
Remote Keylogging Attacks in Multi-user VR Applications

Zihao Su1*, Kunlin Cai2*, Reuben Beeler1, Lukas Dresel1, Allan Garcia1, Ilya Grishchenko1, Yuan Tian2,
Christopher Kruegel1, and Giovanni Vigna1

1University of California, Santa Barbara
2University of California, Los Angeles

Abstract
As Virtual Reality (VR) applications grow in popularity, they
have bridged distances and brought users closer together.
However, with this growth, there have been increasing con-
cerns about security and privacy, especially related to the mo-
tion data used to create immersive experiences. In this study,
we highlight a significant security threat in multi-user VR ap-
plications, which are applications that allow multiple users to
interact with each other in the same virtual space. Specifically,
we propose a remote attack that utilizes the avatar rendering
information collected from an adversary’s game clients to
extract user-typed secrets like credit card information, pass-
words, or private conversations. We do this by (1) extracting
motion data from network packets, and (2) mapping motion
data to keystroke entries. We conducted a user study to verify
the attack’s effectiveness, in which our attack successfully
inferred 97.62% of the keystrokes. Besides, we performed an
additional experiment to underline that our attack is practical,
confirming its effectiveness even when (1) there are multiple
users in a room, and (2) the attacker cannot see the victims.
Moreover, we replicated our proposed attack on four applica-
tions to demonstrate the generalizability of the attack. These
results underscore the severity of the vulnerability and its
potential impact on millions of VR social platform users.

1 Introduction

As technology advances, Virtual Reality (VR) has gained sig-
nificant attention and has become an easily accessible technol-
ogy in people’s lives. Experts estimated that over 171 million
people use VR globally in 2024 [13]. An emerging trend in
VR is its use in multi-user applications [45]. These applica-
tions are becoming popular as they provide virtual spaces for
users to interact, especially in situations in which environ-
ments dramatically improve the user experience.VR applica-
tions are unique in their ability to translate users’ movements

* Both authors contributed equally to this research.

in the real world into corresponding movements of their vir-
tual avatars, thereby making users less cognizant of the gap
between real and virtual worlds. Multi-user VR applications
further extend the immersive experience of VR applications
by accommodating various forms of communication and by
rendering avatars for users across all application clients.

Although using real-life motion data to render avatars
across different clients can create a better immersive experi-
ence for users, it requires the transmission of motion data over
the Internet. As mentioned by Nair et al. [44], user motion
data is very sensitive and can be used to derive personal in-
formation such as the identity, anthropometric measurements
(e.g., height and wingspan), as well as demographic details
(e.g., age and gender) of users. Unfortunately, current multi-
user VR applications do not offer adequate protection for
motion data. As a result, the beneficial functionality of this
data in VR environments becomes a side channel that leaks
users’ private information.

Recent research has demonstrated the feasibility of per-
forming keylogging attacks (attacks that attempt to infer a
user’s keystrokes) against VR by leveraging side-channel
motion information tied to typing behavior. For instance, VR-
Spy [14] performs this attack by utilizing the side channel
from channel state information of WiFi signals in the vic-
tim’s local environment. HoloLogger [38] and TyPose [52]
employ malware to harvest hand or head tracking data from
the victim’s device to predict the victim’s keystrokes. Another
approach by Zhang et al. [68] capitalizes on the side channel
sourced from rendering performance counters in VR devices
to infer user-typed numbers. A key assumption made by all
these attacks is the ability to install malware or a dedicated
surveillance implant in a user’s local environment in order to
obtain local motion-related data.

In our work, we propose a keylogging attack that also lever-
ages motion data, but it operates under a significantly less
stringent assumption. That is, adversaries are able to execute
our keylogging attack remotely. The only requirement is that
they need to be in the same virtual room as the victim. This
assumption makes our attack more practical and makes all

1

ar
X

iv
:2

40
5.

14
03

6v
1

 [c
s.C

R
]

22
 M

ay
 2

02
4

users of multi-user VR applications potential victims.
Adapting keylogging attacks to remote contexts while

achieving high performance can be challenging. Unlike local
keylogging attacks that leverage local sensors, we choose to
recover typing-related motion directly from network packets
received by the adversary’s client. Although this motion data
is sent to all users in the virtual room via network packets, the
applications themselves operate as black boxes. This creates
difficulties in understanding how this information is trans-
mitted to each remote application client and in which format.
Furthermore, reversing the packet encoding or semantics can
be difficult due to the lack of tools to debug the applications
at runtime, given that these apps are frequently protected by
anti-cheating engines and DRM (digital rights management)
components. These difficulties collectively make recovering
motion data from network packets a challenging task. More-
over, even if we manage to successfully recover motion data
from the packets, it is uncertain whether the motion data in
the packets is high-quality-enough for an accurate keylogging
attack. This is because applications often use methods such
as compression and under-sampling to ensure stable and effi-
cient network transmission. Consequently, the remote motion
data has lower fidelity compared to the original sensor data.
In this paper, we have overcome these challenges with our
proposed attack, which can accurately reconstruct the motion
data required to infer the keystrokes.

Our attack consists of four steps, each extracting more fine-
grained information about the typing activity from the pre-
vious step. In these four steps, we aim to understand and ac-
curately leverage the data in network packets, converting the
data to recover keystrokes and thereby executing the remote
keylogging attack. We evaluated our attack through a user
study conducted on Rec Room [8], one of the most widely
used multi-user VR applications with more than 15 million
users [39]. We successfully reconstructed the typed secrets
at top-1 accuracy of 97.62%. Our attack results demonstrate
that we can infer almost all user-typed information correctly,
even though remote settings offer lower-fidelity information
compared to local settings. Furthermore, we performed an
additional experiment in which (1) there are multiple users
in the room, and (2) the attacker does not see any other user
(from their application client’s point of view). Our attack
achieves comparable performance under this setting (top-1
accuracy of 97.53%), demonstrating the practicality of our
attack. Lastly, we replicated our attack on three additional
applications 1 and performed user studies on them, in which
we achieved comparable performance across all applications
(top-1 accuracy of 98.24%, 98.27%, and 99.07% respectively
from the additional applications).

This result further demonstrates that our attack is generaliz-
able across applications. We reported our attack to Rec Room,
the three additional applications, SteamVR, and Unity. The

1The names of the three additional applications evaluated will be updated
following the 90-day responsible disclosure period.

developers of Rec Room and SteamVR [12] acknowledged
the issue and Rec Room also awarded us a bounty for the
vulnerability.
Contributions:

(1) To the best of our knowledge, we are the first to demon-
strate the feasibility of remote keylogging attacks in the con-
text of multi-user VR applications. Our approach enables
more practical attacks under a remote setting, significantly
enhancing the practicability and stealthiness compared to ex-
isting methods.

(2) We introduce a novel attack approach to overcome the
challenge of recovering typing-related motion from a remote
application client. Additionally, we provided new tools for
VR motion data processing, such as precise motion input
control and precise cursor/keyboard measurement.

(3) We also introduce an alternative attack strategy ef-
fective on network packets that have been partially reverse-
engineered, by applying machine learning techniques to the
raw bytes we extracted from the packets. Our result demon-
strates that a remote keylogging attack with only minimal
manual reverse engineering effort is also possible, with trade-
offs in additional attack setup and accuracy.

(4) We conducted user studies to assess the efficacy, prac-
ticality, and generalizability of our attack. In Rec Room, we
analyzed typing data from 22,092 clicks (involving letters,
numbers, and special characters) provided by 20 participants,
as well as typing data from additional 2,431 clicks by two
participants typing concurrently, while the attacker cannot see
them (in the VR space). We further analyzed typing data from
7,656 clicks provided by 9 participants for three additional ap-
plications (three participants for each application). From our
analysis, we provide insights into which real-world keystrokes
are vulnerable to our attack. Also, from the feedback of the
participants, we studied users’ awareness and concerns about
our attack to understand its implications.

(5) We propose countermeasures for multi-user VR applica-
tions to mitigate our remote keylogging attacks and avoid pri-
vacy leakage associated with transmitting motion data across
the Internet.

2 Background

Multi-user VR Applications. As the name suggests, a multi-
user VR application provides interaction opportunities for
users, allowing them to communicate with other players
across the Internet. Typically, users can communicate by
both typing and speaking. The typing functions are usually
achieved using a virtual keyboard, either in-application or
through overlay applications such as Steam Chat or Messen-
ger. These newly emerging services allow users to interact
in realistic digital worlds, and they distinguish themselves
from traditional social networking services by capturing and
translating real-world user motions into their virtual land-

2

scapes [62].
Motion Update in Multi-user VR Applications. Motion,
which has six degrees of freedom (6DOF) as shown in Fig-
ure 1, is normally described by position (x, y, z) and rotation
(roll, pitch, yaw). In this paper, we define TRANSFORM to be
the composition of position and rotation.

Popular game engines describe motion with their own data
structures that encapsulate TRANSFORM. For example, the
Unity Engine, the most popular game engine for multi-user
VR applications [19], has a standard data structure to represent
TRANSFORM using a Quaternion (for rotation) and a Vector3
(for position) [58]. In Unity-based applications, this standard
data structure is transmitted over the network to synchronize
user motions.

Figure 1: Example of user head motion in 6DOF [24].

For multi-user VR applications, the server continuously
receives motion data updates from clients and broadcasts
them to all clients [4], as seen in Figure 2. Typically, the syn-
chronization process employs UDP packets with established
libraries such as Photon PUN/Fusion [4], Unity Netcode [10],
and Mirror [3] to ensure stable and accurate motion trans-
mission. However, the motion data may not be fully identical
after the transmission, as sometimes, applications (e.g., Rec
Room) may use lossy compression on the motion data update,
trading off a slight loss of fidelity of motion data in exchange
for a lower burden on the transmission process.

Figure 2: Motion data flow in multi-user VR applications.

Moreover, the transmitted motion data is also under-
sampled from the original motion data. In current multi-user
applications, the server usually sends updates to the clients at
a rate of 20-30 packets per second. This rate takes into account
the network bandwidth limitation on both the server and client
sides, ensuring efficient communication without overloading
either end [5]. But applications usually run at 60-120 frames
per second (FPS) [59], so they have adapted mechanisms like

interpolation [28] to compensate for performance loss.
VR Typing Mechanism. In VR, there are multiple options
for text input. The most commonly deployed methods include
using voice or typing on a virtual keyboard [25]. In this pa-
per, our primary focus is on the typing method that utilizes a
virtual keyboard. Typing on a virtual keyboard involves two
major steps: (1) moving the cursor, which can be a controller
cursor or a virtual hand, to the target key on the virtual key-
board, and (2) selecting the key by performing a click, either
by pressing a button on the controller or by poking at the
key with a hand gesture. Since both of these steps involve
the movement of the user’s hand, multi-user VR applications
map the corresponding motion to the avatar. This ensures the
avatar feels realistic and accurately represents the details of
the user’s hand motion.

Figure 3: Example of a participant typing in Rec Room using
a virtual keyboard.

For the click mechanism, we focus on clicks represented
by button presses on a controller, which is a widely adopted
method for both interaction between users and typing on vir-
tual keyboards. Considering the importance of click function-
ality, Unity offers standardized APIs, such as OVR [2] and
Input system [56], to help applications detect these clicks.
These APIs use the trigger value (i.e., how deep the trigger
button is pressed down, from 0.0 to 1.0) to detect clicks. Typi-
cally, the API registers a click when the trigger value is higher
than a specific threshold. Since the trigger button is typically
held for more than one frame per click, to avoid repeated fir-
ing, the first frame where the trigger is pressed is recognized
as the click moment [1].

3 Threat Model

Adversary Objective. Our attack aims to extract user-typed
secrets inside multi-user VR applications. By extracting these
secrets, an attacker may gain access to the following types of
sensitive information:

(1) Credit Card Information: Modern VR applications of-
ten incorporate payment gateways to facilitate transactions,
requiring users to input sensitive financial details, such as
credit card numbers. Such information represents a profitable

3

target for adversaries aiming for unauthorized financial access.
Conventionally, credit card numbers are sequences of digits.

