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Abstract

In Task-Oriented Dialog (TOD) systems, Di-
alog State Tracking (DST) structurally ex-
tracts information from user and system utter-
ances, which can be further used for querying
databases and forming responses to users. The
two major categories of DST methods, sequen-
tial and independent methods, face trade-offs
between accuracy and efficiency. To resolve
this issue, we propose Effective and Efficient
Dialog Comprehension (EDC), an alternative
DST approach that leverages the tree structure
of the dialog state. EDC predicts domains, slot
names and slot values of the dialog state step-
by-step for better accuracy, and efficiently en-
codes dialog contexts with causal attention pat-
terns. We evaluate EDC on several popular
TOD datasets and EDC is able to achieve state-
of-the-art Joint Goal Accuracy (JGA). We also
show theoretically and empirically that EDC
is more efficient than model designs used by
previous works.

1 Introduction

Task-Oriented Dialog (TOD) systems are essen-
tial for building intelligent virtual assistants and
chatbots, and aim to fulfill users’ goals by under-
standing their intentions, performing correspond-
ing actions and responding with results to users.
In a TOD system, Dialog State Tracking (DST)
extracts information such as user intention and sys-
tem suggestions from dialog history and represents
the known information of the dialog in a structural
way, which can be further used for querying enti-
ties in databases and generating responses to users.
Structural dialog state usually consists of one or
multiple mappings for different domains, each de-
scribing user requirements or system suggestions
of one type of entity or service. Within a domain, a
slot identifies a single property and is represented
by the pair of a slot name and a slot value in the
domain’s corresponding mapping.

Bhaskar Ramasubramanian
University of Washington Western Washington University
ramasub@wwu. edu

Radha Poovendran
University of Washington
rp3@uw. edu

Existing DST methods can be categorized into
two types: sequential and independent. Both op-
erate on partial dialog history, the concatenation
of past user and system utterances up to a certain
number of interaction rounds, and henceforth re-
ferred to as context. Sequential methods predict
dialog state in one go by generating a single se-
quence with present domains and slots. Indepen-
dent methods predict dialog state by separately de-
termining the existence and value of all possible
domain-slot combinations. They may be further di-
vided into generative and classification-based meth-
ods: generative independent methods predict slot
value by sequence-to-sequence generation, while
classification-based independent methods remodel
slot value prediction as a multiple-choice problem,
and select slot value from a list of candidates.

Between both categories of DST methods, one
issue we discovered is the trade-off between accu-
racy and efficiency. Sequential methods are effi-
cient because generation only happens once and
non-present domains and slots do not need to be
predicted. However, when the dialog state becomes
more complex, the target sequence becomes longer
and different to generate precisely. Independent
methods are more precise because they only need
to deal with one slot at a time, but are inefficient
when dealing with a large amount of domains and
slots. By leveraging the hierarchical structure of
dialog state, we argue a third approach is possible
for DST: viewing dialog state as a three-level tree
of present domains, slot names and slot values, and
predicting this tree level-by-level. In this way, both
effectiveness and efficiency can be achieved: length
of each individual target sequence is reduced, and
ability to predict only present domains and slots
are preserved.

In this paper, we propose Effective and Efficient
Dialog Comprehension (EDC), a multi-pass DST
method utilizing tree prediction concept mentioned
above. EDC is based on existing pre-trained lan-
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guage models, and also learns to predict user and
system actions as auxiliary tasks in conjunction
to dialog states. In addition, EDC also efficiently
encodes dialog contexts of all rounds in the same
dialog once with causal attention patterns. We eval-
uate EDC on MultiWoZ 2.2 (Zang et al., 2020) and
M2M (Shah et al., 2018) datasets. EDC is able to
achieve state-of-the-art Joint Goal Accuracy (JGA)
among sequential methods, and also outperforms
most independent methods. We then perform exper-
iments on ablation settings and alternative designs
to justify the design of our method and model. Fi-
nally, we show both theoretically and empirically
that EDC is more efficient than traditional model
designs during both training and prediction.

