
ACE: A Model Poisoning Attack on Contribution Evaluation Methods
in Federated Learning

Zhangchen Xu
University of Washington

zxu9@uw.edu

Fengqing Jiang
University of Washington
fqjiang@uw.edu

Luyao Niu
University of Washington
luyaoniu@uw.edu

Jinyuan Jia
Pennsylvania State University

jinyuan@psu.edu

Bo Li
University of Chicago
bol@uchicago.edu

Radha Poovendran
University of Washington

rp3@uw.edu

Abstract
In Federated Learning (FL), a set of clients collaboratively
train a machine learning model (called global model) without
sharing their local training data. The local training data of
clients is typically non-i.i.d. and heterogeneous, resulting in
varying contributions from individual clients to the final per-
formance of the global model. In response, many contribution
evaluation methods were proposed, where the server could
evaluate the contribution made by each client and incentivize
the high-contributing clients to sustain their long-term partic-
ipation in FL. Existing studies mainly focus on developing
new metrics or algorithms to better measure the contribution
of each client. However, the security of contribution evalua-
tion methods of FL operating in adversarial environments is
largely unexplored. In this paper, we propose the first model
poisoning attack on contribution evaluation methods in FL,
termed ACE. Specifically, we show that any malicious client
utilizing ACE could manipulate the parameters of its local
model such that it is evaluated to have a high contribution
by the server, even when its local training data is indeed of
low quality. We perform both theoretical analysis and empir-
ical evaluations of ACE. Theoretically, we show our design
of ACE can effectively boost the malicious client’s perceived
contribution when the server employs the widely-used co-
sine distance metric to measure contribution. Empirically,
our results show ACE effectively and efficiently deceive five
state-of-the-art contribution evaluation methods. In addition,
ACE preserves the accuracy of the final global models on test-
ing inputs. We also explore six countermeasures to defend
ACE. Our results show they are inadequate to thwart ACE, high-
lighting the urgent need for new defenses to safeguard the
contribution evaluation methods in FL.

1 Introduction

Federated learning (FL) [42] enables a set of clients to col-
laboratively train a machine learning model, denoted as the
global model, using their local training data in an iterative

manner. At each communication round, a cloud server first
broadcasts the current global model to the clients. Each client
then adopts the global model as its local model, locally mini-
mizes an empirical loss function (e.g., cross-entropy function)
over its local training data to compute a local model update,
and finally sends the local model update to the server. The
server aggregates the local model updates from the clients
according to an aggregation rule (e.g., FedAvg [42]) to up-
date the current global model. FL has been widely deployed
in real-world cross-silo settings where data is spread across
multiple isolated organizations [40, 52, 85].

In practice, the local training data possessed by the clients
in FL is non-i.i.d. and heterogeneous [11, 35, 37, 59], and
thus inherently of varying qualities. Therefore, it is crucial
to understand and evaluate the contribution of each client to-
ward the performance (e.g., accuracy on testing inputs) of the
global model. Accurate contribution evaluation facilitates the
designs of incentive mechanisms to encourage the clients, es-
pecially those owning high-quality data, to participate into FL
[15, 22, 26, 73], which could further enhance the performance
of the global model. To this end, contribution evaluation meth-
ods in FL has been extensively studied [54, 57]. The existing
studies [15, 16, 22, 26, 39, 62, 65, 73, 81] primarily focus on
the development of novel metrics or algorithms to measure
the contributions of clients in FL. At present, however, the
security of contribution evaluation methods in FL remains
largely unexplored.
Our Contribution. In this paper, we propose the first model
poisoning attack on contribution evaluation methods in FL.
We term this attack as ACE. We consider that an attacker owns
a subset of clients in FL, denoted as malicious clients. These
malicious clients are evaluated as low-contributing partici-
pants by the server. Specifically, the malicious clients manipu-
late the parameters of their local models, with the objective of
elevating their contributions evaluated by the server. Accom-
plishing this attack goal can result in monetary advantages
for the attacker when contribution-based incentive mecha-
nisms are employed in FL. For example, the FL server may
distribute a certain amount of budget to the clients in propor-

1

ar
X

iv
:2

40
5.

20
97

5v
2

 [c
s.C

R
]

5
Ju

n
20

24

Global	Model
update

Local	Model	UpdateDataset

Client !

Historical	Global	
Models

Future	Global	
Model	Prediction

Malicious Clients

Prediction	Error	
Mitigation

Contribution	
Evaluation

Server

Figure 1: An illustration of ACE consisting of two components:
future global model prediction and prediction error mitigation.

tion to their individual contributions in order to encourage
clients with high contributions to remain in the FL [46]. The
attack studied in this paper can boost the contributions of
malicious clients, and thus increase their shares of the budget.
This lowers the shares available to the other clients, thereby
jeopardizing their interests.

We highlight that the attack goal of ACE is significantly
different from existing attacks in FL, including untargeted
poisoning attacks [8, 18, 30, 51, 70, 86] and backdoor attacks
[1, 2, 58, 63, 68, 82]. In particular, existing untargeted poi-
soning attacks and backdoor attacks aim to make the global
model exhibit low performance for indiscriminate testing in-
puts or predict an attacker-chosen target class for any inputs
embedded with a backdoor trigger [27]. By contrast, ACE aims
to deceive the contribution evaluation method employed by
the server to increase the contributions of malicious clients
(with low-quality local training data). Our empirical studies
demonstrate that ACE retains the performance of the global
models in different settings. We defer the detailed discussion
on the difference to Section 8.

A major challenge in developing ACE is how the malicious
clients should strategically manipulate the parameters of ma-
licious clients’ local models to increase the perceived contri-
bution by the server. Our insight to address this challenge is
that the FL procedure provides the malicious clients informa-
tion on the global model as shown in Figure 1, allowing the
malicious client to predict how the global model evolves over
communication rounds. Therefore, the malicious clients can
craft local model updates to better align with the prediction
of the global model, making them more likely to be perceived
by the server as having higher contributions. ACE uses the
Cauchy mean value theorem [33] to predict the global model
at each communication round. We show that predicting the
global model significantly reduces the computation complex-
ity for the malicious clients compared to iteratively learning
local model updates from the local training datasets, allowing
ACE to boost the perceived contributions at negligible cost.

We theoretically analyze the effectiveness of ACE when
the server measures contributions using cosine distance. We
prove that ACE allows the malicious clients to always increase

the perceived contribution by appropriately scaling up the pre-
dicted global model. We further empirically evaluate the effec-
tiveness and efficiency of ACE using five state-of-the-art contri-
bution evaluation methods in FL [41, 65, 72, 73, 81]. We com-
pare ACE with four baselines using three models across three
datasets including MNIST [14], CIFAR-10 [31], and Tiny-
ImageNet [34]. We show that ACE consistently outperforms
all baselines when the local training data of clients is non-
i.i.d., yielding the highest perceived contribution by the FL
server. This demonstrates the severity of ACE on contribution
evaluation methods in FL. We evaluate ACE against counter-
measures including extended Multi-Krum [3] and Trimmed-
Mean [75], which have been widely used in FL. Our empirical
evaluations demonstrate that these countermeasures are not
effective against ACE. These results underscore the need for
the development of new defenses to thwart ACE.

To summarize, this paper makes the following major con-
tributions:

• We propose the first model poisoning attack on contribu-
tion evaluation methods in FL, termed as ACE.

• We present theoretical analysis and perform extensive
empirical evaluations of ACE to demonstrate its effective-
ness and efficiency.

• We investigate the countermeasures to mitigate ACE. We
show that ACE can remain stealthy against the existing
mitigation strategies, highlighting the needs for new de-
fense mechanisms.

2 Background and Related Work

In this section, we present background on federated learning
and contribution evaluation methods in FL.

2.1 Federated Learning
We consider an FL setting where N clients collaboratively
train a machine learning model, called global model. Let
Di represent the local training dataset of the i-th client and
|Di| denote its size, where i = 1,2, · · · ,N. We denote the
set of clients as G, and thus the joint training dataset can be
represented as D = [i2GDi. To learn the global model, the
set of clients collaboratively minimizes a loss function over
their local training datasets as follows:

min
w Â

i2G
L(Di;w),

where w represents the parameters of the global model and
L(Di;w) is the empirical loss (e.g., cross-entropy loss) evalu-
ated using the global model with parameters w on the local
training dataset Di. The clients iteratively solve the optimiza-
tion problem through multiple communication rounds with

2

an FL server. Specifically, there are three steps at each com-
munication round t, which are detailed below.

Step I. The server broadcasts the current global model, de-
noted as wt , to the clients.

Step II. For each client i, it first uses the global model wt

to initialize its local model, and then uses the local training
dataset Di to update its local model by minimizing the em-
pirical loss function L, i.e., wt+1

i = wt�hi—L(Di;wt), where
hi is the learning rate and —L(Di;wt) = ∂L(Di;wt)

∂wt . Finally,
it sends the local model update gt

i = wt �wt+1
i back to the

server. Note that it is equivalent for the client to send the local
model update or local model due to the above relationship.

Step III. The server aggregates the local model updates
from the clients, and updates the global model of the (t +1)-
th communication round as wt+1 wt � gt , where gt =
A(gt

1,gt
2, · · · ,gt

N) is the global model update at communica-
tion round t and A is an aggregation rule. A typical example of
A is FedAvg [42], defined as A(gt

1,gt
2, · · · ,gt

N) = Âi2G
|Di|
|D| gt

i .

2.2 Contribution Evaluation Methods in FL
Contribution evaluation in FL aims to quantify the contribu-
tion made by each client to the performance (e.g., accuracy on
testing inputs) of the global model. Following previous stud-
ies [39, 54], we divide the existing contribution evaluation
methods in FL into three categories: self-reporting based con-
tribution evaluation [76, 77], individual performance based
contribution evaluation [12, 22, 29, 41, 55, 72, 73, 78, 79],
and game theory based contribution evaluation [16, 23, 28,
39, 62, 64, 65, 81, 84].

Self-Reporting based Contribution Evaluation. The meth-
ods in this category utilize the information reported by each
client to measure its contribution. For instance, Zeng et
al. [77] propose to use self-reported local data size and com-
munication bandwidth to evaluate the contribution. Yu et
al. [76] proposed to use the data quantity and quality (e.g.,
measured by the marginal revenue generated by the global
model) reported by each client to measure its contribution.
Since those methods heavily rely on self-reported information,
they are susceptible to malicious clients who can untruthfully
report their information to the server.

Individual Performance based Contribution Evalua-
tion. This category of methods proposes some performance
metrics defined on the local model updates of clients to mea-
sure their contributions. Some studies [12, 41] assume the
server has a clean validation dataset in order to calculate the
proposed performance metrics. For instance, Lyu et al. [41]
evaluate the contribution of a client at each communication
round using the validation accuracy of its local model on the
validation dataset of the server. Chen et al. [12] propose to
quantify the contribution of a client at each individual commu-
nication round by computing the mutual cross-entropy loss

between the local model of the client and the global model
on the validation dataset. However, these methods assume the
server has a clean, small validation dataset, which has been
shown to be impractical [50]. When the server does not have
any validation data, existing studies propose to utilize the dis-
tance (e.g., cosine distance [29, 55, 72, 73, 78] and Euclidean
distance [22, 79]) between the global model and the local
model of a client to measure its contribution at each commu-
nication round. The key assumption is that a client whose
local model is more similar to the aggregated global model
makes more contribution to it. Therefore, the contribution of
a client is smaller if the distance becomes larger.
Game Theory based Contribution Evaluation. This cat-
egory of methods formulates the FL as a cooperative game,
where all clients collaboratively learn a global model using
their local training data. Then the aggregated contribution of
the clients is represented by the utility of the game (e.g., accu-
racy [39] or empirical loss [16, 62, 81] of the global model on
testing inputs), and the contribution of each individual client
is modeled by its payoff received in this game.

Wang et al. [62] propose to quantify the contribution (av-
eraged over all communication rounds) of each client in FL
using its marginal loss, which is defined as the utility differ-
ence when the client joins the game as opposed to not joining
the game. Similarly, Zhang et al. [81] measure the contri-
butions of clients at each communication round using their
marginal performance loss evaluated on a held-out validation
dataset. However, these methods are sensitive to the order in
which the clients join the game, and may not yield consistent
results for contribution evaluation when the order changes.

To eliminate the effect from the order of joining the FL,
Shapley value (SV) is adopted to measure the contribution of
each client under the cooperative game framework [23, 28].
Wang et al. [65] propose the federated SV (FedSV) to quan-
tify the contribution of each client at each communication
round, which retains the key features of the traditional SV
without introducing additional communication costs. How-
ever, computing SVs is generally computationally expensive.
Consequently, numerous efforts have been made to reduce
the computation complexity of SV [16, 17, 39, 64, 84].

3 Problem Formulation

In this section, we characterize the threat model by present-
ing the capabilities, background knowledge, and goals of an
attacker. We then formally formulate the model poisoning
attack on contribution evaluation methods in FL. We finally
describe the design goals of the attack.