(2) User Authentication Data: Within the context of multi-
user VR applications, authentication mechanisms, such as
password inputs, are employed when users attempt to access
their accounts, private virtual rooms, or private virtual assets.
Adversaries can actively seek these credentials to gain unau-
thorized access to user accounts. These credentials typically
consist of alphanumeric characters, and may sometimes in-
clude special characters.

(3) Private Conversation: Multi-user VR applications in-
corporate social elements that include both professional and
social activities. Users often engage in private chats within
these applications to communicate with business partners or
friends, which could include the exchange of sensitive in-
formation, such as business-related data or personal matters.
The private conversation is usually composed of strings of
alphabetical characters.

Given that recent applications offer functionalities such as
in-app purchases of virtual items and private user chats, the
entry of private information, as explained above, has become
common in multi-user VR applications.
Adversary Knowledge. For the scope of the attacks discussed
in this paper, we operate under the assumption that the adver-
sary operates a remote client (an unmodified client located
on the adversary’s side that can receive updates about other
players sent by the server) of a multi-user VR application and
does not have access to the victim’s devices or local environ-
ment. The target multi-user VR application should have both
typing capabilities and the functionality to synchronize user
motion across a network infrastructure. To the best of our
knowledge, these features are ubiquitously supported across
current multi-user VR applications.

Also, we assume that an adversary is a legitimate user (by
downloading the application and registering an account in the
application) who can enter a virtual room with other users.
This presence makes the other users in the room potential vic-
tims (i.e., the attacker does not necessarily follow and target
a specific user). This assumption is reasonable because, in
multi-user VR applications like Rec Room, most rooms are
public to facilitate the applications’ purposes of socializing
and meeting strangers. Being in the same virtual room allows
the adversary’s application client to receive motion updates
from all other users in the room, including their typing-related
motion data, even if their avatars are not visually seen by the
adversary in the application. Moreover, the attacker can differ-
entiate and group motion updates from different victim users.
This is because current network protocols for multi-user VR
applications require a unique user identifier to associate user
avatars with their network updates. Therefore, by grouping
motion updates using this user identifier, the attacker can ana-
lyze motion updates from different user entities, and perform
the attack independently on each of them, thereby stealing
keystrokes from all users in the room. Note that this user iden-

tifier only allows the attacker to group the inferred keystrokes
and associate these keystrokes to any network updates linked
to the user identifier (e.g., in-game username); further linking
such information back to each user’s identity in the real world
is out of scope.

Additionally, given that the adversaries control their own
clients, we assume they have the ability to access the binary
files of the application client and capture the network traffic
that their client sends and receives. Furthermore, we assume
that the adversary can prepare for the attack by studying the
application behavior. For example, the attacker can create
multiple accounts, perform typing-related experiments on
their own clients using these accounts, and observe the visual
outputs of the application (e.g., how the keyboard looks).

4 Approach

The basic insight behind our approach is that multi-user VR
applications transmit a user’s VR motion data over the net-
work and make it available to all other users who are in the
same virtual room. This includes the motions that occur when
a user is typing. Thus, typing-related motions are received
by everyone in the same room. Consequently, anyone can
analyze the network traffic and reconstruct the user’s typing
motion to infer the user’s keystrokes.

As mentioned previously, it is challenging to extract motion
data from packets and perform accurate keylogging attacks
using low-fidelity motion data. We solve these challenges with
a four-step approach, which is outlined in Figure 4. The first
step takes the network packets and filters for those including
motion data. It is followed by a step that parses the packets
and identifies the data fields within each packet. The third step
recovers the semantics of these fields and extracts the motion
data. In the last step, the extracted motion data is mapped
to key positions, which provides us with the prediction of
the user’s keystrokes. Our approach differs from existing
keylogging approaches as it only requires network packets
collected from an attacker’s own application client as inputs.

In this section, we present how we implemented each of
these steps for a specific target. In particular, we choose Rec
Room, one of the most popular multi-user VR applications
that has more than 15 million users [39], as an example to
demonstrate our attack.

4.1 Step 1: Packet Extraction
The first step of the approach is to capture the raw network
traffic and filter out the packets irrelevant to motion data. To
recover motion data, we use Wireshark [11] and locate the
incoming network traffic of our Rec Room client by its ap-
plication port. Note that a single VR application is typically
communicating with different servers (IP addresses) that han-
dle different channels (such as voice data, messages, motion
updates, etc.), but each server uses a fixed IP address while

4

Figure 4: Our approach consists of four extraction steps to
extract keystrokes from network traffic.

we stay in the room. In order to find the server that sends traf-
fic specifically related to motion data, we group the network
traffic from the VR application by source IP address, and take
the packets from the IP address with the highest transmission
frequency. These packets will most likely contain the motion
data sent from Rec Room’s server, as it updates motion data
with clients at a high frequency (a fixed rate of 15 packets per
second). Therefore, by performing this filtering step, we can
exclude the majority of network traffic irrelevant to motion
data, and limit the scope of analysis for the next step.

For other multi-user VR applications, this strategy can be
similarly applied, as the application needs to update users’
motion data at a high frequency to ensure smooth motion
(see Section 2 for details about motion updates for multi-user
VR applications), which makes it easy to isolate the motion
update traffic. In addition, we can also use other common
characteristics of motion updates to further eliminate irrele-
vant packets (e.g., motion updates are usually sent as UDP
packets).

4.2 Step 2: Field Extraction
Once we obtain the packets that contain the user’s motion
data, we need to parse the packets and extract data fields seri-
alized within the packets, so that we can extract the semantics
from the fields later. In Rec Room, we implemented this step
by first using a parser for Photon Engine [4], a networking li-
brary that Rec Room uses and whose network protocol parser
can be found in an open-sourced project [16]. With this parser,
we are able to parse the packet into data fields, and extract the
types (e.g., integer, float, etc.) and values of the data fields (see
Appendix A for an example packet parsed with a generic Pho-
ton protocol parser). However, Photon allows developers to

define and transmit their own custom objects (i.e., objects of
custom data type, which may include multiple fields defined
by the developers), and Rec Room uses this feature. Without
knowing the fields serialized inside of these objects, we only
see them as blobs of raw bytes. To parse these objects, we
decompile Rec Room and find how it defines and deserial-
izes the relevant objects (see Appendix B for our insights in
performing this step), which allows us to build a parser that
breaks down these objects into individual fields.

For other multi-user VR applications, we can replicate this
implementation with mostly automated steps, and some re-
versing effort. It is likely that we can reuse the network proto-
col parser. Many applications use well-established networking
libraries (e.g., Photon Engine and Unity Netcode [10]) instead
of implementing networking functionalities from scratch. For
example, among the 34 multi-user VR applications that we
investigated, 21 of them use Photon Engine, including Rec
Room and VRChat [60], two of the most popular multi-user
VR applications on the market. Therefore, we can spend a
one-time effort to find or implement the protocol parser and
reuse it on other multi-user VR applications, and only spend
reversing effort to recover the custom objects if the applica-
tions define them (as Rec Room does). However, if it is a rare
case that the application does not use any networking library,
we will need to reverse how the application deserializes the
entire packet, which requires more manual effort.

One possible extra obstacle in this step is that the network
traffic may be encrypted. While it is rare that VR applications
encrypt the packets that include motion data (only 1 out of the
34 multi-user VR applications that we investigated encrypts
their packets that include motion data), this obstacle can still
be overcome. The key exchange process and decryption hap-
pen on the attacker’s own client. Therefore, the attacker can
decrypt the network traffic with a user CA certificate to con-
duct a Man-in-the-Middle attack on their own client, and
previous work [57] has successfully performed this step and
decrypted network traffic for 140 VR applications.

4.3 Step 3: Semantics Extraction
After parsing all the fields, it remains unknown which fields
correspond to the typing-related information, and hence, we
need to associate the fields with their semantics. Specifically,
we aim to find the fields with the following semantics, which
are needed for the next step:

(1) Body motion data, which includes TRANSFORM (i.e.,
the position and rotation) of the left hand, right hand, and
head. They are used to track a user’s typing motion. Such
data is widely used in multi-user VR applications to update a
user’s body position.

(2) Click data, which includes the trigger values of the left
controller and right controller. They are used to determine
when a user is performing a click. This data is typically in-
cluded in multi-user VR applications to update users’ hand

5

gestures.
(3) Keyboard-opening event data, which is signaled through

the menu-opening event, is used to determine the keyboard
position and when the user may start typing. This event data is
specific to certain applications, but it is optional, as previous
work [29] demonstrates that the keyboard location can also
be accurately approximated using the bounds of hand motion
data. Also, the starting point of user typing can be inferred
using click patterns as discussed in [63].

(4) User identifier, which associates the motion update with
the user (avatar) who that update belongs to. This field allows
us to extract a separate motion data stream for each user when
there are multiple users in the room.

To identify fields (1) to (3), we perform an experiment in
which we (a) programmatically provide controlled motion
data by running simulated VR hardware inputs, (b) compute
the changes in packet fields, and (c) manually observe how
changes to the inputs correspond to changes in the packet
fields. This experiment is explained in detail in Section 4.5.1.
Identifying field (4) is trivial since each motion update is
annotated with a user identifier (a built-in field of the Photon
protocol).

This step can also be replicated in other multi-user VR ap-
plications. Since most multi-user VR applications use Unity,
which uses a standard data structure to represent motion data
(see Section 2 for more details), we observed similar associ-
ations between the motion data inputs and the packet fields
across applications. Furthermore, this experiment can be per-
formed on any other multi-user VR application, since it only
relies on manipulating the VR hardware inputs and observing
packet data. Moreover, even if the mapping is not obvious
(e.g., if an application applies obfuscation in the packets), we
can resort to reversing the semantics from the application’s
binary by tracing how the packet fields are being used, which
would require some more manual effort.

4.4 Step 4: Click Position Extraction
Once we extract the motion data, the last step is to infer
keystrokes by (1) finding the TRANSFORM (i.e., the position
and rotation) of all keys, (2) detecting the timing of the clicks,
(3) calculating the cursor’s TRANSFORM (the cursor refers
to a point that projects a line to select keys) at click time,
and (4) finding the intersection of the cursor’s projection and
keys. Essentially, these steps are reversing and emulating how
multi-user VR applications compute keystrokes.

Firstly, we need to calculate the keys’ TRANSFORM. To
do this, we first need to know (a) how the keyboard is po-
sitioned relative to a user (see Keyboard Measurement in
Section 4.5.2 for how this is measured), and (b) how the keys
are positioned on the keyboard (see Key Measurement in
Section 4.5.2), both of which only need to be measured once
for an application in the attack preparation stage, as they are
fixed. Then, we can find the packet that contains the keyboard-

opening event, and use the body motion data in the packet to
find the user’s TRANSFORM at the time of keyboard opening.
With this information, we can use the pre-measured values in
(a) to calculate the absolute position of the keyboard, and use
the pre-measured values in (b) to calculate the positions of
each key.

Secondly, we need to determine the timing of the clicks.
That is, we find in which packet each click happens, matching
one packet to a click, so that we can later analyze the motion
data in each of these packets to understand where the cursor
is at the time of the click. This can be done by analyzing the
click data and performing click detection (see Section 2 for
details about how clicks are performed and detected in VR).

Thirdly, we need to calculate the cursor’s TRANSFORM. To
do this, we first need to know how the cursor is positioned
relative to the hand, which is a fixed relation (e.g., the hand
position is at the palm of the hand, whereas the cursor is at the
tip of the index finger). Similar to the pre-measured values of
the keyboard, this also needs to be measured only once for
an application (see Cursor Measurement in Section 4.5.2).
Then, for each packet matched to a click, we find the hand’s
TRANSFORM from the body motion data and use this pre-
measured value to obtain the cursor’s TRANSFORM.

In the fourth phase, knowing the cursor’s and the keys’
TRANSFORM during a click, we can detect the actual key
that was clicked. Specifically, as illustrated in Figure 5, we
project a line (the blue arrow lines in the figure) following
the cursor, and when this line intersects with any of the keys
on the keyboard, we log this information (the blue dots on
the keys in the figure). Intuitively, one can visualize a line
through the fingertip of the avatar’s hand and see where this
line points to and intersects the virtual keyboard. Note that this
process is the same as how applications would calculate user
keystrokes on local clients, and we are essentially “replaying”
the keystroke entries extracted from the network packages in
this step.

