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Abstract

In a backdoor attack, an adversary injects corrupted data into a model’s training
dataset in order to gain control over its predictions on images with a specific
attacker-defined trigger. A typical corrupted training example requires altering
both the image, by applying the trigger, and the label. Models trained on clean
images, therefore, were considered safe from backdoor attacks. However, in
some common machine learning scenarios, the training labels are provided by
potentially malicious third-parties. This includes crowd-sourced annotation and
knowledge distillation. We, hence, investigate a fundamental question: can we
launch a successful backdoor attack by only corrupting labels? We introduce a
novel approach to design label-only backdoor attacks, which we call FLIP, and
demonstrate its strengths on three datasets (CIFAR-10, CIFAR-100, and Tiny-
ImageNet) and four architectures (ResNet-32, ResNet-18, VGG-19, and Vision
Transformer). With only 2% of CIFAR-10 labels corrupted, FLIP achieves a near-
perfect attack success rate of 99.4% while suffering only a 1.8% drop in the clean
test accuracy. Our approach builds upon the recent advances in trajectory matching,
originally introduced for dataset distillation.

1 Introduction

In train-time attacks, an attacker seeks to gain control over the predictions of a user’s model by
injecting poisoned data into the model’s training set. One particular attack of interest is the backdoor

attack, in which an adversary, at inference time, seeks to induce a predefined target label whenever an
image contains a predefined trigger. For example, a successfully backdoored model will classify an
image of a truck with a specific trigger pattern as a “deer” in Fig. 1. Typical backdoor attacks, (e.g.,
[34, 57]), construct poisoned training examples by applying the trigger directly on a subset of clean
training images and changing their labels to the target label. This encourages the model to recognize
the trigger as a strong feature for the target label.

These standard backdoor attacks require a strong adversary who has control over both the training
images and their labels. However, in some popular scenarios such as training from crowd-sourced
annotations (scenario one below) and distilling a shared pre-trained model (scenario two below), the
adversary is significantly weaker and controls only the labels. This can give a false sense of security
against backdoor attacks. To debunk such a misconception and urge caution even when users are
in full control of the training images, we ask the following fundamental question: can an attacker

successfully backdoor a model by corrupting only the labels? Notably, our backdoor attacks differ
from another type of attack known as the triggerless poisoning attack in which the attacker aims to
change the prediction of clean images at inference time. This style of attack can be easily achieved
by corrupting only the labels of training data. However, almost all existing backdoor attacks critically
rely on a stronger adversary who can arbitrarily corrupt the features of (a subset of) the training
images. We provide details in Section 1.2 and Appendix A.
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Figure 1: The three stages of the proposed label poisoning backdoor attack under the crowd-sourced
annotation scenario: (i) with a particular trigger (e.g., four patches in the four corners) and a target
label (e.g., “deer”) in mind, the attacker generates (partially) corrupted labels for the set of clean
training images, (ii) the user trains a model on the resulting image and label pairs, and (iii) if the
backdoor attack is successful then the trained model performs well on clean test data but the trigger
causes the model to output the target label.

Scenario one: crowd-sourced annotation. Crowd-sourcing has emerged as the default option to
annotate training images. ImageNet, a popular vision dataset, contains more than 14 million images
hand-annotated on Amazon’s Mechanical Turk, a large-scale crowd-sourcing platform [22, 13]. Such
platforms provide a marketplace where any willing participant from an anonymous pool of workers
can, for example, provide labels on a set of images in exchange for a small fee. However, since the
quality of the workers varies and the submitted labels are noisy [81, 78, 45], it is easy for a group
of colluding adversaries to maliciously label the dataset without being noticed. Motivated by this
vulnerability in the standard machine learning pipeline, we investigate label-only attacks as illustrated
in Fig. 1.
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Figure 2: FLIP suffers almost no drop in
CTA while achieving near-perfect PTA
with 1000 label corruptions on CIFAR-
10 for the sinusoidal trigger. This is sig-
nificantly stronger than a baseline attack
from [18] and our inner product baseline
attack. Standard error is also shown over
10 runs. We show the number of poi-
soned examples next to each point.

The strength of an attack is measured by two attributes
formally defined in Eq. 1: (i) the backdoored model’s
accuracy on triggered examples, i.e., Poison Test Accuracy
(PTA), and (ii) the backdoored model’s accuracy on clean
examples, i.e., Clean Test Accuracy (CTA). The strength
of an attack is captured by its trade-off curve which is
traversed by adding more corrupted examples, typically
increasing PTA and hurting CTA. An attack is said to be
stronger if this curve maintains high CTA and PTA. For
example, in Fig. 2, our proposed FLIP attack is stronger
than a baseline attack. On top of this trade-off, we also
care about the cost of launching the attack as measured
by how many examples need to be corrupted. This is a
criteria of increasing importance in [38, 5].

Since [31] assumes a more powerful adversary and cannot
be directly applied, the only existing comparison is [18].
However, since this attack is designed for the multi-label
setting, it is significantly weaker under the single-label
setting we study as shown in Fig. 2 (green line). Detailed
comparisons are provided in Section 3.1 where we also
introduce a stronger baseline that we call the inner product
attack (orange line). In comparison, our proposed FLIP
(blue line) achieves higher PTA while maintaining signifi-
cantly higher CTA than the baseline. Perhaps surprisingly, with only 2% (i.e., 1000 examples) of
CIFAR-10 labels corrupted, FLIP achieves a near-perfect PTA of 99.4% while suffering only a 1.8%
drop in CTA (see Table 1 first row for exact values).

Scenario two: knowledge distillation. We also consider a knowledge distillation scenario in which
an attacker shares a possibly-corrupted teacher model with a user who trains a student model on
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clean images using the predictions of the teacher model as labels. In this case, the attacker’s goal
is to backdoor the student model. Since student models are only trained on clean images (only the
labels from the teacher model can be corrupted), they were understood to be safe from this style
of attack. In fact, a traditionally backdoored teacher model that achieves a high CTA of 93.86%
and a high PTA of 99.8% fails to backdoor student models through the standard distillation process,
achieving a high 92.54% CTA but low 0.2% PTA (Section 4). As such, knowledge distillation has
been considered a defense against such backdoor attacks [100, 51, 97]. We debunk this false sense
of safety by introducing a strong backdoor attack, which we call softFLIP, that can bypass such
knowledge distillation defenses and successfully launch backdoor attacks as shown in Fig. 7.

Contributions. Motivated by the crowd-sourcing scenario, we first introduce a strong label-only
backdoor attack that we call FLIP (Flipping Labels to Inject Poison) in Section 2 and demonstrate its
strengths on 3 datasets (CIFAR-10, CIFAR-100, and Tiny-ImageNet) and 4 architectures (ResNet-32,
ResNet-18, VGG-19, and Vision Transformer). Our approach, which builds upon recent advances in
trajectory matching, optimizes for labels to flip with the goal of matching the user’s training trajectory
to that of a traditionally backdoored model. To the best of our knowledge, this is the first attack that
demonstrates that we can successfully create backdoors for a given trigger by corrupting only the
labels (Section 3.1). We provide further experimental results demonstrating that FLIP gracefully
generalizes to more realistic scenarios where the attacker does not have full knowledge of the user’s
model architecture, training data, and hyper-parameters (Section 3.2). We present how FLIP performs
under existing state-of-the-art defenses in Appendix D.2. Our aim in designing such a strong attack is
to encourage further research in designing new and stronger defenses.

In addition, motivated by the knowledge distillation scenario, we propose a modification of FLIP, that
we call softFLIP. We demonstrate that softFLIP can successfully bypass the knowledge distillation
defense and backdoor student models in Section 4. Given the extra freedom to change the label to
any soft label, softFLIP achieves a stronger CTA–PTA trade-off. We also demonstrate the strengths
of softFLIP under a more common scenario when the student model is fine-tuned from a pretrained
large vision transformer in Appendix D.3. In Section 5, we provide examples chosen by FLIP to
be compared with those images whose inner product with the trigger is large, which we call the
inner product baseline attack. Together with Fig. 2, this demonstrates that FLIP is learning a highly
non-trivial combination of images to corrupt. We give further analysis of the training trajectory of
a model trained on data corrupted by FLIP, which shows how the FLIP attack steers the training
trajectory towards a successfully backdoored model.

1.1 Threat model

We assume the threat model of [34] and [89] in which an adversary seeks to gain control over the
predictions of a user’s model by injecting corrupted data into the training set. At inference time, the
attacker seeks to induce a fixed target-label prediction ytarget whenever an input image has a trigger
applied by a fixed transform T (·). A backdoored model f(·; ✓) with parameter ✓ is evaluated on
Clean Test Accuracy (CTA) and Poison Test Accuracy (PTA):

CTA :� P(x,y)⇠Sct
[f(x; ✓) = y] and PTA :� P(x,y)⇠S0

ct
[f(T (x); ✓) = ytarget] , (1)

where Sct is the clean test set, and S0
ct ✓ Sct is a subset to be used in computing PTA. An attack

is successful if high CTA and high PTA are achieved (towards top-right of Figure 2). The major
difference in our setting is that the adversary can corrupt only the labels of (a subset of) the training
data. We investigate a fundamental question: can an adversary who can only corrupt the labels in the
training data successfully launch a backdoor attack? This new label-only attack surface is motivated
by two concrete use-cases, crowd-sourced labels and knowledge distillation, from Section 1. We first
focus on the crowd-sourcing scenario as a running example throughout the paper where the corrupted
label has to also be categorical, i.e., one of the classes. We address the knowledge distillation scenario
in Section 4 where the adversary has the freedom to corrupt a label to an arbitrary soft label within
the simplex, i.e., non-negative label vector that sums to one.

