
DPZero: Private Fine-Tuning of Language Models
without Backpropagation

Liang Zhang1, Bingcong Li1, Kiran Koshy Thekumparampil2, Sewoong Oh3, and Niao He1

1Department of Computer Science, ETH Zurich
2Amazon Search

3Paul G. Allen School of Computer Science and Engineering, University of Washington
{liang.zhang, bingcong.li, niao.he}@inf.ethz.ch,

kkt@amazon.com, sewoong@cs.washington.edu

Abstract

The widespread practice of fine-tuning large language models (LLMs) on domain-specific data faces
two major challenges in memory and privacy. First, as the size of LLMs continues to grow, the memory
demands of gradient-based training methods via backpropagation become prohibitively high. Second, given
the tendency of LLMs to memorize training data, it is important to protect potentially sensitive information
in the fine-tuning data from being regurgitated. Zeroth-order methods, which rely solely on forward passes,
substantially reduce memory consumption during training. However, directly combining them with standard
differentially private gradient descent suffers more as model size grows. To bridge this gap, we introduce
DPZero, a novel private zeroth-order algorithm with nearly dimension-independent rates. The memory
efficiency of DPZero is demonstrated in privately fine-tuning RoBERTa and OPT on several downstream
tasks. Our code is available at https://github.com/Liang137/DPZero.

1 Introduction
Fine-tuning pretrained large language models (LLMs), such as BERT [28, 80, 107], OPT [148], LLaMA [120, 121],
and GPT [101, 14, 97, 96], achieves state-of-the-art performance in a wide array of downstream applications.
However, two significant challenges persist in practical adoption: memory demands for gradient-based optimizers
and the need to safeguard the privacy of domain-specific fine-tuning data.

As the memory requirement of fine-tuning LLMs is increasingly becoming a bottleneck, various approaches
have been proposed, spanning from parameter-efficient fine-tuning (PEFT) [69, 58] to novel optimization
algorithms [110, 3]. Since these methods rely on backpropagation to compute the gradients, which can be
memory-intensive, a recent trend has emerged in developing algorithms that do not require backpropagation
[11, 113, 55, 57, 99, 19]. Specifically for LLMs, Malladi et al. [87] introduced zeroth-order methods for fine-tuning,
thereby eliminating the backward pass and freeing up the memory for gradients and activations. Utilizing a
single A100 GPU (80 GiB memory), zeroth-order methods are capable of fine-tuning a 30-billion-parameter
model, whereas first-order methods, even equipped with PEFT, fail to fit into the memory for a model with
more than 6.7 billion parameters. This greatly expands the potential for deploying and fine-tuning LLMs even
on personal devices.

On the other hand, empirical studies have highlighted the risk of LLMs inadvertently revealing sensitive
information from their fine-tuning datasets [91, 143, 90, 85]. Such privacy concerns are pronounced especially
when users opt to fine-tune LLMs on datasets of their own. Notably, the expectation that machine learning
models should not compromise the confidentiality of their contributing entities is codified into legal frameworks
[126]. Differential privacy (DP) [33] is a widely accepted mathematical framework for ensuring privacy by
preventing attackers from identifying participating entities [112]. Consequently, the development of methods
that fine-tune LLMs under differential privacy is of pressing necessity [71, 140, 54, 16, 29]; however, most efforts
so far have focused on first-order algorithms.

1

ar
X

iv
:2

31
0.

09
63

9v
3

 [c
s.L

G
]

6
Ju

n
20

24

https://github.com/Liang137/DPZero

Motivated by the memory-hungry nature and privacy concerns in fine-tuning LLMs, we investigate zeroth-
order methods that guarantee differential privacy for solving the following stochastic optimization problem:

min
x2Rd

FS(x) :=
1

n

nX

i=1

f(x; ⇠i) , (1)