3.1 Threat Model

Attacker’s capabilities and background knowledge. We
consider an attacker owns a set of clients, referred to as ma-

3

licious clients. As a result, the attacker could (1) access the
local training datasets of malicious clients and the global
model sent by the server, (2) control the training processes of
local models of malicious clients, and (3) manipulate the pa-
rameters of the malicious clients’ local models before sending
the local model updates to the server. However, the attacker
lacks the necessary background knowledge (e.g., local train-
ing datasets) of all other clients and the capabilities to manip-
ulate parameters in other clients’ local models. Moreover, we
assume the attacker knows the contribution evaluation method
employed by the server. This assumption is realistic in prac-
tice since the server normally shares such information with all
clients for transparency and trustworthiness purposes during
the initiation of the FL system [18, 42]. However, we consider
that the attacker does not know the hyperparameters of the
contribution evaluation method and thus does not know the
contributions of malicious clients computed by the server in
each communication round. For example, the server may use
a validation dataset to evaluate the local model of a client, and
use the validation accuracy as the contribution of the client,
which is not broadcast to the clients [41, 65]. We also assume
that the attacker possesses some storage capacity to retain the
global models broadcast by the server in the previous m (e.g.,
m = 3) communication rounds.
Attacker’s goal. Suppose the server employs a contribution
evaluation method (as reviewed in Section 2) to quantify the
contribution of each client. We consider that the goal of the
attacker is to elevate the malicious clients’ contributions com-
puted by the server, compared to truthfully sending the local
model updates learned using their local training data to the
server. By accomplishing the attack goal, the attacker can
get extra rewards from the existing incentive mechanisms de-
ployed in FL [15, 26, 41, 78], even though it holds low-quality
local training data. For instance, in a cross-silo FL system
where multiple banks collaborate to jointly learn a global
model for commercial purposes [40], if the profit earned us-
ing the global model is distributed among the banks based
on their contributions, the bank launching ACE can gain extra
profit while reducing the shares of others. Such malicious
behavior further discourages the long-term participation of
banks possessing high-quality training data and undermines
the fairness of the federated learning system.

3.2 A Model Poisoning Attack on Contribution
Evaluation Methods in FL

In what follows, we formally formulate the model poisoning
attack on contribution evaluation methods in FL. We denote
the set of malicious clients as Ĝ. For each malicious client
i2 Ĝ, we use gt

i to denote the local model update learned using
the local training data without attacks. Moreover, we denote
the manipulated parameters of the local model update from
client i at communication round t as ĝt

i . We use E to denote
the contribution evaluation method deployed by the server,

where E(gt
i) (or E(ĝt

i)) denotes the contribution calculated
by the server when the client i sends the local model update
gt

i (or ĝt
i) to the server. The goal of the attacker is to craft ĝt

i
for each malicious client i 2 Ĝ such that the accumulated con-
tribution Âi2Ĝ E(ĝt

i) (or equivalently Âi2Ĝ(E(ĝt
i)�E(gt

i)))
is maximized. We call such an attack model poisoning attack
on contribution evaluation methods in FL. Formally, we for-
mulate the attack as the following optimization problem in
the t-th communication round:

{ĝt
i|i 2 Ĝ}= argmax

{gi|i2Ĝ}
Â
i2Ĝ

E(gi). (1)

3.3 Design Goals
We aim to design a model poisoning attack on contribution
evaluation methods in FL. In particular, we aim to accomplish
the following goals in our attack design:
Effective. Our first goal is that the attack should be effec-
tive, i.e., it could significantly increase the contributions of
malicious clients calculated by the server, compared to the
scenario without attacks (i.e., the malicious clients learn their
local model updates using the local training datasets).
Efficient. Our second goal is that the attack should be ef-
ficient, i.e., it should incur small computation and commu-
nication costs, compared to the baseline when there is no
attack. The reason for incorporating efficiency into the design
goals is that clients in FL are often resource-constrained, e.g.,
mobile phones and IoT devices [42, 45].
Performance Preserving. We note that the attacker’s goal
is not to disrupt the convergence or performance of the final
global model learned from FL. Thus, we aim to design an
attack that preserves the performance of the final global model.
As a result, the malicious clients, who own low-quality local
training data, could obtain a global model with comparable
performance to the one learned without attacks.
Aggregation Rule Independent. We note that many aggre-
gation rules [3, 42, 73, 75] have been proposed to aggregate
local models in FL. We aim to design an attack that is agnostic
to the aggregation rules such that our attack is generalizable
to a wide range of FL systems.

4 Description of ACE

4.1 Overview of ACE
A key challenge in solving the optimization problem in Eq.
(1) is that an attacker does not know E(ĝt

i) for an arbitrary
local model update ĝt

i . The reason is that the attacker lacks
necessary information such as the local models of other clients
or validation dataset of the server that is utilized to calculate
contribution (see Section 2.2 for details). To address the chal-
lenge, our key insight is that a client is more likely to have
a high contribution if its local model is more similar to the

4

aggregated global model in each communication round. The
reason is that the aggregated global model is obtained from
local models learned on local training datasets of all clients,
including those whose local training data is considered more
valuable by the server. Based on this insight, we propose ACE,
a poisoning attack on contribution evaluation methods in FL.
ACE consists of two components: future global model pre-

diction and prediction error mitigation. The future global
model prediction component aims to predict the global model
in each communication round based on the historic global
models (i.e., the global models in previous communication
rounds) received by the attacker. We note that the attacker
could incur certain prediction errors and they would accumu-
late over communication rounds, resulting in low contribu-
tions for the malicious clients. In response, we further propose
two strategies to mitigate the impact of errors in our prediction
error mitigation component. We further discuss how ACE can
improve the attack effectiveness on certain contribution eval-
uation methods. Finally, we analyze both the time and space
complexities of ACE. Our analysis shows ACE incurs negli-
gible computation and storage costs. The reason is that it is
very efficient to predict the future global model and ACE only
requires saving a few snapshots of historic global models.

4.2 Detailed Design of ACE
We first describe the future global model prediction compo-
nent, followed by the prediction error mitigation component.
Then, we discuss how to adapt ACE to further enhance the
effectiveness of our attack.

4.2.1 Future Global Model Prediction

In what follows, we describe how the malicious clients predict
the global model update. Note that given the predicted global
model update, the predicted global model could be obtained
by adding the predicted global model update and the current
global model together.
Predicting the Global Model Updates using the Cauchy
Mean Value Theorem. We use ĝt to denote the predicted
global model update at communication round t. According
to the Cauchy mean value theorem [33], the predicted global
model update ĝt at communication round t is calculated as

ĝt = gt�1 +Ht(wt �wt�1), (2)

where gt�1 is the global model update in the communication
round t�1, wt (or wt�1) is the global model at communica-
tion round t (or t�1), and Ht =

R 1
0 H(wt�1+z(wt�wt�1))dz

is an integrated Hessian matrix. Based on Eq. (2), predicting
the global model update only requires the current and previous
global models, the integrated Hessian matrix, and the previ-
ous global model update. Although each malicious client has
background knowledge on the previous global model update,
previous global model, and current global model, computing

the integrated Hessian matrix, however, is computationally
expensive. In light of this, we utilize the L-BFGS algorithm
[4, 5], which is widely used to approximate the integrated
Hessian matrix.
Approximating the Integrated Hessian Matrix via the
L-BFGS Algorithm. We approximate the integrated Hes-
sian matrix Ht using the L-BFGS algorithm [4, 5], as out-
lined in Algorithm 1 in Appendix C. The L-BFGS algorithm
takes two buffers DWt = [Dwt�m,Dwt�m+1, · · · ,Dwt�1] and
DGt = [Dgt�m,Dgt�m+1, · · · ,Dgt�1] as inputs, and approxi-
mates the integrated Hessian matrix, where Dwt = wt �wt�1

is the change in the global model and Dgt = gt � gt�1 is
the change in global model update. In practical implementa-
tion [5], the L-BFGS algorithm consumes an additional vector
v of appropriate dimension as an input, and returns a product
Htv, termed Hessian-vector product, as the output. This is
sufficient for the malicious clients to predict the global model
update since Eq. (2) only requires a Hessian-vector product
Ht(wt�wt�1) to predict the global model update ĝt . In the re-
mainder of this paper, we represent the L-BFGS algorithm as
L-BFGS(DWt ,DGt ,v). We note that the L-BFGS algorithm
is employed by the server to estimate clients’ local models,
as countermeasures against model poisoning attacks in FL in
existing studies [9, 80]. This paper, however, considers sce-
narios where malicious clients use the L-BFGS algorithm to
estimate the global model, thereby elevating their contribution
evaluated by the server.

4.2.2 Prediction Error Mitigation

Insufficiency of Future Global Model Prediction. We re-
mark that it is inadequate for the malicious clients to only
predict the global model update. The reason is that the L-
BFGS algorithm may incur large prediction errors, i.e., the
deviation between the predicted global model update and
its true value, at some communication rounds. As we will
demonstrate in Section 6, the prediction error results in low
contribution evaluated by the server for the malicious clients.
We identify two major reasons for prediction errors. The first
issue arises because the L-BFGS algorithm requires historical
information from past global models and their updates to con-
struct buffers DWt and DGt . To compensate for the absence
of this historical information, we adopt a strategy used in
previous studies [9], preliminary iteration, during the initial
communication rounds, where malicious clients either learn
from their local datasets or use the previous round’s global
model updates as proxies for their current local updates. In the
meantime, the malicious clients collect the global models and
global model updates to construct the buffers DWt and DGt .
After that, the malicious clients proceed with the L-BFGS
algorithm as discussed in Section 4.2.1. The second reason
for prediction errors is the potential accumulation of errors
over successive communication rounds. To address this, we
develop a threshold-based filtering strategy to mitigate the

5

impact of error accumulation.

Threshold based Filtering. As the L-BFGS algorithm can-
not predict the exact global model update, it is unavoidable
that there would be prediction errors. Moreover, those errors
could accumulate over communication rounds, which could
lower the contributions of the malicious clients. We note that
the malicious clients may not be aware when a large predic-
tion error occurs since it does not have access to the true
global model update for the future communication rounds,
and thus cannot calculate the prediction errors. To tackle
this challenge, we develop a threshold based filtering strat-
egy to estimate whether the predicted global model update
incurs a large prediction error. Our intuition is that the predic-
tion error is more likely to be larger if the magnitude of the
Hessian-vector product is larger. Therefore, if the `2-norm of
the Hessian-vector product is less than a threshold, i.e.,

kL-BFGS(DWt ,DGt ,wt �wt�1)k  t, (3)

where k ·k represents `2-norm and t is a threshold (we defer
the detailed discussion on it), we consider that the predic-
tion error is tolerable, and thus the malicious clients use the
predicted global model update as their local model updates.
Otherwise, each malicious client calculate its local model up-
date by using its local training dataset or utilizing the global
model update from the previous communication round.

A key question in our design is how to set the threshold.
Our idea is that the magnitude of the predicted global model
update should be on a similar scale as the previous global
model updates. Thus, we set the threshold t as lkwt �wt�1k,
where l is a positive coefficient that can be tuned by each ma-
licious client to control its tolerance on prediction errors. Our
experimental results show that l = 1 is sufficient to mitigate
prediction errors.

4.2.3 Strategies to Enhance ACE

In this subsection, we discuss how to adapt ACE to further en-
hance its effectiveness when certain a contribution evaluation
method is employed by the server.

Adaptation to Contribution Evaluation Methods using
Cosine Distance. In the following, we discuss how to adapt
ACE when the server uses the cosine distance between the local
model and global model to measure each client’s contribution.
This class of methods is widely used in existing studies [29,
55, 72, 73] since cosine distance is efficient to calculate. In
this case, we can rewrite the optimization in Eq. (1) as the
following equivalent formulation:

{ĝt
i|i 2 Ĝ}= argmax

{gi|i2Ĝ}
Â
i2Ĝ

(1� cos(gi,gt)). (4)

Here, cos(a,b) = 1� a·b
kakkbk is the cosine distance function,

where a ·b represents the inner product between vectors a and

b. Global model update gt is obtained following the aggrega-
tion rule (Step III in Section 2.1).

According to Eq. (4), we note that the malicious clients
can enhance the attack effectiveness by sending an ampli-
fied prediction of the global model update cĝt

i to the server
as their local model updates, where c > 1 is an amplifying
coefficient. The insight is that increasing the magnitude of the
predicted global model update will make it more dominant
compared with other clients’ local model updates. As a result,
the angle deviation between the predicted global model up-
date and the aggregated global model update decreases, lead-
ing to a smaller cosine distance between them. Furthermore,
such dominance effects will accumulate over communication
rounds, thereby elevating the malicious clients’ contributions
perceived by the server. We finally remark that introducing
the coefficient c does not lower the accuracy of the global
model, which will be demonstrated in Section 6.

Adaptation to Contribution Evaluation Methods with Val-
idation Dataset. Some contribution evaluation methods
[12, 41, 62, 65, 81] require the server to have a validation
dataset, and use the validation accuracy or loss of local mod-
els to measure contributions. In this case, the malicious clients
can execute the L-BFGS algorithm multiple times within one
communication round. We term this operation as the local
evolution. The insight behind local evolution is to mimic the
normal training process over multiple epochs at one commu-
nication round. When the L-BFGS algorithm yields limited
prediction error, the local evolution will allow the malicious
clients to craft local model updates of higher validation accu-
racy and hence increase the associated contributions.

4.3 Complete Algorithm

Algorithm 2 in Appendix C shows our complete algorithm
for attacking contribution evaluation methods in FL. The at-
tacker can initiate attack at any communication round t. If
communication round t is a preliminary iteration, then the
malicious clients compute their local model updates by learn-
ing from the local training data or sending the previous global
model update to the server (see Section 4.2.3). If communica-
tion round t is not a preliminary iteration, then the malicious
clients leverage the L-BFGS algorithm to predict the next
global model update (see Section 4.2.1). Given the predicted
global model update, the malicious clients estimate whether
the prediction error can be tolerated or not using the threshold
based filtering as shown in Eq. (3). If the prediction error is
tolerable by the malicious clients (Eq. (3) holds true), then
they set the prediction of global model update to be their local
model updates which will be sent to the server. Otherwise,
the malicious clients compute the local model updates using
their local training data or the previous global model update.