2 Related Work

2.1 Dialog State Tracking
2.1.1 Sequential Methods

The most common sequential DST approach is to
generate a sequence containing all domains and
slots and conforming to a set of formal grammar.
The sequence is then mechanically parsed into
structural dialog state. This approach is adopted by
many DST-specific methods (Zhang et al., 2020b;
Cheng et al., 2020) as well as end-to-end (Hosseini-
Asletal., 2020; Peng et al., 2021; Yang et al., 2021)
and multi-task (Su et al., 2021) TOD systems. In
addition, extra information such as domain, slot
name, slot description and candidate values may
be provided as input with dialog context to further
enhance performance (Feng et al., 2021; Lin et al.,
2021; Zhao et al., 2022). Alternatively, dialog state
may also be generated in one go by predicting state
difference between neighboring rounds and patch-
ing previous state (Lin et al., 2020), or generating
then amending dialog state (Tian et al., 2021).

2.1.2 Independent Methods

The majority of independent DST methods are
classification-based methods. Earliest methods
(Lee et al., 2019; Wu et al., 2020) use only classifi-
cation to determine slot existence and value: each
possible slot value is made a distinct class, and a
special "none" class indicates slot is not present
in dialog state. Later works (Zhang et al., 2020a;
Chao and Lane, 2019) also incorporate span extrac-
tion to deal with dynamic slot values that appear in
dialog history. For these methods, span extraction
is often performed with pointer network (Vinyals
et al., 2015) or BIO tagging (Ramshaw and Mar-

cus, 1995). In addition, (Kim et al., 2020) explores
the idea of maintaining an external memory and
updating the memory with output of the model.
(Heck et al., 2020) then combines span extraction
with two memory tables that tracks informed and
co-referenced slot values. Due to its superior per-
formance, it has since been used for examining
the capability of TOD-focused pre-trained models
(Mehri et al., 2020; Yu et al., 2021) or efficacy of al-
ternative data augmentation and training techniques
(Li et al., 2021; Dai et al., 2021; He et al., 2022).
On the other hand, independent methods may also
be implemented in a generative fashion (Wu et al.,
2019; Huang et al., 2020; Lee et al., 2021) that
separately predict slot value given dialog context,
domain and slot name as input.

2.1.3 Tree Methods

There are several DST methods that are aware
of and utilizing the tree structure of dialog state.
TreeDST (Cheng et al., 2020) predicts dialog state
as a S-expression (McCarthy, 1960) using a LSTM
network enhanced by copy mechanism. Space-
2 (He et al., 2022) performs contrastive learning
based on the structural similarity of dialog state
trees. EDC is different from these methods in that
the tree structure influences the prediction proce-
dure rather than just the representation of dialog
state, resulting in a multi-pass process where do-
main, slots, and slot values are generated separately
and step-by-step.

2.2 Pre-trained Language Models

Pre-trained language models built on multi-head
attention mechanism have achieved state-of-the-
art performance on various natural language un-
derstanding and generation problems. They can
be divided into three major categories: encoder-
only models (Kenton and Toutanova, 2019; Liu
et al., 2019), decoder-only auto-regressive models
(Radford et al., 2018, 2019; Brown et al., 2020)
and encoder-decoder models (Vaswani et al., 2017;
Lewis et al., 2020; Raffel et al., 2020). EDC is built
on BART (Lewis et al., 2020), but can be extended
to use any encoder-decoder language model as its
backbone. It is also inspired by the causal attention
mask construction of UniLM (Dong et al., 2019).

3 EDC: Effective and Efficient Dialog
Comprehension

In this section, we introduce the detailed design
of EDC. First, we formulate the DST problem and
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Figure 1: An example of DST task and comparison of sequential, generative independent and tree prediction
methods. Dotted underline indicates additional prompt fed into the model as input along with dialog context.

show how DST can be converted into a tree pre-
diction problem. Then, we propose an efficient
dialog context encoding technique based on the
incremental property of dialog context. Next, we
explain how the dialog state data can be decoded
from our model step-by-step. Finally, we present
the auxiliary tasks EDC learns to perform and the
optimization objective.

3.1 Problem Formulation

We define full dialog history as a series of alter-
nating utterances between the user and the sys-
tem C = {Ul, R1,Us, Ry, ..., Ur, RT}, where
U; and R; denote user and system turns of round
t, and T is the total number of rounds of the di-
alog. Ateachround ¢t = 1...7T, we are given
context Cy = {Uy, Ry,...,Ui—1, Ri—1,U}. Our
goal is to predict structural dialog state B; =
{(di, Bia) [ 21}, Bri = {(sj,vrig)l2 ). where
d; and By ; are the name and domain state of the
t-th domain at round ¢, and s; and v;; ; are the
name and value of the j-th slot within that domain.
vy;,; may be an ordinary value if slot s; is present
in domain d; at round ¢, or it can be a special value
() if it is not present.