where S = {⇠i}
n

i=1 is the training data, x 2 Rd is the model weight, the loss f(x; ⇠i) is Lipschitz for each
sample ⇠i, and the averaged loss FS(x) is smooth and possibly nonconvex. In theory, previous work on both
differentially private optimization [8] and zeroth-order optimization [32] indicated that their convergence
guarantees depend explicitly on the dimension d. Such dimension dependence becomes problematic in the
context of LLMs with d scaling to billions. In practice, and somewhat surprisingly, empirical studies on the
fine-tuning of LLMs using zeroth-order methods [87] and DP first-order methods [140, 71, 70] have shown that
the performance degradation due to the large model size is marginal. For example, Yu et al. [140] showed that
the performance drop due to privacy is smaller for larger architectures. A 345 million-sized GPT-2-Medium,
fine-tuned with (" = 6.8, � = 10�5)-DP, showcases a modest drop of 5.1 in BLEU score [98] (compared to a
non-private model of the same size and architecture), whereas a larger GPT-2-XL with 1.5 billion parameters
exhibits smaller cost in test performance, i.e., 4.3 BLEU score under the same privacy budget.

This gap between theory and practice has been linked to the presence of low-rank structures in the fine-tuning
of pretrained LLMs [87, 70]. Empirical evidence suggests that fine-tuning occurs within a low-dimensional
subspace [105, 51, 44, 68]: 200 dimensions for RoBERTa with 355 million parameters [2] and 100 dimensions
for PEFT on DistilRoBERTa with 7 million parameters [70]. In such cases where the intrinsic dimension is
small, zeroth-order methods are known to achieve dimension-independent convergence rate [87] and private
first-order methods are also known to achieve dimension-independent guarantees [86, 70].

Given the significance of fine-tuning LLMs on domain-specific datasets, we ask the following fundamental
question: Can we achieve a dimension-independent rate both under differential privacy and with access only to
the zeroth-order oracle? Our contributions are summarized below.

• We first show that the straightforward approach — that combines DP first-order methods with zeroth-
order gradient estimators (Algorithm 1) — exhibits an undesirable dimension dependence in the convergence
guarantees, even when the effective rank of the problem does not scale with the dimension (Theorems 1 and 2
in Section 3). There are two root causes. First, the standard practice of choosing the clipping threshold to be
the maximum norm of the estimated sample gradient leads to an unnecessarily large threshold. Next, this
choice of the clipping threshold forces the addition of a large noise to ensure privacy, and Algorithm 1 adds
that noise in all d directions.

• We present DPZero (Algorithm 2), the first nearly dimension-independent DP zeroth-order method for
stochastic optimization. Its convergence guarantee depends on the effective rank of the problem (specified in
Assumption 3.5) and exhibits logarithmic dependence on the dimension d (Theorem 3 in Section 4). This builds
upon two insights. First, the direction of the estimated gradient is a public information and does not need
to be private; it is sufficient to make only the magnitude of the estimated gradient private, which is a scalar
value. Next, we introduce a tighter analysis that allows us to choose a significantly smaller clipping threshold,
leveraging the fact that the typical norm of the estimated gradient is much smaller than its maximum.

• We verify the effectiveness of DPZero in both synthetic examples and private fine-tuning tasks on
RoBERTa [80] and OPT [148]. In contrast to first-order algorithms that demand extensive effort for the
efficient implementation of per-sample gradient clipping [71, 54, 16], DPZero offers the advantage of near-zero
additional costs compared to non-private zeroth-order methods [87]. Our empirical results validate theoretical
findings, revealing only a slight performance decrement for DPZero even with large model sizes.

1.1 Related Works

We build upon exciting advances in zeroth-order optimization and differentially private optimization, which we
survey here. Notably, DPZero is inspired by new empirical and theoretical findings showing that fine-tuning
LLMs does not suffer in high-dimensions when using zeroth-order methods in Malladi et al. [87] or using private
first-order optimization in Li et al. [70]. A more comprehensive overview is deferred to Appendix A.

2

Zeroth-order optimization. Nesterov and Spokoiny [94] pioneered the formal analysis of the convergence
rate of zeroth-order methods, i.e., zeroth-order (stochastic) gradient descent (ZO-SGD) that replaces gradients
in SGD by their zeroth-order estimators. Their findings are later refined by several works [43, 108, 73]. These
well-established results indicate a runtime complexity O(d) worse than first-order methods. Such dimension
dependence of zeroth-order methods is proven inevitable without additional structures [134, 32].