6

4.4 Complexity Analysis

Time Complexity. According to [5], the time complexity
to calculate the Hessian-vector product using Algorithm 1
is O

�
m3�+ 6mp+ p, where p is the model size and m is

the buffer length. If the malicious clients does not launch the
attack and learn the local model update using the local training
dataset over e epochs, then the time complexity of learning
the local model update using the local training dataset Di over
e epochs is 6|Di|eR(p), where R(p) is the time complexity for
forward propagation [24]. Although the expression of R(p)
is architecture dependent, we note that the time complexity
of ACE is in general significantly less than that of learning the
local model update using local training data [20], achieving
the design goal of being efficient in Section 3.3. For instance,
when the global model is a CNN (see Appendix B.1 for the
detailed architecture), the computation time of ACE using an
RTX 6000 Ada GPU is 0.004s per communication round.
By contrast, training the same model using the local training
dataset of a client takes 1.10s, which is 270⇥ slower compared
to ACE.
Space Complexity. The space complexity for each malicious
client is O (mp) when it launches ACE. Note that in practice,
we typically choose m = 2 or m = 3. Therefore, the proposed
attack in this paper imposes a small storage constraint on the
malicious clients. For instance, when m = 3 and the archi-
tecture of the global model is CNN, our attack only requires
42.43MB of additional storage space.

5 Theoretical Analysis

In this section, we characterize the strategies to enhance the
attack effectiveness. Specifically, we focus on the cases where
cosine distance is used by the server to measure contributions.
All the proofs can be found in Appendix D. The effective-
ness of amplifying the predicted global model update with
coefficient c is stated as follows.

Proposition 1. Let g0 = A(g1, · · · ,cĝi, · · · ,gN) and g =
A(g1, · · · , ĝi, · · · ,gN) be the global model updates obtained
using the predicted global model update cĝ and ĝ, respectively.
When c� 1, we have the following relationship:

cos(g0,cĝi) cos(g, ĝi). (5)

Remark 1. Proposition 1 shows that the cosine distance be-
tween the amplified global model update cgi and the global
model update g0 is no larger than the cosine distance before
applying the amplification with coefficient c� 1. Therefore,
our strategy developed for contribution evaluation using co-
sine distance will not degrade the attack effectiveness.

Proposition 1 yields the following corollary.

Corollary 1. Let g0 and g be defined as in Proposition 1. If
cos(g, ĝi) cos(g,g j), then cos(g0,cĝi) cos(g0,g j).

Remark 2. Corollary 1 indicates that if a malicious client
i surpasses the contribution of another client j by sending
the predicted global model update as its local model update,
then amplifying the predicted global model update will not
make the contribution of malicious client i less than client
j. Therefore, the malicious client i is always perceived as
a high-contributing client compared to client j (note that a
smaller cosine distance means a higher contribution).

We finally show that the parameter c can be tuned such that
the contributions of malicious clients become larger than any
arbitrary client.

Proposition 2. Let g0 and g be defined as in Proposition 1.
Suppose that cos(g, ĝi) > cos(g,g j) holds for some client
j and malicious client i, and A(g1, · · · ,gN) = Â j2G a jg j,
where a j 2 [0,1] is a weight coefficient and Â j2G a j = 1.
If the malicious client i chooses the coefficient c such that
c� kĝikg·g j�kg jkg·ĝi

aikĝik(kg jkkĝik�ĝi·g j)
+1, then cos(g0,cĝi) cos(g0,g j).

Remark 3. Proposition 2 focuses on servers that utilize lin-
ear combinations as the aggregation rule, which are widely
used in practice [3, 42, 73, 75]. Proposition 2 shows that
even if the predicted global model may not be sufficient for
a malicious client i to surpass the contribution of another
client j, choosing a proper coefficient c allows the malicious
client i to make a higher contribution (evaluated by the server)
compared to client j.

6 Empirical Evaluations

We perform extensive experiments to evaluate ACE. In Section
6.1, we show the experimental setup. Section 6.2 presents the
results. Ablation analysis is presented in Section 6.3.

6.1 Experimental Setup

Datasets and Models. We consider three benchmark
datasets MNIST [14], CIFAR-10 [31], and Tiny-ImageNet
[34]. Specifically, MNIST is a 10-class digit image classifi-
cation dataset, which contains 60,000 training images and
10,000 testing images of dimension 28⇥ 28 in grayscale.
CIFAR-10 is a 10-class dataset with 50,000 training images
and 10,000 testing images uniformly distributed across the
classes, where the size of each image is 32⇥ 32⇥ 3. Tiny-
ImageNet is a color image classification dataset covering
200 classes, with 100,000 training images, 10,000 valida-
tion images, and 10,000 testing images. Each image in Tiny-
ImageNet is of dimension 64⇥64⇥3. We use two Convolu-
tion Neural Network (CNN) variants on MNIST and CIFAR-
10 datasets respectively, and a pre-trained VGG11 model [56]
on Tiny-ImageNet. The model structures are shown in Ap-
pendix B.1.
Data Partition. For each dataset, we consider one homoge-
neous data partition (denoted as UNI) and two heterogeneous

7

data partitions (denoted as POW and CLA) among clients by
following previous studies on contribution evaluation meth-
ods in FL [41, 72, 73]. The heterogeneous data partitions yield
non-i.i.d. data distributions. We detail each data partition as
follows.

• UNI: This data partition uniformly splits the training
images in each dataset among all clients, yielding an
i.i.d. data distribution among the clients.

• POW: Following [41, 72, 73], the sizes of local training
datasets of all clients are sampled from a parameterized
power law distribution. We set the parameter of power
law distribution as two. This leads to a data-size het-
erogeneous setting among the clients. For example, on
MNIST, the numbers of training images of 10 clients are
110, 219, 328, 437, 546, 655, 764, 873, 982, and 1,086,
respectively. The details for the power law distribution
can be found in Appendix B.2.

• CLA: Following [41, 72, 73], we use CLA to cre-
ate a class imbalance setting where the local training
datasets of different clients cover heterogeneous num-
bers of classes. For example, on MINST, the local train-
ing datasets of 10 clients contain training images from
6, 6, 7, 7, 8, 8, 9, 9, 10, and 10 classes, respectively. We
show the details in Appendix B.2.

FL Setup. By default, we assume there are N = 10 clients.
Note that we set N = 10 since some contribution evaluation
methods calculate the Shapley value to measure contributions,
whose computation cost grows exponentially as the number
of clients increases. As some contribution evaluation methods
require the server to have a validation dataset to compute
contributions, we reserve 20% of the data samples from the
training images of MNIST, CIFAR-10, and Tiny ImageNet
as the validation dataset. Each client uses stochastic gradient
descent (SGD) to update its local model for e epochs with a
batch size of 128. We set e = 3 for MNIST and CIFAR-10,
and e = 5 for Tiny-ImageNet, considering that the classifica-
tion tasks on MNIST and CIFAR-10 are easier than that on
Tiny-ImageNet. Following previous studies [37, 68, 83], we
set the learning rate h as 0.03 for MNIST, 0.05 for CIFAR-10,
and 0.001 for Tiny-ImageNet, with the learning rate expo-
nentially decaying at rate g = 0.995. The total number of
communication rounds is T = 60.

Evaluation Metrics. We define the following two metrics to
demonstrate the effectiveness of ACE. The first metric is called
contribution score, which measures the fraction of contribu-
tion from each individual client. Formally, the contribution
score for the client i is computed as follows:

CSi =
ÂT

t=1 et
i

Â j2G ÂT
t=1 et

j
, (6)

where G is the set of all clients and et
i (or et

j) is the contribu-
tion computed by the server using a contribution evaluation
method for the client i (or j) in the t-th communication round.

We note that elevation in the contribution scores does not
necessarily imply that the malicious clients’ contributions
can surpass those of other clients. Therefore, we propose the
second metric named rank gain to measure the change in the
ranks of a client’s contribution score with and without attacks.
Formally, the rank gain for the client i is computed as follows:

DRi = bRi�Ri, (7)

where bRi and Ri represent the ranking (in ascending order) of
the contribution score of the client i among all clients with
and without attack, respectively. An attack is more effective
when CSi and DRi are larger for a malicious client i.

We use ACC to measure the performance preserving prop-
erty of ACE. In particular, ACC measures the classification
accuracy of the final global model on testing inputs. Addi-
tionally, we will compare the computation cost of ACE with
the attack free setting (i.e., a malicious client uses its local
training dataset to learn a local model update) to demonstrate
the efficiency of ACE.

Compared Baselines. We note that there are no existing
studies on attacking contribution evaluation methods in FL.
In response, we generalize several existing methods as base-
lines [1, 38, 74]. First, we consider the scenario where the
malicious clients do not launch any attack and follow the
procedure outlined in Section 2.1 to learn their local model
updates (denoted as Attack Free). In addition to Attack Free,
we compare ACE with the following three baselines [1, 38, 74]:

• Delta Weight: In this baseline [38], the malicious client i
crafts local model updates as gt

i = wt�1�wt +d, where
wt�1�wt is the global model update in the previous
communication round and each entry of d follows a zero-
mean Gaussian distribution with a standard deviation
s = 5⇥10�5.

• Data Augment: This baseline utilizes data augmenta-
tion to increase the sizes of local training datasets of the
malicious clients. In particular, each malicious client
randomly rotates, scales, and crops the data samples
from its local training dataset to form a new dataset, and
then merges the newly generated dataset with the origi-
nal one. At each communication round, each malicious
client learns its local model update using the augmented
dataset, aiming to increase its contribution [74].

• Scaling Attack: In this baseline, each malicious client
first learns a local model update using its local train-
ing dataset. Then the magnitudes of these local model
updates are amplified using a scaling attack [1]. In our
experiments, the scaling factor is set to 2.

8

(a) FedSV (b) LOO (c) CFFL (d) GDR (e) RFFL

Figure 2: Comparing the contribution score CS and rank gain DR of the attacker when using ACE and baselines under three
datasets, i.e., MNIST (first row), CIFAR-10 (second row), and Tiny-ImageNet (third row), and five contribution evaluation
methods, i.e., FedSV, LOO, CFFL, GDR, and RFFL. The data partition method is CLA (a heterogeneous setting). Our results
show ACE is more effective than baselines. The results for data partitions UNI and POW are in Figure 3 and 4 of Appendix A.

Contribution Evaluation Methods. We consider five state-
of-the-art contribution evaluations that can be employed by
the server. We briefly introduce these methods as follows. The
detailed description can be found in Appendix B.3.

• FedSV [65]: FedSV is a game theory based contribution
evaluation. It measures the contribution of each client at
each communication round following two steps. It first
calculates an empirical loss evaluated on a validation
dataset held by the server. Then FedSV computes contri-
butions by splitting the empirical loss among all clients
using the Shapley value. FedSV uses FedAvg [42] as the
aggregation rule.

• LOO [65, 81]: This is a game theory based contribution
evaluation. To quantify the contribution from a client i,
it computes two global models at each communication
round, with and without the client’s local model update.
Then the client’s contribution is calculated as the differ-
ence of the values of an empirical loss function evaluated
on a validation dataset using these two global models.
LOO uses FedAvg [42] as the aggregation rule.

• CFFL [41]: This is an individual performance based
contribution evaluation. The server calculates the contri-
bution of a client i using the accuracy of its local model
evaluated on a validation dataset. The aggregation rule
of CFFL is a variant of FedAvg [42], which considers
both the data size and the number of classes of a client.
Specifically, when the data size is imbalanced, the aggre-
gation rule follows FedAvg. When the class numbers are

imbalanced, the aggregation rule assigns weights to the
local model updates of clients according to the number
of classes in their local training datasets.

• GDR [73]: This is an individual performance based con-
tribution evaluation. The server utilizes the cosine dis-
tance between the aggregated global model updates and
local model updates to estimate the Shapley value, and
assigns the Shapley value to each client as its contri-
bution. GDR uses a weighted sum of all local model
updates to compute the global model update, where the
weight associated with each client’s local model update
is the rolling mean of its contribution.

• RFFL [72]: This is an individual performance based
contribution evaluation. The contribution of a client is
quantified by the cosine similarity between the client’s
local model update and the aggregated global model
update. RFFL uses a similar aggregation rule as RFFL.

ACE Setup. By default, we consider a single malicious client.
We note that when a client has a high contribution even if
there is no attack, it is very challenging to improve the ranking
of its contribution score. In response, by default, we select
a client whose contribution is the lowest without attacks as
the malicious client. Unless otherwise mentioned, the buffer
length is set to m = 3, the threshold is chosen as l = 1 to
mitigate prediction error, and the tunable amplifying coeffi-
cient is set as c = 1. When the server employs contribution
evaluation methods using cosine distance (GDR and RFFL)
and validation datasets (FedSV, LOO, and CFFL), we set the

9

local evolution rounds to one and two, respectively. During
the preliminary iteration and when the L-BFGS algorithm
incurs a large prediction error, the malicious client executes
the delta weight attack (using the global model update in the
previous communication round with Gaussian noise). In Sec-
tion 6.3, we perform ablation analysis and evaluate alternative
strategies when the L-BFGS incurs a large prediction error.

6.2 Experimental Results
We evaluate ACE using the metrics in Section 6.1. When the
context is clear, we drop the subscript i for the malicious
client.

