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Abstract—Data Parallelism (DP), Tensor Parallelism (TP),
and Pipeline Parallelism (PP) are the three strategies widely
adopted to enable fast and efficient Large Language Model
(LLM) training. However, these approaches rely on data-intensive
communication routines to collect, aggregate, and re-distribute
gradients, activations, and other important model information,
which pose significant overhead. Co-designed with GPU-based
compression libraries, MPI libraries have been proven to reduce
message size significantly, and leverage interconnect bandwidth,
thus increasing training efficiency while maintaining acceptable
accuracy.

In this work, we investigate the efficacy of compression-assisted
MPI collectives under the context of distributed LLM training
using 3D parallelism and ZeRO optimizations. We scaled up
to 192 V100 GPUs on the Lassen supercomputer. First, we
enabled a naı̈ve compression scheme across all collectives and
observed a 22.5% increase in TFLOPS per GPU and a 23.6%
increase in samples per second for GPT-NeoX-20B training.
Nonetheless, such a strategy ignores the sparsity discrepancy
among messages communicated in each parallelism degree, thus
introducing more errors and causing degradation in training
loss. Therefore, we incorporated hybrid compression settings
toward each parallel dimension and adjusted the compression
intensity accordingly. Given their low-rank structure [1], we
apply aggressive compression on gradients when performing DP
All-reduce. We adopt milder compression to preserve precision
while communicating activations, optimizer states, and model
parameters in TP and PP. Using the adjusted hybrid compression
scheme, we demonstrate a 17.3% increase in TFLOPS per GPU
and a 12.7% increase in samples per second while reaching
baseline loss convergence. *

Index Terms—All-reduce, Large Language Model, Compres-
sion, GPU-Aware MPI, Deep Learning, Distributed Training

I. INTRODUCTION

In recent years, an abundance of Large Language Mod-
els (LLM) emerged with impressive abilities in downstream
Natural Language Processing (NLP) tasks involving machine
translation, dialogue systems, text generation, and so on. Some
spotlights include LLaMA [2], GPT-4 [3] and GPT-NeoX-
20B [4]. However, to ensure exceptional performance, these

*This research is supported in part by NSF grants 1818253, 1854828,
2007991, 2018627, 2311830, 2312927, and XRAC grant NCR-130002.

models often scale up to billions of parameters, thus requiring
increased data size and computation by multiple orders of
magnitude. Since the introduction of scaling laws of LLMs
[5], model size has been growing from 100 million (BERT
[6]) to 500 billion (Megatron-Turing NLG [7]). As a result,
one Graphic Processing Unit (GPU) cannot fit a model and its
input data anymore, making it necessary to scale out to more
workers.

High-Performance Computing (HPC) systems are designed
and engineered to support sizeable scientific research and deep
learning workloads. These HPC systems typically consist of
thousands of nodes equipped with two to four advanced GPUs
that maximize floating point operations per second (FLOPS),
making them ideal for large-scale data-intensive distributed
pre-training of LLMs. Inter- and Intra-node communication
play a significant role in accelerating parallel applications. The
Message Passing Interface (MPI) supports a variety of highly-
optimized communication routines and has been a favored
parallel programming model deployed on HPC systems [8].
With the advances in GPUDirect technology [9], GPU-aware
MPI libraries [10]–[12] vastly accelerate GPU data transfer
and leverage interconnect bandwidth. MPI also serves as
a popular communication back-end for distributed machine
learning jobs [13]–[15].

Training massive language models requires meticulous ar-
rangement of memory resources and parallelism strategies.
Two well-known solutions to this problem are 3D parallelism
[7] and the Zero Redundancy Optimizer (ZeRO) [16]. Here,
3D parallelism refers to Data Parallelism (DP) [17], Pipeline
Parallelism (PP) [18], [19] and Tensor Parallelism (TP) [20],
which are often implemented to support extremely parallel
execution of pre-training missions of LLMs across hundreds
of GPUs. Also, tensor parallelism and pipeline parallelism
are generally categorized under model parallelism. Data par-
allelism generally aims to partition one input data batch into
mini-batches and distribute them to each GPU. This method
enables parallel input data processing but requires a data-
intensive All-reduce to aggregate the gradients at the end of
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backward propagation before updating each model replica.
Pipeline parallelism further divides the model layers among
workers and performs corresponding forward and backward
computations on the micro-batches through a pipeline manner.
This process involves mainly point-to-point activation passing
from one device to another. Tensor parallelism focuses on
splitting tensor computation among workers but also requires
All-gathering and All-reducing tensors from all the devices.
ZeRO reduces GPU memory footprint by partitioning model
states among GPUs, further eliminates replications, and uses
gather-based routine to reconstruct model states [16].