3.2 DST as Tree Prediction

Figure 1 gives an example of common categories of
DST methods. For round ¢, most sequential DST
methods aim to predict a single dialog state se-
quence B; given context C;. Let — indicates gen-
erating a target sequence from an input sequence, G
indicates concatenation of sequences, and assume ¢

in notations, then this process can be described as:

C; — B
B:=di®B1® - ®dy® By
Bi:=51®v1 @ ®sn, Doy,

(i=1...N)

where M is the number of present domains in dia-
log state, and [V, is the number of present slots in
i-th present domain. On the other hand, most in-
dependent DST methods predict slot existence and
values |D| x |S| times for each possible domain-
slot pair:

Ci®d;i ©sj —> vy j
(i=1...D|,j=1...I5])

In contrast, EDC utilizes the hierarchical structure
of the dialog state, viewing it as a tree with three
levels of nodes: domains at the top level, slot names
in the middle and slot values at the bottom. Tree
nodes are then predicted in a breadth-first manner
by providing dialog context and ancestor data:

Co—d1@--Ddy
Ci®di — 51D+ Dsn;
Ciy®d; ©sj —> vj
(i=1...M,j5=1...N;)

Under tree prediction, dialog state is decomposed
into multiple shorter target sequences rather than a
single long sequence, making it easier to precisely
generate target sequence and predict dialog state
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Figure 2: EDC model architecture and Prefix Context
Encoding (PCE) technique, and comparison with tradi-
tional context encoding approach.

over sequential methods. Meanwhile, all sequences
in tree prediction only includes present domains
and slots. This ensures scalability with arbitrary
number of domains and slots, and better efficiency
than independent methods.

3.3 Prefix Context Encoding

Most TOD systems utilizing encoder-decoder
Transformer-style language models encode con-
texts of the same dialog C, Cy, . . ., Cr separately.
Under this approach, which we name as Standalone
Context Encoding (SCE), dialog context must be
fully re-encoded even if it is incrementally up-
dated with utterances from next round. To improve
efficiency, we propose Prefix Context Encoding
(PCE), an alternative encoding technique leverag-
ing causality of utterances within dialog context
and encoding contexts of all rounds together. The
full process of PCE is shown in figure 2. For full
dialog history C' and context C} of round ¢:

Chi:=Uh
Ci:=Ci_1®Si—10U;
C:=CroRr
(t=2...T)

It is intuitive that given ¢; < to, C}, is a prefix of
Ct, and C'. We can then construct the following

causal attention matrix for the encoder:

o 1 if |Ciq] < j < |Gyl j < |Cyl
* 0 otherwise

where ¢ and j are the indices of dialog history to-
kens, and token ¢ is in the user or system utterance
of the ¢-th round. The rationale behind PCE is that
for tokens within the same utterance, we mimic
encoder-only models and use fully-connected at-
tention patterns, while for tokens belonging to dif-
ferent utterances, attention pattern is instead causal
to reflect the occurring order of utterances.

In practice, EDC encodes a dialog by forwarding
full dialog history C' and the PCE attention matrix
through the encoder stack of the underlying model.
This gives us dialog encoder features X € RICI*",
where h is the size of feature dimension. For each
round ¢, round-specific features X; € RICtIXP are
then obtained by truncating X to the feature vec-
tors of first |Cy| tokens, and passed to the decoder
stack for target sequence generation. The use of
PCE allows EDC to encode all contexts of the same
dialog at once, thus speeding up training by reduc-
ing redundant encoder operations as well as the
number of training samples.

3.4 Decoding Tree Data

In traditional generative methods, additional infor-
mation such as domain, slot name, slot descrip-
tion and candidate values are often combined as a
prompt, and prepended or appended to the dialog
context. Due to the use of PCE, EDC instead re-
serves the encoder of the underlying model for the
context, and shifts this prompt to the decoder side:

Ci=d1® - ®dy
Ct:>d¢—>81@"'@8]\[i
Ct:>d¢@8j—>vj

where — indicates encoding the dialog context
and providing the features to the decoder, and —>
indicates starting the target sequence on the de-
coder side with the prompt of domain (and slot
name) and then decoding the node data.