ACE is Effective and Aggregation Rule Independent. Fig-
ure 2 and 3, 4 (in Appendix A) compare the contribution score
and rank again of the malicious client when using ACE and
baselines. We have the following key observations. First, the
contribution score and rank gain of ACE consistently outper-
form those of all baselines. For example, when the server
employs CFFL [41] as the contribution evaluation method
and the data partition is CLA, the malicious client is perceived
with contribution score 0.108 and rank gain 8 by the server
for the classification task on Tiny-ImageNet dataset. This
moves the malicious client from being the lowest-contributing
to becoming the second highest-contributing client. All the
baselines in this case, however, give rank gain zero, indicat-
ing that the malicious client is still evaluated as the lowest-
contributing client by the server under those baseline attacks.
Our second observation is that under non-i.i.d. data distribu-
tion, some baselines yield the same rank gain as ACE, e.g.,
when the server employs RFFL and the data partition is CLA.
However, we note that the malicious client attains the highest
contribution score using ACE in these scenarios. Therefore,
ACE is more effective compared with all baselines under non-
i.i.d. data distributions.

We note that ACE is effective across all contribution evalua-
tion methods in Figure 2, which utilize different aggregation
rules. This indicates that ACE is independent of the aggrega-
tion rules used in FL.

ACE Preserves the Performance. We show the accuracy on
testing inputs of the final global model in Table 1. We observe
that the accuracy of the final global model under ACE remains
within a negligible 1% deviation from highest ACC in the
worst-case. Therefore, ACE preserves the performance of the
final global model learned in FL. Note that ACE can potentially
lead to the higher ACC under some contribution evaluation
methods than Attack Free, e.g., FedSV, CFFL, and GDR. The
reason is that ACE replaces the malicious clients’ original local
model updates (that should have been learned from their low-
quality local training data) with the predicted global model
update which integrates updates from other clients learned
using local training data of higher qualities.

ACE is Efficient. We compare the computation cost of

ACE with Attack Free (when the malicious client utilizes its
local training dataset to learn a local model update). Table
2 shows the ratio between the computation cost of learn-
ing a local model update using a local training dataset and
ACE, i.e., (computation cost of learning a local model up-
date)/(computation cost of ACE). Our key observation is that
ACE is significantly more efficient than learning a local model
update using the local training dataset. The reason is that
it is very efficient to predict the future global model. Note
that ACE does not incur extra communication cost since the
malicious client simply replaces its local model update with
the predicted global model update.

6.3 Ablation Analysis
We perform ablation analysis on the CIFAR-10 dataset un-
der CFFL and RFFL contribution evaluation methods. Here
CFFL and RFFL are chosen as the representative contribution
evaluation methods for servers with and without validation
datasets, respectively.

Effect of Client Number N. Table 3 evaluates the effect
of client number N. We compare the contribution score CS
and the rank gain DR of ACE with Attack Free (the malicious
client uses its local training dataset to learn a local model
update). We have the following observations. First, ACE is
consistently effective. In particular, ACE consistently makes
the malicious client, who has the lowest contribution score
without attack, the high-contributing client regardless of the
client number N. In our experiments, the malicious client is
evaluated as the highest-contributing client (DR = 9,19,49)
in 14 out of 18 settings. This observation aligns with our
results shown in Figure 2, and indicates that the design of
ACE is insensitive to FL systems with different numbers of
clients. We note that ACE consistently preserves the ACC,
i.e., the ACC under ACE is similar to that of Attack Free. In
other words, ACE preserves the performance of the final global
model for FL with different number of clients.

Effect of the Threshold Based Filtering. We evaluate the
effect of the threshold based filtering discussed in Section
4.2.2, which is used when ACE potentially incurs high predic-
tion error. We compare the ACC, CS, DR with and without
the threshold based filtering in Table 4. We observe that when
the data distribution is non-i.i.d. (e.g., POW data partition),
the threshold based filtering can significantly improve the
attack effectiveness and the accuracy of the final global model
(ACC) under CFFL. Hence, the threshold based filtering is
necessary to the design of ACE.

Effect of Amplifying Coefficient c. In Table 5, we evaluate
the effect of the amplifying coefficient c. We observe that as
we increase the coefficient c, the contribution score of the
malicious client increases under all data partitions when the
server utilizes cosine distance to measure the contributions
(RFFL). This observation aligns with our theoretical analysis

10

Table 1: This table summarizes the ACC of the final global model learned with ACE and all baselines, evaluated under three
data partitions (UNI, POW, and CLA), three datasets (MNIST, CIFAR-10, and Tiny ImageNet), and five contribution evaluation
methods (FedSV, LOO, CFFL, GDR, and RFFL). The accuracy of the final global model under ACE remains within a negligible
1% deviation from highest ACC in the worst-case. Thus ACE preserves the accuracy of the final global model.

Contribute MNIST CIFAR-10 Tiny-ImageNet
Evaluation Attack UNI POW CLA UNI POW CLA UNI POW CLA

Attack Free 95.86% 95.69% 89.89% 71.16% 70.82% 56.32% 46.37% 47.84% 44.98%
Delta Weight 95.68% 95.46% 90.39% 70.89% 71.02% 57.16% 46.10% 47.80% 45.27%

Data Augment. 95.87% 95.67% 89.88% 71.63% 70.27% 56.05% 46.77% 48.37% 45.26%
Scaling Attack 95.85% 95.81% 89.66% 71.58% 71.01% 55.29% 46.59% 48.07% 45.01%

FedSV

ACE 95.81% 95.53% 91.27% 71.30% 71.45% 57.60% 46.35% 48.23% 45.94%

Attack Free 95.86% 95.69% 89.89% 71.16% 70.82% 56.32% 46.37% 47.84% 44.98%
Delta Weight 95.88% 95.69% 90.39% 70.89% 71.02% 57.16% 46.10% 47.80% 45.27%

Data Augment. 95.94% 95.73% 89.88% 71.63% 70.27% 56.05% 46.77% 48.37% 45.26%
Scaling Attack 95.78% 95.66% 89.66% 71.58% 71.01% 55.29% 46.59% 48.07% 45.01%

LOO

ACE 96.06% 95.51% 91.27% 71.30% 71.45% 57.60% 46.35% 48.23% 45.94%

Attack Free 96.83% 94.71% 79.43% 71.84% 60.65% 49.99% 51.77% 48.23% 39.96%
Delta Weight 96.58% 91.89% 82.26% 70.66% 59.37% 50.62% 51.30% 44.18% 40.54%

Data Augment. 97.44% 94.49% 79.19% 73.08% 60.93% 50.62% 51.92% 47.83% 40.04%
Scaling Attack 97.01% 94.59% 79.28% 71.55% 60.41% 49.91% 52.22% 44.23% 39.87%

CFFL

ACE 96.61% 95.35% 83.18% 70.44% 62.03% 52.45% 51.53% 49.20% 42.02%

Attack Free 96.26% 96.23% 85.41% 70.97% 71.33% 56.66% 51.80% 51.96% 44.78%
Delta Weight 96.84% 96.43% 89.02% 70.32% 70.76% 59.18% 52.19% 52.57% 46.01%

Data Augment. 96.43% 96.18% 87.42% 72.01% 71.12% 57.38% 51.79% 52.04% 44.84%
Scaling Attack 96.26% 96.23% 85.42% 71.01% 71.36% 56.63% 51.84% 51.89% 44.78%

GDR

ACE 96.78% 96.53% 89.12% 70.27% 70.60% 59.23% 52.64% 52.77% 46.61%

Attack Free 96.78% 96.85% 92.67% 71.78% 71.03% 57.66% 52.35% 52.43% 46.72%
Delta Weight 96.66% 96.85% 91.83% 70.69% 71.07% 56.95% 51.89% 52.49% 46.84%

Data Augment. 96.25% 96.08% 92.67% 71.84% 71.04% 57.60% 51.83% 52.50% 46.31%
Scaling Attack 95.96% 95.97% 91.73% 71.73% 71.07% 56.60% 50.84% 52.50% 46.17%

RFFL

ACE 96.64% 96.87% 92.30% 70.72% 70.90% 57.36% 51.75% 52.31% 46.54%

Table 2: This table shows the ratio between the computation
costs of using a local training dataset to learn a local model
update and ACE. The data partition method is UNI. We observe
that ACE is significantly more efficient.

Dataset FedSV LOO CFFL GDR RFFL

MNIST 30.88⇥ 30.88⇥ 7.48⇥ 16.15⇥ 18.26⇥
CIFAR-10 270.81⇥ 270.81⇥ 21.25⇥ 86.48⇥ 101.44⇥

Tiny-ImageNet 35.35⇥ 35.35⇥ 13.26⇥ 29.22⇥ 24.79⇥

in Section 5. Moreover, ACE preserves the ACC under all data
partitions with different choices of amplifying coefficient c.

More Experiments. Due to space constraint, we defer the
results of the attack effectiveness under UNI and POW data
partitions under all datasets (in Figure 3 and 4), effects of
strategies for preliminary iteration and threshold based filter-
ing (in Table 7), buffer length (in Figure 5), local evolution
(in Figure 6), the fraction of clients selected by the server
in each communication round (in Table 8), and the fraction
of malicious clients (in Figure 7) to Appendix A. We also
show experimental results when the attacker does not know
the contribution evaluation methods deployed by the server

in Appendix A. In summary, our results show that ACE is rela-
tively insensitive to these factors, and is effective in boosting
the malicious clients’ contributions perceived by the server.

7 Countermeasures to ACE and Evaluations

7.1 Countermeasures to ACE
We focus on defense developed for FL against model poison-
ing attacks to thwart ACE. According to [53], existing defenses
against model poisoning attacks can be divided into three cat-
egories: performance based defense [7, 10, 36, 71], distance
based defense [3, 6, 13, 19, 21, 61, 67, 80] and statistics
based defense [25, 43, 44, 49, 69, 75]. As demonstrated in
Section 6, ACE successfully deceives the methods that utilize
validation accuracy to measure contribution (e.g., FedSV and
LOO), which invalidates the performance based defenses. We
thus mainly focus on distance and statistics based defenses. In
particular, we choose Multi-Krum [3], Trimmed-Mean [75],
FABA [67], Sniper [6], and Foolsgold [21] as representative
countermeasures. These defenses do not require a validation
dataset in the server and are commonly employed by the com-
munity to defend against poisoning and Sybil attacks in FL.

11

Table 3: This table evaluates the effect of the number of clients
in FL. Regardless of the number of clients, ACE consistently
makes the attacker the highest-contributing agent. AF is the
abbreviation for Attack Free.

Contribution
evaluation

Data
partition #Clients CS Relative

improv. DRAF ACE

CFFL

UNI
10 0.099 0.105 +6.41% 9
20 0.050 0.053 +7.14% 19
50 0.020 0.023 +19.69% 49

POW
10 0.086 0.106 +22.73% 8
20 0.043 0.056 +30.02% 19
50 0.016 0.024 +54.03% 49

CLA
10 0.079 0.115 +45.80% 8
20 0.040 0.058 +47.21% 18
50 0.016 0.024 +49.94% 49

RFFL

UNI
10 0.096 0.192 +100.26% 9
20 0.048 0.124 +160.88% 19
50 0.018 0.060 +237.81% 49

POW
10 0.045 0.196 +335.49% 9
20 0.021 0.125 +502.81% 19
50 0.007 0.064 +872.81% 49

CLA
10 0.096 0.189 +97.41% 9
20 0.045 0.123 +174.98% 16
50 0.017 0.064 +284.43% 49

• Multi-Krum [3]. We choose Multi-Krum [3] from the
category of distance based defense as the first counter-
measure to ACE, which has been widely used to mitigate
model poisoning attacks in FL. Multi-Krum focuses on
identifying and eliminating local model updates from
malicious clients by analyzing the distance between lo-
cal model updates from different clients. We extend it
to defend against ACE. In particular, the server computes
the Euclidean distance between each pair of local model
updates at each communication round to measure how
similar or dissimilar the local model updates are to each
other. The server then considers the k most dissimilar
local model updates, i.e., k local model updates that has
the largest sum of distance to other local model updates,
to be sent by the malicious clients.

• Trimmed-Mean [75]. We extend Trimmed-mean from
the class of statistics based defense as the second
countermeasure to ACE. In each communication round,
Trimmed-Mean first sorts each dimension of the local
model updates from all clients. Subsequently, it identifies
the largest k and smallest k entries for each dimension
in the sorted local model updates, considering these en-
tries to be potentially sent by malicious clients. Finally,
the top k clients that are identified by the server most
frequently across all dimensions are considered to be
malicious by the server.

• FABA [67]. We apply FABA [67], an efficient defense al-
gorithm against Byzantine attacks in FL as the third coun-

Table 4: This table shows the effect of the threshold based
filtering. We compare the ACC, CS, and DR of ACE with and
without the threshold based filtering. We observe that solely
relying on future global model prediction is not sufficient
for attack effectiveness. The prediction error mitigation with
threshold based filtering is necessary to guarantee the effec-
tiveness of ACE.

Contri.
Eval. Metric UNI POW CLA

with without with without with without

CFFL
ACC 70.44% 70.50% 62.03% 56.87% 52.45% 52.51%
CS 0.1051 0.1049 0.1055 0.0526 0.1148 0.1149
DR 9 9 8 0 8 8

RFFL
ACC 70.72% 70.72% 70.90% 70.90% 57.36% 57.36%
CS 0.1917 0.1917 0.1963 0.1963 0.1890 0.1890
DR 9 9 9 9 9 9

Table 5: This table presents the effect of amplifying coeffi-
cient c when the server employs RFFL as the contribution
evaluation method under all data partitions. The contribution
score of the malicious client increases as the amplifying coef-
ficient increases. AF is the abbreviation of Attack Free.