A. Motivation
Applying 3D parallelism with ZeRO for DL model training

imposes data-intensive collective communications within and
across nodes. Given the limited interconnect bandwidth be-
tween GPU nodes, such large data transfer leads to drastic
overhead. Profiling conducted by previous works [21] has
also addressed that different parallelism strategy requires huge
portions of communication and heterogeneous collective op-
erations (see Figure 1). Consequently, optimizing point-to-
point and collective communication schemes became critical to
mitigate such bottlenecks. Previous research has demonstrated
that when co-designed with GPU-based compression libraries
like ZFP [22] and MPC [23], GPU-aware MPI collectives were
able to leverage interconnect bandwidth and stage outstanding
throughput benefits [24]–[26].

Conducting GPU-based compression techniques on data
buffers drastically decreases the message size being com-
municated. However, representing high-precision data using
lower precision always results in accuracy degradation, which
is often observed within Deep Learning workloads. Prior re-
searchers mainly experiment with small deep learning models
to pick the most suitable compression rate for lossy ZFP
library [26]. Yet, these models contain much fewer parameter
numbers than LLMs, emitting smaller message sizes dur-
ing transfer. One key motivator of this work is to use
compression-assisted MPI collectives to accelerate large
language model training.

B. Challenges
This section addresses the following challenges:

C1) The first challenge was determining the different
model information communicated in parallelism stages.
Pipeline parallelism, tensor parallelism, and data paral-
lelism usually pose collective communications on var-
ious training parameters. Depending on the specific
implementation, tensor parallelism [20] usually calls
All-reduce and All-gather on activations during forward
passes and gradients during backward passes. Pipeline
parallelism [18], [19] typically features point-to-point
operations to pass activations and gradients from one
stage to another. Finally, data parallelism requires All-
reduce on the gradients of each data parallel rank and
re-distributing the aggregated global gradients back to
each model replica to perform subsequent updates [15],

[27]. To overcome this challenge, we present a thorough
illustration of the communication routines involved in
3D parallelism as well as in ZeRO stage 1 (Figure 2 4).
We further explain this demonstration in Section III

C2) The second challenge is that compressing messages
communicated during training depends on the paral-
lelism stages and requires prudent design. We observed
that naı̈vely applying compression scheme to all paral-
lelism stages introduced outstanding training speedup,
but at the same time led to degradation in training
quality (Section IV-C). Current studies have shown that
model parallelism has inherently different characteristics
than data parallelism. In data parallelism, gradients
communicated among different ranks are observed to
be low-rank or sparse. Yet, in model parallelism where
communicating activations is the bottleneck, activations
are analyzed as dense [1]. Therefore, applying the same
compression intensity to both gradients and activations
may lead to a loss of accuracy. Given these differences,
compression intensity may vary to achieve a balanced
solution that maximizes both throughput benefits and
model training performance.

C3) The third challenge we tackle in this paper originates
from the fact that some model information, specifically
gradients, is processed in both model-parallel and data-
parallel stages. For example, both data parallelism and
tensor parallelism feature the communication of gradi-
ents in their executions. When designing compression
schemes, we should only apply aggressive compression
to these gradients once, preventing over-extracting and
hurting meaningful information, thus destroying accu-
racy. However, we cannot use lossless or high-precision
methods towards these gradients since most negligible
values will not be adequately extracted. Consequently,
we need to avoid over-compression of gradients and
maintain compression intensity. This challenge is being
solved by applying different compression intensities
towards different parallelism communication paths.