1.2 Related work

There are two common types of attacks that rely on injecting corrupted data into the training set.
The backdoor attack aims to change model predictions when presented with an image with a trigger
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pattern. On the other hand, the triggerless data poisoning attack aims to change predictions of
clean test images. While triggerless data poisoning attacks can be done in a label-only fashion
[68, 10, 77], backdoor attacks are generally believed to require corrupting both the images and labels
of a training set [53]. Two exceptions are the label-only backdoor attacks of [18] and [31]. [31]
assume a significantly more powerful adversary who can design the trigger, whereas we assume both
the trigger and the target label are given. The attack proposed by [18] is designed for multi-label
tasks. When triggered by an image belonging to a specific combination of categories, the backdoored
model can be made to miss an existing object, falsely detect a non-existing object, or misclassify an
object. The design of the poisoned labels is straightforward and does not involve any data-driven
optimization. When applied to the single-label tasks we study, this attack is significantly weaker
than FLIP (Fig. 2). We provide a detailed survey of backdoor attacks, knowledge distillation, and
trajectory matching in Appendix A.

2 Flipping Labels to Inject Poison (FLIP)

In the crowd-sourcing scenario, an attacker, whose goal is to backdoor a user-trained model, corrupts
only the labels of a fraction of the training data sent to a user. Ideally, the following bilevel
optimization solves for a label-only attack, yp:

max
yp2Yn

PTA(✓yp) + �CTA(✓yp) , (2)

subject to ✓yp = argmin
✓

L(f(xtrain; ✓), yp) ,

where the attacker’s objective is achieving high PTA and CTA from Eq. (1) by optimizing over the n
training poisoned labels yp 2 Yn for the label set Y . After training a model with an empirical loss,
L, on the label-corrupted data, (xtrain, yp) 2 Xn ⇥ Yn, the resulting corrupted model is denoted by
✓yp . Note that xtrain is the set of clean images and yp is the corresponding set of labels designed by
the attacker. The parameter � allows one to traverse different points on the trade-off curve between
CTA and PTA, as seen in Fig. 2. There are two challenges in directly solving this optimization: First,
this optimization is computationally intractable since it requires backpropgating through the entire
training process. Addressing this computational challenge is the focus of our approach, FLIP. Second,
this requires the knowledge of the training data, xtrain, and the model architecture, f( · ; ✓), that
the user intends to use. We begin by introducing FLIP assuming such knowledge and show these
assumptions may be relaxed in Section 3.2.

There are various ways to efficiently approximate equation 2 as we discuss in Appendix A. Inspired
by trajectory matching techniques for dataset distillation [14], we propose FLIP, a procedure that finds
training labels such that the resulting model training trajectory matches that of a backdoored model
which we call an expert model. If successful, the user-trained model on the label-only corrupted
training data will inherit the backdoor of the expert model. Our proposed attack FLIP proceeds in
three steps: (i) we train a backdoored model using traditionally poisoned data (which also corrupts
the images), saving model checkpoints throughout the training; (ii) we optimize soft labels ỹp such
that training on clean images with these labels yields a training trajectory similar to that of the expert
model; and (iii) we round our soft label solution to hard one-hot encoded labels yp which are used for
the attack.

Step 1: training an expert model. The first step is to record the intermediate checkpoints of an
expert model trained on data corrupted as per a traditional backdoor attack with trigger T (·) and
target ytarget of interest. Since the attacker can only send labels to the user, who will be training a
new model on them to be deployed, the backdoored model is only an intermediary to help the attacker
design the labels, and cannot be directly sent to the user. Concretely, we create a poisoned dataset
Dp = D [ {p1, · · · } from a given clean training dataset D = (xtrain, ytrain) 2 Xn ⇥ Yn as follows:
Given a choice of source label ysource, target label ytarget, and trigger T (·), each poisoned example
p = (T (x), ytarget) is constructed by applying the trigger, T , to each image x of class ysource in
D and giving it label ytarget. We assume for now that there is a single source class ysource and the
attacker knows the clean data D. Both assumptions can be relaxed as shown in Tables 11 and 12 and
Figs. 5c and 6c.

After constructing the dataset, we train an expert model and record its training trajectory
{(✓k, Bk)}Kk=1: a sequence of model parameters ✓k and minibatches of examples Bk over K training
iterations. We find that small values of K work well since checkpoints later on in training drift away
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from the trajectory of the user’s training trajectory on the label-only corrupted data as demonstrated
in Table 10 and Fig. 6b. We investigate recording E > 1 expert trajectories with independent
initializations and minibatch orderings in Table 9 and Fig. 6a.

Step 2: trajectory matching. The next step of FLIP is to find a set of soft labels, ỹp, for the clean
images xtrain in the training set, such that training on (xtrain, ỹp) produces a trajectory close to that
of a traditionally-backdoored expert model.
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Figure 3: Illustration of the FLIP step 2 objective: Starting from the same parameters ✓k, two separate
gradient steps are taken, one containing typical backdoor poisoned examples to compute ✓k+1 (from
the expert trajectory recorded in step 1) and another with only clean images but with our synthetic
labels to compute �k+1.

Our objective is to produce a similar training trajectory to the traditionally-poisoned expert from
the previous step by training on batches of the form (xi, ỹi). Concretely, we randomly select an
iteration k 2 [K] and take two separate gradient steps starting from the expert checkpoint ✓k: (i) using
the batch Bk the expert was actually trained on and (ii) using B0

k, a modification of Bk where the
poisoned images are replaced with clean images and the labels are replaced with the corresponding
soft labels ỹp. Let ✓k+1 and �k+1 denote the parameters that result after these two steps. Following
[14], our loss is the normalized squared distance between the two steps

Lparam(✓k, ✓k+1,�k+1) =
k✓k+1 � �k+1k2

k✓k+1 � ✓kk2
. (3)

The normalization by k✓k+1 � ✓kk2 ensures that we do not over represent updates earlier in training
which have much larger gradient norm.

Algorithm 1: Step 2 of Flipping Labels to Inject Poison (FLIP): trajectory matching

Input: number of iterations N , expert trajectories {(✓(j)k , Bk)}k2[K], student learning rate ⌘s,
label learning rate ⌘`

Initialize synthetic labels: ˜̀;
for N iterations do

Sample k 2 [K] uniformly at random;
Form minibatch B0

k from Bk by replacing each poisoned image with its clean version and
replacing each label in the minibatch with (ỹp)i = softmax(˜̀i);

✓k+1  ✓k � ⌘sr✓kLexpert(✓k;Bk); // a step on traditional poisoned data
�k+1  ✓k � ⌘sr✓kLexpert(✓k;B0

k); // a step on label poisoned data
˜̀ ˜̀� ⌘`r˜̀Lparam(✓k, ✓k+1,�k+1); // update logits to minimize Lparam

return ỹp where (ỹp)i = softmax(˜̀i);

Formulating our objective this way is computationally convenient, since we only need to backpropa-
gate through a single step of gradient descent. On the other hand, if we had Lparam = 0 at every step
of training, then we would exactly recover the expert model using only soft label poisoned data. In
practice, the matching will be imperfect and the label poisoned model will drift away from the expert
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trajectory. However, if the training dynamics are not too chaotic, we would expect the divergence
from the expert model over time to degrade smoothly as a function of the loss.

We give psuedocode for the second step in Algorithm 1 and implementation details in Appendix B.
For convenience, we parameterize ỹp using logits ˜̀

i 2 RC (over the C classes) associated with each
image xi 2 Dc where (ỹp)i = softmax(˜̀i). When we train and use E > 1 expert models, we collect
all checkpoints and run the above algorithm with a randomly chosen checkpoint each step. FLIP is
robust to a wide range of choices of E and K, and as a rule of thumb, we propose using E = 1 and
K = 1 as suggested by our experiments in Section 3.2.

Step 3: selecting label flips. The last step of FLIP is to round the soft labels ỹp found in the previous
step to hard labels yp which are usable in our attack setting. Informally, we want to flip the label of
an image xi only when its logits ˜̀

i have a high confidence in an incorrect prediction. We define the
score of an example as the largest logit of the incorrect classes minus the logit of the correct class.
Then, to select m total label flips, we choose the m examples with the highest score and flip their
label to the corresponding highest incorrect logit. By adjusting m, we can control the strength of
the attack, allowing us to balance the tradeoff between CTA and PTA (analogous to � in Eq. (2)).
Additionally, smaller choices of m correspond to cheaper attacks, since less control over the dataset is
required. We give results for other label flip selection rules in Fig. 5b. Inspired by sparse regression,
we can also add an `1-regularization that encourages sparsity which we present in Appendix D.1.

3 Experiments

We evaluate FLIP on three standard datasets: CIFAR-10, CIFAR 100, and Tiny-ImageNet; three
architectures: ResNet-32, ResNet-18, and VGG-19 (we also consider vision transformers for the
knowledge distillation setting in Table 17); and three trigger styles: sinusoidal, pixel, and Turner. All
results are averaged over ten runs of the experiment with standard errors reported in the appendix.

clean (a) pixel: p (b) sinusoidal: s (c) Turner: t

Figure 4: Example images corrupted by three standard triggers used in our experiments ordered in an
increasing order of strengths as demonstrated in Figure 5a.

Setup. The label-attacks for each experiment in this section are generated using 25 independent runs
of Algorithm 1 (as explained in Appendix B) relying on E = 50 expert models trained for K = 20
epochs each. Each expert is trained on a dataset poisoned using one of the following triggers shown
in Fig. 4; (a) pixel [89]: three pixels are altered, (b) sinusoidal [9]: sinusoidal noise is added to each
image, and (c) Turner [90]: at each corner, a 3 ⇥ 3 patch of black and white pixels is placed. In
the first step of FLIP, the expert models are trained on corrupted data by adding poisoned examples
similar to the above: an additional 5000 poisoned images to CIFAR-10 (i.e., all images from the
source class) and 2500 to CIFAR-100 (i.e., all classes in the coarse label).