Data
Partition Metric AF c = 1 c = 1.5 c = 2 c = 2.5

UNI ACC 71.78% 70.72% 70.90% 70.83% 70.59%
CS 0.096 0.192 0.199 0.205 0.207

POW ACC 71.03% 70.90% 70.78% 70.70% 70.73%
CS 0.045 0.196 0.204 0.211 0.212

CLA ACC 57.66% 57.36% 58.33% 59.70% 60.13%
CS 0.093 0.189 0.196 0.203 0.205

termeasure. In each communication round, the server
first computes the mean of local model updates, and then
computes the difference between the mean and each lo-
cal model update. The server subsequently identifies the
local model update with the largest difference from the
mean as malicious.

• Sniper [6]. We consider a clustering-based approach,
Sniper, to defend against ACE. Sniper clusters benign lo-
cal model updates by solving a maximum clique problem
in each communication round. Specifically, the server
first calculates the Euclidean distances between each
pair of local model updates, then constructs a graph such
that each local model update is a vertex in the graph. An
edge exists if the Euclidean distance between two local
model updates is smaller than a pre-determined thresh-
old. In the end, the server finds the maximum clique in
the graph and identifies vertices (local model updates) in
the clique as benign. The remaining local model updates
are identified as malicious.

• Foolsgold [21]. We evaluate ACE against Foolsgold [21],
a Sybil detection countermeasure. Foolsgold maintains
aggregate historical updates of local model updates from

12

each client to better estimate the similarity of the overall
contributions made by clients. Foolsgold detects mali-
cious clients by calculating the pairwise cosine similarity
of historical updates as a representation of how strongly
two clients are acting similarly. The clients with high
pairwise cosine similarity are identified as malicious.

• Random Guess. The last countermeasure considered
in this paper is Random Guess. In particular, the server
randomly selects k local model updates as manipulated
by the malicious clients.

We note that k is a hyper-parameter for those countermeasures.
We consider a strong defense scenario where the server knows
the total number of local model updates (which is used to set
k) from the malicious clients.

7.2 Evaluations of Countermeasures to ACE
We empirically evaluate the six detection countermeasures
against ACE under our default setting.
Evaluation Metrics. We use three metrics, precision, recall,
and F1-Score to evaluate the detection performance of Multi-
Krum, Trimmed-Mean, and Random Guess when the attacker
launches ACE.

• Precision. Precision is defined as the fraction of local
model updates that are indeed from the malicious clients
among all predicted ones.

• Recall. Recall is the fraction of local model updates from
the malicious clients that are successfully predicted by a
countermeasure.

• F1-Score. F1-Score measures the harmonic mean of
precision and recall, i.e., F1-Score = 2 · Precision⇥Recall

Precision+Recall .

We note that each defense will detect local model updates
from the malicious clients in each communication round.
Thus, we report the average precision, recall, and F1-Score
overall all communication rounds.
Evaluation Results. We report the precision, recall, and F1-
score when the server utilizes Multi-Krum, Trimmed-Mean,
FABA, Sniper, Foolsgold, or Random Guess to mitigate ACE
in Table 6 on CIFAR-10, where the contribution evaluation
methods are CFFL and RFFL. For UNI data distribution, we
observe that the malicious client is rarely detected by any
of these countermeasures, indicating that none of these are
effective and adequate to thwart ACE. In particular, the perfor-
mances of these detection methods are worse than the naive
Random Guess. The reason is that the local model updates
sent by the malicious client do not significantly diverge from
the global model update, leading the server to perceive the
malicious client as a benign client. For POW and CLA, two
more realistic data partitions, there is only a marginal increase
in detection performance. However, the performance remains

worse than Random Guess, highlighting the stealthiness of
ACE in non-i.i.d. settings. We defer the evaluation results when
parameter c� 1 to Appendix A.

We note that the insights of detecting malicious clients be-
hind Multi-Krum, Trimmed Mean, FABA, Sniper, and Fools-
gold can be classified into two categories, whereas neither of
these was adequate to detect ACE. The inadequacy of Multi-
Krum, Trimmed Mean, FABA, and Sniper can be attributed to
their insight that malicious clients likely to send local model
updates significantly different from other clients’ updates.
Foolsgold identifies malicious clients whose local model up-
dates are too similar to others as malicious. However, as dis-
cussed in Section 3.2, our ACE does not exhibit either exces-
sive similarity or dissimilarity to benign clients, and thus can
evade detection by all these countermeasures. This highlights
the urgent need to develop new mitigation strategies to defend
against ACE.

Table 6: This table summarizes the precision, recall, and
F1-score when Multi-Krum, Trimmed-Mean, FABA, Sniper,
Foolsgold, or Random Guess is employed to mitigate ACE un-
der both i.i.d. (i.e., UNI) and non-i.i.d. (i.e., POW and CLA)
data distributions. We observe that none of these countermea-
sures are effective and adequate to defend ACE. None of these
countermeasures are effective and adequate to defend ACEin
all data distributions. If Precision and Recall are 0, F1-Score
is not defined and denoted as N/A.

Data
Partition Countermeasure CFFL RFFL

Precision Recall F1-Score Precision Recall F1-Score

UNI

Multi-Krum 0.017 0.017 0.017 0.017 0.017 0.017
Trimmed-Mean 0.017 0.017 0.017 0.017 0.017 0.017

FABA 0.017 0.017 0.017 0 0 N/A
Sniper 0.017 0.017 0.017 0 0 N/A

Foolsgold 0 0 N/A 0 0 N/A
Random Guess 0.100 0.100 0.100 0.100 0.100 0.100

POW

Multi-Krum 0.017 0.017 0.017 0.017 0.017 0.017
Trimmed-Mean 0.017 0.017 0.017 0.017 0.017 0.017

FABA 0.017 0.017 0.017 0.017 0.017 0.017
Sniper 0.022 0.033 0.027 0 0 N/A

Foolsgold 0 0 N/A 0 0 N/A
Random Guess 0.100 0.100 0.100 0.100 0.100 0.100

CLA

Multi-Krum 0.017 0.017 0.017 0.017 0.017 0.017
Trimmed-Mean 0.017 0.017 0.017 0 0 N/A

FABA 0.017 0.017 0.017 0.017 0.017 0.017
Sniper 0.022 0.033 0.026 0 0 N/A

Foolsgold 0 0 N/A 0 0 N/A
Random Guess 0.100 0.100 0.100 0.100 0.100 0.100

8 Discussion and Limitation

Untargeted Poisoning and Backdoor Attacks in FL. At-
tacks against FL have been extensively studied, such as untar-
geted poisoning attacks [8, 18, 30, 51, 60, 70, 86] and back-
door attacks [1, 2, 58, 63, 68, 82]. For image classification
tasks, the final global model of FL learned under untargeted
poisoning attacks produces incorrect predictions indiscrimi-
nately on the testing inputs, whereas the global model learned
under backdoor attacks outputs attacker-chosen class when

13

the inputs are embedded with the attacker-chosen triggers.
We note that the untargeted poisoning attacks have a different
goal from our attack. Scaling Attack [1] is a state-of-the-art
backdoor attack. We extend it to attack contribution evalu-
ation methods in FL. Our experimental results in Section 6
demonstrate that ACE consistently outperforms Scaling At-
tack. The reason is that backdoor attacks are not designed to
improve the contribution of a malicious client.

Defenses against Untargeted Poisoning and Backdoor At-
tacks in FL. To mitigate these attacks, various defenses have
been proposed [3, 7, 9, 13, 21, 32, 43, 47, 48, 50, 58, 66, 75]
to identify and remove the local model updates from mali-
cious clients. However, most of these defenses are ineffective
to mitigate ACE. The reason is that these existing defenses
identify the malicious clients by detecting abnormal local
model updates from the clients. For example, FLTrust [7] as-
signs a trust score to each local model update by comparing
its direction with the global model update. As the deviation in
the directions between the local model update and the global
model increases, the client’s trust score decreases, indicating
that it is more likely to be malicious. Our design of ACE, how-
ever, does not lead to abnormal local model updates. Instead,
the manipulated local model updates sent by the malicious
clients using ACE tend to be similar to the global model update
in order to elevate their contributions. This makes ACE partic-
ularly challenging to be detected as shown in Section 7.

Limitation of ACE. One limitation of ACE is how to select
the optimal parameters and strategies for ACE. Our evaluation
results in Figure 5 and Table 7 show that the effectiveness of
ACE is relatively insensitive to these choices under most of the
cases with different datasets, data partitions, and contribution
evaluation methods. In order to further enhance the attack
effectiveness of ACE, a future direction is to explore efficient
techniques to compute the optimal parameters and strategies.

9 Conclusion and Future Work

In this paper, we proposed a new model poisoning attack
called ACE on contribution evaluation methods in federated
learning (FL). We showed that the malicious clients in FL
could utilize ACE to predict the future global model update
with small errors, and elevate their contributions evaluated
by the server in FL. We empirically evaluated ACE using five
state-of-the-art contribution evaluation methods with three
datasets and three data partition methods. Our results showed
that ACE effectively increased the contributions of malicious
clients with negligible costs, and it preserved the performance
of the final global model learned from FL. We also evaluated
ACE against six countermeasures, and showed that none of
them can effectively mitigate ACE. An interesting future work
is to develop new mitigation strategies against our attack.

Acknowledgement

We are grateful for the time and insightful comments pro-
vided by the reviewers and shepherd, which have significantly
enhanced the quality of our work.

This work is partially supported by the Air Force Office of
Scientific Research (AFOSR) under grant FA9550-23-1-0208,
National Science Foundation (NSF) under grants IIS 2229876,
Office of Naval Research (ONR) under grant N00014-23-1-
2386, DARPA GARD, the National Aeronautics and Space
Administration (NASA) under grant No.80NSSC20M0229,
Alfred P. Sloan Fellowship, and the Amazon research award.

This work is supported in part by funds provided by the
National Science Foundation, Department of Homeland Se-
curity, and IBM. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the NSF
or its federal agency and industry partners.

References

[1] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Debo-
rah Estrin, and Vitaly Shmatikov. How to backdoor fed-
erated learning. In AISTATS, pages 2938–2948. PMLR,
2020.

[2] Gilad Baruch, Moran Baruch, and Yoav Goldberg. A
little is enough: Circumventing defenses for distributed
learning. NeurIPS, 32, 2019.

[3] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guer-
raoui, and Julien Stainer. Machine learning with adver-
saries: Byzantine tolerant gradient descent. NeurIPS,
30, 2017.

[4] Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou
Zhu. A limited memory algorithm for bound constrained
optimization. SIAM J Sci Comput, 16(5):1190–1208,
1995.

[5] Richard H Byrd, Jorge Nocedal, and Robert B Schnabel.
Representations of quasi-newton matrices and their use
in limited memory methods. Mathematical Program-
ming, 63(1-3):129–156, 1994.

[6] Di Cao, Shan Chang, Zhijian Lin, Guohua Liu, and
Donghong Sun. Understanding distributed poisoning
attack in federated learning. In ICPADS, pages 233–239.
IEEE, 2019.

[7] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhen-
qiang Gong. Fltrust: Byzantine-robust federated
learning via trust bootstrapping. arXiv preprint
arXiv:2012.13995, 2020.

14

[8] Xiaoyu Cao and Neil Zhenqiang Gong. Mpaf: Model
poisoning attacks to federated learning based on fake
clients. In CVPR, pages 3396–3404, 2022.

[9] Xiaoyu Cao, Jinyuan Jia, Zaixi Zhang, and Neil Zhen-
qiang Gong. Fedrecover: Recovering from poisoning
attacks in federated learning using historical informa-
tion. In IEEE S&P, pages 1366–1383. IEEE, 2023.

[10] Xinyang Cao and Lifeng Lai. Distributed gradient
descent algorithm robust to an arbitrary number of
Byzantine attackers. IEEE Trans. Signal Process.,
67(22):5850–5864, 2019.

[11] Zheng Chai, Hannan Fayyaz, Zeshan Fayyaz, Ali Anwar,
Yi Zhou, Nathalie Baracaldo, Heiko Ludwig, and Yue
Cheng. Towards taming the resource and data hetero-
geneity in federated learning. In OpML, pages 19–21,
2019.

[12] Yiqiang Chen, Xiaodong Yang, Xin Qin, Han Yu, Piu
Chan, and Zhiqi Shen. Dealing with label quality dispar-
ity in federated learning. Federated Learning: Privacy
and Incentive, pages 108–121, 2020.

[13] Tianyue Chu, Alvaro Garcia-Recuero, Costas Iordanou,
Georgios Smaragdakis, and Nikolaos Laoutaris. Se-
curing federated sensitive topic classification against
poisoning attacks. arXiv preprint arXiv:2201.13086,
2022.

[14] Li Deng. The mnist database of handwritten digit images
for machine learning research. IEEE Signal Process.
Mag., 29(6):141–142, 2012.

[15] Yongheng Deng, Feng Lyu, Ju Ren, Yi-Chao Chen, Peng
Yang, Yuezhi Zhou, and Yaoxue Zhang. Fair: Quality-
aware federated learning with precise user incentive and
model aggregation. In INFOCOM, pages 1–10. IEEE,
2021.

[16] Zhenan Fan, Huang Fang, Zirui Zhou, Jian Pei,
Michael P Friedlander, Changxin Liu, and Yong Zhang.
Improving fairness for data valuation in horizontal feder-
ated learning. In ICDE, pages 2440–2453. IEEE, 2022.