There are several recent works that relax the dimension dependence in zeroth-order methods leveraging
problem structures. Balasubramanian and Ghadimi [7] demonstrated that ZO-SGD can directly identify the
sparsity of the problem and proved a dimension-independent rate when the support of gradients remains
unchanged. Yue et al. [141] and Malladi et al. [87] relaxed the dependence on dimension d to a quantity related
to the trace of the loss’s Hessian.

Differentially private optimization. Previous works on DP optimization mostly center around first-order
methods. When the problem is nonconvex, i.e., the setting of our interest, differentially private (stochastic)
gradient descent (DP-GD) achieves a rate of O(

p
d log(1/�)/(n")) on the squared norm of the gradient [130, 150].

We show that DPZero matches this rate with access only to the zeroth-order oracle in Theorem 3. Given access
to the first-order oracle, it has been recently shown that such rate can be improved to O((

p
d log(1/�)/(n"))4/3)

leveraging momentum [122] or variance reduction techniques [4].
Early works established dimension-independent rates when the gradients lie in some fixed low-rank subspace

[60, 116]. Closest to our result is Song et al. [116], which demonstrated that the rate of DP-GD for smooth
nonconvex optimization can be improved to O(

p
r log(1/�)/(n")) for generalized linear models (GLMs) with a

rank-r feature matrix. DPZero matches this result with access only to the zeroth-order oracle in Theorem 3
for more general problems beyond low-rank GLMs. Our result is inspired by Li et al. [70] that introduced a
relaxed Lipschitz condition for the gradients and provided dimension-free bounds when the loss is convex and
the relaxed Lipschitz parameters decay rapidly. Similarly, Ma et al. [86] suggested that the dependence on d in
the utility upper bound for DP stochastic convex optimization can be improved.

Literature on DP optimization beyond first-order methods remains less explored. Recently, Zhang et al.
[147] studied the problem of private zeroth-order nonsmooth nonconvex optimization and achieved a rate that
depends on the dimension d. As far as we are aware, no prior studies have addressed the challenge of deriving
a dimension-independent rate in DP zeroth-order optimization.

After the workshop version of our paper [146] was released, Tang et al. [117] concurrently discovered the
same algorithm as DPZero (up to a minor difference in how ut is drawn) and showed empirical benefits
when applied to fine-tuning OPT models but without theoretical analysis. Also building upon the workshop
version of our paper, Liu et al. [81] introduced DP-ZOSO, a stage-wise zeroth-order method with an additional
quadratic regularizer. With extra hyper-parameters to be tuned, DP-ZOSO demonstrates further empirical
gain over DPZero. However, Liu et al. [81] only provided dimension-dependent guarantees.

2 Preliminaries
Notation. We use k·k for the Euclidean norm and define kvk2

W
= v

>
Wv for a square matrix W . Sd�1 = {x 2

Rd
| kxk = 1} denotes the unit sphere in Rd, and ⌘ Sd�1 is the sphere of radius ⌘ > 0. A function p : Rd

! R is
L-Lipschitz if |p(x1)�p(x2)|  Lkx1�x2k, 8x1, x2. A function q : Rd

! R is `-smooth if it is differentiable and
krq(x1)�rq(x2)k  `kx1�x2k. The trace of a square matrix J is denoted by Tr(J). A symmetric real matrix
M ⌫ 0 if it is positive semi-definite. The clipping operation is defined to be clip

C
(x) = x min{1, C/kxk} given

C > 0. The notation Õ(·) hides additional logarithmic terms.

2.1 Differential Privacy

Definition 2.1 (Differential Privacy [33, 34]). Two datasets S = {⇠i}
n

i=1 and S
0 = {⇠

0
i
}
n

i=1 are neighboring if
max{|S \ S

0
|, |S

0
\ S|} = 1, and we denote it by S ⇠ S

0. For prescribed " > 0 and � 2 (0, 1), an algorithm A

is said to satisfy (", �)-differential privacy (DP) if P(A(S) 2 B)  e
"P(A(S0) 2 B) + � for all S ⇠ S

0 and all
measurable set B in the range of A.