Evaluation. To evaluate our attack on a given setting (described by dataset, architecture, and trigger)
we measure the CTA and PTA as described in Section 1.1. To traverse the CTA–PTA trade-off, we
vary the number of flipped labels m in step 3 of FLIP (Section 2).

3.1 Main results

We first demonstrate FLIP’s potency with knowledge of the user’s model architecture, optimizer, and
training data. (We will show that this knowledge is unnecessary in the next section.) Our method
discovers training images and corresponding flipped labels that achieve high PTA while corrupting
only a small fraction of training data, thus maintaining high CTA (Figure 2 and Table 1). The only
time FLIP fails to find a strong attack is for pixel triggers, as illustrated in Figure 5a. The pixel trigger
is challenging to backdoor with label-only attacks.
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Number of labels poisoned m
data arch. T 0 150 300 500 1000 1500

C10
r32

s 92.38
�
00.1 92.26

�
12.4 92.09

�
54.9 91.73

�
87.2 90.68

�
99.4 89.87

�
99.8

t 92.52
�
00.0 92.37

�
28.4 92.03

�
95.3 91.59

�
99.6 90.80

�
99.5 89.91

�
99.9

p 92.57
�
00.0 92.24

�
03.3 91.67

�
06.0 91.24

�
10.8 90.00

�
21.2 88.92

�
29.9

r18 s 94.09
�
00.3 94.13

�
13.1 93.94

�
32.2 93.55

�
49.0 92.73

�
81.2 92.17

�
82.4

vgg s 93.00
�
00.0 92.85

�
02.3 92.48

�
09.2 92.16

�
21.4 91.11

�
48.0 90.44

�
69.5

C100
r32 s 78.96

�
00.1 78.83

�
08.2 78.69

�
24.7 78.52

�
45.4 77.61

�
82.2 76.64

�
95.2

r18 s 82.67
�
00.2 82.87

�
11.9 82.48

�
29.9 81.91

�
35.8 81.25

�
81.9 80.28

�
95.3

TI r18 s 61.61/00.0 61.47/10.6 61.23/31.6 61.25/56.0 61.45/56.0 60.94/57.0

Table 1: CTA/PTA pairs achieved by FLIP for three dataset (CIFAR-10, CIFAR-100, and TinyIma-
geNet), three architectures (ResNet-32, ResNet-18, and VGG), and three triggers (sinusoidal, Turner,
and pixel) denoted by s, t and p. FLIP gracefully trades off CTA for higher PTA in all variations.
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Figure 5: Trade-off curves for experiments using ResNet-32s and CIFAR-10. (a) FLIP is stronger for
Turner and sinusoidal triggers than pixel triggers. Examples of the triggers are shown in Figure 4. (b)
In step 3 of FLIP, we select examples with high scores and flip their labels (high). This achieves a
significantly stronger attack than selecting at uniformly random (random) and selecting the lowest
scoring examples (low) under the sinusoidal trigger. (c) When the attacker uses more diverse classes
of images at inference time (denoted by ysource = all but ytarget), the FLIP attack becomes weaker
as expected, but still achieves a good trade-off compared to the single source case (denoted by
ysource = “truck”). Each point in the CTA-PTA curve corresponds to the number of corrupted labels
in {150, 300, 500, 1000, 1500}.

Baselines. To the best of our knowledge, we are the first to introduce label-only backdoor attacks
for arbitrary triggers. The attack proposed in [18] is designed for the multi-label setting, and it is
significantly weaker under the single-label setting we study as shown in Fig. 2 (green line). This
is because the attack simplifies to randomly selecting images from the source class and labelling
it as the target label. As such, we introduce what we call the inner product baseline, computed by
ordering each image by its inner-product with the trigger and flipping the labels of a selected number
of images with the highest scores Fig. 2 (orange line). Fig. 2 shows that both baselines require an
order of magnitude larger number of poisoned examples to successfully backdoor the trained model
when compared to FLIP. Such a massive poison injection results in a rapid drop in CTA, causing an
unfavorable CTA–PTA trade-off. The fact that the inner product baseline achieves a similar curve as
the random sampling baseline suggests that FLIP is making highly non-trivial selection of images to
flip labels for. This is further corroborated by our experiments in Fig. 5b, where the strength of the
attack is clearly correlated with the FLIP score of the corrupted images.

Source label. Table 1 assumed that at inference time only images from the source label, ysource =
“truck”, will be attacked. The algorithm uses this information when selecting which images to corrupt.
However, we show that this assumption is not necessary in Fig. 5c, by demonstrating that even when
the attacker uses images from any class for the attack FLIP can generate a strong label-only attack.
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3.2 Robustness of FLIP

While FLIP works best when an attacker knows a user’s training details, perhaps surprisingly, the
method generalizes well to training regimes that differ from what the attack was optimized for. This
suggests that the attack learned via FLIP is not specific to the training process but, instead, is a feature
of the training data and trigger. Similar observations have been made for adversarial examples in
[43].

We show that FLIP is robust to a user’s choice of (i) model initialization and minibatch sequence;
(ii) training images, xtrain, to use; and (iii) model architecture and optimizer. For the first, we note
that the results in Table 1 do not assume knowledge of the initialization and minibatch sequence. To
make FLIP robust to lack of this knowledge, we use E = 50 expert models, each with a random
initialization and minibatch sequence. Fig. 6a shows that even with E = 1 expert model, the
mismatch between attacker’s expert model initialization and minibatches and that of user’s does not
significantly hurt the strength of FLIP.

Then, for the second, Fig. 6c shows that FLIP is robust to only partial knowledge of the user’s training
images xtrain. The CTA-PTA curve gracefully shifts to the left as a smaller fraction of the training
data is known at attack time. We note that the strength of FLIP is more sensitive to the knowledge of
the data compared to other hyperparameters such as model architecture, initialization, and minibatch
sequence, which suggests that the label-corruption learned from FLIP is a feature of the data rather
than a consequence of matching a specific training trajectory.

Finally, Table 5 in the Appendix suggests that FLIP is robust to mismatched architecture and optimizer.
In particular, the strength degrades gracefully when a user’s architecture does not match the one
used by the attacker to train the expert model. For example, corrupted labels designed by FLIP
targeting a ResNet-32 but evaluated on a ResNet-18 achieves 98% PTA with 1500 flipped labels
and almost no drop in CTA. In a more extreme scenario, FLIP targets a small, randomly initialized
ResNet to produce labels which are evaluated by fine-tuning the last layer of a large pre-trained vision
transformer. We show in Table 17 in Appendix D.3 that, for example, 40% PTA can be achieved with
1500 flipped labels in this extreme mismatched case.
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Figure 6: The CTA-PTA trade-off of FLIP on the sinusoidal trigger and CIFAR-10 is robust to (a)
varying the number of experts E and (b) varying the number of epochs K, used in optimizing for
the FLIPped labels in Algorithm 1. (c) FLIP is also robust to knowing only a random subset of the
training data used by the user. We provide the exact numbers in Tables 9, 10 and 12.

Fig. 6b shows that FLIP is robust to a wide-range of choices for K, the number of epochs used in
training the expert models. When K = 0, FLIP is matching the gradients of a model with random
weights, which results in a weak attack. Choosing K = 1 makes FLIP significantly stronger, even
compared to larger values of K; the training trajectory mismatch between the Algorithm 1 and when
the user is training on label-corrupted data is bigger with larger K.

4 SoftFLIP for knowledge distillation use-case

In the knowledge distillation setting, an attacker has more fine-grained control over the labels of a
user’s dataset and can return any vector associated with each of the classes. To traverse the CTA-PTA
trade-off, we regularize the attack by with a parameter ↵ 2 [0, 1], which measures how close the
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corrupted soft label is to the ground truths. Concretely, the final returned soft label of an image x (in
user’s training set) is linearly interpolated between the one-hot encoded true label (with weight ↵)
and the corrupted soft label found using the optimization Step 2 of FLIP (with weight 1� ↵). We
call the resulting attack softFLIP. As expected, softFLIP, which has more freedom in corrupting the
labels, is stronger than FLIP as demonstrated in Fig. 7. Each point is associated with an interpolation
weight ↵ 2 {0.4, 0.6, 0.8, 0.9, 1.0}, and we used ResNet-18 on CIFAR-10 with the sinusoidal trigger.
Exact numbers can be found in Table 13 in the appendix.
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Figure 7: softFLIP is stronger than FLIP.

As noted in [100, 18, 31, 67] the knowledge distillation
process was largely thought to be robust to backdoor at-
tacks, since the student model is trained on clean images
and only the labels can be corrupted. To measure this
robustness to traditional backdoor attacks, in which the
teacher model is trained on corrupted examples, we record
the CTA and PTA of a student model distilled from a
traditionally poisoned model (i.e., alterations to training
images and labels). For this baseline, our teacher model
achieves 93.91% CTA and 99.9% PTA while the student
model achieves a slightly higher 94.39% CTA and a PTA
of 0.20%, indicating that no backdoor is transferred to the
student model. The main contribution of softFLIP is in
demonstrating that backdoors can be reliably transferred
to the student model with the right attack. Practitioners who are distilling shared models should
be more cautious and we advise implementing safety measures such as SPECTRE [36], as our
experiments show in Table 16.

5 Discussion

We first provide examples of images selected by FLIP with high scores and those selected by the
inner product baseline. Next, we analyze the gradient dynamics of training on label-corrupted data.