[17] Zhenan Fan, Huang Fang, Zirui Zhou, Jian Pei,
Michael P Friedlander, and Yong Zhang. Fair and effi-
cient contribution valuation for vertical federated learn-
ing. arXiv preprint arXiv:2201.02658, 2022.

[18] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil
Gong. Local model poisoning attacks to Byzantine-
robust federated learning. In USENIX Security, pages
1605–1622, 2020.

[19] Minghong Fang, Jia Liu, Neil Zhenqiang Gong, and
Elizabeth S Bentley. AFLGuard: Byzantine-robust asyn-
chronous federated learning. In ACSAC, pages 632–646,
2022.

[20] Pedro J Freire, Sasipim Srivallapanondh, Antonio
Napoli, Jaroslaw E Prilepsky, and Sergei K Turitsyn.
Computational complexity evaluation of neural net-
work applications in signal processing. arXiv preprint
arXiv:2206.12191, 2022.

[21] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh.
Mitigating Sybils in federated learning poisoning. arXiv
preprint arXiv:1808.04866, 2018.

[22] Liang Gao, Li Li, Yingwen Chen, Wenli Zheng,
ChengZhong Xu, and Ming Xu. Fifl: A fair incentive
mechanism for federated learning. In ICPP, pages 1–10,
2021.

[23] Amirata Ghorbani and James Zou. Data Shapley: Equi-
table valuation of data for machine learning. In ICML,
pages 2242–2251. PMLR, 2019.

[24] Andreas Griewank and Andrea Walther. Evaluating
derivatives: Principles and techniques of algorithmic
differentiation. SIAM, 2008.

[25] Rachid Guerraoui, Sébastien Rouault, et al. The hidden
vulnerability of distributed learning in Byzantium. In
ICML, pages 3521–3530. PMLR, 2018.

[26] Miao Hu, Di Wu, Yipeng Zhou, Xu Chen, and Min Chen.
Incentive-aware autonomous client participation in fed-
erated learning. IEEE TPDS, 33(10):2612–2627, 2022.

[27] Malhar S Jere, Tyler Farnan, and Farinaz Koushanfar. A
taxonomy of attacks on federated learning. IEEE S&P,
19(2):20–28, 2020.

[28] Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis,
Nick Hynes, Nezihe Merve Gürel, Bo Li, Ce Zhang,
Dawn Song, and Costas J Spanos. Towards efficient
data valuation based on the shapley value. In AISTATS,
pages 1167–1176. PMLR, 2019.

[29] Meirui Jiang, Holger R Roth, Wenqi Li, Dong Yang, Can
Zhao, Vishwesh Nath, Daguang Xu, Qi Dou, and Ziyue
Xu. Fair federated medical image segmentation via
client contribution estimation. In CVPR, pages 16302–
16311, 2023.

[30] Sai Praneeth Karimireddy, Lie He, and Martin Jaggi.
Byzantine-robust learning on heterogeneous datasets
via bucketing. arXiv preprint arXiv:2006.09365, 2020.

[31] Alex Krizhevsky, Geoffrey Hinton, et al. Learning mul-
tiple layers of features from tiny images. 2009.

15

[32] Kavita Kumari, Phillip Rieger, Hossein Fereidooni, Mur-
tuza Jadliwala, and Ahmad-Reza Sadeghi. Baybfed:
Bayesian backdoor defense for federated learning. arXiv
preprint arXiv:2301.09508, 2023.

[33] Serge Lang. Real and functional analysis, volume 142.
Springer Science & Business Media, 2012.

[34] Ya Le and Xuan Yang. Tiny imagenet visual recognition
challenge. CS 231N, 7(7):3, 2015.

[35] Li Li, Moming Duan, Duo Liu, Yu Zhang, Ao Ren, Xi-
anzhang Chen, Yujuan Tan, and Chengliang Wang. Fed-
SAE: A novel self-adaptive federated learning frame-
work in heterogeneous systems. In IJCNN, pages 1–10.
IEEE, 2021.

[36] Suyi Li, Yong Cheng, Yang Liu, Wei Wang, and Tianjian
Chen. Abnormal client behavior detection in federated
learning. arXiv preprint arXiv:1910.09933, 2019.

[37] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar San-
jabi, Ameet Talwalkar, and Virginia Smith. Federated op-
timization in heterogeneous networks. Machine Learn-
ing and Systems, 2:429–450, 2020.

[38] Jierui Lin, Min Du, and Jian Liu. Free-riders in fed-
erated learning: Attacks and defenses. arXiv preprint
arXiv:1911.12560, 2019.

[39] Zelei Liu, Yuanyuan Chen, Han Yu, Yang Liu, and
Lizhen Cui. Gtg-shapley: Efficient and accurate par-
ticipant contribution evaluation in federated learning.
ACM Trans. Intell. Syst. Technol., 13(4):1–21, 2022.

[40] Guodong Long, Yue Tan, Jing Jiang, and Chengqi
Zhang. Federated learning for open banking. In Feder-
ated Learning: Privacy and Incentive, pages 240–254.
Springer, 2020.

[41] Lingjuan Lyu, Xinyi Xu, Qian Wang, and Han Yu. Col-
laborative fairness in federated learning. Federated
Learning: Privacy and Incentive, pages 189–204, 2020.

[42] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized
data. In Artificial Intelligence and Statistics, pages 1273–
1282. PMLR, 2017.

[43] Hamid Mozaffari, Virat Shejwalkar, and Amir
Houmansadr. Every vote counts: Ranking-based
training of federated learning to resist poisoning attacks.
In USENIX Security, 2023.

[44] Luis Muñoz-González, Kenneth T Co, and Emil C
Lupu. Byzantine-robust federated machine learning
through adaptive model averaging. arXiv preprint
arXiv:1909.05125, 2019.

[45] Dinh C Nguyen, Ming Ding, Pubudu N Pathirana, Aruna
Seneviratne, Jun Li, and H Vincent Poor. Federated
learning for internet of things: A comprehensive survey.
IEEE Commun. Surv. Tutor., 23(3):1622–1658, 2021.

[46] Quoc Phong Nguyen, Bryan Kian Hsiang Low, and
Patrick Jaillet. Trade-off between payoff and model
rewards in Shapley-fair collaborative machine learning.
NeurIPS, 35:30542–30553, 2022.

[47] Thien Duc Nguyen, Phillip Rieger, Roberta De Viti,
Huili Chen, Björn B Brandenburg, Hossein Yalame, He-
len Möllering, Hossein Fereidooni, Samuel Marchal,
Markus Miettinen, et al. {FLAME}: Taming backdoors
in federated learning. In USENIX Security, pages 1415–
1432, 2022.

[48] Mustafa Safa Ozdayi, Murat Kantarcioglu, and Yulia R
Gel. Defending against backdoors in federated learning
with robust learning rate. In AAAI, volume 35, pages
9268–9276, 2021.

[49] Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui.
Robust aggregation for federated learning. IEEE T Sig-
nal Proces, 70:1142–1154, 2022.

[50] Phillip Rieger, Thien Duc Nguyen, Markus Miettinen,
and Ahmad-Reza Sadeghi. Deepsight: Mitigating back-
door attacks in federated learning through deep model
inspection. arXiv preprint arXiv:2201.00763, 2022.

[51] Virat Shejwalkar and Amir Houmansadr. Manipulating
the Byzantine: Optimizing model poisoning attacks and
defenses for federated learning. In NDSS, 2021.

[52] Micah J Sheller, Brandon Edwards, G Anthony
Reina, Jason Martin, Sarthak Pati, Aikaterini Kotrotsou,
Mikhail Milchenko, Weilin Xu, Daniel Marcus, Rivka R
Colen, et al. Federated learning in medicine: facilitat-
ing multi-institutional collaborations without sharing
patient data. Scientific Reports, 10(1):12598, 2020.

[53] Junyu Shi, Wei Wan, Shengshan Hu, Jianrong Lu, and
Leo Yu Zhang. Challenges and approaches for mitigat-
ing Byzantine attacks in federated learning. In Trust-
Com, pages 139–146. IEEE, 2022.

[54] Yuxin Shi, Han Yu, and Cyril Leung. Towards fairness-
aware federated learning. IEEE TNNLS, 2023.

[55] Zhuan Shi, Lan Zhang, Zhenyu Yao, Lingjuan Lyu, Cen
Chen, Li Wang, Junhao Wang, and Xiang-Yang Li. Fed-
faim: A model performance-based fair incentive mech-
anism for federated learning. IEEE Trans. Big Data,
2022.

[56] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

16

[57] Behnaz Soltani, Yipeng Zhou, Venus Haghighi, and John
Lui. A survey of federated evaluation in federated learn-
ing. arXiv preprint arXiv:2305.08070, 2023.

[58] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh,
and H Brendan McMahan. Can you really backdoor
federated learning? arXiv preprint arXiv:1911.07963,
2019.

[59] Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua
Lu, Jing Jiang, and Chengqi Zhang. FedProto: Federated
prototype learning across heterogeneous clients. In
AAAI, volume 36, pages 8432–8440, 2022.

[60] Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and
Ling Liu. Data poisoning attacks against federated learn-
ing systems. In ESORICS, pages 480–501. Springer,
2020.

[61] Wei Wan, Jianrong Lu, Shengshan Hu, Leo Yu Zhang,
and Xiaobing Pei. Shielding federated learning: A new
attack approach and its defense. In IEEE WCNC, pages
1–7. IEEE, 2021.

[62] Guan Wang, Charlie Xiaoqian Dang, and Ziye Zhou.
Measure contribution of participants in federated learn-
ing. In IEEE BigData, pages 2597–2604. IEEE, 2019.

[63] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput,
Harit Vishwakarma, Saurabh Agarwal, Jy-yong Sohn,
Kangwook Lee, and Dimitris Papailiopoulos. Attack of
the tails: Yes, you really can backdoor federated learning.
NeurIPS, 33:16070–16084, 2020.

[64] Junhao Wang, Lan Zhang, Anran Li, Xuanke You, and
Haoran Cheng. Efficient participant contribution evalu-
ation for horizontal and vertical federated learning. In
ICDE, pages 911–923, 2022.

[65] Tianhao Wang, Johannes Rausch, Ce Zhang, Ruoxi Jia,
and Dawn Song. A principled approach to data valuation
for federated learning. Federated Learning: Privacy and
Incentive, pages 153–167, 2020.

[66] Chen Wu, Xian Yang, Sencun Zhu, and Prasenjit Mitra.
Mitigating backdoor attacks in federated learning. arXiv
preprint arXiv:2011.01767, 2020.

[67] Qi Xia, Zeyi Tao, Zijiang Hao, and Qun Li. FABA: an
algorithm for fast aggregation against byzantine attacks
in distributed neural networks. In IJCAI, 2019.

[68] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. Dba:
Distributed backdoor attacks against federated learning.
In ICLR, 2019.

[69] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta.
Generalized Byzantine-tolerant SGD. arXiv preprint
arXiv:1802.10116, 2018.

[70] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Fall
of empires: Breaking Byzantine-tolerant SGD by inner
product manipulation. In Uncertainty in Artificial Intel-
ligence, pages 261–270. PMLR, 2020.

[71] Cong Xie, Sanmi Koyejo, and Indranil Gupta. Zeno:
Distributed stochastic gradient descent with suspicion-
based fault-tolerance. In ICML, pages 6893–6901.
PMLR, 2019.

[72] Xinyi Xu and Lingjuan Lyu. A reputation mechanism
is all you need: Collaborative fairness and adversar-
ial robustness in federated learning. arXiv preprint
arXiv:2011.10464, 2020.

[73] Xinyi Xu, Lingjuan Lyu, Xingjun Ma, Chenglin Miao,
Chuan Sheng Foo, and Bryan Kian Hsiang Low. Gradi-
ent driven rewards to guarantee fairness in collaborative
machine learning. NeurIPS, 34:16104–16117, 2021.

[74] Xinyi Xu, Zhaoxuan Wu, Chuan Sheng Foo, and Bryan
Kian Hsiang Low. Validation free and replication ro-
bust volume-based data valuation. NeurIPS, 34:10837–
10848, 2021.

[75] Dong Yin, Yudong Chen, Ramchandran Kannan, and
Peter Bartlett. Byzantine-robust distributed learning:
Towards optimal statistical rates. In ICML, pages 5650–
5659. PMLR, 2018.

[76] Han Yu, Zelei Liu, Yang Liu, Tianjian Chen, Mingshu
Cong, Xi Weng, Dusit Niyato, and Qiang Yang. A sus-
tainable incentive scheme for federated learning. IEEE
Intell. Syst., 35(4):58–69, 2020.

[77] Rongfei Zeng, Shixun Zhang, Jiaqi Wang, and Xiaowen
Chu. Fmore: An incentive scheme of multi-dimensional
auction for federated learning in mec. In ICDCS, pages
278–288. IEEE, 2020.

[78] Jingwen Zhang, Yuezhou Wu, and Rong Pan. Incentive
mechanism for horizontal federated learning based on
reputation and reverse auction. In WWW, pages 947–
956, 2021.

[79] Wei Zhang, Zhuo Li, and Xin Chen. Quality-aware user
recruitment based on federated learning in mobile crowd
sensing. Tsinghua Science and Technology, 26(6):869–
877, 2021.

[80] Zaixi Zhang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhen-
qiang Gong. FLDetector: Defending federated learning
against model poisoning attacks via detecting malicious
clients. In KDD, pages 2545–2555, 2022.

