 ≤ ε < 1 then I + Y 8 (1 − ε)I .

Consequently, ∆ is invertible and ‖∆−1‖2 ≤ 1/(1 − ε). To prove that ‖Y ‖2 ≤ ε, we use the fact

that ‖Y ‖2 ≤ ‖Y ‖F and compute:

‖NXC−1X"P‖2F =
∑

i,j

(
Ni,iPj,j · x"i C−1xj

)2

≤
∑

i,j

N2
i,iP

2
j,jL

2

= L2
∑

i,j

|vi||vj |

= L2
∑

i

|vi|
∑

j

|vj|

= L2 · ‖w − w′‖21.

Ultimately, we arrive at ‖∆−1‖2 ≤ (1 − ‖w − w′‖1L)−1. In the first line of the calculation above,

we used the fact that, by our initial assumption on the goodness of (X,w),

‖x"i C−1xj‖2 ≤ ‖C−1/2xi‖2‖C−1/2xj‖2 ≤ L2.

Since, ‖w − w′‖1L ≤ 1/2, we conclude that ‖∆−1‖2 ≤ 2.
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Bounding the Leverage Scores Consider an index i ∈ supp(w) Write out its leverage under w′

and plug in our notation:

h′i = x"i

(
X"W ′X

)−1
xi

= x"i

(
X"WX +X"V X

)−1
xi

= x"i

(
C + (PX)"NX

)−1
xi.

Recalling the fact that, x"i C
−1xi = hi and ∆ = I + NXC−1X"P , we can apply the Woodbury

matrix identity to arrive at the following relationship between h′i and hi:

h′i = x"i

[
C−1 − C−1(PX)"

(
I +NXC−1(PX)"

)−1
NXC−1

]
xi

= hi − x"i C
−1X"P∆−1NXC−1xi.

We want to upper bound this leverage, h′i, so we take the absolute value of the right-hand term and

apply Cauchy–Schwarz:

|x"i C−1X"P∆−1NXC−1xi| ≤ ‖∆−1‖2 · ‖PXC−1xi‖2 · ‖NXC−1xi‖2.

We already argued that ‖∆−1‖2 ≤ 2, so we turn to the second term in the product:

‖PXC−1xi‖22 =
n∑

j=1

P 2
j,j(x

"
j C

−1xi)
2

≤
n∑

j=1

|vi| · L2 = ‖w − w′‖1 · L2.

Note that an identical bound also holds for ‖NXC−1xi‖2, hence we have

h′i ≤ hi + 2‖w − w′‖1L2

≤ L+ 2‖w − w′‖1L2 =
(
1 + 2‖w − w′‖1L

)
· L.

Bounding the Residuals As above, we use the Woodbury matrix identity to derive an expression

for the regression line βw′ .

βw′ =
(
X"W ′X

)−1
X"W ′y

=
(
X"WX +X"V X

)−1(
X"Wy +X"V y

)

=
(
C + (PX)"NX

)−1(
X"Wy +X"V y

)

=
(
C−1 −C−1(PX)"∆−1NXC−1

)(
X"Wy +X"V y

)
.
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This expression expands into four terms, which simplify nicely:

βw′ = βw

+ C−1X"V y

− C−1X"P∆−1NXC−1X"Wy

− C−1X"P∆−1NXC−1X"V y

= βw

+ C−1X"P∆−1N(P∆−1N)−1V y

− C−1X"P∆−1NXβw

− C−1X"P∆−1NXC−1X"V y

= βw + C−1X"P∆−1N
(
N−1∆P−1V y −Xβw −XC−1X"V y

)
.

We can further simplify the expression in the parentheses. In particular, by plugging in the definition

of ∆, we have that N−1∆P−1V y −Xβw −XC−1X"V y can be rewritten as:

N−1
(
I +NXC−1X"P

)
P−1V y −Xβw −XC−1X"V y

= N−1P−1V y +N−1NXC−1X"PP−1V y −Xβw −XC−1X"V y

= V −1V y +XC−1X"V y −Xβw −XC−1X"V y

= y −Xβw.