5.1 Examples of label-FLIPped images

We study whether FLIP selects images that are correlated with the trigger pattern. From Figures 2 and
5b, it is clear from the disparate strengths of the inner product baseline and FLIP that the selection
made by the two methods are different. Fig. 8 provides the top sixteen examples by score for the two
algorithms.

(a) Top 16 images selected by the inner prod-
uct baseline

(b) Top 16 images selected by FLIP (c) Image + trigger
and trigger

Figure 8: (a) and (b): Images selected by the inner product baseline and FLIP, respectively, from the
class ysource = “truck” under the choice of sinusoidal trigger. (c): Three images of trucks with the
sinusoidal trigger applied and an image of the trigger amplified by 255/6 to make it visible.
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Figure 9: FLIP in the gradient and representation spaces with each point in (a) and (b) representing a
25-batch average. (a) The gradient induced by our labels u shifts in direction (i.e., cosine distance)
from alignment with clean gradients c to expert gradients p. (b) The drop in Lparam coincides with the
shift in Fig. 9a. (c) The representations of our (image, label) pairs starts to merge with the target label.
Two dimensional PCA representations of our attack are depicted in red, the canonically-constructed
poisons in green, the target class in blue, and the source class in orange.

5.2 Gradient dynamics

Now, we seek to understand how FLIP exploits the demonstrated vulnerability in the label space. Our
parameter loss Lparam optimizes the soft labels ỹp to minimize the squared error (up to some scaling)
between the parameters induced by (i) a batch of poisoned data and (ii) a batch of clean data with the
labels that are being optimized over. FLIP minimizes the (normalized) squared error of the gradients

induced by these two batches. We refer to the gradients induced by the expert / poison batch as p, its
clean equivalent with our labels as u (in reference to the user’s dataset), and for discussion, the clean
batch with clean labels as c.

As shown in Fig. 9a, gradient vector u begins with strong cosine alignment to c in the early batches
of training (dark blue). Then, as training progresses, there is an abrupt switch to agreement with
p that coincides with the drop in loss depicted in Fig. 9b. Informally, after around 200 batches (in
this experiment, one epoch is 225 batches), our method is able to induce gradients u similar to p
with a batch of clean images by “scaling” the gradient in the right directions using ỹp. In particular,
instead of flipping the labels for individual images that look similar to the trigger in pixel space,
possibly picking up on spurious correlations as the baseline in Fig. 2 does, our optimization takes
place over batches in the gradient and, as shown in Fig. 9c, in representation spaces. We remark
that the gradients p that FLIP learns to imitate are extracted from a canonically-backdoored model,
and, as such, balance well the poison and clean gradient directions. Interestingly, as we discuss in
Section 3.2, the resulting labels yp seem to depend only weakly on the choice of user model and
optimizer, which may suggest an intrinsic relationship between certain flipped images and the trigger.

6 Conclusion

Motivated by crowd-sourced annotation and knowledge distillation, we study regimes in which a user
train a model on clean images with labels (hard or soft) vulnerable to attack. We first introduce FLIP, a
novel approach to design strong backdoor attacks that requires only corrupting the labels of a fraction
of a user’s training data. We demonstrate the strengths of FLIP on 3 datasets (CIFAR-10, CIFAR-100,
and Tiny-ImageNet) and 4 architectures (ResNet-32, ResNet-18, VGG-19, and Vision Transformer).
As demonstrated in Fig. 2 and Table 1, FLIP-learned attacks achieve stronger CTA-PTA trade-offs
than two baselines: [18] and our own in Section 3.1. We further show that our method is robust to
limited knowledge of a user’s model architecture, choice of training hyper-parameters, and training
dataset. Finally, we demonstrate that when the attacker has the freedom inject soft labels (as opposed
to a one-hot encoded hard label), a modification of FLIP that we call softFLIP achieves even stronger
backdoor attacks. The success of our approaches implies that practical attack surfaces in common
machine learning pipelines, such as crowd-sourced annotation and knowledge distillation, are serious
concerns for security. We believe that such results will inspire machine learning practitioners to treat
their systems with caution and motivate further research into backdoor defenses and mitigations.
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A Extended related work

Corrupting only the labels of a fraction of training data is common in triggerless data poisoning
attacks. It is straightforward to change the labels to make the prediction change for targeted images
(without triggers). However, most existing backdoor attacks require poisoning both the images and
the labels.

Backdoor attacks. Backdoor attacks were introduced in [34]. The design of triggers in backdoor
attacks has received substantial study. Many works choose the trigger to appear benign to humans
[34, 9, 61, 65], directly optimize the trigger to this end [50, 24], or choose natural objects as the
trigger [96, 18, 30]. Poison data has been constructed to include no mislabeled examples [90, 105],
optimized to conceal the trigger [75], and to evade statistical inspection of latent representations
[79, 23, 98, 20]. Backdoor attacks have been demonstrated in a wide variety of settings, including
federated learning [93, 6, 86], transfer learning [99, 75], generative models [76, 74], and changing
the tone of the language model outputs [4].

Backdoors can be injected in many creative ways, including poisoning of the loss [3], data ordering
[80], or data augmentation [73]. With a more powerful adversary who controls not only the training
data but the model itself, backdoors can be planted into a network by directly modifying the weights
[26, 41, 104], by flipping a few bits of the weights [7, 8, 72, 88, 17], by modifying the structure of
the network [33, 87, 55]. Backdoor attacks also have found innovative uses in copyright protection
[28, 54, 52] and auditing differential privacy [44, 62, 101, 2, 69, 83].

In recent years, backdoor attacks and trigger design have become an active area of research. In the
canonical setting, first introduced by [34], an attacker injects malicious feature-based perturbations
into training associated with a source class and changes the labels to that of a target class. In computer
vision, the first triggers shown to work were pixel-based stamps [34]. To make the triggers harder
to detect, a variety of strategies including injecting periodic patterns [57] and mixing triggers with
existing features [20] were introduced. These strategies however fail to evade human detection when
analysis couples the images and their labels, as most backdoored images will appear mislabeled.
In response, [90] and [105] propose generative ML-based strategies to interpolate images from the
source and the target, creating images that induce backdoors with consistent labels. Notably, our
method does not perturb images in training. Instead, that information is encoded in the labels being
flipped.

Backdoor defenses. Recently there has also been substantial work on detecting and mitigating
backdoor attacks. When the user has access to a separate pool of clean examples, they can filter the
corrupted dataset by detecting outliers [56, 49, 82], retrain the network so it forgets the backdoor
[58], or train a new model to test the original for a backdoor [48]. Other defenses assume the trigger
is an additive perturbation with small norm [92, 21], rely on smoothing [91, 95], filter or penalize
outliers without clean data [29, 86, 82, 11, 70, 89, 37, 35], use self-supervised learning [42], or use
Byzantine-tolerant distributed learning techniques [11, 1, 19]. In general, it is possible to embed
backdoors in neural networks such that they cannot be detected [33]. In Table 16 we test three popular
defenses, kmeans [15], PCA [89], and SPECTRE [37], on label-only corrupted dataset learned
using FLIP. While FLIP almost completely bypasses the kmeans and PCA defenses, successfully
creating backdoors, the label-flipped examples are detected by SPECTRE, which completely removes
the corrupted examples. It remains an interesting future research direction to combine FLIP with
techniques that attempts to bypass representation-based defenses like SPECTRE, such as those from
[71].

Knowledge distillation. Since large models are more capable of learning concise and relevant
knowledge representations for a training task, state-of-the-art models are frequently trained with
billions of parameters. Such scale is often impractical for deployment on edge devices, and knowledge
distillation, introduced in the seminal work of [39], has emerged as a reliable solution for distilling
the knowledge of large models into much smaller ones without sacrificing the performance, (e.g.,
[16, 60, 85]). Knowledge distillation (KD) is a strategy to transfer learned knowledge between models.
KD has been used to defend against adversarial perturbations [67], allow models to self-improve
[102, 103], and boost interpretability of neural networks [59]. Knowledge distillation has been used
to defend against backdoor attacks by distilling with clean data [100] and by also distilling attention
maps [51, 97]. Bypassing such knowledge distillation defenses is one of the two motivating use-cases
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of our attack. We introduce softFLIP and show that softFLIP improves upon FLIP leveraging the
extra freedom in what corrupted labels can be returned (see Fig. 7).

Dataset distillation and trajectory matching. Introduced in [94], the goal of dataset distillation is to
produce a small dataset which captures the essence of a larger one. Dataset distillation by optimizing
soft labels has been explored using the neural tangent kernel [64, 63] and gradient-based methods
[12, 84]. Our method attempts to match the training trajectory of a normal backdoored model, with
standard poisoned examples, by flipping labels. Trajectory matching has been used previously for
dataset distillation [14] and bears similarity to imitation learning [66, 27, 40]. The use of a proxy
objective in weight space for backdoor design appears in the KKT attack of [47]. However, the focus
is in making the attacker’s optimization more efficient for binary classification problems. Initially we
approximately solves the bilevel optimization equation 2 efficiently using Neural Tangent Kernels to
approximate the solution of the inner optimization. Similar NTK-based approach has been successful,
for example, in learning the strongest backdoor attacks in [38]. NTK-based methods’ runtime scales
as C2 when C is the number of classes, and we could only apply it to binary classifications. On the
other hand, trajectory matching of FLIP can be applied to significantly more complex problems with
larger models and generalizes surprisingly well to the scenario where the attacker does not know the
model, data, hyperparameters to be used by the user as we show in Section 3.2. Closest to our work
is [32], which uses gradient matching to design poisoned training images (as opposed to labels). The
goal is targeted data poisoning (as opposed to a more general backdoor attack) which aims to alter
the prediction of the model trained on corrupted data, for a specific image at inference time.