To ensure DP while solving the optimization problem in Eq. (1), first-order approaches, such as DP-
GD, update via xt+1 xt � ↵((1/n)

P
n

i=1 clipC(rf(xt; ⇠i)) + zt); see e.g., [115, 1]. Through the following

3

composition lemma [62, Theorem 4.3], the privacy for entire T updates is secured by the per-sample clipping
operation that ensures finite sensitivity of � = 2C/n together with the Gaussian noise zt.

Lemma 2.2 (Advanced Composition). Let A be some randomized algorithm operating on a dataset S and
outputting a vector in Rd. If A has sensitivity � := sup

S⇠S0kA(S)�A(S0)k, the mechanism that adds Gaussian
noise N (0,�2Id) with variance �

2 = (2�
p
2T log(e+ ("/�))/")2 satisfies (", �)-DP under T -fold adaptive

composition for any " > 0 and � 2 (0, 1).

2.2 Zeroth-Order Optimization

When the gradient is expensive to compute, zeroth-order methods are useful for optimizing Eq. (1). For
example, the two-point gradient estimator below requires only two evaluation of function values [108]

g�(x; ⇠i) :=
f(x+ �u; ⇠i)� f(x� �u; ⇠i)

2�
u , (2)

where u is sampled uniformly from the Euclidean sphere
p
d Sd�1 and � > 0 is the smoothing parameter

[139, 31]. A common approach to generate u is to set u =
p
d z/kzk, with z sampled from the standard

multivariate Gaussian N (0, Id) [92, 89]. We refer to g�(x; ⇠) as the zeroth-order gradient (estimator) in the
sequel. The results in this paper can be directly extended to other zeroth-order gradient estimators, e.g., any u

satisfying E[uu>] = Id [32], the one-point estimator [39], and the directional derivative [94].

3 DP-GD with Zeroth-Order Gradients Suffers in High Dimensions
In this section, we show that the direct integration of zeroth-order gradient estimators in Eq. (2) into DP-GD,
which we term DPGD-0th, leads to undesirable dimension dependence in the error rate. Such dependence
persists even under a low effective rank assumption.

3.1 Direct Integration Leads to an O(d3/2) Rate

We present in Algorithm 1 the straightforward private zeroth-order approach that substitutes the gradients in
DP-GD with zeroth-order estimators g�(xt; ⇠i) in Eq. (2).

The privacy guarantee follows from standard DP-GD analysis, and the utility guarantee on the squared
gradient norm is derived from classical techniques for analyzing zeroth-order methods [94]. Before presenting
the convergence result, we make the following standard assumption, which is common in nonconvex DP
optimization [130, 131, 122].

Assumption 3.1. The loss f(x; ⇠) is L-Lipschitz for every ⇠. The average loss FS(x) is `-smooth for every
given dataset S, and its minimum F

⇤
S
:= minx2Rd FS(x) is finite.

Theorem 1. For any " > 0 and � 2 (0, 1), Algorithm 1 is (", �)-DP. Under Assumption 3.1, its output x⌧

satisfies that

E[krFS(x⌧)k
2]  16

⇣
(FS(x0)� F

⇤
S
) `+ 2L2

⌘
d

p
d log(e+ ("/�))

n"
, (3)

with the choice of parameters

↵ =
1

4`d
, T =

n"p
d log(e+ ("/�))

, � 
4L

`d

⇣p
d log(e+ ("/�))

n"

⌘1/2
, C = Ld.

The total number of zeroth-order gradient computations is nT = O(n2
/
p
d).

Remark 3.2. Theorem 1 demonstrates that directly combining DP-GD with zeroth-order gradients leads to an
O(d3/2) error complexity, which is O(d) worse than first-order DP approaches [130].

4

Algorithm 1 DP-GD with 0th-order gradients (DPGD-0th)

Input: Dataset S = {⇠1, · · · , ⇠n}, initialization x0 2 Rd, number of iterations T , stepsize ↵ > 0, smoothing
parameter � > 0, clipping threshold C > 0, privacy parameters " > 0, � 2 (0, 1).