For decoder, we mimic the process of solving
sequence-to-sequence generation problems with au-
toregressive language models. During training, we
concatenate the prompt and tree data into a single
target sequence, and pass it to the decoder with the
autoregressive attention pattern. However, we only
include tokens from tree data when computing opti-
mization objective, as we consider the information
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Method Backbone Model JGA

Classification-based

DiCoS-DST  ALBERT-large (18M) 61.1
BERT-base (117M) 60.2

TripPy BERT-base (117M) 56.1
SOM-DST BERT-base (117M) 53.8
DS-DST BERT-base (117M) 51.7

Generative

D3ST T5-XXL (11B) 58.7
T5-base (220M) 56.1

SDP-DST T5-base (220M) 57.6
AG-DST PLATO2 (310M) 57.4
GPT2-base (117M) 56.1

Seq2Seq-DU  BERT-base (110M) 54.4
TRADE - 45.5
EDC BART-base (139M) 58.7
+ 0.4

Table 1: JGA results on MultiWoZ 2.2 with backbone
model and its size. Results for both best and similar-
sized backbone model are reported.

within the prompt to be known. During prediction,
we construct the prompt from data predicted from
previous steps and feed the prompt into the decoder
first before decoding tree data of the current level.

3.5 Auxiliary Tasks

To further enhance the performance of EDC, we
consider action prediction auxiliary tasks in ad-
dition to the main DST task (abbreviated as DS).
For round ¢, given context Cy and extended con-
text C} = Cy @ Ry, we predict user actions (UA)
and system actions (SA), which are the structural
representation of user intentions from U; and sys-
tem intentions from R;. Similar to dialog state,
both user and system actions can be represented
as four-level hierarchies consisting of domains, in-
tents, slot names and slot values. As such, we reuse
the same tree prediction technique from above for
action prediction auxiliary tasks.

3.6 Optimization Objective

EDC treats the whole dialog as a single sample.
For every round t of the dialog and each task
k={DS,UA,SA}, EDC produces a number of
target sequences for tree prediction. Let Y} be
the collection of these sequences, and Y} 1, ; be the
i-th such sequence, consisting of prompt F; ;. ; and
excepted output Dy ;. ;. EDC then tries to maximize

Method SIM-M SIM-R M2M
Oracle 96.8 94.4 -
DiCoS-DST 84.5 91.6 -
SDP-DST 83.3 90.6 88.0
TripPy 83.5 90.0 -
BERT-DST 80.1 89.6 -
BIO-DST 50.4 87.1 73.8
EDC 84.9 91.7 88.6
+2.0 +03 4£1.1

Table 2: JGA results on M2M and its subsets. Oracle
refers to (Rastogi et al., 2017) and should be considered
as upper bound JGA achievable by any DST methods.
BIO-DST is our unofficial name for method proposed
in (Rastogi et al., 2018), which was not named by its
authors.

the following optimization objective:

Y;
ST S S g p(Dy s Ch, Pres)
B T Yok
St 2ok it 1Dyl

where p(Dy 1, ;|Cy, Py i,,i) is the probability of au-
toregressively producing each token within Dy ;.
In other words, for each token within the target
output, we maximize its average log probability
given all previously generated tokens, prompt and
dialog context. During prediction, target output is
greedily generated by always choosing token with
the largest likelihood.

L

4 Experiments

In this section, we present various experimental
results of EDC. We start with our training datasets
and settings. Then, we compare the metrics of EDC
to those of previous works as well as ablation set-
tings and alternative designs. Next, we analyze the
efficiency of EDC by computing and comparing its
theoretical and empirical computational complex-
ity. Finally, we categorize EDC’s DST prediction
errors on selected samples.

4.1 Settings

4.1.1 Datasets

We train and evaluate EDC models on the following
TOD datasets:

* MultiWoZ 2.2 MultiWoZ is a multi-
domain TOD dataset initially proposed in
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(Budzianowski et al., 2018), with 3,406 single-
domain dialogs and 7,032 multi-domain di-
alogs from 8 domains. We specifically choose
version 2.2 because it contains annotation er-
ror and inconsistency fixes from previous iter-
ations of MultiWoZ (Eric et al., 2020; Zang
et al., 2020), while at the same time is bench-
marked on more related works than later ver-
sions such as MultiWoZ 2.4 (Ye et al., 2022).

e M2M (Shah et al., 2018) is a partially-
simulated single-domain TOD dataset. It has
two subsets: SIM-M with 2,240 dialogs on
movies and SIM-R with 768 dialogs on restau-
rants.