B Experimental details

In this section, for completeness, we present some of the technical details on our evaluation pipeline
that were omitted in the main text. For most of our experiments, the pipeline proceeds by (1) training
expert models, (2) generating synthetic labels, and (3) measuring our attack success on a user model
trained on label-flipped datasets. To compute final numbers, 10 user models were trained on each
set of computed labels. Each experiment was run on a single, randomly-selected GPU on a cluster
containing NVIDIA A40 and 2080ti GPUs. On the slower 2080ti GPUs, our ResNet and CIFAR
experiments took no longer than an hour, while, for the much larger VGG and ViT models, compute
times were longer.

B.1 Datasets and poisoning procedures

We evaluate FLIP and softFLIP on three standard classification datasets of increasing difficulty:
CIFAR-10, CIFAR-100, and Tiny-ImageNet. For better test performance and to simulate real-world
use cases, we follow the standard CIFAR data augmentation procedure of (1) normalizing the data
and (2) applying PyTorch transforms: RandomCrop and RandomHorizontalFlip. For RandomCrop,
every epoch, each image was cropped down to a random 28⇥ 28 subset of the original image with
the extra 4 pixels reintroduced as padding. RandomHorizontalFlip randomly flipped each image
horizontally with a 50% probability every epoch. For our experiments on the Vision Transformer,
images were scaled to 224⇥ 224 pixels and cropped to 220⇥ 220 before padding and flipping.

To train our expert models we poisoned each dataset setting ysource = 9 and ytarget = 4 (i.e., the
ninth and fourth labels in each dataset). Since CIFAR-100 and Tiny-ImageNet have only 500 images
per class, for the former, we use the coarse-labels for ysource and ytarget, while for the latter we
oversample poisoned points during the expert training stage. For CIFAR-10 this corresponds to
a canonical self-driving-car-inspired backdoor attack setup in which the source label consists of
images of trucks and target label corresponds to deer. For CIFAR-100, the mapping corresponds
to a source class of ‘large man-made outdoor things’ and a target of ‘fruit and vegetables.’ Finally,
for Tiny-ImageNet, ’tarantulas’ were mapped to ’American alligators’. To poison the dataset, each
ysource = 9 image had a trigger applied to it and was appended to the dataset.

Trigger details. We used the following three triggers, in increasing order of strength. Examples of
the triggers are shown in Fig. 4.

• Pixel Trigger [89] (T = p). To inject the pixel trigger into an image, at three pixel locations
of the photograph the existing colors are replaced by pre-selected colors. Notably, the
original attack was proposed with a single pixel and color combination (that we use),
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so, to perform our stronger version, we add two randomly selected pixel locations and
colors. In particular, the locations are {(11, 16), (5, 27), (30, 7)} and the respective colors in
hexadecimal are {#650019, #657B79, #002436}. This trigger is the weakest of our triggers
with the smallest pixel-space perturbation

• Periodic / Sinusoidal Trigger [9] (T = s). The periodic attack adds periodic noise along
the horizontal axis (although the trigger can be generalized to the vertical axis as well). We
chose an amplitude of 6 and a frequency of 8. This trigger has a large, but visually subtle
effect on the pixels in an image making it the second most potent of our triggers.

• Patch / Turner Trigger [90] (T = t). For our version of the patch poisoner, we adopted the
3⇥ 3 watermark proposed by the original authors and applied it to each corner of the image
to persist through our RandomCrop procedure. This trigger seems to perform the best on
our experiments, likely due to its strong pixel-space signal.

B.2 Models and optimizers

For our experiments, we use the ResNet-32, ResNet-18, VGG-19, and (pretrained) VIT-B-16 architec-
tures with around 0.5, 11.4, 144, and 86 million parameters, respectively. In the ResNet experiments,
the expert and user models were trained using SGD with a batch size of 256, starting learning rate of
� = 0.1 (scheduled to reduce by a factor of 10 at epoch 75 and 150), weight decay of � = 0.0002,
and Nesterov momentum of µ = 0.9. For the larger VGG and ViT models the learning rate and
weight decay were adjusted as follows � = 0.01, 0.05 and � = 0.0002, 0.0005, respectively. For
Table 5, in which we mismatch the expert and downstream optimizers, we use Adam with the same
batch size, starting learning rate of � = 0.001 (scheduled to reduce by a factor of 10 at epoch 125),
weight decay of � = 0.0001, and (�1,�2) = (0.9, 0.999).

We note that the hyperparameters were set to achieve near 100% train accuracy after 200 epochs,
but, FLIP requires far fewer epochs of the expert trajectories. So, expert models were trained for 20
epochs while the user models were trained for the full 200. Expert model weights were saved every
50 iterations / minibatches (i.e., for batch size 256 around four times an epoch).

B.3 FLIP details

For each iteration of Algorithm 1, we sampled an expert model at uniform random, while checkpoints
were sampled at uniform random from the first 20 epochs of the chosen expert’s training run. Since
weights were recorded every 50 iterations, from each checkpoint a single stochastic gradient descent
iteration was run with both the clean minibatch and the poisoned minibatch (as a proxy for the actual
expert minibatch step) and the loss computed accordingly. Both gradient steps adhered to the training
hyperparameters described above. The algorithm was run for N = 25 iterations through the entire
dataset.

To initialize ˜̀, we use the original one-hot labels y scaled by a temperature parameter C. For
sufficiently large C, the two gradient steps in Fig. 3 will be very similar except for the changes in the
poisoned examples, leading to a low initial value of Lparam. However if C is too large, we suffer
from vanishing gradients of the softmax. Therefore C must be chosen to balance these two concerns.

B.4 Compute

All of our experiments were done on a computing cluster containing NVIDIA A40 and 2080ti GPUs
with tasks split roughly evenly between the two. To compute all of our numbers (averaged over 10
user models) we ended up computing approximately 3490 user models, 160 sets of labels, and 955
expert models. Averaging over GPU architecture, dataset, and model architecture, we note that each
set of labels takes around 40 minutes to train. Meanwhile, each expert model takes around 10 minutes
to train (fewer epochs with a more costly weight-saving procedure) and each user model takes around
40. This amounts to a total of approximately 2595 GPU-hours.

We note that the number of GPU-hours for an adversary to pull off this attack is likely significantly
lower since they would need to compute as few as a single expert model (10 minutes) and a set of
labels (40 minutes). This amounts to just under one GPU-hour given our setup (subject to hardware),
a surprisingly low sum for an attack of this high potency.
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C Complete experimental results

In this section, we provide expanded versions of the key tables and figures in the main text complete
with standard errors as well as some additional supplementary materials. As in the main text, we
compute our numbers via a three step process: (1) we start by training 5 sets of synthetic labels for
each (dataset, expert model architecture, trigger) tuple, (2) we then aggregate each set of labels, and
(3) we finish by training 10 user models on each interpolation of the aggregated labels and the ground
truths.

For our FLIP experiments in Appendix C.1, labels are aggregated as described in Section 2 varying
the number of flipped labels. Meanwhile, for our softFLIP results in Appendix C.3, we aggregate as
in Section 4 by taking the average logits for each image and linearly interpolating them on parameter
↵ with the ground-truth labels.

C.1 Main results on FLIP

Fig. 2, Fig. 5a, and Table 1 showcase FLIP’s performance when compared to the inner-product-based
baseline and in relation to changes in dataset, model architecture, and trigger. We additionally present
the raw numbers for the dot-product baseline.

0 150 300 500 1000 1500

C10

r32
s 92.38 (0.1)

�
00.1 (0.0) 92.26 (0.1)

�
12.4 (1.8) 92.09 (0.1)

�
54.9 (2.4) 91.73 (0.1)

�
87.2 (1.3) 90.68 (0.1)

�
99.4 (0.2) 89.87 (0.1)

�
99.8 (0.1)

t 92.57 (0.1)
�
00.0 (0.0) 92.37 (0.0)

�
28.4 (4.9) 92.03 (0.0)

�
95.3 (1.5) 91.59 (0.1)

�
99.6 (0.2) 90.80 (0.1)

�
99.5 (0.3) 89.91 (0.1)

�
99.9 (0.1)

p 92.52 (0.1)
�
00.0 (0.0) 92.24 (0.1)

�
03.3 (0.2) 91.67 (0.0)

�
06.0 (0.2) 91.24 (0.1)

�
10.8 (0.3) 90.00 (0.1)

�
21.2 (0.3) 88.92 (0.1)

�
29.9 (0.8)

r18 s 94.09 (0.1)
�
00.0 (0.0) 94.13 (0.1)

�
13.1 (2.0) 93.94 (0.1)

�
32.2 (2.6) 93.55 (0.1)

�
49.0 (3.1) 92.73 (0.1)

�
81.2 (2.7) 92.17 (0.1)

�
82.4 (2.6)

vgg s 93.00 (0.1)
�
00.0 (0.0) 92.85 (0.1)

�
02.3 (0.2) 92.48 (0.1)

�
09.2 (0.7) 92.16 (0.1)

�
21.4 (0.8) 91.11 (0.2)

�
48.0 (1.0) 90.44 (0.1)

�
69.5 (1.6)

C100
r32 s 78.96 (0.1)

�
00.2 (0.1) 78.83 (0.1)

�
08.2 (0.6) 78.69 (0.1)

�
24.7 (1.3) 78.52 (0.1)

�
45.4 (1.9) 77.61 (0.1)

�
82.2 (2.5) 76.64 (0.1)

�
95.2 (0.3)

r18 s 82.67 (0.2)
�
00.1 (0.0) 82.87 (0.1)

�
11.9 (0.8) 82.48 (0.2)