In other multi-user VR applications, the pre-measured val-
ues of the cursor and keyboard may be different from Rec
Room, and we need to repeat this one-time measurement pro-
cess. Note that this process can be performed on any other
multi-user VR applications, as it operates by manipulating
the VR hardware data and observing visual outputs.

4.5 Reverse Engineering Challenges
In our approach, there is information that needs to be extracted
once per application in the attack preparation stage: the se-
mantics of key fields in network packets (Step 3) and the pre-
measured values of the cursor and keyboard (Step 4). One of
the most effective ways to obtain such information is to debug
an application by accessing the application’s memory while
manipulating the inputs and observing the outputs at runtime.
However, due to protections from anti-cheat engines [6,18,26],
attaching a debugger to multi-user VR applications is diffi-

6

Figure 5: By visualizing the extension of the cursor with blue
arrow lines, we calculate its intersection with the keyboard,
as indicated by the blue dots on the keys, to log the key
selections.

cult. In this section, we introduce two methods to overcome
these challenges without the need to bypass the anti-cheat en-
gines. They employ only the readily available channels: VR
hardware input, network packet output, and visual output (as
mentioned in our threat model in Section 3). These methods
enable us to (1) understand the associations between hardware
inputs and packet fields by providing controlled inputs and
(2) precisely measure the cursor and keyboard TRANSFORM
(i.e., position and rotation) using geometric manipulations of
the hardware inputs and visual validation.

4.5.1 Precise Input Control

In Step 3, we aim to recover the semantics of packet fields. To
do that, we want to provide precisely controlled inputs to the
application and observe how changes are reflected in the fields
of observed packets. VR device inputs are highly dimensional
(e.g., a controller has 6DOF inputs to represent its position
and rotation), and we need to isolate and control each input
dimension to understand the effect of their changes. Moreover,
such inputs cannot be easily controlled manually because of
the sensitive sensors built into the VR hardware. For example,
if we want to determine the effect of only changing the x

coordinate of the left controller position, we need to (1) fix
the right controller and head-mounted display (i.e., the VR
headset) and avoid even the slightest movements, (2) move
the left controller along the x-axis without any movement
in the y-axis and z-axis, and (3) prevent any rotation in any
directions. Using the actual controller, performing such a task
“by hand” is essentially impossible.

To solve this challenge, we leverage Nvidia’s VR Cap-
ture and Replay (VCR) tool [46], which allows developers
to record tracking data from VR devices and replay them.

Specifically, we utilize the “replay” component of VCR to
serve as a VR hardware simulator and use it to run program-
matic inputs. With this feature, we can (1) locate the fields
affected by each input by isolating changes in the input, and
(2) uncover conversions from inputs to fields.

First, we associate inputs and fields by observing their cor-
respondence. For example, if we want to locate the x coordi-
nate of the left hand, we can (1) fix all other input components
in our replay script and only change the x coordinate, then
(2) only fix the x coordinate and change every other input
component. If there is a field in the network packets that
changes if and only if x changes, it is highly likely that this
field corresponds to x.

Second, after we locate an input component’s correspond-
ing field, we can reason how they are converted by observing
how the field value changes with the input. For example, we
can vary the x coordinate from -1.0 to 1.0 and see how the
field for x changes accordingly.

4.5.2 Precise Measurement

In Step 4, we can parse the TRANSFORM (i.e., position and ro-
tation) of hands and head from packets, but the cursor and the
keyboard information are not directly (explicitly) included in
the motion data, even though they have certain fixed relations
with the motion data (hands or head). We could attempt to
leverage the visual outputs to observe these hidden attributes.
However, this presents a challenge due to the difficulty in
obtaining precise direct observations. For example, just by
looking at the visual outputs, it is hard to gauge the distance
between two virtual objects, and an error of just 10 cm can
shift a key prediction by three keys (a key has a side length of
about 3cm) and render the attack ineffective.

We present a method to solve this challenge and measure
the “hidden attributes” with visually verifiable tests. Specifi-
cally, we design geometric tests, which move virtual objects
in specific ways to visualize geometric properties, so that we
can verify our measurements visually. We perform the mea-
surements in two steps: (1) Cursor Measurement: we measure
the relations between cursor and hand, and uncover how we
can convert the hand’s TRANSFORM that is present in packets
to the cursor’s TRANSFORM. (2) Key Measurement: we use
the cursor as a reference point to measure the keys.
Cursor Measurement. Cursor measurement is the problem
of finding the fixed offset (i.e., a constant transformation in po-
sition and rotation) between the hand’s TRANSFORM in pack-
ets (referred to as TRANSFORMhand) to the cursor’s TRANS-
FORM (referred to as TRANSFORMcursor). From inputs, we
can only manipulate the controller’s TRANSFORM (referred
to as TRANSFORMcontroller), which has a fixed offset to both
the hand and the cursor. These three TRANSFORM values can
be all different (in position and rotation), as seen in Figure 6.
At a high level, we can solve this problem by first finding the
offset between the hand and the controller, then finding the

7

offset between the controller and cursor, and combining these
two offsets to get the offset between the hand (which appears
in the packet data) and the cursor. The detailed steps are as
follows:

Figure 6: We need to uncover conversion from hand’s TRANS-
FORM in packets to cursor’s TRANSFORM by manipulating
controller’s TRANSFORM.

(1) Find the offset between TRANSFORMhand

and TRANSFORMcontroller. Since we can read out
TRANSFORMhand from packets, it is straightforward
to find this offset by inputting one sample value of
TRANSFORMcontroller and observing the corresponding
TRANSFORMhand , then calculate the constant offset in
position and rotation between them.

(2) Find the offset between TRANSFORMcursor and
TRANSFORMcontroller. This can be broken into three steps:
(a) We start with a guess for one part (i.e., position or rotation)
of this offset. For example, if we want to measure the rota-
tional offset, we can start with the guess that the controller
and cursor have the same orientation (offset is zero). (b) Next,
we perform a spatial binary search of the real offset. That is,
we plug in the guessed offset as a part of controller inputs and
run geometric tests to visually inform us whether our guess is
off from the real offset, and in which direction the real offset
is. For instance, we can perform the geometric test as seen in
Figure 7 and move the hand along the initial guessed direc-
tion. If the offset is non-zero, we are not moving the cursor
along its pointed direction, and the reticle (cursor’s projection
on a screen) will move. (c) Then, we iteratively adjust our
guess until the geometric test shows that the guessed offset
aligns with the real offset. Continuing from the example in
(b), we can keep adjusting the guess based on which direction
the reticle deviates, until the reticle does not move, which is
easy to verify visually. At this point, we know that the hand
is moving along the cursor’s orientation, and thus our guess
is correct. To learn more about other geometric tests we use,
see Appendix C.

(3) Calculate our target offset by combining the
two obtained offsets. The offset in (1) takes us from
TRANSFORMhand to TRANSFORMcontroller, and the off-

set in (2) then takes us from TRANSFORMcontroller to
TRANSFORMcursor, so combining them takes us from

Figure 7: Geometric Test 1: test if the guessed cursor orienta-
tion is correct by moving the hand along the guess.

TRANSFORMhand to TRANSFORMcursor, which is our goal.
Key Measurement. Key measurement is the problem of find-
ing the positions of the four corners of a key at a fixed player
location. The four corners of a key determine the key’s loca-
tion, as they define a bounded plane region as the key’s region.
For this problem, we need to know the cursor’s TRANSFORM,
and use it as a reference. To measure a corner of a key, we (1)
position the cursor at an arbitrary position and find a way to
point the cursor at the corner (again through a spatial binary
search procedure), then (2) find the distance between the cur-
sor and the key corner, which can be done by using a spatial
binary search with another geometric test (see Appendix C),
and lastly (3) calculate the key’s position by adding a vector
that is along the cursor’s pointing direction and of the length
equal to the distance to the cursor’s position.
Keyboard Measurement. Keyboard Measurement is the
problem of finding each key’s position when the player is in an
arbitrary position and orientation. This problem is straightfor-
ward to solve once we are able to perform Key Measurement.
We can use the originally measured keys as a baseline, and re-
peat measuring all keys’ positions at multiple player positions
and rotations. This allows us to calculate how the changes
in player positions and rotations transform into changes in
the keys’ positions. Therefore, for a new player’s position
and rotation, we simply calculate the changes in position and
rotation from the baseline, and apply this transformation.

5 Data Collection

We performed data collection experiments to assess the effec-
tiveness of our attack in real-world scenarios. Specifically, we
conducted a user study to collect real-world typing activity
data from Rec Room, one of the most popular multi-user VR
applications, as the main experiment. We have also conducted
further experiments to demonstrate that our attack works well
in three additional applications of various genres and in real-
istic scenarios.
Data Collection Setup. During the user study, we installed
and ran Rec Room in VR mode through SteamVR on a Win-
dows PC, with an Oculus Quest 2 connected via Quest Link
(we will refer to this as the Victim PC later). We installed and
ran Rec Room in non-VR mode on another Windows PC to
simulate the attacker behavior (we refer to this as the Attacker

8

PC). The two PCs then join one private virtual room, as men-
tioned in our threat model. After we begin capturing network
traffic with Wireshark on the Attacker PC, the participant,
wearing the Quest 2 headset, starts entering the prepared text
into Rec Room’s chat functionality using the virtual keyboard.
Lastly, to serve as a reference during the data labeling process,
on the Victim PC, we use VCR to record the VR tracking data
during each session.
User Study Recruitment. We conducted a user study to col-
lect VR typing data from volunteers using the Victim PC. This
study has been approved by our university’s Institutional Re-
view Board (IRB). Through email advertisements via our insti-
tution’s email list, we recruited 20 participants of varying ages,
heights, genders, and experience with VR from our institu-
tion’s campus. Prior to the experiment, participants were pro-
vided with instructions on how to operate the Quest 2 headset
and controllers. Additionally, they were guided on the typing
functionalities and practiced typing within Rec Room. Before
the start of the experiment, the participants were also informed
that their typing-related information would be recorded and
that they could stop the study at any time. To minimize bias
and more closely mirror real-world typing scenarios, partici-
pants were not initially informed of the study’s exact purpose.
Instead, they were simply told that the goal of the study was
to examine VR typing behavior. After the participants com-
pleted all the typing experiments, we debriefed them about
the real purposes of the study and asked them to fill out a sur-
vey to understand their perceptions of our attack. The study
lasted approximately 60 minutes per participant, and each
participant who took part in our study was compensated with
a $20 gift card.
User Study Typing Trials. For each experiment, a participant
started by opening the Rec Room chats to perform typing tri-
als. In each trial, the participant was presented with a prompt
and was asked to type all the characters in the prompt into the
chat. In total, each participant completed 65 trials, of which
30 trials were with number prompts, 20 were with password
prompts, and 15 were with sentence prompts. To simplify the
setup, all prompts were shown to the participants in the same
chat in which they performed the trials, so they could see
the prompt while typing. We had a researcher continuously
observing the participants’ inputs and asking the participants
to retype a prompt if they mistyped it (e.g., they typed “124”
when the prompt was “123”). By doing this correcting step,
the prompts could conveniently serve as the ground truth with-
out modifications during the evaluation of the attack accuracy
later.

As previously mentioned, the participants engaged in trials
with three types of prompts, each representing a common
typing behavior:

(1) Numbers: The prompts are random numbers with
lengths of 3 (e.g., “823”), 9 (e.g., “804458083”), and 12 (e.g.,
“595397360820”) digits, with 10 prompts per length. This
simulates entering credit card information.

(2) Passwords: The prompts are passwords with charac-
ters, numbers, and punctuation marks. To emulate real-world
password typing activity, we generated 10-17 characters long
combinations of English words with numbers and punctuation
marks, using the Memorable Password Generator [7].