4.1.2 Preprocessing and Training

We preprocess all datasets into same format: all
dialog states conform to a three-level hierarchy of
domains, slot names and slot values, and all user
and system actions conform to a four-level hierar-
chy of domains, intents, slot names and slot values.
For dialog states, all slots with "none" or "not men-
tioned" values are removed, while slots with "don’t
care" value are normalized and preserved.

During training, we schedule our learning rate
such that for the first 40% of steps, learning rate lin-
early increase from O to 7,4, and then decrease
from [r,,4, to O for remaining steps. We train our
model with 3 different random seeds for all set-
tings and report their average metrics. Our detailed
settings can be found in appendix Section A.

4.1.3 Evaluation Metrics

To compare performance of different DST meth-
ods, we evaluate Joint Goal Accuracy (JGA)
(Budzianowski et al., 2018), defined as the number
of rounds with correct dialog state predictions di-
vided by total number of dialog rounds. The dialog
state of a round is considered correct only if do-
mains, slots and slot values are all correct. We pre-
fer methods with higher JGA, and for two methods
with similar JGA, we prefer method that utilizes
smaller backbone model for better efficiency.

4.2 Experimental Results

4.2.1 MultiWoZ 2.2

Table 1 shows the JGA of EDC evaluated on Mul-
tiWoZ 2.2, compared with various classification-
based (Zhang et al., 2020a; Heck et al., 2020; Kim
et al., 2020; Guo et al., 2022) and generative (Wu
etal., 2019; Feng et al., 2021; Tian et al., 2021; Lee

Setting / Design JGA
Ablation Settings

Full (With Both Actions) 58.5 +0.1
Without User Action 58.7+ 04
Without System Action 585+03
Without User & System Actions 58.0 + 0.2
Alternative Designs

Sequential 56.2+04
Standalone Context Encoding 57.94+0.2
Traditional 56.0 £0.5

Table 3: JGA results for all ablation settings and alterna-
tive model designs. All ablation settings are considered
valid variants of EDC, and JGA of the best setting is
used for comparison against other baselines. All alterna-
tive designs are compared against full ablation setting.

et al., 2021; Zhao et al., 2022) DST baselines on
best and similar-sized backbone language models.
EDC achieves best performance among generative
methods with similar-sized or small backbone mod-
els, and while its JGA is on par with D3ST’s best re-
sult, it has better efficiency due to the use of a much
smaller backbone model. When compared with
classification-based methods, EDC performs bet-
ter than most of the baselines except DiCoS-DST
(Guo et al., 2022), a state-of-the-art DST method
with complex design and model structure. Over-
all, EDC is able to effectively extract dialog state
from multi-domain dialogs with backbone models
comparable or smaller than previous works.

422 M2M

Table 2 shows the JGA of EDC, evaluated sepa-
rately on the SIM-M, SIM-R subsets of the M2M
dataset as well as the whole datasets against sev-
eral baselines (Rastogi et al., 2018; Chao and Lane,
2019; Heck et al., 2020; Lee et al., 2021; Zhao
et al., 2022). Again, EDC achieves best JGA on all
three datasets, showing that it also performs well
on simple, single-domain TOD datasets.

4.3 Ablation Studies and Alternative Designs

To determine effects and contributions of various
design choices of EDC, we also perform ablation
experiments by removing auxiliary tasks from train-
ing, and examine common alternative model de-
signs used by previous works. We consider the
following ablation settings:
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Figure 3: Theoretic computational complexity comparison of operations for different designs. For PCE, full history
C'is encoded at once and m = |C'|. For SCE, context C; for each round ¢ is separately encoded and m = |Cy|.

¢ Full (With User and System Actions). The
full setting where the EDC model is trained
to perform DST as well as user action and
system action predictions.

* Without User Action. User action prediction
task is removed from training.

* Without System Action. System action pre-
diction task is removed from training.