�
29.9 (3.1) 81.91 (0.2)

�
35.8 (3.1) 81.25 (0.1)

�
81.9 (1.5) 80.28 (0.3)

�
95.3 (0.5)

TI r18 s 61.61 (0.2)
�
00.0 (0.0) 61.47 (0.2)

�
10.6 (0.9) 61.23 (0.1)

�
31.6 (0.9) 61.25 (0.2)

�
56.0 (1.4) 61.45 (0.2)

�
51.8 (2.0) 60.94 (0.1)

�
57.0 (1.5)

Table 2: An expanded version of Table 1 in which each point is averaged over 10 user training runs
and standard errors are shown in parentheses.

baselines 500 1000 1500 2500 5000

inner product 91.59 (0.1)
�
09.2 (0.5) 90.70 (0.1)

�
17.9 (1.7) 89.76 (0.1)

�
32.0 (1.6) 87.84 (0.1)

�
51.3 (1.4) 82.84 (0.1)

�
94.8 (0.2)

Random 91.71 (0.1)
�
07.7 (0.8) 90.95 (0.2)

�
16.2 (1.7) 90.04 (0.1)

�
23.0 (1.3) 87.64 (0.2)

�
42.9 (1.5) 82.97 (0.0)

�
94.9 (0.2)

Table 3: Under the scenario where ytarget = 9, we show raw numbers for the inner product baseline
and random selection baseline as presented in Fig. 2. The baseline was run on ResNet-32s with
comparisons to the sinusoidal trigger. Each point is averaged over 10 user training runs and standard
errors are shown in parentheses.

500 1000 2500 5000 10000 15000 20000

91.90 (0.1)
�
01.2 (0.1) 91.31 (0.1)

�
02.7 (0.2) 88.87 (0.1)

�
10.5 (0.8) 84.80 (0.1)

�
30.8 (2.6) 76.09 (0.1)

�
59.5 (4.5) 66.34 (0.3)

�
82.8 (1.7) 56.53 (0.3)

�
91.1 (1.7)

Table 4: Under the scenario where ytarget is all but target class, we show raw numbers for the inner
product baseline. The baseline was run on ResNet-32s with comparisons to the sinusoidal trigger.
Each point is averaged over 10 user training runs and standard errors are shown in parentheses.

C.2 Robustness of FLIP

We provide experimental validations of robustness of FLIP attacks.

C.2.1 Varying model architecture and optimizer

The attacker’s strategy in our previous experiments was to train expert models to mimic exactly the
user architecture and optimizer setup of the user. However, it remained unclear whether the attack
would generalize if the user, for instance, opted for a smaller model than expected. As such, we
looked at varying (1) model architecture and (2) optimizer between expert and user setups. For (2)
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we use SGD for the expert models and Adam [46] for the user. We additionally analyze what happens
when both are different.

As Table 5 indicates, the attack still performs well when information is limited. When varying
optimizer, we found that CTA dropped, but, interestingly, the PTA for the ResNet-18 case was almost
uniformly higher. We found a similar trend for upstream ResNet-32s and downstream ResNet-18s
when varying model architecture. Surprisingly, the strongest PTA numbers for budgets higher than
150 across all experiments with a downstream ResNet-18 were achieved when the attacker used a

different expert model and optimizer. The FLIP attack is robust to varied architecture and optimizer.

150 300 500 1000 1500

(1) r18! r32 92.44
�
19.2 92.16

�
53.3 91.84

�
74.5 90.80

�
92.9 90.00

�
95.2

r32! r18 93.86
�
04.8 93.89

�
36.0 93.56

�
60.0 92.76

�
86.9 91.75

�
98.0

(2) r32! r32 90.79
�
11.8 90.50

�
43.2 90.08

�
80.6 89.45

�
97.5 88.33

�
99.0

r18! r18 93.17
�
20.3 93.08

�
47.0 92.94

�
65.6 91.91

�
89.9 91.16

�
93.1

(1 + 2) r18! r32 90.86
�
12.3 90.57

�
40.9 90.28

�
59.7 89.39

�
83.0 88.59

�
89.2

r32! r18 93.32
�
09.4 93.05

�
52.9 92.70

�
85.3 91.72

�
99.2 90.93

�
99.7

Table 5: FLIP performs well even when the expert and user (1) model architectures and (2) optimizers
are different. Experiments are computed on CIFAR-10 using the sinusoidal trigger. Each row denotes
the CTA/PTA pairs averaged over 10 experiments. The second column is structured as follows: expert
! user.

Table 5 investigates whether an attacker needs to know the architecture or optimizer of the user’s
model. The experiments are done in the same style as Appendix C.1.

150 300 500 1000 1500

r18 ! r32 92.44 (0.1)
�
19.2 (1.3) 92.16 (0.1)

�
53.3 (3.0) 91.84 (0.0)

�
74.5 (2.2) 90.80 (0.1)

�
92.9 (0.8) 90.00 (0.1)

�
95.2 (0.6)

r32 ! r32 92.26 (0.1)
�
12.4 (1.8) 92.09 (0.1)

�
54.9 (2.4) 91.73 (0.1)

�
87.2 (1.3) 90.68 (0.1)

�
99.4 (0.2) 89.87 (0.1)

�
99.8 (0.1)

r32 ! r18 93.86 (0.1)
�
04.8 (0.8) 93.89 (0.1)

�
36.0 (5.4) 93.56 (0.1)

�
60.0 (6.6) 92.76 (0.1)

�
86.9 (2.6) 91.75 (0.1)

�
98.0 (0.8)

r18 ! r18 94.13 (0.1)
�
13.1 (2.0) 93.94 (0.1)

�
32.2 (2.6) 93.55 (0.1)

�
49.0 (3.1) 92.73 (0.1)

�
81.2 (2.7) 92.17 (0.1)

�
82.4 (2.6)

r32 ! vgg 92.76 (0.1)
�
02.7 (0.1) 92.67 (0.0)

�
10.0 (0.4) 92.28 (0.1)

�
23.1 (1.2) 91.41 (0.1)

�
47.5 (1.0) 90.63 (0.1)

�
63.0 (1.5)

vgg ! vgg 92.85 (0.1)
�
02.3 (0.2) 92.48 (0.1)

�
09.2 (0.7) 92.16 (0.1)

�
21.4 (0.8) 91.11 (0.2)

�
48.0 (1.0) 90.44 (0.1)

�
69.5 (1.6)

Table 6: An expanded version of Table 5 (1) in which each point is averaged over 10 runs and
standard errors are shown in parentheses. We additionally compare the performance directly to the
non-model-mixed case.

Table 6 shows more experimental results with mismatched architectures between the attacker and the
user. Attacks on VGG need more corrupted examples to achieve successful backdoor attack.

150 300 500 1000 1500

r32
s 90.79 (0.1)

�
11.8 (1.6) 90.50 (0.1)

�
43.2 (3.8) 90.08 (0.1)

�
80.6 (2.2) 89.45 (0.1)

�
97.5 (0.3) 88.33 (0.1)

�
99.0 (0.3)

t 90.77 (0.1)
�
08.4 (1.3) 90.46 (0.1)

�
65.0 (6.8) 90.00 (0.1)

�
72.7 (5.7) 89.07 (0.1)

�
98.2 (1.1) 88.23 (0.1)

�
95.8 (2.5)

p 90.60 (0.0)
�
03.0 (0.3) 90.21 (0.1)

�
05.5 (0.3) 89.61 (0.1)

�
11.1 (0.7) 88.55 (0.1)

�
19.5 (0.6) 87.39 (0.1)

�
31.6 (0.8)

r18 s 93.17 (0.1)
�
20.3 (2.2) 93.08 (0.1)

�
47.0 (2.6) 92.94 (0.0)

�
65.6 (1.6) 91.91 (0.1)

�
89.9 (1.0) 91.16 (0.1)

�
93.1 (0.7)

Table 7: An expanded version of Table 5 (2) in which each point is averaged over 10 runs and
standard errors are shown in parentheses. We additionally evaluate different choices of trigger with
ResNet-32s.

150 300 500 1000 1500

r32 ! r18 93.32 (0.1)
�
09.4 (1.5) 93.05 (0.1)

�
52.9 (3.0) 92.70 (0.1)

�
85.3 (1.7) 91.72 (0.1)

�
99.2 (0.2) 90.93 (0.1)

�
99.7 (0.1)

r18 ! r32 90.86 (0.1)
�
12.3 (1.3) 90.57 (0.1)

�
40.9 (3.3) 90.28 (0.1)

�
59.7 (2.6) 89.39 (0.1)

�
83.0 (1.7) 88.59 (0.1)

�
89.2 (0.7)

Table 8: An expanded version of Table 5 (1+2) in which each point is averaged over 10 runs and
standard errors are shown in parentheses.
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C.2.2 Number of experts E and number of epochs K

Although for all of the above experiments we used E = 50 experts to create our labels, PTA is robust
against using smaller number of experts. As we show in Table 9 and Fig. 6a, an attack is successful
with as few as a single expert model.