C. Solutions
In this paper, we propose MZHybrid and ZHybrid, two hy-

brid compression schemes that utilize GPU-based compression
on LLM training data, thus expediting the training process
while maintaining acceptable model performance. We adopted
MPI collectives co-designed with lossless MPC and lossy ZFP
libraries to reduce the amount of data movement and leverage
inter-node bandwidth. We analyzed different communication
scenarios under 3D parallelism and ZeRO stage 1 optimization
and designed an appropriate compression approach that con-
siders the sparsity distinction between messages in the training
process.

D. Contributions
This paper contributes in the following manners:
1) We experimented naı̈ve compression schemes for both

MPC and ZFP on modern large-scale HPC systems. We
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(a) Proportion of computation to communication
for distributed DL training

(b) Breakdown of individual communication op-
erations for distributed DL training

Fig. 1: Communication profiling conducted in MCR-DL [21] for data-parallel and hybrid-parallel DL models.

reported up to a 23.6% increase in training samples per
second and up to a 22.5% increase in TFLOPS per
GPU over non-compressed collective communications.
We analyzed such schemes’ benefits and shortcomings,
leading to further design choices (Section IV-C).

2) We proposed and designed MZHybrid, a hybrid com-
pression scheme that utilizes lossless MPC for model-
parallel communications and lossy ZFP rate for data-
parallel communications. (Section III-A) We also pro-
posed and designed ZHybrid, a hybrid compression
scheme that utilizes different ZFP compression rates
for communicating model-parallel and data-parallel mes-
sages. (Section III-B).

3) We evaluated MZHybrid performance on modern large-
scale HPC systems. We reported up to 4.4% increase in
training samples per second and up to 5.3% increase
in TFLOPS per GPU compared to non-compressed
collective solutions. We demonstrated a significant im-
provement in model quality compared to the naı̈ve
ZFP scheme (Section IV-E). We also evaluated ZHybrid
performance on modern large-scale HPC systems. We
reported up to 17.3% increase in training samples per
second as well as up to 12.7% increase in TFLOPS per
GPU compared to non-compressed collective solutions.
We also showed noticeable enhancement in model qual-
ity compared to naı̈ve ZFP scheme (Section IV-F).

4) To the best of our knowledge, this is the first work
that utilizes MPI collectives co-designed with GPU-
based compression libraries to accelerate both model
parallelism, data parallelism, and ZeRO communication
(Section V).

II. BACKGROUND

A. GPU-based Compression libraries and MPI

The recent advancements in GPU technology, such as en-
hanced memory bandwidth, elevated core counts, and superior
computation capabilities, have been a major factor in the
adoption of GPU-based compression libraries. MPC [23] is a
lossless compression technique that leverages the identification
of similarity between consecutive floating-point numbers to
compress the data and achieve a high compression ratio.
ZFP [22], [28] is the state-of-the-art GPU-based compres-
sion library that supports high throughput read and write

random access. These compression libraries have also been co-
designed with MPI collective communication to achieve high-
performance, on-the-fly message compression for modern,
dense GPU clusters [24]. Collective-level optimizations often
avoid superfluous compression operations and utilization of
GPU-kernels [25], [26], [29].

B. 3D Parallelism and ZeRO
This section covers backgrounds on 3D parallelism, which

combines data-parallel, pipeline-parallel, and tensor-parallel.
We will also discuss relevant works on ZeRO.

1) Data Parallelism (DP): Data Parallelism [17] is a dis-
tributed DL technique that distributes training data across
multiple GPUs with model replicas to perform parallel training
steps. Data Parallelism can significantly improve throughput
compared to single-node training, as evidenced by relevant
applications [15], [27], [30]. However, due to memory restric-
tions, DP has limitations with large, dense neural networks
and high-resolution images.

2) Model Parallelism (MP): Model parallelism overcomes
the limitation of DP by splitting the model into layers and
distributing it on different devices. Common approaches to
achieve model parallelism include Pipeline Parallelism (PP)
[18], [19] and Tensor Parallelism (TP) [20]. PP uses inter-layer
model parallelism with micro-batches executed in a pipeline,
while TP employs sub-tensor splitting for parallel processing
across multiple workers, optimizing tensor operations.

Higher-degree parallelism strategies emerged to further
scale and harness the benefits of individual distributed models.
MT-NLG [7] uses 3D parallelism, a combination of DP, PP,
and TP, to train a billion-parameter model, facilitating larger
model sizes and improved training capabilities.