(3) Sentences: The prompts are English sentences that con-
sist of 3 words (e.g., “Clouds are drifting”), 6 words (e.g.,
“The sunset today looked absolutely stunning”), and 9 words
(e.g., “My cat just did the funniest thing this morning”), with
5 prompts for each length. These sentences are generated by
ChatGPT [47]. This experiment is to simulate the scenario of
typing in private chats.

After the study concluded, we asked the participants if they
wished to exclude their data and address any questions they
might had. At the time of submitting this paper, we have not
received any requests for excluding data.
Data Labeling. During the study, we utilized a timing ap-
plication to mark the beginning and end of each trial. This
ensured only data from the trials was considered for label-
ing. Then, we check the recording of tracking data during the
trials to verify that the number of clicks corresponds to the
expected number of clicks from the prompts. For example, if
the prompt asks the user to type “123,” then we should expect
three clicks in the recording of tracking data. If the number of
clicks matches, we then label each click using the characters
in the prompts along with its timestamp in the tracking data
recording, so that we can later compare the clicks detected in
the network traffic with the ground truth clicks. However, if
the number of clicks does not match, it signals that the prompt
was mistyped, which may happen when the prompts are long,
and the researchers did not spot the errors in what the par-
ticipants typed during the study. The data for such trials is
discarded and not considered for evaluation. However, these
cases are rare. In total, we dropped a combined 638 clicks out
of 22,730 clicks (29 out of 1,300 trials) collected from the 20
participants in our study. This leaves 22,092 keystrokes (from
1,271 trials) for the evaluation.
Other Practical Scenarios. We also conducted an experi-
ment to demonstrate the practicality of our attack in scenarios
where (1) there are multiple users in a virtual room, and (2)
the attacker does not see the victim users. We created the
same experiment setup as the User Study Typing Trials ex-
periment but with two modifications: (1) we placed another
four different victim users in the room instead of one; (2) the
attacker faces a wall, thus they are unable to see any other
users. We then conducted a user study with the same proce-
dure as the main experiment but with two participants typing
concurrently (the other two users in the room were dummy
users). Since the attack worked exactly the same in this set-
ting, we ran this experiment only once. In total, we collected
2,431 clicks from the participants.
Other Multi-user VR Applications. To show that our attack
generalizes beyond Rec Room, we tested it on three additional
popular applications from diverse genres. Specifically, we

9

conducted an end-to-end attack on each of these applications
following the same attack procedure (Section 4) and setup
of the experiment on Rec Room (the User Study Typing
Trials experiment). The details for the experiment setup will
be released 90 days after the disclosure.

6 Evaluation

In this section, we evaluate our attack and analyze various
factors that may affect the attack accuracy. We have analyzed
whether the attack accuracy is affected by packet drop rates,
key position on the keyboard, and typing speed.

To evaluate the attack accuracy, we use top-k accuracy,
which assesses how many of the user-typed keys are correctly
predicted within our attack’s top-k predicted keys, sorted by
distance from the position of the cursor’s projection on the
keyboard. In other words, the top-k accuracy is calculated
as (number of successfully inferred keys) / (number of total
keys). If the click is not identified by the keylogging attack,
we automatically mark the prediction as wrong.

Top 1 Top 3 Top 5

Numbers 96.78% 97.98% 98.23%
Passwords 97.42% 97.88% 98.17%
Sentences 98.16% 98.41% 98.52%

Total 97.62% 98.15% 98.34%

Table 1: Keylogging attack accuracy from 20 participants
across three different typing tasks.

Table 1 presents the overall accuracy of our attack based
on 22,092 keystrokes collected from all 20 participants in
the user study. The evaluation setup is consistent with the
character-level evaluation in prior research on VR keylogging
attacks [29, 38, 53, 63].

Across all three types of prompts, our keylogging attack
consistently exhibited a very high accuracy, inferring 97.62%
(21,567 out of 22,092 keystrokes) of all keystrokes cor-
rectly with top-1 prediction, 98.15% (21,683 out of 22,092
keystrokes) with top-3 prediction, and 98.34% (21,726 out
of 22,092 keystrokes) with top-5 prediction. Against a 2.13%
random guess baseline for one-key inference, our attack’s
effectiveness increases over 45 times.

Although our attack is nearly perfect in accuracy, there
are a few incorrect predictions. This can happen for one of
the following two reasons: (1) Loss of motion data preci-
sion due to lossy compression of the data: To ensure stable
network performance, multi-user VR applications such as
Rec Room compress motion data items before transmitting
them over the Internet. When this data is decompressed by
the adversary client, it will be slightly off compared to the
ground truth motion. This slight imprecision in motions and

cursor positions might cause inaccurate predictions. (2) Stale
hand motion update: From our experiment, we observed that
some hand motions are not updated (propagated) immedi-
ately. This might happened because of the lag on the victim
client or the interpolation mechanism applied on the previous
motion update. Consequently, when this happens, the hand’s
TRANSFORM associated with a click tends to be closer to the
previous click rather than the intended target click and leads
to incorrect keystroke predictions by our attack.

It should be noted that the loss of motion data precision due
to the compressed data is not significant. Additionally, the
cases of stale hand motion occur with a low probability. This
explains why only 2.38% of the keystrokes in our experiment
are predicted incorrectly.

These findings from our attack highlight the significant risk
of privacy breaches due to motions detected in the network
packets, emphasizing the urgent need for protection against
such vulnerabilities.

6.1 Our Attack is Robust Under Traffic Loss
Since the attack is conducted remotely, it is crucial for us to
study the packet loss during the transport of motion data and
how it affects the accuracy of our attack. According to a recent
article by Obkio [33], apps with a packet loss rate of more than
10% are considered unusable [33]. To stress-test our attack,
we conduct an analysis by dropping random packets at an
even higher rate of up to 20% from the participants’ network
captures. The corresponding attack accuracy is illustrated in
Figure 8. From the result, we observe that the attack accuracy
after 20% of random packet drops rate still remains very high
(94.97% top-1 accuracy), showing that our attack is robust
even under significant packet loss.

In total, we lost 2.65% of the keystroke recovery accuracy
due to the following two reasons: (1) Loss of brief keystroke
data due to packet loss: In instances where the click duration
is extremely short, the motion data corresponding to this key
might only be present in a few packets. If there is packet loss,
these packets might be dropped. As these packets are never
received, they cannot be used for key recovery; (2) Packets
after a click motion are considered as the actual click: By
definition, a click occurs the moment the victim presses the
key beyond the click threshold, as mentioned in Section 2.
However, a packet loss might occur at the moment of a click.
As a result, the initial packet representing the click might be
missing. In this case, our attack identifies a subsequent packet
during the click period as the click packet (i.e., the attack
thinks this later packet is the first frame of a click). However,
the subsequent packet might show a minor difference in the
hand’s TRANSFORM from the original click packet, result-
ing in a variation in the click motions and causing a wrong
keystroke identification.

It should also be noted that we observed only an additional
0.42% of clicks undetected when a 20% packet loss is intro-

10

duced. Also, the situation where selecting later packets results
in a decrease in attack accuracy only arises in specific cases. It
happens only when the click motion changes rapidly and the
initial few packets are lost. This is why our attack accuracy is
only slightly affected by the significant packet drop rate.

Figure 8: Our attack is robust against random packet drop,
achieving a top-1 accuracy of 94.97 percent even when 20
percent of the packets are dropped.

6.2 Keyboard Layout Affects Attack Accuracy
Given that VR users utilize their hands to control the cursor
to select keys on the virtual keyboard, we hypothesize that
keys positioned farther away from the user may be more
challenging to predict accurately as these keys are relatively
smaller in the user’s field of view. Our intuition is based
on the fact that the cursor, when pointing at a distant key,
adopts a more tilted angle. Consequently, this might increase
the likelihood of an incorrect prediction by the attack as the
inference to the relatively smaller keys is more sensitive to
deviations introduced by the transmission process.

To test this hypothesis, we categorized the keys on the
keyboard into four rows based on their layout. Row 1 starts
with keys ‘z,’ ‘x,’ and ‘c,’ Row 2 starts with keys ‘a,’ ‘s,’
and ‘d,’ Row 3 starts with keys ‘q,’ ‘w,’ and ‘e,’ and Row 4
starts with keys ‘1,’ ‘2,’ and ‘3.’ The accuracy rates for each
row are displayed in Figure 9. Although the attack accuracy
remains high (with a top-1 accuracy of >96%) across all rows,
there is a noticeable trend: the accuracy diminishes as keys
are positioned further away from the user (for instance, top-1
accuracy drops from 98.6% in Row 1 to 96.12% in Row 4).

6.3 Our Attack Remains Robust Under Vary-
ing Typing Speed

We also studied how the typing speed impacts the accuracy of
our attack. Intuitively, predicting faster clicks might be more
challenging since the cursor moves more quickly. Even a

Figure 9: The keys positioned further away from the user are
relatively more difficult to infer compared to the closer keys.

slight lag could significantly affect the position of the cursor’s
projection on the keyboard. We present accuracy data grouped
by click duration percentiles (e.g., the 0-20 percentile group
comprises the fastest 20% of clicks). Contrary to our initial
expectations, we did not observe a significant effect of typing
speed on the attack accuracy. This finding could be attributed
to the fact that even the fastest click (with a duration between
0.255 and 0.721 seconds for the 0-20 percentile group) is cap-
tured in multiple motion updates, given that motion updates
occur frequently (15-20 updates per second, or 0.05 to 0.067
seconds between updates).

Figure 10: Our attack is unaffected by typing speed, with
similar accuracy across different click duration percentiles.

6.4 Our Attack Can Be Stealthy Under Practi-
cal Scenarios

For the experiment setting in which (1) there are multiple
users typing concurrently in the same room and (2) the at-

11

tacker is facing the wall, the attack has comparable perfor-
mance to the User Study Typing Trials experiment. Our
attack correctly inferred 97.53% (2,371 out of 2,431) of all
keystrokes with top-1 prediction, 99.51% (2,419 out of 2,431)
with top-3 prediction, and 99.59% (2,421 out of 2,431) with
top-5 prediction. This result shows that (1) our attack is not
affected by the number of participants in the room, and (2)
even when the attacker cannot see the victim, the motion data
is still received and can be used to recover the keystrokes.
Thus, we conclude that our attack is applicable in a multi-user
environment, and the attack is stealthy since the attacker can
hide anywhere in the room while performing the attack.

6.5 Our Attack Generalizes Across Applica-
tions

Top 1 Top 3 Top 5

App A 98.25% 99.71% 99.73%
App B 98.27% 99.97% 99.97%
App C 99.07% 99.61% 99.61%

Table 2: Keylogging attack accuracy from three participants
typing in the selected three additional applications.

By performing our proposed attack on the additional three
applications, we have successfully recovered the motion data
from the collected traffic and infer the key participants typed.
For more details on the recovered packets, please refer to the
examples in Appendix A.

The performance of our attack is as detailed in Table 2.
The slightly varied attack accuracy across applications may
be attributed to differences in keyboard layouts and partic-
ipant typing habits. Nevertheless, all attack results demon-
strated performance comparable to our main experiment on
Rec Room, underscoring the generalizability of our attack
across different applications.

7 Keylogging is Possible Even with Partial Re-
verse Engineered Packets

In the previous sections, we demonstrated the effectiveness
of performing a keylogging attack by fully reconstructing
the typing process. However, the involved steps require some
manual effort and can be time-consuming. If an adversary
aims to execute our remote keylogging attack rapidly, with
minimal manual reversing effort, the keylogging attack can
still be performed with the help of machine learning. This
approach operates under an additional assumption compared
to the threat model introduced in Section 3. In particular,
we allow the adversary to obtain some motion data from a
victim’s typing that is paired with the actual text being typed,

serving as labeled (ground truth) data. This assumption is
commonly accepted and used in previous VR keylogging
work [14, 53, 68]. In the case of multi-user VR applications,
adversaries can collect the necessary data by chatting with the
victim (via the application chat) and capturing any messages
with the corresponding motion data. Since the victim can
perform multiple tasks without closing the menus, and the
keyboard position is fixed once they open the menu, this
collection step allows the adversary to use the labeled data to
predict other keystrokes on the same keyboard location.
Attack Setup. To show that our attack works with limited
reversing, we use the example of Rec Room to further demon-
strate this attack. Figure 11 outlines the process.