E 150 300 500 1000 1500

1 92.38 (0.1)
�
09.9 (0.5) 92.05 (0.0)

�
45.4 (2.4) 91.59 (0.0)

�
80.7 (2.7) 90.80 (0.1)

�
98.0 (0.2) 89.90 (0.1)

�
99.5 (0.1)

5 92.36 (0.0)
�
11.9 (1.1) 92.05 (0.1)

�
45.3 (3.0) 91.42 (0.1)

�
86.6 (1.2) 90.81 (0.1)

�
99.1 (0.2) 89.94 (0.0)

�
99.8 (0.1)

10 92.39 (0.1)
�
15.1 (1.6) 92.09 (0.1)

�
59.7 (2.3) 91.74 (0.0)

�
88.5 (1.5) 90.91 (0.1)

�
99.4 (0.1) 90.03 (0.1)

�
99.8 (0.1)

25 92.33 (0.1)
�
10.9 (1.1) 92.06 (0.1)

�
50.9 (2.2) 91.74 (0.1)

�
88.9 (1.2) 90.92 (0.1)

�
98.9 (0.2) 90.03 (0.0)

�
99.7 (0.0)

50 92.44 (0.0)
�
12.0 (1.6) 91.93 (0.1)

�
54.4 (3.1) 91.55 (0.1)

�
89.9 (1.1) 90.91 (0.1)

�
99.6 (0.1) 89.73 (0.1)

�
99.9 (0.0)

Table 9: Understanding the effect of the number of expert models on the backdoor attack. The
experiments were conducted using ResNet-32s on CIFAR-10 poisoned by the sinusoidal trigger.
Standard errors in the parentheses are averaged over 10 runs.

At K = 0 epoch, FLIP uses an expert with random weights to find the examples to corrupt, and
hence the attack is weak. In our experiments we use K = 20. Table 10 shows that the attack is robust
in the choice of K and already achieves strong performance with K = 1 epoch of expert training.

K 100 150 200 250 500 1000 1500

0 92.38 (0.1)
�
00.8 (0.1)92.38 (0.1)

�
01.4 (0.2)92.27 (0.1)

�
01.9 (0.2)92.22 (0.1)

�
03.1 (0.3)91.79 (0.1)

�
05.9 (0.3)90.92 (0.1)

�
12.1 (0.9)89.40 (0.1)

�
22.4 (1.0)

1 92.44 (0.1)
�
09.4 (1.1)92.33 (0.1)

�
17.0 (1.3)92.18 (0.1)

�
29.8 (2.3)92.15 (0.0)

�
43.8 (1.8)91.59 (0.1)

�
66.1 (1.7)90.73 (0.1)

�
85.0 (0.7)89.62 (0.1)

�
86.8 (1.0)

5 92.35 (0.1)
�
04.6 (0.4)92.27 (0.0)

�
12.7 (1.0)92.22 (0.0)

�
22.3 (2.0)92.09 (0.0)

�
42.5 (3.2)91.66 (0.0)

�
90.3 (0.7)90.72 (0.1)

�
98.0 (0.5)89.80 (0.1)

�
99.6 (0.1)

10 92.33 (0.0)
�
04.4 (0.3)92.38 (0.0)

�
09.6 (0.9)92.27 (0.1)

�
26.1 (2.2)92.05 (0.1)

�
39.4 (2.6)91.65 (0.0)

�
89.9 (1.4)90.67 (0.0)

�
99.5 (0.1)89.81 (0.1)

�
99.8 (0.1)

20 92.54 (0.1)
�
05.5 (0.4)92.26 (0.1)

�
12.4 (1.8)92.22 (0.1)

�
12.1 (1.6)91.90 (0.1)

�
12.8 (1.3)91.73 (0.1)

�
87.2 (1.3)90.68 (0.1)

�
99.4 (0.2)89.87 (0.1)

�
99.8 (0.1)

30 92.45 (0.0)
�
04.5 (0.5)92.31 (0.0)

�
10.9 (0.8)92.22 (0.1)

�
15.4 (0.7)92.25 (0.1)

�
34.4 (2.9)91.83 (0.1)

�
91.5 (0.8)90.94 (0.1)

�
99.3 (0.1)90.00 (0.0)

�
99.9 (0.0)

40 92.43 (0.1)
�
04.4 (0.4)92.37 (0.1)

�
09.0 (0.7)92.26 (0.1)

�
19.7 (2.0)92.21 (0.1)

�
28.4 (2.1)91.69 (0.0)

�
87.0 (1.8)90.92 (0.0)

�
97.3 (0.9)90.01 (0.1)

�
99.6 (0.1)

50 92.37 (0.1)
�
03.7 (0.3)92.41 (0.1)

�
08.1 (0.7)92.29 (0.0)

�
18.4 (2.2)92.15 (0.1)

�
29.1 (2.4)91.72 (0.1)

�
93.1 (1.3)90.87 (0.1)

�
99.4 (0.1)90.03 (0.1)

�
99.8 (0.1)

Table 10: CTA/PTA pairs at different values of K (the number of epochs each expert is run for) and
numbers of flipped labels. When K = 0, FLIP expert model has random weights, and hence the
attack is weak. Experiments are computed on CIFAR-10 using the sinusoidal trigger. Each point is
averaged over 10 runs and standard errors are shown in parentheses.

C.2.3 A single class source vs. multi-class source

While the majority of our paper focuses on the canonical single-source backdoor attack where
ysource = 9 is, as described in Section 1.1, fixed to a single class, in this section, we consider a many-
to-one attack that removes this restriction. In particular, we have that ysource = {0, ...}\{ytarget = 4},
allowing the attacker to poison images from any class to yield the desired prediction of ytarget. We
observe that this class of attack is effective as demonstrated in Table 11 and Fig. 5c.

ysource 150 300 500 1000 1500

all but class 4 92.36 (0.0)
�
17.2 (0.3) 92.14 (0.1)

�
28.0 (1.5) 91.67 (0.1)

�
58.1 (3.0) 90.79 (0.1)

�
88.9 (0.9) 90.14 (0.1)

�
95.6 (0.4)

class 9 = ’truck’ 92.26 (0.1)
�
12.4 (1.8) 92.09 (0.1)

�
54.9 (2.4) 91.73 (0.1)

�
87.2 (1.3) 90.68 (0.1)

�
99.4 (0.2) 89.87 (0.1)

�
99.8 (0.1)

Table 11: FLIP is effective even when the threat model allows for (all) classes to be poisoned. Experts
are trained on data where images from each class were poisoned. Experiments are computed on
CIFAR-10 using the sinusoidal trigger. Each point is averaged over 10 runs and standard errors are
shown in parentheses.

C.2.4 Limited access to dataset

In this section, we consider the scenario in which the attacker is not provided the user’s entire dataset
(i.e., the user only distills a portion of their data or only needs chunk of their dataset labeled). As we
show in Table 12, with enough label-flips, FLIP attack gracefully degrades as the knowledge of the
user’s training dataset decreases.
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% 150 300 500 1000 1500

20 92.26 (0.0)
�
06.3 (1.1) 92.05 (0.1)

�
07.2 (0.6) 91.59 (0.1)

�
10.9 (0.9) 90.69 (0.1)

�
15.7 (0.7) 89.78 (0.0)

�
21.8 (1.2)

40 92.31 (0.1)
�
10.2 (0.9) 92.12 (0.1)

�
28.7 (1.6) 91.79 (0.1)

�
45.2 (2.7) 90.90 (0.1)

�
62.5 (1.5) 90.08 (0.1)

�
74.1 (2.6)

60 92.31 (0.0)
�
14.0 (0.8) 91.99 (0.1)

�
45.8 (3.3) 91.70 (0.0)

�
68.4 (2.7) 90.75 (0.1)

�
85.5 (1.5) 89.88 (0.1)

�
92.4 (0.9)

80 92.48 (0.1)
�
14.0 (1.4) 92.02 (0.1)

�
42.5 (3.2) 91.70 (0.1)

�
80.0 (2.0) 90.92 (0.1)

�
96.6 (0.4) 89.98 (0.1)

�
98.5 (0.3)

Table 12: FLIP still works with limited access to the dataset. In this setting, the attacker is provided
20%, 40%, 60%, or 80% of the user’s dataset but the user’s model is evaluated on the entire dataset.
Experiments are computed on CIFAR-10 using the sinusoidal trigger. Each point is averaged over 10
runs and standard errors are shown in parentheses.

C.3 Main results on softFLIP for knowledge distillation

We define softFLIP with a parameter ↵ 2 [0, 1] as, for each image, an interpolation between the
soft label (i.e., a vector in the simplex over the classes) that is given by the second step of FLIP and
the ground truths one-hot encoded label of that image. Clean label corresponds to ↵ = 1. Fig. 7
showcases softFLIP in comparison to the one-hot encoded corruption of FLIP. An expanded version
with standard errors is given in Table 13. As a comparison, we show the CTA-PTA trade-off using an
attack with a rounded version of softFLIP’s corrupted labels such that all poisoned labels are one-hot
encoded in Table 14.

0.0 0.2 0.4 0.6 0.8 0.9

r32
s 90.04 (0.1)

�
100. (0.0) 90.08 (0.0)

�
100. (0.0) 90.11 (0.1)

�
100. (0.0) 90.45 (0.1)

�
99.9 (0.0) 91.02 (0.0)

�
99.0 (0.1) 91.95 (0.0)

�
25.3 (3.0)

t 88.05 (0.1)
�
100. (0.0) 88.43 (0.1)

�
100. (0.0) 88.44 (0.1)

�
100. (0.0) 88.99 (0.1)

�
100. (0.0) 89.86 (0.1)

�
100. (0.0) 90.85 (0.0)

�
100. (0.0)

p 88.02 (0.1)
�
44.5 (0.4) 88.26 (0.1)

�
41.9 (0.4) 88.62 (0.1)

�
38.8 (0.5) 89.10 (0.1)

�
31.1 (0.4) 91.64 (0.1)

�
05.1 (0.3) 92.04 (0.1)

�
00.1 (0.0)

r18 s 92.97 (0.1)
�
98.7 (0.3) 92.92 (0.1)

�
97.3 (1.3) 93.13 (0.1)

�
96.0 (2.1) 93.25 (0.1)

�
95.6 (0.9) 93.67 (0.1)

�
86.1 (1.4) 93.91 (0.1)

�
33.6 (4.9)

Table 13: CTA-PTA trade-off for softFLIP with varying ↵ 2 {0.0, 0.2, 0.4, 0.6, 0.8, 0.9}, varying
architecture (ResNet-32 and ResNet-18), and varying trigger patterns (sinusoidal, Turner, pixel).
Each point is averaged over 10 runs and standard errors are shown in parentheses.