[81] Zhebin Zhang, Dajie Dong, Yuhang Ma, Yilong Ying,
Dawei Jiang, Ke Chen, Lidan Shou, and Gang Chen.
Refiner: A reliable incentive-driven federated learning

17

system powered by blockchain. VLDB Endowment,
14(12):2659–2662, 2021.

[82] Zhengming Zhang, Ashwinee Panda, Linyue Song, Yao-
qing Yang, Michael Mahoney, Prateek Mittal, Ram-
chandran Kannan, and Joseph Gonzalez. Neurotoxin:
Durable backdoors in federated learning. In ICML,
pages 26429–26446. PMLR, 2022.

[83] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Da-
mon Civin, and Vikas Chandra. Federated learning with
non-iid data. arXiv preprint arXiv:1806.00582, 2018.

[84] Shuyuan Zheng, Yang Cao, and Masatoshi Yoshikawa.
Secure shapley value for cross-silo federated learning.
VLDB Endowment, 16(7):1657–1670, 2023.

[85] Zhaohua Zheng, Yize Zhou, Yilong Sun, Zhang Wang,
Boyi Liu, and Keqiu Li. Applications of federated learn-
ing in smart cities: Recent advances, taxonomy, and open
challenges. Connection Science, 34(1):1–28, 2022.

[86] Xingchen Zhou, Ming Xu, Yiming Wu, and Ning Zheng.
Deep model poisoning attack on federated learning. Fu-
ture Internet, 13(3):73, 2021.

18

Appendix A Additional Experimental Results

In this appendix, we present more experimental results.
ACE is Effective under UNI and POW data partitions. We
show the contribution score versus the rank gain in Figure 3
and 4 under UNI and POW data partitions, respectively. We
observe that ACE consistently outperforms all baselines when
the data distribution is non-i.i.d. (e.g., POW). We note that, in
a few cases, ACE exhibits slightly lower attack performance
compared with the baseline using data augmentation when the
data is uniformly distributed among all clients. The reason is
that UNI data partition yields an i.i.d. data distribution among
the clients. By executing data augmentation, the malicious
clients expand their local training datasets and disrupt the i.i.d.
pattern, thereby gaining extra advantage compared with other
clients.
Effect of the Strategies for Preliminary Iteration &
Threshold based filtering. We evaluate the effect of the
strategies that can be taken for preliminary iteration and
threshold based filtering in Table 7. In particular, we consider
two strategies for the malicious clients: denoted as strategy
one (s1) and strategy two (s2). By using strategy one, the ma-
licious clients execute the delta weight attack. When taking
strategy two, the malicious clients learn local model updates
using their local training datasets. These two strategies yield
four possible combinations of strategies that can be taken for
preliminary iteration and threshold based filtering as follows:

• s1⇥ s1: Strategy one for both preliminary iteration and
threshold based filtering.

• s1⇥ s2: Strategy one for preliminary iteration and strat-
egy two for threshold based filtering.

• s2⇥ s1: Strategy two for preliminary iteration and strat-
egy one for threshold based filtering.

• s2⇥ s2: Strategy two for both preliminary iteration and
threshold based filtering.

We observe that overall the combination s2⇥ s2 provides the
malicious clients the best performance in terms of accuracy,
contribution score, and rank gain.
Effect of Buffer Length m. We evaluate the effect of buffer
length m by varying it from two to five. We compare ACC and
the rank gain with Attack Free (buffer length m = 0) in Figure
5. We observe that ACE with non-zero buffer lengths signifi-
cantly improve the rank gain, and hence the contributions of
the malicious clients, without degrading ACC. Furthermore,
as we vary the buffer length from two to five, ACE exhibits a
consistent rank gain.
Effect of Local Evolution. Figure 6 evaluates the effect of lo-
cal evolution (see Section 4.2.3) when validation accuracy is
used to measure contribution. We have the following observa-
tions. First, ACE is effective to increase the rank gains for the

malicious clients by predicting the future global model. How-
ever, running the L-BFGS algorithm with different number
of rounds can lead to distinct contribution score. For CFFL,
the local evolution decreases the contribution score under all
three data partitions. We observe that predicting the global
model update for future two communication rounds yields
the best performance under FedSV. While the contribution
scores generally increases when the malicious clients run
more rounds of the L-BFGS algorithm under UNI data parti-
tion for LOO, the pattern on POW and CLA data partitions is
similar to CFFL and FedSV.

Effect of Client Selection. In Table 8, we evaluate the ef-
fect of the fraction of clients selected at each communication
round. We vary the fraction of clients that is selected by the
server from 50% to 100%. We make the following observa-
tions. First, ACE is consistently effective under all fractions
of client selections in terms of ACC, CS, and DR. Therefore,
ACE is insensitive to the client selection used by the server.
Furthermore, as the fraction of clients being selected at each
communication round increases, the effectiveness of ACE in-
creases. The reason is that the malicious clients can make
more precise predictions of the global model updates, and
therefore make the local model updates of malicious clients
better aligned with the global model update.

Effect of the Fraction of Malicious Clients. In the following,
we evaluate the effect of the fraction of malicious clients. We
vary the fraction of malicious clients from 10% to 30%, and
present the accumulated CS (the summation of contribution
scores of all malicious clients) in Figure 7. We observe that the
accumulated CS using ACE is always higher than the Attack
Free case under all data partitions when RFFL is used for
contribution evaluation. This indicates that ACE is effective
under all settings as we vary the fraction of malicious clients.

Effect of Different c on Defense Performances. We present
the precision, recall and F1-score when the server utilizes
Multi-Krum, Trimmed-Mean, FABA, Sniper, Foolsgold to
mitigate ACE in Table 9, where we apply ACE under UNI
data partition with RFFL contribution evaluation method em-
ployed. We observe that the defense methods show marginal
performance gain as c increases. This indicates the stealthi-
ness of ACE towards the choice of c.

Experimental Results When the Attacker is Unware of
the Contribution Evaluation Methods. In Figure 8, we
evaluate the scenario where the attacker does not know the
specific contribution evaluation method used by the server.
Specifically, the attacker makes a guess on the contribution
evaluation method used by the server, which may not necessar-
ily be identical to the method employed. Our results indicate
that the client launching ACE can still successfully elevate its
contribution evaluated by the server even when it is unaware
of the contribution evaluation method.

19

(a) FedSV (b) LOO (c) CFFL (d) GDR (e) RFFL

Figure 3: Comparing the contribution score CS and rank gain DR of the attacker when using ACE and baselines under three
datasets, i.e., MNIST (first row), CIFAR-10 (second row), and Tiny-ImageNet (third row), and five contribution evaluation
methods, i.e., FedSV, LOO, CFFL, GDR, and RFFL. The data partition method is UNI (i.i.d. data distribution). Our results show
ACE is more effective than baselines under most of the contribution evaluation methods.

(a) FedSV (b) LOO (c) CFFL (d) GDR (e) RFFL

Figure 4: Comparing the contribution score CS and rank gain DR of the attacker when using ACE and baselines under three
datasets, i.e., MNIST (first row), CIFAR-10 (second row), and Tiny-ImageNet (third row), and five contribution evaluation
methods, i.e., FedSV, LOO, CFFL, GDR, and RFFL. The data partition method is POW (non-i.i.d. data distribution). Our results
show ACE is consistently more effective than baselines.

20

(a) CFFL-UNI (b) CFFL-POW (c) CFFL-CLA

(d) RFFL-UNI (e) RFFL-POW (f) RFFL-CLA

Figure 5: Ablation study with different buffer lengths m = 2,3, . . . ,5. The numbers annotated in the figure are the rank gains.
ACE with non-zero buffer lengths significantly improves the rank gain, without degrading the accuracy. AF is the abbreviation for
Attack Free.

(a) CFFL-UNI (b) CFFL-POW (c) CFFL-CLA

(d) FedSV-UNI (e) FedSV-POW (f) FedSV-CLA

(g) LOO-UNI (h) LOO-POW (i) LOO-CLA

Figure 6: Ablation analysis on the effect of local evolution rounds when CFFL, FedSV, and LOO are used as contribution
evaluation methods. The numbers in the figure annotates the rank gain DR. AF is the abbreviation for Attack Free.

21

Table 7: Effect of the strategies that each malicious client take for preliminary iteration and threshold based filtering. In
strategy one (s1), the attacker could learn the local model update from the local training dataset of a client. In strategy two
(s2), the attacker could use Delta Weight. We have four combinations as the attacker could either use strategy one or two for
preliminary iteration and threshold based filtering. We denote these combinations by {strategy for preliminary iteration}⇥
{strategy for threshold based filtering}. This leads to combinations s1⇥ s1, s1⇥ s2, s2⇥ s1, and s2⇥ s2 . Overall s2⇥ s2 provides
the malicious client the best performance in terms of accuracy, contribution score, and rank gain.

Contribution
evaluation Metric UNI POW CLA

s1⇥ s1 s1⇥ s2 s2⇥ s1 s2⇥ s2 s1⇥ s1 s1⇥ s2 s2⇥ s1 s2⇥ s2 s1⇥ s1 s1⇥ s2 s2⇥ s1 s2⇥ s2

CFFL
ACC 71.77% 71.46% 71.50% 70.44% 62.33% 62.35% 62.18% 62.03% 52.12% 52.51% 52.61% 52.45%
CS 0.102 0.103 0.103 0.105 0.104 0.104 0.104 0.106 0.095 0.115 0.111 0.115
DR 9 9 9 9 7 7 7 8 3 8 7 8

RFFL
ACC 70.81% 70.81% 70.72% 70.72% 70.88% 70.88% 70.90% 70.90% 57.34% 57.34% 57.36% 57.36%
CS 0.192 0.192 0.192 0.192 0.194 0.194 0.196 0.196 0.188 0.188 0.189 0.189
DR 9 9 9 9 9 9 9 9 9 9 9 9

Table 8: Effect of the fraction of selected clients by the server in each communication round on ACE under contribution evaluation
methods SV and LOO. Note that other three contribution evaluation methods require the server to select all clients in each
communication round. The results show ACE is consistently effective.

Contribution
evaluation Metrics Fraction of

selected clients
UNI POW CLA

Attack Free ACE Attack Free ACE Attack Free ACE

FedSV

ACC
50% 70.87% 71.73% 69.93% 71.69% 57.30% 59.90%
70% 70.86% 71.30% 70.50% 71.39% 55.64% 58.17%

100% 71.16% 71.30% 70.82% 71.45% 56.32% 57.60%

CS
50% 0.0825 0.1157 -0.0162 0.1142 -0.1825 0.0812
70% 0.0882 0.1358 -0.0187 0.1316 -0.3108 0.0882

100% 0.0918 0.1513 -0.0237 0.1367 -0.3916 0.1187

DR
50% 0 8 0 6 0 5
70% 0 9 0 8 0 5

100% 0 9 0 8 0 5

LOO

ACC
50% 70.87% 71.73% 69.93% 71.69% 57.30% 59.90%
70% 70.86% 71.30% 70.50% 71.39% 55.64% 58.17%

100% 71.16% 71.30% 70.82% 71.45% 56.32% 57.60%

CS
50% 0.0120 0.2641 -0.1088 0.1606 -2.0835 -0.0693
70% 0.0346 0.2111 -0.1362 0.1528 -1.9926 -0.0598

100% 0.0508 0.2311 -0.1361 0.1743 -0.3916 0.1187

DR
50% 0 9 0 7 0 5
70% 0 9 0 7 0 5

100% 0 9 0 8 0 5

Appendix B More Experiment Details

B.1 Model Structures

We give the details of the CNN models for experiments on
MNIST and CIFAR-10 in Table 10. For Tiny-ImageNet, we
use the pretrained VGG11 implementation from PyTorch1.

1https://pytorch.org/vision/0.16/models/generated/
torchvision.models.vgg11.html

B.2 Data Partitions

POW. The data partition method POW distributes the train-
ing images of each dataset to the clients using a parameterized
power law distribution. The probability density function for
the parameterized power law distribution is given as follows

f (x;a) = axa�1, (8)

where 0  x  1 is a random variable, and a > 1 is a
shape parameter. Let F(x;a) be the corresponding cumu-
lative density function, which is illustrated in Figure 9.
Then the data partition method POW requires that the

22

https://pytorch.org/vision/0.16/models/generated/torchvision.models.vgg11.html
https://pytorch.org/vision/0.16/models/generated/torchvision.models.vgg11.html

(a) UNI (b) POW (c) CLA

Figure 7: This figure presents the accumulated CS (summation of the contribution scores of all malicious clients) under UNI,
POW, and CLA data partitions when the fraction of malicious clients varies from 10% to 30%. The server employs RFFL as the
contribution evaluation method. The results indicate that ACE is effective under different fractions of malicious clients.

Table 9: This table shows the effect of values of c on defense
performance under UNI data partition. The contribution eval-
uation method is RFFL. We observe that the defense methods
show marginal performance gain as c increases. This indicates
the stealthiness of ACE towards the choice of c. If Precision
and Recall are 0, F1-Score is not defined and denoted as N/A.