Plugging back in, we arrive at

βw′ = βw + C−1X"P∆−1N(y −Xβw).

To finish the proof, we consider the residual on a point xi ∈ supp(w):

∣∣yi − x"i βw′

∣∣ =
∣∣yi − x"i βw + x"i βw − x"i βw′

∣∣

≤
∣∣yi − x"i βw

∣∣+
∣∣x"i βw − x"i βw′

∣∣

≤ R+
∣∣x"i C−1X"P∆−1N(y −Xβw)

∣∣,

The bound
∣∣yi−x"i βw

∣∣ follows from our initial assumption that w is (L,R)-good for (X, y). We can

bound the second term in an analogous way to how we bounded the leverage scores. In particular,

using the fact that ‖N‖2 ≤
√
‖w − w′‖1,

∣∣x"i C
−1X"P∆−1N(y −Xβw)

∣∣ ≤
∥∥PXC−1xi

∥∥
2
·
∥∥∆−1

∥∥
2
· ‖N(y −Xβw)‖2

≤ 2LR‖w − w′‖1.

This completes the proof.

We now prove Claim 18, which says that, if two weight vectors on adjacent datasets are both

good and close in total variation distance, then their least-squares solutions are close as well. We

start by considering the setting where the vectors correspond to the same dataset.
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Claim 32 Assume v,w are both (L,R)-good for dataset (X, y). Define Sv = X"diag(v)X, βv =

S−1
v X"V y, and likewise Sw, βw. If ‖v − w‖1L ≤ 1

4 , then ‖S1/2
v (βv − βw)‖2 ≤ 4‖v − w‖21LR2.

From this claim, Claim 18 is an easy corollary.

Proof [Proof of Claim 18] Vectors v,w ∈ [0, 1]n on adjacent datasets (X, y) and (X ′, y′), respec-

tively, correspond to vectors v′, w′ ∈ [0, 1]n+1 over the datasets’ union. We have ‖v′ − w′‖1 ≤
‖v − w‖1 + 2.

Proof [Proof of Claim 32] We start by expanding out the squared norm and substituting in the

definition of Sv:
∥∥S1/2

v (βv − βw)
∥∥2 =

〈
βv − βw, Sv(βv − βw)

〉

=

〈

βv − βw,




∑

i∈[n]

vi · xix"i



(βv − βw)
〉

.

Next we expand the sum across βv − βw and add and subtract
∑

i vi · xiyi, which makes the right-

hand side of the inner product look like a pair of gradients.

∥∥S1/2
v (βv − βw)

∥∥2 =

〈

βv − βw,
∑

i

vi · xi〈xi,βv〉 −
∑

i

vi · xi〈xi,βw〉
〉

=

〈

βv − βw,
∑

i

vi · xi
(
〈xi,βv〉 − yi

)
−
∑

i

vi · xi
(
〈xi,βw〉 − yi

)
〉

.

By definition, βv is the vector that sets the first gradient to zero, so we have

∥∥S1/2
v (βv − βw)

∥∥2 =

〈

βv − βw, 0−
∑

i

vi · xi
(
〈xi,βw〉 − yi

)
〉

.

We now add and subtract the gradient at βw weighted by w, which leaves a gradient term (also zero

by definition) and the differences vi − wi:

∥∥S1/2
v (βv − βw)

∥∥2 =

〈

βv − βw,−
∑

i

wi · xi
(
〈xi,βw〉 − yi

)
+
∑

i

(wi − vi) · xi
(
〈xi,βw〉 − yi

)
〉

=

〈

βv − βw, 0 −
∑

i

(wi − vi) · xi
(
〈xi,βw〉 − yi

)
〉

=
∑

i

〈
βv − βw, (wi − vi) · xi

(
〈xi,βw〉 − yi

)〉
.