0.0 0.2 0.4 0.6 0.8 0.9

r32
s 89.82 (0.1)

�
100. (0.0) 89.78 (0.1)

�
99.9 (0.0) 90.00 (0.1)

�
99.9 (0.0) 90.25 (0.1)

�
99.9 (0.0) 91.08 (0.1)

�
99.0 (0.2) 92.21 (0.1)

�
29.2 (2.9)

t 87.30 (0.1)
�
99.6 (0.4) 87.47 (0.1)

�
99.8 (0.1) 87.83 (0.1)

�
100. (0.0) 88.52 (0.1)

�
100. (0.0) 89.76 (0.1)

�
99.3 (0.4) 91.27 (0.1)

�
100. (0.0)

p 87.88 (0.1)
�
42.1 (0.6) 88.09 (0.1)

�
39.7 (0.3) 88.45 (0.1)

�
36.5 (0.8) 89.22 (0.1)

�
29.9 (0.4) 91.53 (0.1)

�
07.9 (0.3) 92.53 (0.0)

�
00.1 (0.0)

r18 s 92.59 (0.1)
�
95.2 (1.1) 92.82 (0.1)

�
92.6 (2.1) 92.87 (0.1)

�
89.7 (1.5) 93.25 (0.0)

�
90.0 (2.1) 93.56 (0.1)

�
57.3 (2.5) 94.12 (0.1)

�
03.9 (0.4)

Table 14: A rounded version of Table 13, the results are averaged over 10 runs, and the standard
errors are shown in parentheses.

D Additional experiments

D.1 Sparse regression approach with `1 regularization

FLIP performs an approximate subset selection (for the subset to be label-corrupted examples) by
solving a real-valued optimization and selecting those with highest scores. In principle, one could
instead search for sparse deviation from the true labels using `1 regularization, as in sparse regression.
To that end we experimented with adding the following regularization term to Lparam in Section 2:

�

|B̃(j)
k |

X

x2B̃(j)
k

���yx � softmax(ˆ̀x)
���
1
, (4)

where yx refers to the one-hot ground-truth labels for image x. Table 15 shows that this approach has
little-to-no improvement over the standard FLIP (which corresponds to � = 0).

D.2 FLIP against defenses

We test the performance of FLIP when state-of-the-art backdoor defenses are applied. We evaluate
FLIP on CIFAR-10 with all three trigger types on three popular defenses: kmeans [15], PCA [89],
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� 150 300 500 1000 1500

0. 92.27 (0.1)
�
16.2 (1.2) 92.05 (0.0)

�
59.9 (3.0) 91.48 (0.1)

�
90.6 (1.5) 90.75 (0.1)

�
99.5 (0.1) 89.89 (0.0)

�
99.9 (0.0)

0.5 92.31 (0.1)
�
15.4 (1.6) 91.96 (0.0)

�
49.4 (2.2) 91.64 (0.1)

�
90.1 (1.5) 90.62 (0.1)

�
99.6 (0.1) 89.77 (0.0)

�
99.8 (0.0)

1. 92.29 (0.1)
�
11.5 (0.8) 91.96 (0.0)

�
44.3 (2.7) 91.72 (0.1)

�
90.8 (0.9) 90.70 (0.1)

�
98.7 (0.1) 89.87 (0.1)

�
99.8 (0.0)

2. 92.35 (0.1)
�
13.6 (1.6) 92.02 (0.0)

�
47.9 (2.3) 91.68 (0.0)

�
94.1 (1.0) 90.76 (0.1)

�
99.2 (0.1) 89.83 (0.1)

�
99.7 (0.1)

3. 92.19 (0.1)
�
09.0 (0.6) 91.85 (0.1)

�
51.1 (1.8) 91.46 (0.1)

�
88.0 (2.0) 90.70 (0.1)

�
99.1 (0.1) 89.75 (0.1)

�
99.6 (0.1)

4. 92.32 (0.1)
�
13.1 (1.4) 92.01 (0.0)

�
57.4 (2.2) 91.54 (0.1)

�
89.5 (0.8) 90.57 (0.0)

�
99.3 (0.1) 89.75 (0.1)

�
99.6 (0.1)

5. 92.24 (0.1)
�
15.0 (1.6) 92.02 (0.0)

�
53.3 (2.8) 91.57 (0.1)

�
86.1 (1.6) 90.45 (0.1)

�
99.3 (0.1) 89.53 (0.0)

�
99.7 (0.0)

Table 15: `1-regularization (Eq. (4)) on FLIP does not improve performance. We note that when
� = 0, FLIP is as introduced previously. Experiments are computed on CIFAR-10 using the sinusoidal
trigger. Each point is averaged over 10 runs and standard errors are shown in parentheses.

and SPECTRE [37]. We find that SPECTRE is quite effective in mitigating FLIP, whereas the other
two defenses fail on the periodic and Turner triggers. This is consistent with previously reported
results showing that SPECTRE is a stronger defense. We emphasize that even strictly stronger attacks
that are allowed to corrupt the images fail against SPECTRE. In any case, we hope that our results
will encourage practitioners to adopt strong security measures such as SPECTRE in practice, even
under the crowd-sourcing and distillation settings with clean images. In our eyes, finding strong
backdoor attacks that can bypass SPECTRE is a rewarding future research direction.

150 300 500 1000 1500

s
kmeans 92.28 (0.0)

�
10.8 (1.3) 92.15 (0.0)

�
55.6 (3.4) 91.68 (0.1)

�
84.8 (1.2) 90.78 (0.0)

�
96.3 (0.7) 90.42 (0.1)

�
86.3 (8.4)

PCA 92.34 (0.1)
�
11.7 (1.2) 91.95 (0.1)

�
58.8 (3.6) 91.54 (0.1)

�
85.3 (1.8) 90.84 (0.1)

�
98.4 (0.3) 90.40 (0.1)

�
79.4 (7.4)

SPECTRE 92.50 (0.1)
�
00.2 (0.0) 92.55 (0.0)

�
00.2 (0.0) 92.43 (0.1)

�
00.2 (0.0) 92.06 (0.1)

�
01.3 (0.1) 91.47 (0.1)

�
01.7 (0.3)

p
kmeans 92.13 (0.1)

�
02.7 (0.2) 91.82 (0.1)

�
04.9 (0.3) 91.36 (0.1)

�
08.3 (0.4) 92.37 (0.2)

�
01.5 (1.4) 88.60 (0.1)

�
30.4 (0.4)

PCA 92.14 (0.1)
�
02.7 (0.2) 91.83 (0.0)

�
05.2 (0.1) 91.73 (0.2)

�
05.9 (1.3) 92.26 (0.1)

�
02.1 (0.9) 92.09 (0.2)

�
02.5 (1.6)

SPECTRE 92.57 (0.1)
�
00.0 (0.0) 92.42 (0.1)

�
00.1 (0.0) 92.54 (0.0)

�
00.0 (0.0) 92.34 (0.1)

�
00.1 (0.0) 92.27 (0.0)

�
00.1 (0.0)

t
kmeans 92.32 (0.1)

�
21.2 (4.4) 92.06 (0.1)

�
86.5 (7.0) 91.70 (0.1)

�
95.9 (1.8) 90.75 (0.1)

�
96.0 (2.2) 90.01 (0.1)

�
96.4 (2.7)

PCA 92.25 (0.0)
�
36.8 (6.7) 91.97 (0.1)

�
95.2 (1.7) 91.63 (0.1)

�
96.8 (1.8) 90.79 (0.1)

�
99.6 (0.1) 89.95 (0.1)

�
98.3 (0.5)

SPECTRE 92.42 (0.1)
�
00.1 (0.0) 92.36 (0.1)

�
00.1 (0.0) 92.17 (0.0)

�
00.3 (0.1) 91.45 (0.0)

�
00.7 (0.4) 90.70 (0.1)

�
03.4 (2.6)

Table 16: SPECTRE [37] is mitigates our attack when armed with each of our triggers. Experiments
are computed on CIFAR-10. Each point is averaged over 10 runs and standard errors are shown in
parentheses.

D.3 Fine-tuning large pretrained ViTs

In this section we show that FLIP is robust under the fine-tuning scenario. In particular, both ResNet-
and VGG-trained labels successfully backdoor Vision Transformers (VITs) [25] pre-trained on
ImageNet1K where all layers but the weights of classification heads are frozen. When an expert is
trained on ResNet-32 and the user fine-tines a model on the FLIPed data starting from a pretrained
ViT, the attack remains quite strong despite the vast difference in the architecture and the initialization
of the models. The same holds for an expert using VGG-19.

150 300 500 1000 1500

r32 ! vit (FT) 95.42 (0.0)
�
01.6 (0.1) 95.29 (0.0)

�
06.4 (0.1) 95.06 (0.0)

�
14.5 (0.2) 94.67 (0.0)

�
31.1 (0.3) 94.27 (0.1)

�
40.2 (0.3)

vgg ! vit (FT) 95.40 (0.0)
�
01.4 (0.1) 95.31 (0.0)

�
06.9 (0.1) 95.07 (0.0)

�
16.7 (0.1) 94.64 (0.1)

�
30.2 (0.1) 93.98 (0.0)

�
30.7 (0.2)

Table 17: ResNet and VGG-19 learned corrupted labels successfully poison ImageNet-pretrained
ViT models in the fine-tuning scenario.
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