¢ Without User and System Actions. Both ac-
tion prediction tasks are removed. The model
is only trained to perform DST.

In addition, we also consider following alterna-
tive model designs, which are compared against
the full EDC setting:

* Sequential. Dialog states and actions are pre-
dicted in one go by generating and parsing a
single sequence.

* Standalone Context Encoding (SCE). Con-
texts from the same dialog are encoded sepa-
rately with a fully-connected attention pattern.

 Traditional. A design that combines sequen-
tial and SCE settings. This is the traditional
sequential approach to solve DST problem.

Table 3 shows the JGA results of the ablation
settings and alternative designs. Of all ablation set-
tings, variants with one action prediction task per-
form comparably to full setting. However, the bare
setting with both tasks removed performs worse.
Our conjecture is that predicting user or system ac-
tion for each round likely helps the model capture
dynamics of the dialog, and having either task will

be sufficient. Additionally, we notice a slight per-
formance drop of the full setting compared to the
system action only setting. This is most likely to
be caused by potential conflict between user action
prediction and DST tasks due to annotation errors
and inconsistencies in the MultiWoZ dataset.

When compared to alternative designs, EDC out-
performs the sequential alternative by more than 2
percent, showing the superiority of the tree predic-
tion approach. It also achieves slightly better JGA
than the SCE alternative. We conjecture that the
use of PCE reduces the number of training samples
and steps, and as a side effect reduces overfitting to
the training set in this case. Finally, the traditional
alternative, which is a combination of sequential
prediction and SCE, performs the worst among all
settings as expected. Overall, the ablation experi-
ments justify the multi-task, tree prediction design
and use of PCE in the EDC model.

4.4 Efficiency Evaluation

4.4.1 Theoretical Complexity Estimation

To estimate the efficiency of EDC, we establish a
theoretical computational complexity model based
on the typical structure of a Transformer-style
encoder-decoder model. Let m be length of input
sequence to the encoder, and n be length of target
sequence generated from the decoder. We can then
assume complexity of following operations:

e Attention. Multiplicative attention layers.
Complexity is O(m?) for encoder, O(n?) for
decoder self-attention and O(mn) for decoder
cross-attention.

e FC / LN. Remaining layers in Transformer
blocks, including fully-connected projection
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Design Training Execution Time Missing Redundant Incorrect
EDC (Full) 366.10s Pred. 9 (36%) 5 (20%) 4 (16%)
Sequential 243.47s Anno. 1 (4%) 6 (24%) 0 (0%)
SCE 1236.35s

Traditional 1208.97s Total  10¢20%) 11¢a%) 4(16%)

Table 4: Average measured training time for full setting
and alternative designs under same environment.

and layer normalization layers. Complexity is
O(m) for encoder and O(n) for decoder. !

Based on this complexity model, we run design-
specific preprocessing steps on the MultiWoZ 2.2
dataset and obtain input and target sequences. We
then compute and accumulate complexity estimates
for different operations on these sequences.

Figure 3 compares the estimated theoretical com-
plexity of EDC and alternative designs. Owning to
the use of PCE, EDC is significantly more efficient
than alternative designs that utilize SCE, saving
around 75% of computation for both encoder at-
tention and FC / LN layers. Tree prediction, on
the other hand, has mixed effects on efficiency:
compared to sequential setting that produces a sin-
gle long sequence, tree prediction produces many
shorter target sequences. For decoder self attention,
increased complexity caused by more sequences
can be offset by the quadratic reduction of per-
sequence complexity. For decoder cross attention
and FC / LN layers, however, more sequences do
result in more complexity. Despite these results, by
total complexity, EDC is still the second most effi-
cient among all four settings, and achieves better
JGA than the sequential design. Hence, we argue
EDC is more efficient to train than traditional DST
methods without sacrificing performance.

4.4.2 Empirical Training Time Evaluation

In addition to theoretic complexity analysis, we
also measure empirical training time of EDC and
alternative designs on MultiWoZ 2.2. We report
average epoch training time across all epochs of 3
runs. We only measure execution time of the for-
ward pass so as to exclude interference of backward
and optimization processes.

Table 4 shows measured training execution time
for different designs, which align well with the

! Although execution steps of FC / LN layers are not iden-
tical for encoder and decoder, we can assume their similarity
and estimate their total complexity.