When analyzing the communication pattern for DP and
MP, we observe that DP involves less frequent All-reduce
operations on larger data sizes. At the same time, MP requires
more frequent point-to-point operations on smaller data.

3) ZeRO: ZeRO (Zero Redundancy Optimizer) [16] pro-
vides a memory optimization technique and overcomes the
memory limitation of DP and the scalability issue of MP.
This is achieved by partitioning optimizer states, gradients,
and model parameters across GPUs to eliminate redundant
storage and GPU memory consumption. Efforts have also been
made to offload certain training parameters to CPU and NVMe
memory [31] and optimize communication overhead [32].
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For example, ZeRO stage 1 typically involves All-gather and
Reduce-Scatter operations to collect and aggregate optimizer
states.

C. Compression in Data Parallelism and Model Parallelism
Data parallelism incurs communication overhead due to

the All-reduce operation required for gradient aggregation.
Various works have proposed gradient compression techniques
for DP to address the overhead and improve training speed
while maintaining accuracy [33], [34]. These works are based
on the sense that most of the gradients communicated in DP
are sparse, which means these data structures have most of
their elements concentrated in a few dimensions. In contrast,
the remaining dimensions contain negligible values. A com-
prehensive study [1] has performed a low-rank analysis on the
activation data in MP and concluded the opposite findings:
activations in MP are dense, leading to its significance in
preserving accuracy.

III. DESIGN

This section first details communication routines and mes-
sages in typical 3D parallelism and ZeRO stage 1 scenarios.
Next, we will introduce the MZHybrid scheme and the ZHy-
brid scheme.

Figure 2 illustrates a typical 3D parallelism setting split
across eight global workers. This setting contains two DP
ranks, two PP stages within each DP rank, and two TP degrees
within each PP stage. We examine communication calls in
each parallelism dimension in the following paragraphs. In
Figure 2, the global batch is split into two mini-batches, and
each goes into a DP rank. Each DP rank will produce its
own local gradients after a forward and a backward pass
on the model replicas. Then, the root rank will issue an
All-reduce call on these local gradients and re-distribute the
global aggregated gradients to each DP rank before updating
the model replica parameters. The All-reduce call is graphed
between DP ranks in the middle of Figure 2. Typically, this
All-reduce is conducted upon sparse gradients. However, as
model size increases, such collective communication gradually
becomes a bottleneck, given the increase in message size.
Next, we split the model replica into two PP stages within
each DP rank. Each PP stage will include a subset of the
network layers. For example, in Figure 2, we assume a model
with eight layers, and we split them across two pipeline stages,
with pipeline stage 0 having network layers 0-3 and pipeline
stage 1 having network layers 4-7. Pipeline stages mainly
call point-to-point communication routines like MPI Send &
MPI Recv to communicate gradients and activations with each
other. These are also drawn between pipeline stages in Figure
2.

Next, we consider Tensor Parallelism. TP focuses on paral-
lelizing matrix computations among workers. In this scenario,
we parallelize computation workloads across two GPUs. For
specific implementation, we refer to Megatron-LM [20]. In
their approach, they split GEMM operations in MLP blocks,
Self-Attention blocks, and the output embedding layer among

GPUs. This method requires two All-reduce primitives for a
forward and a backward pass in a single transformer layer.
For the output embedding layer, an All-reduce aggregates the
different portions of the input embedding, and an All-gather
will act to obtain GEMM outputs. Please refer to Figure 3 for
details. In this parallelism dimension, the main communication
primitives involved are All-reduce and All-gather—these prim-
itives aggregate activations in forward passes and gradients
in backward passes. We also illustrate these on the sides of
pipeline stage blocks in Figure 2.

MPI Collectives DP PP TP ZeRO stage 1
All-reduce ! × ! ×
All-gather × × ! !

Reduce-Scatter × × × !
Point-to-point × ! × ×

TABLE I: MPI Collective communication in each parallelism
stage.