Figure 11: Machine Learning Attack Overview: The blue
arrows illustrate the model training process, while the red
arrows describe how an adversary might utilize the trained
model to infer user keystrokes.

To build the training dataset for the machine learning model,
we first collect raw packets and their corresponding labels
(the typed text) using the aforementioned phishing approach.
To preprocess the raw packets, we follow the steps from Sec-
tion 4 that do not require significant manual effort and can be
consistently applied across applications:

(1) Filter for the packets that contain motion data, as ex-
plained in Section 4.1.

(2) Use the protocol parser for Photon, as referenced in
Section 4.2, to parse the packets, given that Rec Room em-
ploys the Photon library for motion updates. This step parses
the packets into different fields of readable formats (e.g., inte-
gers, floats), except for the custom object fields, which are left
as raw bytes. This step is easy because the Photon protocol
parser is a readily available tool that can be applied to all
applications that use the Photon libraries.

(3) Run the Precise Input Control experiment (see Sec-
tion 4.5.1) to identify the fields that correspond to the click
data (which are stored in floats), and the custom object fields
that contain the motion data. This step is easy because the
experiment can be run automatically, and we only need to
manually observe the associations between the input data and
the fields.

(4) Determine the timing of clicks by performing click
detection, which is done in the same way as in Section 4.4. We
can use this information to find the packets that correspond to
clicks and select the custom object field that contains the hand

12

motion in these click packets (e.g., select the custom object
field that contains the right-hand motion if the participant
uses the right hand to click). Recall that click identification is
straightforward via standard Unity APIs (see Section 2).

Compared to the attack described in Section 4, the resulting
data will no longer have the following information: (1) The
parsed motion data in a readable format. This requires revers-
ing the parsing of custom objects, and this process needs to
be redone for each application, as mentioned in Section 4.2;
(2) The TRANSFORM of the cursor and key. This is because
we do not have motion data in a “meaningful” format, so we
cannot perform calculations on top of it (e.g., measure cursor
and keyboard offsets).

After these data preprocessing steps, for each click, the
resulting data provides only a custom object field in raw byte
format that contains the motion data associated with typing.
The resulting data is paired with the corresponding labels to
create a dataset to train a machine learning classifier. Sub-
sequently, we gather more traffic as the victim types. These
attack targets (traffic with keystrokes) can be processed in the
same manner as the training data and fed into the trained ma-
chine learning classifiers to infer corresponding keystrokes.
Attack Evaluation and Results. For evaluation purposes,
we utilize the traffic traces collected from the user study and
divide them into an 8:1:1 ratio for training, testing, and valida-
tion. Then, we follow the attack steps above to carry out the
attack and evaluate the attack result using the top-k accuracy
of the testing data.

To identify the best machine learning model for the task,
we compare the attack results from various models, includ-
ing SVM [23], GBM [31], MLP [49], and CNN [34], to the
Random Guess baseline. These models are trained with a
learning rate of 10�4 for 500 epochs, from which we chose
the checkpoint with the highest validation accuracy as the
best attack model.

From the results in Table 3, we observe that all ML models
extract the victim-typed keystrokes significantly better than
the random guess baseline. Additionally, we observe that the
CNN model performs the best, with a 68.07% top-1 accuracy,
85.96% top-3 accuracy, and 90.28% top-5 accuracy in predict-
ing keystrokes. This result highlights that machine learning
models like CNN can effectively learn about mapping the bits
in packets to corresponding motions and click positions, so
the model can predict keystrokes with reasonable accuracy.

Our CNN model structure consists of three convolutional
layers. Each layer has a one-dimensional kernel size of three,
with 32, 64, and 128 neurons in each layer. Subsequent to
these convolutional layers, the architecture includes two fully-
connected layers and a softmax layer. The output space of this
CNN model corresponds to the number of classes, equivalent
to the distinct keys on the keyboard (47 in total).

The success of CNN might be attributed to its ability to
learn from small datasets with generalizability [17]. Also, the
CNN model might be able to learn from the features with

significant effects on the key presses (e.g., those bits directly
related to the TRANSFORM of the typing hand) [17], which
can be effective in capturing relevant parts from the partially
reversed data items that contain non-parsed custom fields used
in this task.

Top 1 Top 3 Top 5

Random Guess 2.13% 6.38% 10.64%
SVM 44.87% 64.47% 71.57%
LightGBM 46.49% 66.24% 71.61%
MLP 61.99% 79.81% 85.34%
CNN 68.07% 85.96% 90.28%

Table 3: Comparison of machine learning models on inferring
the keystrokes with partially reversed data in raw bytes.

The accuracy is still lower compared to the full extrac-
tion keylogging attack we proposed earlier, which uses high-
fidelity typing-related motion data. This is due to two reasons:
(1) From the prior experiment, we find that a slight deviation
in the motion data received by the adversary can cause an
incorrect prediction since the motion data of typing nearby
keys is similar due to the relatively small space of keys. As the
model is trained on partially reversed data, the data might have
less learning signal to predict the key and might introduce
errors. (2) As the model is trained on data items collected
through chatting with a victim, the quantity of the data is
also limited. This can potentially lead to the overfitting of the
model and cause a deviation when inferring the motion data
that the model has never seen, leading to a decrease in predic-
tion accuracy. However, even with the drop in accuracy, the
attack can still very effectively infer the victim’s keystroke.

We have also performed further analysis of the attack re-
sults in Appendix E, focusing on inferring keystrokes with
different amounts of training data, different hands, and during
different typing tasks.

8 Discussion

User Awareness and Concerns. From the results of the sur-
vey (see Appendix F for the survey questions), none of the
participants had ever imagined that their input in multi-user
VR applications could be stolen by adversaries. However,
after disclosure, 12 out of 20 participants expressed concerns
regarding this type of attack (Score > 4). These findings sug-
gest that VR users do recognize the potential harm from such
attacks. The user study results highlight the importance of ed-
ucating VR users about potential security and privacy threats,
such as our keylogging attacks in multi-user VR applications.
This education can serve as a warning, encouraging users to
exercise caution and prevent privacy leakage.

Privacy policies of VR applications play a crucial role in

13

educating users about their data privacy. However, to the best
of our knowledge, major VR applications often fail to clearly
explain sensitive data like motion data in their privacy policy.
Furthermore, Trimananda et al. [57] find that approximately
70 percent of PII data sent in traffic of VR applications are
not properly disclosed. This highlights the need for better
disclosure and compliance efforts from VR developers.
Impacts of Our Attack. We have reported our attack findings
to all of the applications we evaluated, as well as SteamVR
and Unity. Rec Room, and SteamVR responded, acknowledg-
ing the vulnerability. Furthermore, Rec Room classified it
as P3 severity (Medium: Vulnerabilities that affect multiple

users and require little or no user interaction to trigger). This
underscores the fact that our attack is feasible and poses a
privacy risk to numerous users. At the time of writing, we still
have ongoing discussions with SteamVR and Unity.

It should also be noted that our reverse engineering ap-
proach is not limited to recovering typing-related motion; it
can also recover other types of sensor data shared over the
internet, such as voice data. Our tool can serve as a baseline
for future studies aiming to further reveal the potential threats
posed by the misuse of sensor data in VR.

Moreover, our attack poses a threat not only to users in
applications which we have performed our attack. For multi-
user VR applications, the function of correctly synchronizing
avatar movements and displaying them to other users is foun-
dational, serving as the cornerstone of real-time interaction
within the application. To accurately render user avatars and
their movements, it’s important to note that even if motion
data is encrypted when sent over the network, it will even-
tually be decrypted on every client. Therefore, attackers can
recover motion data (of other users) received by their own
client, which allows them to fully track how a victim’s avatar
moves when selecting a key. Since our attack targets and ex-
ploits the transmission of motion data, which is fundamental
to the design of multi-user VR applications, the threat posed
by the attack is not limited to the applications we have evalu-
ated. In addition to them, we have analyzed the functionality
of 30 multi-user VR applications from various platforms, in-
cluding Oculus and Steam. Of the applications we studied,
18 offer virtual keyboard typing functionality and transmit
motion data online, making their users potential victims of
our attack. Additionally, the wide support of overlay system
messaging apps like Steam Chat or Messenger on VR devices
makes all multi-user VR applications potentially susceptible
to our attacks, since the applications may transmit motion
data when these overlays are activated.
Our Attack is Applicable Regardless of Physical Setup. It
is important to note that the transmitted motion data represents
the movements of in-game objects (e.g., avatar hands), rather
than the physical movements of devices (e.g., controllers). As
such, the motion data remains consistent irrespective of the
attacker’s or victim’s physical setup (e.g., VR device, WiFi
router), with the setup only affecting the data’s quality (e.g.,

refresh rate). In Section 6.1, we have shown that our attack is
robust against degraded motion data quality.
Defenses. To the best of our knowledge, no current defense
mechanism directly addresses our attack, and common data
protection defenses struggle to mitigate our attack for the
following reasons:

(1) Encrypting network traffic is not enough: as discussed
by Trimananda et al. [57], if an adversary controls the client
application, they can intercept packets during the key ex-
change, thereby obtaining the encryption key. This enables
the adversary to decrypt subsequent traffic to their client and
access motion data, facilitating the described attack. Inter-
estingly, among the applications we examined, only VRChat
encrypts the user’s motion data within the packets. This high-
lights a general oversight by multi-user VR applications with
respect to the potential privacy breaches related to motion
data.

(2) Differential privacy comes with utility trade-offs: by
introducing noise to all motions, differential privacy can de-
crease attack accuracy and mitigate potential motion-related
privacy breaches. However, as highlighted by Nair et al. [42],
incorporating differential privacy to protect the motion data
can lead to utility drops. That is, it can lead to altered and
inaccurate avatar movements, and can potentially reduce the
quality of the immersive experience in VR applications.

We propose a defense to mitigate this attack: full blockage
of motion updates during typing activities. That is, a user’s
motion data should not be sent to remote clients when the user
is typing, and perhaps an idle or random animation can be
sent instead. While this solution may sound trivial, it requires
efforts from developers, game engines, and VR systems alike.

For typing activities using an application’s built-in typing
functionalities, the burden of defense is now put on every
developer to identify scenarios in which typing happens and
fix them, which can be error-prone. Therefore, it may also be
necessary for game engines to provide a standard API and
defense mechanism for the typing functionality.

However, as previously mentioned, just protecting motion
data for an application’s built-in typing functionalities is in-
sufficient because of the wide support of system overlays like
Steam Overlay [9]. As the application is still active, motion
data is still updated when the overlay is launched, and typ-
ing activities inside the overlay are also vulnerable to our
attack. In this case, the application can not know whether the
users are typing and when to block motion updates. Conse-
quently, a standardized system-level API for typing detection
also needs to enable communication between the system and
applications.
Limitation and Future Work. At this stage, our method
predominantly targets a common input approach: using con-
trollers to select inputs from virtual keyboards, which high-
lights vulnerabilities in motion data transmission. While al-
ternative input methods exist, such as using one’s hand to tap
keys on a virtual keyboard, these mechanisms still rely on

14

motion data for input. Therefore, the foundational concept of
our attack remains valid. Thus, our technique should also be
effective in extracting typed secrets from these variations.

Also, our work primarily showcases that keylogging attacks
can be performed with motion data extracted from network
traffic. However, the use of motion data is not limited to
updating remote avatars; it also plays a role in various stages
of a VR system, such as rendering, haptic feedback, and video
recording. We will leave this as future work to further explore
other remote channels available for keylogging attacks.

As highlighted by Nair et al. [44], motion data can lead to
other forms of privacy breaches, such as user identification,
anthropometric measurements (e.g., height and wingspan),
and even demographic details (e,g., age and gender). It would
be valuable to conduct a separate study in the future, explor-
ing how to remotely exploit these vulnerabilities to deduce
such information from VR players. Moreover, we primar-
ily focused on utilizing motion data transmission as a side
channel to perform a keylogging attack.
Ethics Statement. Our paper demonstrates a practical keylog-
ging attack that utilizes an inherent issue of VR multiplayer
applications. We have followed a responsible disclosure pro-
cess to notify affected parties and to mitigate potential harm.
Also, we believe that our work serves as an important warning
to developers and we hope that it will inspire the design of
better defenses and secure future applications.