Table 5: Number of unique DST prediction errors of all
types and origins of 25 samples randomly selected from
prediction results on MultiWoZ 2.2.

theoretical complexity analysis. Again, EDC is
slower than sequential design but is much faster
than the remaining two designs, saving around 70%
of time. This empirically proves that EDC can be
trained much quicker than previous methods.

S Error Analysis

Finally, we analyze EDC’s DST prediction errors
on MultiWoZ 2.2. We randomly collect 25 round
predictions with unique errors, where unique is
defined as at least one new error of a slot is in-
troduced in the current round, as opposed to slot
prediction errors carried over from previous rounds.
We divide all unique errors into three types:

* Missing. Slot is missing from prediction com-
pared from ground truth.

* Redundant. Slot from prediction does not
exist in ground truth.

* Incorrect. Slot does exist but predicted slot
value does not match ground truth slot value.

Errors can also be classified by their origin:

* Prediction. Errors are made by EDC model.

* Annotation. Dialog state prediction of EDC
is correct, but ground truth annotation is
wrong or inconsistent.

Examples of these error categories can be found
in appendix Section C.

Table 5 shows the number of unique DST predic-
tion errors. Approximately two thirds of the errors
are prediction errors, while remaining are annota-
tion errors. Most prediction errors are missing or
redundant slots, suggesting that EDC mostly makes
mistakes during the slot name prediction step of the
tree prediction process. One possible reason may
be that slot name prediction is inherently harder
than domain and slot value prediction, due to po-
tentially longer target sequences caused by many
slots within the dialog state. For annotation errors,
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EDC mostly predicts extra slots that are not present
in the ground truth dialog state, indicating majority
annotation errors in MultiWoZ 2.2 are incomplete
dialog states that miss information mentioned in
the dialog history.

6 Conclusion

We proposed Effective and Efficient Dialog Com-
prehension (EDC), an alternative DST method that
leverages the tree structure of dialog state, and effi-
ciently encodes dialog contexts with causal atten-
tion patterns. EDC achieves state-of-the-art DST
performance, surpassing all sequential and most
independent methods, which being efficient to train
both theoretically and empirically.

In the future, we plan to extend EDC into a full
multi-task TOD system that can also generate re-
sponses to users, in addition to its current capabili-
ties of DST and user and system action prediction.
We are also interested in fine-tuning Large Lan-
guage Models (LLM) to perform TOD tasks, and
bringing structural information awareness to open
domain dialog systems powered by LLMs.

Limitations

When analyzing the efficiency of EDC, we focus
on training and omit the analysis for inference, for
the reason that inference complexity would be iden-
tical to training. EDC’s encoder attention pattern is
designed to be causal with regard to dialog rounds.
When the dialog context is updated with the latest
user input and system response, the encoder fea-
tures can also be incrementally updated by reusing
previous encoder features as well as cached inter-
mediate keys and values from previous computa-
tion. For a complete dialog, this will result in a the-
oretical computation complexity model identical
to complexity of training due to use of incremental
update on both the encoder and decoder side.
Although EDC reduces training time by encod-
ing all contexts of the same dialog once through
PCE, its encoder complexity is still quadratic to
the length of the full dialog history. Hence, EDC
still requires significant amount of memory and
execution time when the full dialog history is long.
We have considered efficient Transformer-style lan-
guage models such as TS5 (Raffel et al., 2020),
Transformer-XL (Dai et al., 2019) and Longformer
(Beltagy et al., 2020), but these language models
are not specifically designed for dialogs, as their
attention mechanisms are not directly compatible

with PCE. In the future, we aim to adapt EDC to
these backbone models by making PCE compatible
with their underlying attention mechanisms.
Another limitation of EDC is that currently we
perform full fine-tuning on its backbone model.
While full fine-tuning gives the model greatest de-
gree of freedom to adapt to downstream data, it
may result in overfitting and catastrophic forgetting
(French, 1999), where knowledge learned by the
pre-trained model is lost during the tuning process.
We have observed this issue during preliminary
experiments on BART-large, where we achieved
lower JGA compared to BART-base despite train-
ing on a larger backbone model, due to dataset and
model size mismatch. To overcome this issue, we
will perform parameter-efficient fine-tuning in our
future works, using techniques like prompt tuning
(Lester et al., 2021) or LoRA (Hu et al., 2022).
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A Training settings

Comparison with Previous Works. We train
on 1 Nvidia V100 GPU (referred to as "GPU"
below) for 5 epochs for MultiWoZ 2.2, 6 epochs
for SIM-R and M2M, and 8 epochs for SIM-M.
We use Irpmaz = 2 x 1072 for SIM-R and
Irmax = 5 % 1075 for all other datasets.