1: for t = 0, 1, · · · , T � 1 do
2: Sample ut uniformly at random from the Euclidean sphere

p
d Sd�1 and for all i = 1, · · · , n compute

g�(xt; ⇠i)
f(xt + �ut; ⇠i)� f(xt � �ut; ⇠i)

2�
ut.

3: Sample zt 2 Rd randomly from the multivariate Gaussian distribution N (0,�2Id) with variance � =
4C
p
2T log(e+ ("/�))/(n") and update

xt+1 xt � ↵

⇣ 1
n

nX

i=1

clip
C
(g�(xt; ⇠i)) + zt

⌘
.

Output: x⌧ for ⌧ sampled uniformly at random from {0, 1, · · · , T � 1}.

Remark 3.3. Three sources contribute to the dependence in d: the squared norm of the zeroth-order gradient
estimator E[k(1/n)

P
n

i=1 g�(x, ⇠i)k
2] = O(d krFS(x)k2) when taking �! 0 for simplicity, the clipping threshold

C = O(d), and the norm of the privacy noise E[kztk2] = O(dC2) = O(d3). The standard analysis of one-step
update gives

E[FS(xt+1)]  E[FS(xt)]�
↵

2

�
1� 2d `↵

�
E[krFS(xt)k

2] + c↵
2
d
3
, (4)

where c is a constant that depends on problem parameters other than ↵ and d; see Eq. (12) for details. A small
enough step size, ↵ < 1/(2`d), is required to make the second term negative, where the dependence in d comes
from E[k(1/n)

P
n

i=1 g�(x, ⇠i)k
2]. The dependence on d

3 in the last term arises from E[kztk2], which leads to
the O(d3/2) rate in Eq. (3) after balancing error terms. Detailed proofs can be found in Appendix D.
Remark 3.4. The choice of the clipping threshold C = Ld ensures that clipping does not happen with probability
one, which is a common choice in the theoretical analysis of private optimization algorithms [8, 9, 130]. This
follows from the fact that, for L-Lipschitz f(x; ⇠), the zeroth-order gradient is upper bounded by kg�(x; ⇠)k  Ld

almost surely. Selecting the clipping threshold without knowledge of this upper bound remains an active
research topic [23, 138, 36, 66, 149].

3.2 Rate Improves to O(d) under Low Effective Rank

Here, under the low-dimensional structures in fine-tuning LLMs (cf. Section 1), we demonstrate improved
performance for Algorithm 1. Unfortunately, a linear dependence in d still persists even under the low effective
rank structure.

Assumption 3.5. The function f(x; ⇠) is L-Lipschitz and `-smooth for every ⇠. The average function FS(x) is
twice differentiable with �H � r2

FS(x) � H for any x 2 Rd, and its minimum F
⇤
S
:= minx2Rd FS(x) is finite.

Here, the real-valued d⇥ d matrix H ⌫ 0 satisfies that kHk2  ` and Tr(H)  rkHk2. We refer to r as the
effective rank or the intrinsic dimension of the problem.

Assumption 3.5 boils down to Assumption 3.1 if r = d. This is because �H 0
� r

2
FS(x) � H

0
, 8x 2 Rd

and H
0 = ` Id imply that kH 0

k2  ` and Tr(H 0)  dkH
0
k2. With r < d, this assumption reflects the additional

structures encoded in the Hessian matrix. While Assumption 3.5 naturally holds for low-rank Hessians, it
covers more general cases. For example, the assumption is satisfied with r = O(log d) ⌧ d in the case of a
full-rank matrix H, with its i-th largest eigenvalue being `/i for 1  i  d.

Similar assumptions have been made to relax the dimension dependence in zeroth-order optimization in
the limit �! 0 [87] and also for DP first-order optimization when the objective is smooth and convex [86].
However, even under Assumption 3.5, DPGD-0th (Algorithm 1) still suffers from a linear dependence in d in
its error rate, as presented below. A proof is provided in Appendix D.