Detection Metric c = 1 c = 1.5 c = 2 c = 2.5

Multi-Krum
Precision 0.017 0.017 0.017 0.017

Recall 0.017 0.017 0.017 0.017
F1-Score 0.017 0.017 0.017 0.017

Trimmed-Mean
Precision 0.017 0.017 0.017 0.017

Recall 0.017 0.017 0.017 0.017
F1-Score 0.017 0.017 0.017 0.017

FABA
Precision 0 0.017 0.017 0.017

Recall 0 0.017 0.017 0.017
F1-Score N/A 0.017 0.017 0.017

Sniper
Precision 0 0 0 0

Recall 0 0 0 0
F1-Score N/A N/A N/A N/A

Foolsgold
Precision 0 0 0 0

Recall 0 0 0 0
F1-Score N/A N/A N/A N/A

Figure 8: This figure shows the rank gain DR when the at-
tacker is unaware of the contribution evaluation method ap-
plied by the server. In this figure, the y-axis represents the
attacker’s guess on the contribution evaluation method used
by the server, while the x-axis represents the actual contribu-
tion evaluation method employed by the server. We observe
that the client launching ACE can still successfully elevate its
contribution evaluated by the server even when it is unaware
of the contribution evaluation method.

23

Table 10: CNN model architectures for MNIST and CIFAR-
10 datasets.

MNIST CIFAR-10
Conv3-64 + ReLU Conv5-64 + ReLU

Max Pool, 2x2 Max Pool, 2x2
Conv7-16 + ReLU Conv5-128 + ReLU

Max Pool, 2x2 Max Pool, 2x2
FC-64 FC-64
FC-10 FC-10

Softmax Softmax

number of clients that owns no less than x fraction of
the training images follows F(x;a). In our experiments,
we set a = 2. For the CIFAR-10 and Tiny-ImageNet
datasets, the numbers of training samples of the ten clients
are 731,1458,2184,2911,3637,4364,5090,5817,6543 and
7265, respectively.

Figure 9: This figure shows the cumulative distribution func-
tion of a parameterized power law distribution with parameter
a = 2.

CLA. The data partition method CLA splits the data sam-
ples into the clients’ local training datasets as follows. We
first categorize the dataset based on labels. Then CLA spec-
ifies the numbers of classes that should be covered by
the local training dataset of each client. We then sample
a subset of data samples these specified classes, and allo-
cate these data samples to the local training dataset of the
client. Using CLA, the numbers of classes of 10 clients are
6,6,7,7,8,8,9,9,10, and 10 for the CIFAR-10 dataset, and
100,111,122,133,144,155,166,177,188, and 200 for Tiny-
ImageNet dataset, respectively.

B.3 Details on Contribution Evaluation Meth-
ods

In our experiments, we consider five state-of-the-art contribu-
tion evaluations that can be employed by the server. We detail

each of these methods in the following.

• FedSV [65]: FedSV is a game theory based contribution
evaluation method. The contribution of client i is then
calculated as

E(gt
i) =

1
|G| Â

S✓G\{i}

Ut(S[{i})�Ut(S)✓
|G|�1
|S|

◆ ,

where the utility function Ut(S) is defined as Ut(S) =
L(Ds;wt) � L(Ds; 1

|S| Âk2S wt+1
k), Ds is a validation

dataset kept by the server, and S ✓ G \ {i} is a subset
of clients not including client i. FedSV uses FedAvg
[42] as the aggregation rule.

• LOO [65, 81]: This is a game theory based contribution
evaluation. It measures the contribution of each client i as
E(gt

i) = L(Ds;wt
�i)�L(Ds;wt), where wt

�i denotes the
global model without aggregating the local model update
from client i at round t, and Ds is the server’s validation
dataset. LOO uses FedAvg [42] as the aggregation rule.

• CFFL [41]: This is an individual performance based
contribution evaluation. The contribution of client i is
measured by the accuracy of local model from client i
using the validation dataset Ds, i.e., E(gt

i) =
vacci

Â j2G vacc j
,

where vacci is the validation accuracy of client i’s local
model wt+1

i . The aggregation rule of CFFL is a vari-
ant of FedAvg [42], which considers both the data size
and the number of classes of a client. Specifically, when
the data size is imbalanced, the aggregation rule fol-
lows FedAvg. When the class number is imbalanced, the
aggregation rule is A(gt

1,gt
2, · · · ,gt

N) = Âi2G
|classi|

Â j|class j|g
t
i ,

where |class|i denotes the number of classes in Di.

• GDR [73]: This is an individual performance based con-
tribution evaluation. It leverages the cosine distance be-
tween the aggregated global model updates and local
model updates to estimate SV. It then uses the so-called
cosine gradient Shapley value as the client contribution,
i.e., E(gt

i) = Sc(ut ,ut
i), where ut

i := egt
i/kgt

ik represents
the local model update of client i normalized using a
coefficient e, and ut is the global model update by aggre-
gating the normalized local model updates. The aggre-
gation rule is A(gt

1,gt
2, · · · ,gt

N) = Âi2G rt
igt

i , where rt
i is

a normalized weight coefficient calculated as the rolling
mean of E(gt

i), i.e., rt
i = art�1

i +(1�a)E(gt
i), where

the relative weight a 2 (0,1).

• RFFL [72]: This is an individual performance based
method. The contribution is quantified by the cosine
similarity between the local model update gt

i and the ag-
gregated global model update gt , i.e., E(gt

i) = Sc(gt ,gt
i),

where Sc(a,b) denotes the cosine similarity between vec-
tors a and b. The aggregation rule of RFFL is similar to
GDR, which uses rt

i as the weight of gt
i .

24

Appendix C Algorithm Details

This appendix presents the L-BFGS algorithm and the com-
plete algorithm of ACE. We summarize the L-BFGS algorithm
in Algorithm 1, which takes the buffers DW and DG as well
as v = wt �wt�1 as inputs, and outputs the Hessian-vector
product Ht(wt �wt�1) for global model update prediction.
The complete algorithm of ACE is given in Algorithm 2.

Algorithm 1: L-BFGS Algorithm
Input: DW = [Dw0,Dw1, · · · ,Dwm�1],

DG = [Dg0,Dg1, · · · ,Dgm�1], and a vector v.
Output: Approximation of Hessian-vector product Ĥv.

1: A = DWT DG
2: D = diag(A) {Diagonal matrix of A}
3: LLL = tril(AAA) {Lower triangular matrix of A}
4: s =

�
DgT

m�1Dwm�1
�
/
�
DwT

m�1Dwm�1
�

5: p =


�D LT

L sDWT DW

��1  DGT v
sDWT v

�

6: return sv� [DG sDW]p

Appendix D Proofs of Section 5

Proof of Proposition 1. Since cos(g0,c · ĝi) = cos(g0, ĝi), we
have

cos(g, ĝi)� cos(g0,c · ĝi) = cos(g, ĝi)� cos(g0, ĝi)

= (1�Sc(g, ĝi))� (1�Sc(g0, ĝi)) = Sc(g0, ĝi)�Sc(g, ĝi)

=
g0 · ĝi
kg0kkĝik

� g · ĝi
kgkkĝik

=
kgkg0 · ĝi�kg0kg · ĝi
kg0kkgkkĝik

.

We denote by g0 = g+(c�1)aiĝi. For g · ĝi � 0, we have:

cos(g, ĝi)� cos(g0,c · ĝi)

� kgk(g+(c�1)aiĝi) · ĝi� (kgk+k(c�1)aiĝik)g · ĝi
kg0kkgkkĝik

=
kgkg · ĝi +(c�1)aikgkĝi · ĝi�kgkg · ĝi�k(c�1)aiĝikg · ĝi

kg0kkgkkĝik

=
(c�1)aikgkkĝik2� (c�1)aikĝikg · ĝi

kg0kkgkkĝik

=
(c�1)aikĝik(kgkkĝik�g · ĝi)

kg0kkgkkĝik
� 0.

The first inequality uses Triangle Inequality, i.e., ka+bk 
kak+ kbk. The second inequality holds because c > 1 and
kgkkĝik � kg · ĝik � g · ĝi.

Similarly, for g · ĝi  0, we have:

cos(g, ĝi)� cos(g0,c · ĝi) =
kgkg0 · ĝi�kg0kg · ĝi
kg0kkgkkĝik

Algorithm 2: Complete Algorithm of ACE
1: for each round t do
2: Receive the current global model wt from the server.
3: Update DWt and DGt .
4: if in attack rounds then
5: if t  m then
6: Perform strategy for preliminary iteration to get

ĝt
i .

7: else
8: for t 0 in local evolution rounds do
9: v = wt+t 0 �wt+t 0�1

10: Ht+t 0v = L-BFGS(DWt+t 0 ,DGt+t 0 ,v)
11: if kHt+t 0vk  lkvk then
12: if t 0 = 0 then
13: Perform strategy for threshold based

filtering to get ŵt+1.
14: else if t 0 > 0 then
15: t 0 = t 0 �1
16: end if
17: Break
18: end if
19: gt+t 0 = gt+t 0�1 +Ht+t 0v
20: ŵt+t 0+1 = ŵt+t 0 �gt+t 0

21: Update DWt+t 0 and DGt+t 0 .
22: end for
23: ĝt

i = wt � ŵt+t 0+1

24: ĝt
i = c · ĝt

i
25: end if
26: else
27: gt

i hi—L(Di,wt) {Normal training}
28: end if
29: end for

=
kgk(g+(c�1)aiĝi) · ĝi�kg0kg · ĝi

kg0kkgkkĝik

=
kgkg · ĝi +(c�1)aikgkkĝik2�kg0kg · ĝi

kg0kkgkkĝik

=
kg0 � (c�1)aiĝikg · ĝi +(c�1)aikgkkĝik2�kg0kg · ĝi

kg0kkgkkĝik

� (kg0k+k(c�1)aiĝik)g · ĝi +(c�1)aikgkkĝik2�kg0kg · ĝi
kg0kkgkkĝik

=
(c�1)aikĝikg · ĝi +(c�1)aikgkkĝik2

kg0kkgkkĝik

=
(c�1)aikĝik(kgkkĝik+g · ĝi)

kg0kkgkkĝik
� 0.

The first inequality holds uses Triangle Inequality, i.e., ka�
bk  kak+kbk. The second inequality holds because c > 1
and kgkkĝik � kg · ĝik � �g · ĝi.

Combine the above two cases, we have:

cos(g, ĝi)� cos(g0,c · ĝi)

25

� (c�1)aikĝik(kgkkĝik� |g · ĝi|)
kg+(c�1)aiĝikkgkkĝik

� 0.

Therefore, cos(g0,c · ĝi) cos(g, ĝi).
Proof of Corollary 1. Since cos(g, ĝi) cos(g,g j), we have:

cos(g,g j)� cos(g, ĝi) = Sc(g, ĝi)�Sc(g,g j)

=
g · ĝi
kgkkĝik

�
g ·g j

kgkkg jk

=
kg jkg · ĝi�kĝikg ·g j

kgkkĝikkg jk
� 0.

Since the denumerator kgkkĝikkg jk � 0, the numerator
kg jkg · ĝi�kĝikg · g j � 0. Denote g0 = g+(c� 1)aiĝi, we
have:

cos(g0,g j)� cos(g0,cĝi) = cos(g0,g j)� cos(g0, ĝi)

= Sc(g0, ĝi)�Sc(g0,g j)

=
g0 · ĝi
kg0kkĝik

�
g0 ·g j

kg0kkg jk
=
kg jkg0 · ĝi�kĝikg0 ·g j

kg0kkĝikkg jk

=
kg jk(g+(c�1)aiĝi) · ĝi�kĝik(g+(c�1)aiĝi) ·g j

kg0kkĝikkg jk

=
kg jkg · ĝi�kĝikg ·g j +(c�1)ai(kg jkĝi · ĝi�kĝikĝi ·g j)

kg0kkĝikkg jk

�
(c�1)ai(kg jkĝi · ĝi�kĝikĝi ·g j)

kg0kkĝikkg jk

=
(c�1)ai(kg jkkĝik� ĝi ·g j)

kg0kkg jk
� 0.

The inequality holds because kg jkg · ĝi�kĝikg ·g j � 0. There-
fore, we have cos(g0,g j)� cos(g0,cĝi).
Proof of Proposition 2. By the definition of cosine distance,
we have

cos(g0,g j)� cos(g0,cĝi) = cos(g0,g j)� cos(g0, ĝi)

=
g0 · ĝi
kg0kkĝik

�
g0 ·g j

kg0kkg jk
=
kg jkg0 · ĝi�kĝikg0 ·g j

kg0kkĝikkg jk

=
kg jk(g+(c�1)aiĝi) · ĝi�kĝik(g+(c�1)aiĝi) ·g j

kg0kkĝikkg jk

=
kg jkg · ĝi�kĝikg ·g j +(c�1)aikĝik(kg jkkĝik� ĝi ·g j)

kg0kkĝikkg jk
� 0.

Note that since cos(g, ĝi) > cos(g,g j), we have kg jkkĝik�
ĝi ·g j > 0. Thus we have:

c�
kĝikg ·g j�kg jkg · ĝi

aikĝik(kg jkkĝik� ĝi ·g j)
+1.

26

	Introduction
	Background and Related Work
	Federated Learning
	Contribution Evaluation Methods in FL

	Problem Formulation
	Threat Model
	A Model Poisoning Attack on Contribution Evaluation Methods in FL
	Design Goals

	Description of ACE
	Overview of ACE
	Detailed Design of ACE
	Future Global Model Prediction
	Prediction Error Mitigation
	Strategies to Enhance ACE

	Complete Algorithm
	Complexity Analysis

	Theoretical Analysis
	Empirical Evaluations
	Experimental Setup
	Experimental Results
	Ablation Analysis

	Countermeasures to ACE and Evaluations
	Countermeasures to ACE
	Evaluations of Countermeasures to ACE

	Discussion and Limitation
	Conclusion and Future Work
	Additional Experimental Results
	More Experiment Details
	Model Structures
	Data Partitions
	Details on Contribution Evaluation Methods

	Algorithm Details
	Proofs of Section 5