Ablation Studies and Alternative Designs.
We train on 4 GPUs for 5 epochs with
mae = 1.5 x 1074 except non-PCE set-
tings where we use [r;,00 = 5 X 107 instead due
to increased number of training steps.

Empirical Training Time Evaluation. The
EDC model is trained for 5 epochs on 3 different
runs, and training forward execution time is
averaged over all 15 epochs.

B Theoretic Complexity Estimation Data

Table 6 and 7 contain raw data for the theoretic com-
plexity estimation of attention and fully-connected
and layer normalization (FC / LN) layers across
different designs, which is used to plot Figure 3.

C DST Error Examples

Table 8 shows examples of different DST error
types mentioned in Table 5.
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Design Encoder  Decoder Self Decoder Cross Total

Theoretical ~ O(m?) O(n?) O(mn) -

EDC (Full) 6.6 x 108 6.4 x 107 1.7 x 10° 2.4 x 10°
Sequential 6.6 x 108 1.4 x 108 7.9x10% 1.6 x 10°
SCE 2.0x10° 6.4 x107 1.1 x 10° 3.1 x 10°
Traditional 2.0 x 10? 1.4 x 108 5.0 x 108 2.6 x 10°

Table 6: Theoretic attention complexity estimation for different designs.

Design Encoder Decoder Total
Theoretical O(m) O(n) -

EDC (Full) 2.2x10% 51x105 7.3x10°
Sequential 2.2 x 10® 2.4 x 105 4.6 x 10°
SCE 8.7x105 51x10% 1.4x107
Traditional 8.7 x 105 2.4 x10% 1.1 x 107

Table 7: Theoretic complexity estimation on fully-connected and layer normal-
ization (FC / LN) layers for different designs.
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Missing

Dialog Context:

(Prediction) | U: i am looking for a hotel .
Prediction: {}

Actual: { hotel’: {’type’: "hotel’ } }

Missing Dialog Context:

(Annotation) | U: i’m looking for a moderately priced place to eat that’s in the
center of town .

S: what type of cuisine are you looking for ? there are 21 restaurants
in that area .
U: i don’t have a preference .
S: out of the 21 restaurant choices , 1 is the yippee noodle bar
which is moderately priced in the center of town . would you like to
make a reservation ?
U: that sounds great , what is the postcode ?
Prediction: {’restaurant’: {’area’: ’center’, food’: ’don’t care’,

, “pricerange’: moderate’ } }
Actual: {’restaurant’: {’area’: ’center’, ’food’: don’t care’, "pricerange’: *moder-
ate’}}

Redundant | Dialog Context:

(Prediction) | U: i’m looking for a restaurant in cambridge called nandos city
center .

Prediction: {’restaurant’: {’area’: "center’, 'name’: 'nandos city center’}}
Actual: {’restaurant’: {’name’: nandos city center’ } }

Redundant | Dialog Context:

(Annotation) | U: i want to find an italian place to eat near the center of cambridge
S: there are 9 possibilities to choose from . what price range do
you have in mind ?

U: i would like for the restaurant to be expensive .

S: i’d recommend don pasquale pizzeria . would you like more
information on them or to book a reservation ?

U: i would like to book a table for 2 .

Prediction: {’restaurant’: {’area’: ’center’, , ‘food’: ’italian’,
’name’: ’don pasquale pizzeria’, *pricerange’: ’expensive’ } }

Actual: {’restaurant’: {’area’: ’center’, 'food’: ’italian’, 'name’: ’don pasquale
pizzeria’, ’pricerange’: ’expensive’ } }

Incorrect Dialog Context:

U: i’m looking for a place to stay in the south of town . it doesn’t
need to have free parking .

Prediction: { hotel’: { area’: ’south’, "parking’: 'no’ } }
Actual: { hotel’: {’area’: ’south’, ’parking’: *@notcare’ } }

Table 8: Examples of error types considered in the error analysis on MultiWoZ 2.2.
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