We now insert S1/2
v S−1/2

v in the middle of each inner product. We apply Cauchy–Schwarz to each

term and pull out the scalars (recall that wi and vi are scalars, xi is a vector):
∥∥S1/2

v (βv − βw)
∥∥2 =

∑

i

〈
S1/2
v (βv − βw), (wi − vi) · S−1/2

v xi
(
〈xi,βw〉 − yi

)〉

≤
∑

i

∥∥S1/2
v (βv − βw)

∥∥ ·
∥∥(wi − vi) · S−1/2

v xi
(
〈xi,βw〉 − yi

)∥∥

=
∑

i

|vi − wi| ·
∥∥S1/2

v (βv − βw)
∥∥ ·
∥∥S−1/2

v xi
∥∥ · |〈xi,βw〉 − yi|.
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Both sides of the equation have a
∥∥S1/2

v (βv − βw)
∥∥ term; these cancel. We apply )1/)∞ on the

weight differences, leverage scores, and residuals. There is some subtlety here: define set U =
supp(v) ∪ supp(w). Then we have

∥∥S1/2
v (βv − βw)

∥∥ ≤
∑

i

|vi − wi| · ‖S−1/2
v xi‖ ·

∣∣〈xi,βw〉 − yi
∣∣

≤ ‖v − w‖1 ·
(
max
i∈U
‖S−1/2

v xi‖ ·
∣∣〈xi,βw〉 − yi

∣∣
)
.

By the definition of goodness, if i ∈ supp(v) then we have ‖S−1/2
v xi‖ ≤

√
L. Similarly, if

i ∈ supp(v), we have |yi − x"i βw| ≤ R.

However, these bounds may not hold for points outside the relevant support. Claim 17 allows us

to bound the leverage: for all i ∈ supp(w)∪supp(v) we have ‖S−1/2
v xi‖22 ≤ 2L, since we assumed

(1 + ‖v − w‖1)L ≤ 1
2 .

Similarly, bounding the residual involves a simple trick alongside Claim 7. Let w̌ be the entry-

wise minimum of {w, v}, so w̌i = min{wi, vi}. We have ‖w̌ − w‖1, ‖w̌ − v‖1 ≤ ‖w − v‖1 and,

furthermore, the support of w̌ is contained in both the support of w and that of v. Thus, we can

apply Claim 7: assuming i ∈ supp(w) (since otherwise i ∈ supp(v) and we have a bound on the

residual)

|yi − x"i βv| = |yi − x"i βw + x"i βw − x"i βw̌ + x"i βw̌ − x"i βv |
≤ |yi − x"i βw|+ |x"i βw − x"i βw̌|+ |x"i βw̌ − x"i βv |
≤ R+ 2‖w̌ − w‖1LR+ 2‖w̌ − v‖1LR
≤
(
1 + 4‖v −w‖1L

)
R.

Since ‖v − w‖1L ≤ 1
4 , this is at most 2R.

Appendix D. Estimation of σ2

Algorithm 6: Private σ2 Estimator

Input: S = {(xi, yi)}ni=1, target privacy (ε0, δ0), target failure probability ζ .

Partition S into k = 9C1 log(1/(δ0ζ))/ε: subsets of equal size and let Gj be the j-th partition,

where each dataset is of size b = |Gj | = 9n/k:.
For each j ∈ [k], denote ψj = minβ(1/|Gj |)

∑
i∈Gj

(yi − β"xi)2.

Partition [0,∞) into bins of geometrically increasing intervals

Ω :=
{
. . . ,

[
2−2/4, 2−1/4

)
,
[
2−1/4, 1

)
,
[
1, 21/4

)
,
[
21/4, 22/4

)
, . . .

}
∪ {[0, 0]}

Run (ε0, δ0)-DP histogram learner of Lemma 34 on {ψj}kj=1 over Ω
if all the bins are empty then Return ⊥
Let [), r] be a non-empty bin that contains the maximum number of points in the DP histogram

Return )

Lemma 33 Algorithm 6 is (ε0, δ0)-DP. Let S = {(xi, yi)}ni=1 be a dataset of i.i.d. samples with

xi ∼ N (0,Σ), yi = x"i β
∗ + zi and zi ∼ N (0,σ2) for some unknown true parameter β∗ =
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Σ−1E[yixi] ∈ Rd and unknown Σ and σ2. Suppose

n = Õ

(
d log(1/(δ0ζ))

ε0

)
,

with a large enough constant then Algorithm 6 returns ) such that, with probability 1− ζ ,

1√
2
σ2 ≤ ) ≤

√
2σ2 ,

where Õ(·) hides logarithmic factors in log(1/ε0), log(1/δ0).