9 Related Work

Keylogging and Side-channel Attacks on VR/AR Devices.
Given that VR and AR applications continuously gather user
motion data, and typing is dependent on hand or controller
movements, recent studies have identified potential side chan-
nels for keylogging on VR devices, such as using malware
running in the background on the victim headset to collect
a user’s hand or head movement for keylogging [38, 53, 63]
or using system-side channels, like rendering performance
counters [68] or channel states [14].

It is also worth noting that methods of keylogging through
video capture of user typing have been extensively researched
in previous studies [29, 36, 41]. However, previous studies op-
erate under the assumption that adversaries can access a user’s
local information during typing. This may not be applicable in
many VR usage scenarios. In contrast, our keylogging attack
is executed remotely without necessitating any modifications
that could alert or impact the victim, rendering our method
both practical and discreet. Although our attack is performed
under a more challenging threat model, it still achieves com-
parable performance to the state-of-the-art keylogging attack
on VR motion data [63].
Keylogging and Side-channel Attacks on Other Devices.
Keylogging has also been well-studied on smart devices, in-
cluding smartwatches, mobile phones, and tablets. The tech-

niques for keylogging on these devices also focus on exploit-
ing side channels, such as sensor leakages [20, 37, 40, 61, 64],
video recordings of human typing [55, 65], voice [30, 50],
Wi-fi signals [15, 51], CPU-related side channels [48, 67] and
GPU-related side channels [32, 66]. Again, these prior efforts
are also based on the assumption that adversaries can access
and exploit side channels on user local devices. This is primar-
ily because the motion data associated with typing does not
necessarily need to be exported or shared with another per-
son or client over the Internet. In contrast, our attack exploits
the unique property of immersive VR environments, which
requires broad sharing of motion data for rendering. The ef-
fect of remote motion data leakage proposed in our work is
understudied and unique to multi-user VR applications.

Other VR/AR Security or Privacy Issue. Other than key-
logging attacks, security and privacy problems in VR have
also received attention recently. Regarding privacy in VR/AR
applications, Nair et al. [42–44] have demonstrated different
kinds of privacy threats related to the data-collecting process
in VR/AR systems and proposed utilizing differential pri-
vacy tools for protection. Trimananda et al. [57] investigated
VR app network flows for privacy breaches, while Farrukh et
al. [27] utilized VR/AR spatial maps to identify sensitive en-
vironmental details. Regarding security, studies have centered
on Perceptual Manipulation Attacks (PMA) [21, 22], click-
jacking [54], and ad fraud [35]. Similar to these prior efforts,
our keylogging attack utilized unique designs in VR/AR sys-
tems. However, our method is specifically designed to execute
a remote keylogging attack in multi-user VR applications to
extract user typing information.

10 Conclusion

In this work, we present the first VR remote keylogging attack
that targets multi-user VR applications. Specifically, our at-
tack can accurately infer user keystrokes by recovering motion
data from the attacker’s client, without the need to compro-
mise the victim’s device or physically approach the victim. In
a user study with 20 participants, our attack showcases that,
even with rate limitations and the potential for packet loss
under a remote attack setting, we can still infer the victim’s
keystrokes with a nearly perfect top-1 accuracy of 97.62% and
top-5 accuracy of 98.34%. Furthermore, our results indicate
that even with minimal manual reversing efforts, an adversary
can swiftly deploy this keylogging attack across various appli-
cations with an added phishing step using machine learning,
still achieving a reasonable top-1 accuracy of 68.07% and
top-5 accuracy of 90.28%. We hope this work can assist the
VR research community and industry by highlighting poten-
tial threats from motion leakage in VR and encouraging the
development of more effective defense mechanisms.

15

Acknowledgments

We sincerely thank the reviewers and shepherd for their valu-
able feedback on the paper. This work is supported in part
by the National Science Foundation (NSF) Awards 2229876,
2320903, 2317184, and funds provided by the Department of
Homeland Security, and by IBM. This work is also supported
in part by gifts from Intel and Activision. Any opinions, find-
ings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily
reflect the views of sponsors.

References

[1] Input system. https://docs.unity3d.com/Package
s/com.unity.inputsystem@1.0/manual/index.h

tml.

[2] Map controllers. https://developer.oculus.com

/documentation/unity/unity-ovrinput/#unity

-ovrinput.

[3] Mirror networking. https://mirror-networking.

gitbook.io/docs/.

[4] Photon fusion. https://doc.photonengine.com/f
usion/current/getting-started/fusion-intro

#hosted_mode___server_mode.

[5] Source multiplayer networking. https://developer.
valvesoftware.com/wiki/Source_Multiplayer_

Networking.

[6] Faceit client anit-cheat. https://www.faceit.com/e
n/anti-cheat, October 2023.

[7] Memorable password generator. https://springho

le.net/writing_roleplaying_randomators/mem

orable-password.htm, August 2023.

[8] Rec room. https://recroom.com/, June 15 2023.

[9] Steam overlay. https://partner.steamgames.com
/doc/features/overlay, October 2023.

[10] Unity netcode. https://unity.com/products/net
code, October 2023.

[11] Wireshark. https://www.wireshark.org/, June 15
2023.

[12] Steamvr. https://store.steampowered.com/app

/250820/SteamVR/, May 13 2024.

[13] Eric Abbruzzese. Virtual reality statistics 2024 – data
and facts! https://www.demandsage.com/virtual

-reality-statistics/, March 16 2024.

[14] Abdullah Al Arafat, Zhishan Guo, and Amro Awad. Vr-
spy: A side-channel attack on virtual key-logging in vr
headsets. In 2021 IEEE Virtual Reality and 3D User

Interfaces (VR), pages 564–572. IEEE, 2021.

[15] Kamran Ali, Alex X Liu, Wei Wang, and Muhammad
Shahzad. Keystroke recognition using wifi signals. In
Proceedings of the 21st annual international conference

on mobile computing and networking, pages 90–102,
2015.

[16] AltspaceVR. wireshark-photon-dissector. https://gi
thub.com/AltspaceVR/wireshark-photon-disse

ctor/tree/master.

[17] Laith Alzubaidi, Jinglan Zhang, Amjad J Humaidi, Ayad
Al-Dujaili, Ye Duan, Omran Al-Shamma, José Santa-
maría, Mohammed A Fadhel, Muthana Al-Amidie, and
Laith Farhan. Review of deep learning: Concepts, cnn
architectures, challenges, applications, future directions.
Journal of big Data, 8:1–74, 2021.

[18] battleye. Battleye. https://www.battleye.com/,
October 2023.

[19] XR Bootcamp. Comparing unity vs unreal for vr, mr or
ar development projects. https://xrbootcamp.com

/unity-vs-unreal-engine-for-xr-development

/#:~:text=Popular%20VR%20Games%20and%20Soci

al%20Platforms%20made%20with%20Unity,-Ocu

lus%20is%20the&text=This%20is%20one%20of%2

0the,platform%20are%20made%20by%20Unity.

[20] Liang Cai and Hao Chen. {TouchLogger}: Inferring
keystrokes on touch screen from smartphone motion.
In 6th USENIX Workshop on Hot Topics in Security

(HotSec 11), 2011.

[21] Peter Casey, Ibrahim Baggili, and Ananya Yarramreddy.
Immersive virtual reality attacks and the human joy-
stick. IEEE Transactions on Dependable and Secure

Computing, 2019.

[22] Kaiming Cheng, Jeffery F Tian, Tadayoshi Kohno, and
Franziska Roesner. Exploring user reactions and men-
tal models towards perceptual manipulation attacks in
mixed reality. In USENIX Security, volume 18, 2023.

[23] Corinna Cortes and Vladimir Vapnik. Support-vector
networks. Machine learning, 20:273–297, 1995.

[24] dsky. Vr tech 411 : 6dof, xyz + ypr, position + orienta-
tion in 3space. https://blog.dsky.co/2015/05/1
3/vr-tech-411-6dof-xyz-ypr-position-orien

tation-in-3space/.

[25] John Dudley, Hrvoje Benko, Daniel Wigdor, and Per Ola
Kristensson. Performance envelopes of virtual keyboard

16

https://docs.unity3d.com/Packages/com.unity.inputsystem@1.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.0/manual/index.html
https://developer.oculus.com/documentation/unity/unity-ovrinput/#unity-ovrinput
https://developer.oculus.com/documentation/unity/unity-ovrinput/#unity-ovrinput
https://developer.oculus.com/documentation/unity/unity-ovrinput/#unity-ovrinput
https://mirror-networking.gitbook.io/docs/
https://mirror-networking.gitbook.io/docs/
https://doc.photonengine.com/fusion/current/getting-started/fusion-intro#hosted_mode___server_mode
https://doc.photonengine.com/fusion/current/getting-started/fusion-intro#hosted_mode___server_mode
https://doc.photonengine.com/fusion/current/getting-started/fusion-intro#hosted_mode___server_mode
https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
https://www.faceit.com/en/anti-cheat
https://www.faceit.com/en/anti-cheat
https://springhole.net/writing_roleplaying_randomators/memorable-password.htm
https://springhole.net/writing_roleplaying_randomators/memorable-password.htm
https://springhole.net/writing_roleplaying_randomators/memorable-password.htm
https://recroom.com/
https://partner.steamgames.com/doc/features/overlay
https://partner.steamgames.com/doc/features/overlay
https://unity.com/products/netcode
https://unity.com/products/netcode
https://www.wireshark.org/
https://store.steampowered.com/app/250820/SteamVR/
https://store.steampowered.com/app/250820/SteamVR/
https://www.demandsage.com/virtual-reality-statistics/
https://www.demandsage.com/virtual-reality-statistics/
https://github.com/AltspaceVR/wireshark-photon-dissector/tree/master
https://github.com/AltspaceVR/wireshark-photon-dissector/tree/master
https://github.com/AltspaceVR/wireshark-photon-dissector/tree/master
https://www.battleye.com/
https://xrbootcamp.com/unity-vs-unreal-engine-for-xr-development/#:~:text=Popular%20VR%20Games%20and%20Social%20Platforms%20made%20with%20Unity,-Oculus%20is%20the&text=This%20is%20one%20of%20the,platform%20are%20made%20by%20Unity.
https://xrbootcamp.com/unity-vs-unreal-engine-for-xr-development/#:~:text=Popular%20VR%20Games%20and%20Social%20Platforms%20made%20with%20Unity,-Oculus%20is%20the&text=This%20is%20one%20of%20the,platform%20are%20made%20by%20Unity.
https://xrbootcamp.com/unity-vs-unreal-engine-for-xr-development/#:~:text=Popular%20VR%20Games%20and%20Social%20Platforms%20made%20with%20Unity,-Oculus%20is%20the&text=This%20is%20one%20of%20the,platform%20are%20made%20by%20Unity.
https://xrbootcamp.com/unity-vs-unreal-engine-for-xr-development/#:~:text=Popular%20VR%20Games%20and%20Social%20Platforms%20made%20with%20Unity,-Oculus%20is%20the&text=This%20is%20one%20of%20the,platform%20are%20made%20by%20Unity.
https://xrbootcamp.com/unity-vs-unreal-engine-for-xr-development/#:~:text=Popular%20VR%20Games%20and%20Social%20Platforms%20made%20with%20Unity,-Oculus%20is%20the&text=This%20is%20one%20of%20the,platform%20are%20made%20by%20Unity.
https://xrbootcamp.com/unity-vs-unreal-engine-for-xr-development/#:~:text=Popular%20VR%20Games%20and%20Social%20Platforms%20made%20with%20Unity,-Oculus%20is%20the&text=This%20is%20one%20of%20the,platform%20are%20made%20by%20Unity.
https://blog.dsky.co/2015/05/13/vr-tech-411-6dof-xyz-ypr-position-orientation-in-3space/
https://blog.dsky.co/2015/05/13/vr-tech-411-6dof-xyz-ypr-position-orientation-in-3space/
https://blog.dsky.co/2015/05/13/vr-tech-411-6dof-xyz-ypr-position-orientation-in-3space/

text input strategies in virtual reality. In 2019 IEEE Inter-

national Symposium on Mixed and Augmented Reality

(ISMAR), pages 289–300. IEEE, 2019.