5

Theorem 2. For any " > 0 and � 2 (0, 1), Algorithm 1 is (", �)-DP. Under Assumption 3.5, its output x⌧

satisfies that

E[krFS(x⌧)k
2]  16

⇣
(FS(x0)� F

⇤
S
) `+ 2L2

⌘
d

p
r log(e+ ("/�))

n"
, (5)

with the choice of parameters

↵ =
1

4`(r + 2)
, T =

n(r + 2)"

d

p
r log(e+ ("/�))

, � 
4L

`d

⇣p
r log(e+ ("/�))

n"

⌘1/2
, C = Ld.

The total number of zeroth-order gradient computations is nT = O(n2p
r/d).

Remark 3.6. Comparing to Remark 3.3, both the zeroth-order gradient, E[k(1/n)
P

n

i=1 g�(xt; ⇠i)k2H], and the
DP noise, E[kztk2H], decrease by a factor of O(r/d) under low effective rank. This is made precise in Lemma
C.1. As a result, the one-step update analysis can be tightened as

E[FS(xt+1)]  E[FS(xt)]�
↵

2

�
1� 2(r + 2)`↵

�
E[krFS(xt)k

2] + c↵
2
r d

2
. (6)

Comparing to the RHS of Eq. (4), it achieves an improved dependence in d. However, the third term in Eq.
(6) is still at O(d2) due to the clipping threshold C = O(d). Consequently, even when the effective rank r is
small, Eq. (5) still grows linearly in d.

4 DPZero: Nearly Dimension-Independent Private Zeroth-Order
Optimization

A straightforward combination of DP-GD and zeroth-order methods has a large dimension dependence. Our
novel DPZero overcomes this issue with two key insights elaborated below.

Scalar privacy noise. By decoupling zeroth-order gradients in Eq. (2) into direction and magnitude, our
key observation is that the direction, ut, is public knowledge, and we only need to make the magnitude private.
Privacy can be guaranteed by clipping the finite-difference, (f(xt + �ut; ⇠i)� f(xt � �ut; ⇠i))/(2�), and then
adding a scalar noise zt; see line 3 of Algorithm 2. This change, when applied to Algorithm 1, can significantly
improve the rate in Eq. (5) by a factor of d1/2.

Tighter clipping threshold. Another factor of d1/2 improvement originates from a tighter analysis on the
upper bound of the finite-difference term. Although its worst-case upper bound scales with the dimension d,
this only happens with an exponentially small probability over the randomness of ut. As proved in Eq. (16) in
Appendix E, the size of the finite-difference is

|f(xt + �ut; ⇠i)� f(xt � �ut; ⇠i)|

2�
 |u

>
t
rf(xt; ⇠i)|+

`

2
�d,

where we use the assumption that each f(x; ⇠) is `-smooth. When ut is sampled from the sphere
p
d Sd�1, a

tail bound (part (ii) of Lemma C.1 in the appendix) implies that

P
���u>

t
rf(xt; ⇠i)

�� � C
�
 2
p
2⇡ exp

⇣
�

C
2

8L2

⌘
.

By selecting the smoothing parameter � to be sufficiently small, a careful choice of C = Õ(L), which is nearly
independent of d, can ensure that clipping does not occur with a high probability. This choice is significantly
smaller than the worst-case clipping threshold of Ld1/2. The main technical challenge is that we need to analyze
the algorithm given the event that clipping does not happen. The choice of drawing ut from the uniform
distribution over the sphere, together with corresponding tail bounds in Appendix C, allows us to prove the
following nearly dimension-independent bound under the low effective rank structure in Assumption 3.5. A
proof is provided in Appendix E.

6

Algorithm 2 DPZero

Input: Dataset S = {⇠1, · · · , ⇠n}, initialization x0 2 Rd, number of iterations T , stepsize ↵ > 0, smoothing
parameter � > 0, clipping threshold C > 0, privacy parameters " > 0, � 2 (0, 1).

1: for t = 0, 1, · · · , T � 1 do
2: Sample ut uniformly at random from the Euclidean sphere

p
d Sd�1.

3: Sample a scalar zt 2 R randomly from the univariate Gaussian distribution N (0,�2) with variance
� = 4C

p
2T log(e+ ("/�))/(n") and update the parameter

xt+1 xt � ↵

⇣ 1
n

nX

i=1

clip
C

⇣
f(xt + �ut; ⇠i)� f(xt � �ut; ⇠i)

2�

⌘
+ zt

⌘
ut.