We provide a proof in Appendix. D.1.

D.1. Proof of Lemma 33 on the private σ2 estimation

The privacy proof follows from the DP-histogram from Lemma 34. We provide proof for utility.

For each of the partition Gj , we show ai := 1
b

∑
i∈Gj

(yi − β̂"j xi)
2 concentrates around the

true parameter β∗ where β̂j := argminβ(1/|Gj |)
∑

i∈Gj
(yi − β"xi)2. Let f(β) = 1

b

∑
i∈Gj

(yi −
β"xi)2. We know f(β̂j) = minβ

1
b

∑
i∈Gj

(yi − β"xi)2 ≤ 1
b

∑
i∈Gj

(yi − β∗"xi)2 = 1
b

∑
i∈Gj

z2i
Since z2i are sub-exponential, from Bernstein bound, we know there exists constant c1 > 0 such

that with proability 1− ζ , 1
b

∑b
i=1 z

2
i ≤ σ2(1 + c

√
log(1/ζ)

b + c log(1/ζ)b ).

Now we show lower bound of f(β̂j). For any β, we also have

f(β) =
1

b

∑

i∈Gj

(yi − w"xi)
2 =

1

b

∑

i∈Gj

(zi + x"i (w
∗ − w))2 .

Let β̃ :=
(
Σ1/2 (β∗ − β) ,σ

)
∈ Rd+1 and x̃i :=

(
Σ−1/2xi, zi/σ

)
∈ Rd+1 for i ∈ [n]. By

definition, we can see that x̃i is zero-mean sub-Gaussian with covariance Id+1.

f(β) =
1

b

∑

i∈Gj

(β̃"x̃i)
2.

Following Lemma 9 from Jambulapati et al. (2020), we know for any vector β̃, there exists

c2 > 0 such that with probability 1− ζ ,

∣∣∣∣∣∣
1

b

∑

i∈Gj

(β̃"x̃i)
2 − ‖β̃‖2

∣∣∣∣∣∣
=

∣∣∣∣∣∣
β̃"



1

b

∑

i∈Gj

x̃ix̃
"
i − Id



 β̃

∣∣∣∣∣∣
≤ c2

√
d+ 1 + log(1/ζ)

b
+ c2

d+ 1 + log(1/ζ)

b

This means for any w, we have

f(β) =
1

b

b∑

i∈Gj

(β̃"x̃i)
2 ≥ (1− c2

√
d+ 1 + log(1/ζ)

b
− c2

d+ 1 + log(1/ζ)

b
)(‖Σ1/2(β − β∗)‖2 + σ2)

≥ (1− c1

√
d+ 1 + log(1/ζ)

b
− c2

d+ 1 + log(1/ζ)

b
)σ2 .
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Together with the upper bound, this implies that there exists constant c3 > 0, such that with

probability 1− ζ ,

∣∣∣∣∣∣
1

b

∑

i∈Gj

ai − σ2
∣∣∣∣∣∣
=
∣∣∣f(β̂j)− σ2

∣∣∣ ≤ c3

(√
d+ 1 + log(1/ζ)

b
+

d+ 1 + log(1/ζ)

b

)

σ2 .

By union bound, there exists a constant c4 > 0 such that if b ≥ c4(d + log(k/ζ)), then for all

j ∈ [k],

|ψj − σ2| = |1
b

∑

i∈Gj

ai − σ2| ≤ 21/8σ2 .

With probability 1 − ζ , {ψj}kj=1 lie in interval of size 21/4σ2. Thus, at most two consecutive

bins are filled with {ψj}kj=1. Denote them as I = I1 ∪ I2.