[26] EPIC. Easy anti-cheat. https://easy.ac/en-us/,
October 2023.

[27] Habiba Farrukh, Reham Mohamed, Aniket Nare, Anto-
nio Bianchi, and Z Berkay Celik. {LocIn}: Inferring
semantic location from spatial maps in mixed reality. In
32nd USENIX Security Symposium (USENIX Security

23), pages 877–894, 2023.

[28] Gabriel Gambetta. Fast-paced multiplayer (part iii):
Entity interpolation. https://www.gabrielgambett
a.com/entity-interpolation.html.

[29] Sindhu Reddy Kalathur Gopal, Diksha Shukla,
James David Wheelock, and Nitesh Saxena. Hidden
reality: Caution, your hand gesture inputs in the
immersive virtual world are visible to all! In 32nd

USENIX Security Symposium (USENIX Security 23),
pages 859–876, 2023.

[30] Tzipora Halevi and Nitesh Saxena. Keyboard acoustic
side channel attacks: exploring realistic and security-
sensitive scenarios. International Journal of Information

Security, 14:443–456, 2015.

[31] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
Lightgbm: A highly efficient gradient boosting decision
tree. Advances in neural information processing systems,
30, 2017.

[32] Evangelos Ladakis, Lazaros Koromilas, Giorgos Vasil-
iadis, Michalis Polychronakis, and Sotiris Ioannidis.
You can type, but you can’t hide: A stealthy gpu-based
keylogger. In Proceedings of the 6th European Work-

shop on System Security (EuroSec). Citeseer, 2013.

[33] Alyssa Lamberti. What is acceptable packet loss? 10
https://obkio.com/blog/acceptable-packet-l

oss/, Mar 31 2023.

[34] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[35] Hyunjoo Lee, Jiyeon Lee, Daejun Kim, Suman Jana,
Insik Shin, and Sooel Son. {AdCube}:{WebVR} ad
fraud and practical confinement of {Third-Party} ads.
In 30th USENIX Security Symposium (USENIX Security

21), pages 2543–2560, 2021.

[36] Zhen Ling, Zupei Li, Chen Chen, Junzhou Luo, Wei
Yu, and Xinwen Fu. I know what you enter on gear

vr. In 2019 IEEE Conference on Communications and

Network Security (CNS), pages 241–249. IEEE, 2019.

[37] Xiangyu Liu, Zhe Zhou, Wenrui Diao, Zhou Li, and
Kehuan Zhang. When good becomes evil: Keystroke
inference with smartwatch. In Proceedings of the 22nd

ACM SIGSAC Conference on Computer and Communi-

cations Security, pages 1273–1285, 2015.

[38] Shiqing Luo, Xinyu Hu, and Zhisheng Yan. Holologger:
Keystroke inference on mixed reality head mounted dis-
plays. In 2022 IEEE Conference on Virtual Reality and

3D User Interfaces (VR), pages 445–454. IEEE, 2022.

[39] Kim Lyons. Rec room rides uptick in users during the
pandemic to become a vr unicorn. https://www.thev
erge.com/2021/3/25/22350421/rec-room-teena

gers-gaming-users-pandemic-virtual-reality.

[40] Anindya Maiti, Oscar Armbruster, Murtuza Jadliwala,
and Jibo He. Smartwatch-based keystroke inference
attacks and context-aware protection mechanisms. In
Proceedings of the 11th ACM on Asia Conference on

Computer and Communications Security, pages 795–
806, 2016.

[41] Ülkü Meteriz-Yıldıran, Necip Fazıl Yıldıran, Amro
Awad, and David Mohaisen. A keylogging inference
attack on air-tapping keyboards in virtual environments.
In 2022 IEEE Conference on Virtual Reality and 3D

User Interfaces (VR), pages 765–774. IEEE, 2022.

[42] Vivek Nair, Gonzalo Munilla Garrido, and Dawn Song.
Going incognito in the metaverse. arXiv preprint

arXiv:2208.05604, 2022.

[43] Vivek Nair, Wenbo Guo, Justus Mattern, Rui Wang,
James F O’Brien, Louis Rosenberg, and Dawn Song.
Unique identification of 50,000+ virtual reality users
from head & hand motion data. arXiv preprint

arXiv:2302.08927, 2023.

[44] Vivek Nair, Louis Rosenberg, James F. O’Brien, and
Dawn Song. Truth in motion: The unprecedented risks
and opportunities of extended reality motion data, 2023.

[45] Industry News and Insights. Vr game market 2023
trends: Report deliverables and forecast to 2030. https:
//www.linkedin.com/pulse/vr-game-market-2

023-trends-report-deliverables.

[46] Nvidia. Nvidia vcr. https://info.nvidia.com/xr
-vcr-reg-page.html, March 2023.

[47] OpenAI. Chatgpt based on gpt-4. https://www.open
ai.com/, 2022.

17

https://easy.ac/en-us/
https://www.gabrielgambetta.com/entity-interpolation.html
https://www.gabrielgambetta.com/entity-interpolation.html
https://obkio.com/blog/acceptable-packet-loss/
https://obkio.com/blog/acceptable-packet-loss/
https://www.theverge.com/2021/3/25/22350421/rec-room-teenagers-gaming-users-pandemic-virtual-reality
https://www.theverge.com/2021/3/25/22350421/rec-room-teenagers-gaming-users-pandemic-virtual-reality
https://www.theverge.com/2021/3/25/22350421/rec-room-teenagers-gaming-users-pandemic-virtual-reality
https://www.linkedin.com/pulse/vr-game-market-2023-trends-report-deliverables
https://www.linkedin.com/pulse/vr-game-market-2023-trends-report-deliverables
https://www.linkedin.com/pulse/vr-game-market-2023-trends-report-deliverables
https://info.nvidia.com/xr-vcr-reg-page.html
https://info.nvidia.com/xr-vcr-reg-page.html
https://www.openai.com/
https://www.openai.com/

[48] Riccardo Paccagnella, Licheng Luo, and Christopher W
Fletcher. Lord of the ring (s): Side channel attacks on
the {CPU}{On-Chip} ring interconnect are practical.
In 30th USENIX Security Symposium (USENIX Security

21), pages 645–662, 2021.

[49] Frank Rosenblatt. The perceptron: a probabilistic model
for information storage and organization in the brain.
Psychological review, 65(6):386, 1958.

[50] Roman Schlegel, Kehuan Zhang, Xiao-yong Zhou,
Mehool Intwala, Apu Kapadia, and XiaoFeng Wang.
Soundcomber: A stealthy and context-aware sound tro-
jan for smartphones. In NDSS, volume 11, pages 17–33,
2011.

[51] Xingfa Shen, Zhenxian Ni, Lili Liu, Jian Yang, and Kabir
Ahmed. Wipass: 1d-cnn-based smartphone keystroke
recognition using wifi signals. Pervasive and Mobile

Computing, 73:101393, 2021.

[52] Carter Slocum, Yicheng Zhang, Nael Abu-Ghazaleh,
and Jiasi Chen. Going through the motions:{AR/VR}
keylogging from user head motions. In 32nd USENIX

Security Symposium (USENIX Security 23), pages 159–
174, 2023.

[53] Carter Slocum, Yicheng Zhang, Nael Abu-Ghazaleh,
and Jiasi Chen. Going through the motions:{AR/VR}
keylogging from user head motions. In 32nd USENIX

Security Symposium (USENIX Security 23), pages 159–
174, 2023.

[54] Zihao Su, Faysal Hossain Shezan, Yuan Tian, David
Evans, and Seongkook Heo. Perception hacking for 2d
cursorjacking in virtual reality. 2022.

[55] Jingchao Sun, Xiaocong Jin, Yimin Chen, Jinxue Zhang,
Yanchao Zhang, and Rui Zhang. Visible: Video-assisted
keystroke inference from tablet backside motion. In
NDSS, 2016.

[56] Unity Technologies. Unity xr input. https://docs.u
nity3d.com/Manual/xr_input.html.

[57] Rahmadi Trimananda, Hieu Le, Hao Cui, Janice Tran
Ho, Anastasia Shuba, and Athina Markopoulou.
{OVRseen}: Auditing network traffic and privacy
policies in oculus {VR}. In 31st USENIX security

symposium (USENIX security 22), pages 3789–3806,
2022.

[58] Unity. Unity documentation: Transform. https://do
cs.unity3d.com/ScriptReference/Transform.h

tml, October 2023.

[59] Linde VirtualAcademy. Is your frame rate affecting your
vr experience. https://vr.linde.com/2022/10/0

6/is-your-frame-rate-affecting-your-vr-exp

erience/, October 6 2022.

[60] VRChat. Vrchat. https://hello.vrchat.com/, June
15 2023.

[61] He Wang, Ted Tsung-Te Lai, and Romit Roy Choudhury.
Mole: Motion leaks through smartwatch sensors. In
Proceedings of the 21st annual international conference

on mobile computing and networking, pages 155–166,
2015.

[62] Xiaoying Wei, Xiaofu Jin, and Mingming Fan. Commu-
nication in immersive social virtual reality: A systematic
review of 10 years’ studies, 2022.

[63] Yi Wu, Cong Shi, Tianfang Zhang, Payton Walker, Jian
Liu, Nitesh Saxena, and Yingying Chen. Privacy leak-
age via unrestricted motion-position sensors in the age
of virtual reality: A study of snooping typed input on
virtual keyboards. In 2023 IEEE Symposium on Security

and Privacy (SP), pages 3382–3398. IEEE Computer
Society, 2023.

[64] Zhi Xu, Kun Bai, and Sencun Zhu. Taplogger: Inferring
user inputs on smartphone touchscreens using on-board
motion sensors. In Proceedings of the fifth ACM con-

ference on Security and Privacy in Wireless and Mobile

Networks, pages 113–124, 2012.

[65] Zhuolin Yang, Yuxin Chen, Zain Sarwar, Hadleigh
Schwartz, Ben Y Zhao, and Haitao Zheng. Towards
a general video-based keystroke inference attack. In
Proceedings of the 2023 32nd USENIX Security Sympo-

sium, Anaheim, CA, USA, pages 9–11, 2023.

[66] Zihao Zhan, Zhenkai Zhang, Sisheng Liang, Fan Yao,
and Xenofon Koutsoukos. Graphics peeping unit: Ex-
ploiting em side-channel information of gpus to eaves-
drop on your neighbors. In 2022 IEEE Symposium

on Security and Privacy (SP), pages 1440–1457. IEEE,
2022.

[67] Xiaokuan Zhang, Yuan Xiao, and Yinqian Zhang.
Return-oriented flush-reload side channels on arm and
their implications for android devices. In Proceedings

of the 2016 ACM SIGSAC Conference on Computer and

Communications Security, pages 858–870, 2016.

[68] Yicheng Zhang, Carter Slocum, Jiasi Chen, and Nael
Abu-Ghazaleh. It’s all in your head (set): Side-channel
attacks on ar/vr systems. In USENIX Security, 2023.

A Example of a Packet Parsed with Generic
Photon Protocol Parser

In Figure 12, we show a Wireshark capture of a packet con-
taining motion data sent by the Rec Room server (here, the

18

https://docs.unity3d.com/Manual/xr_input.html
https://docs.unity3d.com/Manual/xr_input.html
https://docs.unity3d.com/ScriptReference/Transform.html
https://docs.unity3d.com/ScriptReference/Transform.html
https://docs.unity3d.com/ScriptReference/Transform.html
https://vr.linde.com/2022/10/06/is-your-frame-rate-affecting-your-vr-experience/
https://vr.linde.com/2022/10/06/is-your-frame-rate-affecting-your-vr-experience/
https://vr.linde.com/2022/10/06/is-your-frame-rate-affecting-your-vr-experience/
https://hello.vrchat.com/

IP address of the Rec Room server that sends motion data
updates is 216.120.180.127). This motion data encodes an
update of the movement of the avatar that is controlled by the
victim user (and who is in the same virtual room as we are
– the attacker). This motion update is used by our client to
render the movement of the victim’s avatar. In our attack, we
use this data to infer keystrokes.