Output: x⌧ for ⌧ sampled uniformly at random from {0, 1, · · · , T � 1}.

Theorem 3. For any " > 0 and � 2 (0, 1), Algorithm 2 is (", �)-DP. Under Assumption 3.5, suppose
max0tT |FS(xt)|  B, the output x⌧ satisfies that

E[krFS(x⌧)k
2] 

⇣
64
⇣
(FS(x0)� F

⇤
S
) `+ L̃

2
⌘
+ 2L2

⌘p
r log(e+ ("/�))

n"
, (7)

where we define

L̃
2 = L

2 log
⇣2
p
2⇡ n

3
"
2(r + 2)(d+ 8`B(r + 2)/L2)

r log(e+ ("/�))

⌘
,

and choose the parameters to be

↵ =
1

4`(r + 2)
, T =

n(r + 2)"

4
p

r log(e+ ("/�))
, C = 4L̃,

� 
1

`d
min

n
4(2�

p
2)L̃,

L
p
d

⇣p
r log(e+ ("/�))

n"

⌘ 1
2
o
.

The total number of zeroth-order gradient computations is nT = O(n2p
r).

Remark 4.1. Algorithm 2 is nearly dimension-independent, given its logarithmic dependence on d. To the
best of our knowledge, this is the first zeroth-order DP method that is nearly dimension-independent. This
feature is significantly beneficial for fine-tuning pretrained LLMs where the effective rank has been observed
to be quite small [2, 70]. When r = d, our rate in Eq. (7) nearly matches that of the best known achievable
bound of the first-order method DP-GD for smooth nonconvex losses [130]. When the effective rank r is
smaller, this algorithm achieves Õ(

p
r log(1/�)/(n")) squared gradient norm. Similar dimension-free error rate

is established for DP-GD on unconstrained generalized linear losses [116], with a dependence on the rank of the
feature matrix. Table 1 provides a summary on how DPZero depends on dimension d and effective rank r.

Table 1: The dependence of the error rate on dimension d and effective rank r shows that the proposed DPZero
(Algorithm 2) significantly outperforms DPGD-0th (Algorithm 1) and achieves performance close to the popular
first-order method, DP-GD, on both scenarios with and without a low-effective rank assumption. Note that the error
rates of zeroth and first-order DP methods are achieved with different number of iterations.

without Assumption 3.5 with Assumption 3.5

DPGD-0th O(d
p
d) O(d

p
r)

DPZero O((log d)
p
d) O((log d)

p
r)

DP-GD O(
p
d) O(

p
r)

7

Remark 4.2. The RHS of Eq. (7) improves upon Eq. (5) of Algorithm 1 by a factor of d. Simplifying our
analysis in Eq. (22) and conditioned on the event that the clipping does not happen, we get a similar one-step
update analysis as Eq. (6) (see Eq. (22) and (23) for a precise inequality). However, since the privacy noise zt

is a scalar and the clipping threshold has been reduced, we have that E[kztutk
2
H
] = Õ(r) is nearly independent