Our analysis indicates that P(ψi ∈ I) ≥ 0.99. By private histogram in Lemma 34, if k ≥
c5 log(1/(δ0ζ))/ε0, |p̂I − p̃I | ≤ 0.01 where p̂I is the empirical count on I and p̃I is the noisy count

on I . Under this condition, one of these two intervals are released. This results in multiplicative

error of
√
2.

Lemma 34 (Stability-based histogram (Karwa and Vadhan, 2018, Lemma 2.3)) For every K ∈
N ∪ {∞}, domain Ω, for every collection of disjoint bins B1, . . . , BK defined on Ω, n ∈ N,

ε ≥ 0, δ ∈ (0, 1/n), β > 0 and α ∈ (0, 1) there exists an (ε, δ)-differentially private algorithm

M : Ωn → RK such that for any set of data X1, . . . ,Xn ∈ Ωn

(1) p̂k = 1
n

∑
Xi∈Bk

1

(2) (p̃1, . . . , p̃K)←M(X1, . . . ,Xn), and

(3)

n ≥ min

{
8

εβ
log(2K/α),

8

εβ
log(4/(αδ))

}

then,

P(|p̃k − p̂k| ≤ β) ≥ 1− α

Appendix E. Lower Bound

Series of advances have been made in designing tools for lower bounds in statistical estimation.

Fingerprinting Narayanan (2023).

Our lower bound is a direct corollary of a similar lower bound on linear regression from Cai et al.

(2023).

Theorem 35 Let PΣ,σ2 be a class of distributions over (xi, zi) ∈ Rd × R, where xi are i.i.d.

samples from a d-dimensional subgaussian distribution with mean 0 and covariance Σ - 0, and zi
are i.i.d. samples from a subgaussian distribution with mean 0 and variance σ2 (see Definition 29
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in Appendix B). We observe labelled examples from linear model: yi = β"xi+ zi with E[xizi] = 0.

Let Mε,δ be a class of (ε, δ)-DP estimators that are functions over the datasets S = {(xi, yi)}ni=1.

Then if 0 < ε < 1, d # nε, δ # n−(1+γ) for some γ > 0, there exists constant C > 0 such that

inf
M∈Mε,δ

sup
PΣ,σ2 ,β

E‖M(y, x)− β‖2Σ ≥ Cσ2
(
d

n
+

d2

n2ε2

)
.

Proof We will apply the lower bound below from Cai et al. (2023).

Theorem 36 ((Cai et al., 2023, Theorem 3.1)) Consider i.i.d. observations {(y1, x1) , · · · , (yn, xn)}
drawn from the Gaussian linear model:

fβ(y | x) = 1√
2πσ

exp

(
−
(
y − x"β

)2

2σ2

)

;x ∼ fx .

Suppose E[xx"] is diagonal, and λmax(E[xx"]) < C ′ < ∞, ‖X‖2 #
√
d almost surely. If

d # nε, 0 < ε < 1 and δ # n−(1+γ) for some γ > 0, then

inf
M∈Mε,δ

sup
β∈Rd

E‖M(y, x)− β‖22 ! σ2
(
d

n
+

d2

n2ε2

)
.

Note that this lower bound holds for every construction of xi that satisfies the assumption. We

construct one instance of joint distribution P ∈ PΣ,σ2 such that it also satisfies the assumptions in

Theorem 36. Let {xi}ni=1 be i.i.d. samples from N (0, Id). And let x̃i = xi · I[xi ≤
√
d]. Clearly,

{x̃i}ni=1 satisfies that E[x̃x̃"] is diagonal, λmax(E[x̃x̃"]) < 1 and x̃i are bounded by
√
d. Let zi be

independent Gaussian distribution with variance σ2. By Theorem 36, we know there exists constant

C such that

inf
M∈Mε,δ

sup
PΣ,σ2 ,β

E‖M(y, x)− β‖2Σ ≥ Cσ2
(
d

n
+

d2

n2ε2

)
.
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