Next, we detail about ZeRO stage 1 communications. ZeRO
stage 1 optimizes GPU memory consumption by partitioning
optimizer states over several workers. Optimizers like Adam
require considerable per-parameter information and can ac-
quire twice as much memory as a complete model. ZeRO stage
1 only keeps a fraction of optimizer states on each GPU. When
the optimizer needs to update its state, the primary worker will
call an All-gather to gather all the fractions on other workers.
After the optimizer completes its updates on all the current
global optimizer states, ZeRO will perform a Reduce-Scatter to
redistribute all the optimizer states back to the original device.
We exemplify a ZeRO stage 1 scenario with optimizer states
split across 4 GPUs in Figure 4. Finally, in Table I, we listed
all the MPI collective communication per parallelism stage.

A. MZHybrid: MPC for MP + ZFP for DP

MZHybrid MPI Collectives Compression Schemes
DP All-reduce ZFP
PP Point-to-point MPC

TP All-reduce MPC
All-gather MPC

ZeRO stage 1 All-gather MPC
Reduce-Scatter MPC

TABLE II: MZHybrid: Compression scheme specified for each
collective communication

In this section, we introduce the first hybrid compression
scheme: MZHybrid. MZHybrid uses lossless MPC scheme for
MP communication and lossy ZFP scheme for DP communi-
cation.

We provide illustrations using MZHybrid under the typical
3D parallelism scenario in Figure 5. We enforce lossless
MPC for All-reduces in TP, point-to-point sends&recvs in
PP, and lossy ZFP for All-reduce between DP ranks. For
ZeRO stage 1 under MZHybrid, we enforce lossless MPC
for All-gathers and Reduce-Scatters. Given that activations
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Fig. 2: A base 3D parallelism setting with a total of 8 GPUs. This setting contains two data parallel ranks, two pipeline stages
and two tensor parallel degree. Collective operations for each parallelism degree are detailed. Optimizer states are also split
across 8 workers. DP: Data Parallelism, PP: Pipeline Parallelism, TP: Tensor Parallelism, OS: optimizer state shards with
device index as subscript. AR: All-reduce operations. AG: All-gather operations. F and B prefix indicates forward passes and
backward passes respectively.

Fig. 3: Megatron-LM: communication primitives involved in
a single transformer layer [20].

Fig. 4: ZeRO: communication primitives involved in ZeRO
stage 1 over 4 GPUs. In our experiments, ZeRO stage 1 is
integrated into 3D parallelism, here we use a separate graph to
demonstrate communication routines for clarity. OS: optimizer
state partitions with GPU number as index.

communicated in MP are mostly dense (contrary to gradients)
[1], we want to preserve precision on these data to maintain
model training performance. For communicating large and
mostly sparse gradients between DP ranks, we apply an
aggressive lossy ZFP scheme. It is worth mentioning that in
MP settings, communication on gradients also exists during
backward passes. To avoid over-compressing gradients, we
apply MPC schemes to those gradients. We use Table II to
specify our compression scheme choice for each collective
involved for MZHybrid. We also experimented with different
rates of ZFP under MZHybrid, please refer to IV-E.

B. ZHybrid: high-rate-ZFP for MP + low-rate-ZFP for DP

ZHybrid MPI Collectives Compression Schemes
DP All-reduce low-rate ZFP
PP Point-to-point high-rate ZFP

TP All-reduce high-rate ZFP
All-gather high-rate ZFP

ZeRO stage 1 All-gather high-rate ZFP
Reduce-Scatter high-rate ZFP

TABLE III: ZHybrid: Compression scheme specified for each
collective communication

This section presents the second hybrid compression
scheme: ZHybrid. ZHybrid adopts a lossy ZFP scheme for all
communication, including 3D parallelism stages and ZeRO
stage 1. However, for different parallelism ranks, we apply
different rates of ZFP. Since high-rate ZFP are better at
preserving accuracy [28], we apply them towards MP units and
optimizer state operations in ZeRO. For DP, We apply low-
rate ZFP to large and sparse gradient reduction to eliminate
negligible values. For experiments with different rates of ZFP
under ZHybrid, please refer to IV-F. We use Table III to
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Fig. 5: MZHybrid: 3D Parallelism communication settings. Collective operations as well as compression schemes for each
parallelism degree are detailed. We force lossless MPC for TP and PP while lossy ZFP for DP.