Figure 12: Example of an unparsed motion data packet.

In Figure 13, we show how the packet payload is parsed
by a generic parser for the Photon protocol (Section 4.2).
Photon is used to exchange objects between game clients
and the Rec Room server. Note that, at this stage of parsing,
we (the attacker) do not (yet) know the meaning (semantics)
of specific fields of these objects, which are structured in
different ways for different applications. However, the Photon
parser can decode the raw packet payload into objects.

Figure 13: Example of a parsed motion data packet from Rec
Room.

B Reverse-Engineering Custom Data Fields

Rec Room is developed using the Unity game development en-
gine. Like all games developed using Unity, it is implemented
mostly in C#, however, the final game is usually emitted as

a native code library using Unity’s il2cpp utility. il2cpp tran-
spiles a C# Unity project into an equivalent C++ project with
a runtime providing most of the C# standard library func-
tionality. For reverse-engineering purposes, this transpilation
presents a major hurdle, as C# applications generally include
a plethora of high-level metadata of the target application,
including function names, types, method signatures, classes,
and many more. The C++ binaries produced by il2cpp, in
contrast, do not include any such type information, and any
included information can easily be removed (e.g. debug sym-
bols) by application developers worried about reverse engi-
neering. However, since various C# functionality (e.g., the
“Reflection” APIs) requires fine-grained type information at
runtime, il2cpp produces a global-metadata.dat file which
contains the necessary type information omitted by the C++
compilation instead. During gameplay, the il2cpp runtime
provides this type-information on-demand as the application
requires it by loading and parsing this metadata file.

Various obfuscation and anti-tampering schemes exist
for Unity developers to protect their games from reverse-
engineering efforts as performed in this paper. Notably, Epic
Games offers EAC (Easy Anti-Cheat) to developers in the
Unity store. EAC is used by well-known games such as Fort-
nite, Apex Legends, HALO, etc., to prevent tampering with
the game data by a malicious user in order to prevent cheating
in these games.

RecRoom relies on EAC to prevent modification and/or
introspection of game data at runtime. To extract the motion
data required for this project via dynamic analysis of the target
application would require bypassing EAC’s anti-cheat protec-
tions, since the required memory introspection capabilities
can be used to implement various cheats like wall-hacks. Such
bypasses, while feasible, are highly guarded secrets of com-
mercial cheat developers because any methods made public
are generally quickly patched and mitigated.

Instead we focus on a fully static reverse-engineering ap-
proach to recover the necessary custom data-structures used
by RecRoom to transmit motion data, events, player informa-
tion, etc. Photon Unity Networking (PUN), the networking
library used by Rec Room, provides a common communica-
tion and serialization mechanism for a variety of game-related
information, such as events, positions, rotations, entities, etc.
It also provides a common extension point for developers
to send up to 256 arbitrary custom data types. RecRoom
uses these custom data types to implement more efficient
custom encodings for motion data (among other things), e.g.
Quaternion Compression and Quantization. We identified the
corresponding functionality in the RecRoom application by
searching for custom types provided natively provided by
PUN (namely Vector2/3 and Quaternion). Once the Register-

CustomType function was identified, we cross-checked other
call sites and found a function registering all custom types
used by Rec Room. Lastly, we reverse-engineered each cus-
tom handler to discover the internal structure for each custom

19

type.
The now syntactically decoded packets are then used for

the semantics-recovery process.

C Geometric Tests for Cursor and Key Mea-
surement

Cursor Measurement. If all the measurements of the cur-
sor are correct, we can verify them with the following geo-
metric tests:

1) If we point the cursor at a vertical screen and move the
hand along the measured forward direction of the cursor (i.e.,
which direction the cursor is pointing at), the cursor’s reticle
(projection of the cursor on the screen) should not move.
Passing this test shows that the movement axis aligns with
the cursor’s real forward direction, and we have measured
the cursor’s orientation correctly. This test is illustrated in
Figure 7.

2) Once we measure the cursor’s forward direction cor-
rectly, if we rotate the hand around the forward direction axis
along the measured cursor’s center point, the cursor’s reticle
should not move. Passing this test shows that the rotation
axis crosses the measured cursor’s center point and that we
have measured the cursor’s position correctly. This test is
illustrated in Figure 14.

Figure 14: Geometric test 2: test if the cursor position is
correct by rotating the hand around the cursor’s forward di-
rection.

Key Measurement. If the measurement of a key’s corner
position is correct, we can verify it with the following geo-
metric test: 1) Once we measure the cursor’s TRANSFORM,
if we can find an axis that crosses a key’s corner, then move
the cursor around this axis while pointing at the key’s corner,
the reticle should not move. Passing this test shows that we

are able to triangulate the key’s corner, and that we have mea-
sured the position of the key’s corner correctly. This test is
illustrated in Figure 15.

Figure 15: Geometric test 3: test if the key corner measure-
ment is correct by drawing a cone shape around the key corner
with the cursor.

D Other Results for the Keylogging Attack

Attack Accuracy Across Participants. In Figure 16, we
can see the individual differences in the attack’s accuracy.
While the accuracy remains high across all participants (for
top-1 accuracy, the minimum is 94.8%), there are individual
differences across participants (for top-1 accuracy, the me-
dian is 98.13% and the maximum is 99.47%). There may be
many factors that contribute to this difference. For example,
participants had different typing habits and positioning, as
we did not want to put restrictions on the participants’ typing
process. During the study, we observed that some participants
leaned back and typed characters from a very far distance
(some people even typed with awkward poses, positioning
their hands above their shoulders), whereas others typed char-
acters right in front of the keyboard. Therefore, it may be
harder to predict keystrokes from those who were far from
the keyboard similar to how farther keys were harder to pre-
dict as discussed in Section 6.2). However, as the accuracy is
still high across all participants, our attack is robust against
individual differences.

Difference Across Hands. In Figure 17, we show the at-
tack’s accuracy for both hands, which do not have noticeable
difference (e.g., top-1 accuracy for the left hand is 98.1%, and
top-1 accuracy for the right hand is 97.51%). This result is ex-
pected, as our attack uses hand motions to precisely calculate
the keystroke, and the motions likely do not have a fundamen-
tal difference between the left hand and the right hand (e.g.,

20

Figure 16: The accuracy of the attack varies slightly among
different participants due to their varying typing habits.

they are likely positioned roughly the same distance from the
keyboard).

Figure 17: The attack accuracy is not affected by the hand the
victim uses to type.

E More Analysis for Attack on Partially Re-
verse Engineered Packets

More Training Data Allows Higher Attack Accuracy.
From the results demonstrated in Table 4, we found that when
we train the machine learning classifier with more data, it can
predict the keystrokes with higher accuracy. This highlights
that if an adversary is able to collect more labeled typing
motion from the victim, they can further improve the attack
results.

Train Data Top 1 Top 3 Top 5

20 Percent 30.16% 50.47% 63.01%
40 Percent 45.30% 67.81% 76.38%
60 Percent 57.14% 79.29% 86.54%
80 Percent 68.07% 85.96% 90.28%

Table 4: More training data enables the model to better learn
about decoding the data.

Secrets Typed with the Right Hand are More Vulnerable.
From the result demonstrated in Table 5, we found that the
data type with the right hand is slightly more vulnerable to
our attack. We theorize that this is because most users pre-
dominantly use their right hand for typing, as evidenced by
the data showing more than 70 percent of the clicks originate
from the right hand. As a result, the model is trained on a
larger volume of right-hand data, enhancing its generalizabil-
ity when encountering new data for the testing samples when
the victim types with the right hand.

Top 1 Top 3 Top 5

Left(Total) 66.73% 83.34% 88.91%
Right(Total) 72.31% 86.44% 90.70%

Table 5: Secrets typed with the right hand are slightly more
vulnerable to our machine learning models.

Performance of the Attack on Different Tasks. From the
results demonstrated in Table 6, we found that the user’s
typing with just numbers can be inferred with a top-1 accuracy
of 83.63%. Typings with sentences can be inferred with an
accuracy of 70.59%, but password typing has a lower attack
accuracy of 58.67%.

We theorize that numbers are more vulnerable because they
belong to fewer classes (only 10), causing each number to
appear more frequently in the training dataset compared to
the characters. Sentences are also slightly more vulnerable
compared to the main result. This is because the distribution
of characters within a sentence can be slightly imbalanced.
Some characters might be seen more frequently than others,
making them more vulnerable to our attack. However, since
password typing can include any keys on the keyboard, some
keys are rarely seen in the training data. These rarely-seen
keys make passwords harder to attack.

F Survey

Debrief. After the data collection was complete, we de-
briefed the participant on the real purpose of our study using

21

Top 1 Top 3 Top 5

Numbers 83.63% 97.91% 100%
Passwords 58.67% 77.23% 86.61%
Sentences 70.59% 84.03% 92.44%

Table 6: Attack accuracy for different typing tasks with par-
tially reconstructed data.

the following scripts:

Thank you for your participation in this experiment.
The goal of this study was to determine the vulner-
abilities within the current VR typing systems and
understand whether a malicious actor in the same
virtual room can recover your keystrokes in a social
VR app, which might be exploited to steal your pri-
vate chat, password, or payment information. The
result would be very helpful to further improve the
general security of all Virtual Reality systems in
the market.
In this experiment, you were taught that the study
was a study for typing in Virtual Reality. The rea-
son behind not fully disclosing the study purpose
was that we wanted you to complete the tasks with-
out excessive caution so that your typing activities
resemble a real-world scenario.
Your participation is not only greatly appreciated
by the researchers involved, but the data collected
could possibly improve the security of Virtual Re-
ality.
Finally, we urge you not to discuss this study with
anyone else who is currently participating or might
participate at a future point in time. As you can
certainly understand, we will not be able to exam-
ine the effectiveness of keystroke recovery in par-
ticipants who know about the true purpose of the
project beforehand. Thank you!

Survey Questions on User’s Opinion of Keylogging Attack.

1. What input method do you usually use to type in VR?

(a) Virtual Keyboard
(b) Voice inputs
(c) Traditional keyboard
(d) Hand gesture
(e) Eye-tracking
(f) Other:

2. In which activities within VR games have you used
typing? (select any that apply)

(a) Private chat

(b) Email writing

(c) Browser search

(d) Password entry

(e) Payment information

(f) Other:

3. Prior to this study, were you aware that any user in
the same virtual room could potentially infer your
keystrokes?

(a) Yes

(b) No

4. How concerned are you about the possibility of a mali-
cious user inferring your keystrokes while in the same
virtual room with you

(a) Score 1: Not concerned at all

(b) Score 2: Slightly inclined to be concerned

(c) Score 3: Moderately disinclined to be concerned

(d) Score 4: Uncertain

(e) Score 5: Moderately inclined to be concerned

(f) Score 6: Strongly inclined to be concerned

(g) Score 7: Extremely concerned

22

	Introduction
	Background
	Threat Model
	Approach
	Step 1: Packet Extraction
	Step 2: Field Extraction
	Step 3: Semantics Extraction
	Step 4: Click Position Extraction
	Reverse Engineering Challenges
	Precise Input Control
	Precise Measurement

	Data Collection
	Evaluation
	Our Attack is Robust Under Traffic Loss
	Keyboard Layout Affects Attack Accuracy
	Our Attack Remains Robust Under Varying Typing Speed
	Our Attack Can Be Stealthy Under Practical Scenarios
	Our Attack Generalizes Across Applications

	Keylogging is Possible Even with Partial Reverse Engineered Packets
	Discussion
	Related Work
	Conclusion
	Example of a Packet Parsed with Generic Photon Protocol Parser
	Reverse-Engineering Custom Data Fields
	Geometric Tests for Cursor and Key Measurement
	Other Results for the Keylogging Attack
	More Analysis for Attack on Partially Reverse Engineered Packets
	Survey