CPU IBM Power9 44 Cores/Node
Memory 256 GB

GPU 4 NVIDIA Tesla V100 (64 GB Memory)
with NVLINK

Interconnect Mellanox IB EDR (100 Gb/s)

TABLE IV: Lassen cluster configuration

specify our compression scheme choice for each collective
involved for ZHybrid.

IV. EVALUATION

In this section, we evaluate different hybrid compression
schemes for LLM training in terms of training throughput
(TFLOPS) and loss. We conducted experiments on the Lassen
supercomputer hosted at Lawrence Livermore National Lab-
oratory [35]. The cluster comprises 792 GPU nodes, each
with four 16 GB memory NVIDIA Tesla V100 GPUs and
two 44-core IBM Power 9 CPUs. Inter-node connection is
established through Mellanox Infiniband EDR with a band-
width of 100Gb/s, and the 4 GPUs on each node are split into
two pairs connected via NVLINK (Table IV). Experiments
on more advanced GPU architecture (A100, H100) would be
beneficial, yet we believe that the core findings and narrative
would largely remain the same.

A. Software Libraries
We invoked compression-assisted reduce-scatter-allgather

All-reduce based on compression-assisted reduce-scatter and
all-gather implemented on top of MVAPICH2-GDR 2.3.7
[11] for all training experiments. We chose the GPT-NeoX
library given its open-sourced documentation and implemen-
tation of LLM parallel training procedures. This library was
implemented based on Megatron-LM [20] and DeepSpeed
[36] to support 3D parallelism. Furthermore, it has also
been augmented with various novel optimizations, including
ZeRO [16], etc. We compiled PyTorch v1.13.1 and the latest
DeepSpeed from source with GPU-aware MPI support.

B. Training Configuration
The inter-node interconnect is InfiniBand-EDR-100Gb/s,

and the 4 GPUs on each node are split into two pairs connected

via NVLINK. We agree that experiments on more advanced
GPU architecture would be beneficial, but the fundamental
storyline would be unchanged.

We selected the largest language model checkpointed in
the GPT-NeoX library - GPT-NeoX-20B. Due to a lack
of resources to train the original foundation model, it was
necessary to conduct fine-tuning using a more constrained
dataset. Specifically, the model was fine-tuned on ’Books3’,
a subset of the ’Pile’ dataset developed by EleutherAI [37].
We set up the model using the same hyperparameters in the
original paper [4]. We trained the model for 4000 steps. We
changed the parallelism settings to match the Lassen GPU
node configuration. We set the pipeline parallelism degree to
be 6 across nodes and model parallelism degree to be 4 within
nodes. This makes up a base training environment among 24
GPUs for one model replica. We use a gradient accumulation
step of 1, a training micro batch size per GPU of 4, and
scaled training up to 192 V100 GPUs. For optimizer settings,
we adopted the Adam optimizer with beta values of 0.9 and
0.95 as well as an epsilon of 1.0e-8. We also enabled ZeRO
optimizer to distribute optimizer states across devices to reduce
memory consumption.

C. Naı̈ve ZFP Compression Scheme
We first forced naı̈ve lossy ZFP compression schemes to

all parallelism. We conclude our results of testing naı̈ve
ZFP(rate:8) and ZFP (rate:16) by reporting training throughput
in two aspects: samples per second and TFLOPS per V100
GPU. We also documented test loss on Books3 for model
performance validation. In Figure 7a, when compared to
default MVAPICH2-GDR implementations, conducting ZFP
compression techniques showcased a 23.6% increase in total
samples per second for rate:8 and a 15.4% respectively for
rate:16 on 192 V100 GPUs. In Figure 7b, we observed a
22.5% increase in TFLOPS per V100 GPU for rate:8 and a
11.14% increase in that for rate:16 on 192 V100 GPUs. The
throughput benefit difference between ZFP rate:8 and rate:16
is expected since, with a lower rate, we are extracting out
more information, thus leading to more bandwidth being freed
and better throughput. We continued to evaluate test loss on
the trained model; we discern some degradation in the loss
curves in Figure 7c. Compared to baseline showing a steep
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Fig. 6: ZHybrid: 3D Parallelism communication settings. Collective operations as well as compression schemes for each
parallelism degree are detailed. We force high-rate ZFP for TP and PP while low-rate ZFP for DP.

decrease in test loss, naı̈vely compressing all messages using
ZFP produces flatter loss curves and, eventually, larger loss
values. It is also worth noting that a larger ZFP compression
rate yields loss curves and values closer to baseline since
less model information is being compressed during message
passing.

D. Naı̈ve MPC Compression Scheme
Secondly, we switched to using pure lossless MPC compres-

sion. We similarly applied MPC to all parallelism in Figure
8a and Figure 8b, and we report that using MPC didn’t show
significant throughput benefits. Nevertheless, in Figure 8c, we
observed that when comparing to baseline loss curves, MPC
elicited a better ability to match desired model performance
and hardly produced any degradation. This observation is
anticipated since MPC compression is a lossless scheme and
proficient in preserving model data precision.

E. MZHybrid
In this section, we evaluate the MZHybrid compression

scheme—applying lossless MPC in MP communication and
lossy ZFP in DP communication. We recorded results for ZFP
rate:8 and ZFP rate:16. In Figure 9a, we saw that using ZFP
rate:8 together with MPC, training samples per sec showed a
4.4% increase on 192 GPUs when compared to MVAPICH2-
GDR baseline. For TFLOPS per GPU, we demonstrated in
Figure 9b a 5.3% raise when training across 192 GPUs. When
it comes to model performance, we plotted loss curves with
MZHybrid against naı̈ve ZFP approach. Figure 9c staged that
MZHybrid significantly reduces loss values when compared
to naı̈ve schemes for both ZFP rate:8 and ZFP rate:16. We
anticipate such observations, although MPC struggles at pro-
viding throughput benefits for large message size, the speed-up
provided by ZFP offsets such shortcoming. At the same time,
the loss curve showed that incorporating MPC significantly
improves model performance.

F. ZHybrid
We continued experimenting with ZHybrid: using different

ZFP compression rates for MP and DP stages. We conducted
experiments on two cases: one is ZFP(rate:24) for MP and
ZFP(rate:8) for DP, and the second one is ZFP(rate:16) for MP

and ZFP(rate:8) for DP. While applying ZFP(rate:16) for MP,
we observed a 20.4% increase in training samples per second
and a 20.6% increase in TFLOPS per GPU. When considering
ZFP(rate:24) for MP, we also see a 17.3% increase in training
samples per second and a 12.7% increase in TFLOPS per
GPU (Figure 10a, 10b). Then we compared ZHybrid against
naı̈ve ZFP in Figure 10c in terms of test loss and observed
lower final loss values, which translates to better model quality.
Increasing the ZFP rate for MP communication improves
model performance as expected.

Both evaluated ZHybrid cases(rate:24 MP & rate:16 MP)
staged lower loss values over naı̈ve ZFP solution. Also, the
moving average of the loss is higher for ZHybrid(rate:16 MP),
which conforms with our expectation that lower ZFP rates lead
to higher overall loss landscape (Figure 13).

G. Discussions

We compare our hybrid compression approach with NCCL
[38], a collective communication library highly optimized
for NVIDIA GPUs and networking. Our approach ZHy-
brid(rate:16-MP, rate:8-DP) exhibits up to 7.6% increase in
samples per second and 12.9% increase in TFLOPS per GPU
on 192 V100 GPUs. While higher ZFP rate (rate:24-MP,
rate:8-DP) results in less performance gain, we still achieved
up to 4.9% increase in samples per second and 5.5% increase
in TFLOPS per GPU on the same scale. The reason for
this is that as we scale up, inter-node bandwidth begins to
saturate. Compression-assisted MPI collectives are capable to
reduce message size during transfer and mitigate communica-
tion stress in this scenario, resulting in better GPU compute
utilization. Compared to ZHybrid, MZHybrid provided more
benefits on loss convergence rather than training throughput
due to the overhead of lossless compression. The two proposed
hybrid schemes benefit us in either training efficiency or
quality; specific choices depend on the end-user’s preference
and metrics.

The key takeaway we addressed is that higher ZFP compres-
sion rates(i.e., less aggressive compression)lead to loss closer
to baseline than low ZFP rates, which matches intuition. There
is no correct answer for a “proper” rate since this depends on
the use case, and this paper seeks to quantify the ZFP rate
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(a) Naive ZFP: Training samples per second (b) Naı̈ve ZFP: TFLOPS per GPU (c) Naı̈ve ZFP: Books3 test loss

Fig. 7: Naı̈ve ZFP Compression Scheme

(a) Naı̈ve MPC: Training samples per second (b) Naı̈ve MPC: TFLOPS per GPU (c) Naı̈ve MPC: Books3 test loss

Fig. 8: Naı̈ve MPC Compression Scheme

(a) MZHybrid: Training samples per second (b) MZHybrid: TFLOPS per GPU (c) MZHybrid: Books3 test loss

Fig. 9: MZHybrid Compression Scheme

(a) ZHybrid: Training samples per second (b) ZHybrid: TFLOPS per GPU (c) ZHybrid: Books3 test loss

Fig. 10: ZHybrid Compression Scheme
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Fig. 11: Comparison between ZHybrid (rate:24 MP & rate:16
MP) and naı̈ve ZFP solution in test loss.

Fig. 12: Comparison between ZHybrid and NCCL in samples
per sec.

tradeoff so that this “proper” rate can be selected. The broad
guidelines we find are to choose a model-parallel(TP+PP)
compression rate slightly smaller than an FP-32 precision but
large enough to provide a loss increase that our application
can tolerate. At this stage, there is no detailed analysis for
every rate, and all that is left to future work.

V. RELATED WORK

Several studies have been done on compressing gradients
to reduce training time [33], [34]. Furthermore, C. C. Chen

Fig. 13: Comparison between ZHybrid and NCCL in TFLOPS
per GPU.

et al. [39] provided a hybrid communication compression
method, which chooses the best compression method for every
gradient to maintain model accuracy while reducing training
time. Several distributed Deep Learning framework has also
been integrated with mixed-precision training [40].

These studies primarily focus on gradient compression for
DP, with limited work dedicated to compression techniques
in MP. Current efforts have also been attributed to mostly
compressing gradients during training but hardly on activa-
tions. GPU-based compression has also been co-designed with
various MPI collectives to speed up distributed DL training
under a certain degree of parallelism, such as PyTorch-FSDP
[26].

Similar hybrid communication schemes has also been fea-
tured in works like MCR-DL [21]. MCR-DL supports mix-
and-matching communication backends across MPI and NCCL
[38] for all point-to-point and collective operations. However,
this work is not based on MCR-DL. The implementation
invokes compression-assisted MPI collectives directly on the
PyTorch level. The only reason MCR-DL is mentioned is to
refer to its communication profiling insights [21].

VI. CONCLUSION

In this paper, we propose two hybrid compression schemes,
namely MZHybrid and ZHybrid, to leverage LLM training
efficiency with adequate model performance. These two de-
signs consider the fundamental differences among parallelism
strategies (DP, PP, and TP) and the sparsity in the message
communicated in these schemes. MZHybrid applied lossless
MPC towards model-parallel communication and lossy ZFP
towards data-parallel communication. ZHybrid forces different
ZFP rates for different parallelism stages. For model-parallel,
we chose high-rate ZFP to preserve the precision of dataflow
occurring within a model. For data parallel, we adopt low-rate
ZFP to reduce gradient size communicated across models.

The proposed design MZHybrid demonstrates up to 4.4%
increase in training samples per second and 5.3% increase in
TFLOPS per GPU compared to non-compression approaches
with significant improvement in training quality over naı̈ve
compression. The proposed design ZHybrid demonstrates up
to 20.4% increase in training samples per second and 20.6%
increase in TFLOPS per GPU compared to non-compression
approaches and still poses noticeable improvement in model
performance over naı̈ve compression—the two hybrid schemes
emphasized on training throughput benefits or model quality.

We believe our approach can generalize to other use-
cases which exhibit heavy collective communication and are
saturating interconnect bandwidth.

In future work, we plan to co-design more MPI collective
operations with GPU-based compression libraries to accelerate
more scientific applications and Deep Learning workloads.
Choices include All-reduce and other communication routines.
Also, we expect that more advanced compression techniques
and libraries can be incorporated such as cuSZ [41] and block-
based quantization [42].
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