of the dimension d, and thus the final error scales as Õ(r1/2).
Remark 4.3. The strategy of appropriately selecting the clipping threshold to ensure that clipping occurs with
low probability is commonly applied in the analysis of private algorithms [36, 111]. Adaptive choices of clipping
thresholds can provably improve error rates for certain problems including PCA [78] and linear regression [79].
One technical challenge in the choice of the clipping threshold in DPZero is that we need the expected one-step
progress to be sufficient in Eq. (22). This requires controlling the progress in the low-probability event that
finite difference is clipped. The fact that kutk is finite with probability one simplifies the analysis, which is the
reason we choose to sample ut uniformly at random over the sphere. We believe that the analysis extends to
the commonly used spherical Gaussian random vectors, which we leave as a future research direction. Table
7 in the appendix supports our hypothesis that the resulting performances are similar whether Gaussian or
spherical random vectors are used. We choose Gaussian vectors for our experiments in Section 5 for simplicity.
Remark 4.4. Our theoretical results, including Theorems 1, 2, and 3, can be extended to the setting where
the average loss FS(x) additionally satisfies the PL inequality [64, 100, 82]. Under Assumption 3.5, DPZero
converges to an optimal solution in a nearly dimension-independent error rate. See more details in Appendix F.
Remark 4.5. Per-sample clipping is essential in DP algorithms to ensure bounded sensitivity that determines the
magnitude of the DP noise. Besides the dimension-free error rates and memory saving of no backpropagation,
another practical merit of DPZero stems from the significantly simplified clipping compared with DP-GD.
In addition to the advantage of clipping a scalar function value difference rather than a gradient vector as
required by first-order methods, the efficiency of DPZero is mainly attributed to the low-cost per-sample
operations. In DP first-order methods, clipping is applied to gradients for every sample in a batch. The
straightforward method of performing backward steps for each sample to compute its gradient loses the benefit
of parallelization, leading to significant memory and runtime overhead. Despite extensive effort in improving
the efficiency of per-sample gradient clipping [71, 54, 16], these methods still incur extra costs compared to
non-DP algorithms. However, the clipping in DPZero only involves computing the per-sample loss from
forward steps and incurs no overhead in memory and runtime. This is straightforward for implementation as it
is directly supported by, e.g., PyTorch, and no additional techniques are required. DPZero is thus the first
private method for fine-tuning LLMs that achieves near-zero additional costs compared to non-DP baselines,
which is highly preferable especially in resource-constrained scenarios.

5 Experiments
We provide empirical results on synthetic problems and private fine-tuning of language models for sentence
classification and generation tasks. A thorough description of the experimental settings is available in Appendix
B. All experiments are tested on a single NVIDIA GeForce RTX 3090 GPU with 24 GiB memory. Code is
available at https://github.com/Liang137/DPZero.

5.1 Synthetic Example

Our first evaluation compares the performance of Algorithm 2 (DPZero) with Algorithm 1 (DPGD-0th) and
DP-GD on problems with different effective ranks. In particular, we use a quadratic loss

min
x2Rd

FS(x) =
1

2n

nX

i=1

(x� xi)
>
A(x� xi),

with three choices of the Hessian matrix, A, whose effective ranks are designed to be O(d), O(
p
d), and O(log d),

respectively. All methods are trained with (" = 2, � = 10�6)-DP on a training set {x1, · · · , xn} with n = 10, 000
and evaluated on a test set of the same size. The problem dimension is increased from 20 to 2,000. We perform
a parameter search and plot the best gradient norm evaluated on both the training set and the test set in Figure
1. Every method scales with the dimension d when the effective rank is d (as in Figures 1(a) and 1(d)), and

8

https://github.com/Liang137/DPZero

(a) Tr(A) = O(d). (b) Tr(A) = O(
p
d). (c) Tr(A) = O(log d).

(d) Tr(A) = O(d). (e) Tr(A) = O(
p
d). (f) Tr(A) = O(log d).

Figure 1: Experiments on the quadratic loss with effective rank Tr(A) (Assumption 3.5). For three different modes of
the effective rank, we demonstrate how the norm of the train ((a), (b), and (c)) and test ((d), (e), and (f)) gradient
depends on the problem dimension. DPGD-0th (Algorithm 1) has a strong dimension dependence regardless of the
effective rank, while DPZero (Algorithm 2) achieves dimension-independent performance when effective rank is small
(right panel), similar to the standard first-order method DP-GD. Insights for the saturation of DPGD-0th when the
dimension increases can be found in Remark F.5.

DPGD-0th has the worst performance. When the effective rank reduces to log d (as in Figures 1(c) and 1(f)),
both DP-GD and DPZero become nearly dimension-independent, which validates the dimension independence
of DPZero. Appendix B.1 includes more results measuring the loss for both training and test datasets.

5.2 Fine-tuning on RoBERTa

Next, we follow the experimental setting in Malladi et al. [87] and evaluate DPZero on fine-tuning RoBERTa
[80] with 355M parameters across six different sentence classification tasks. We consider the few-shot scenario
with 512 samples per class. We report the test accuracy for DPZero trained with (" = {2, 6}, � = 10�5)-DP
and non-private zeroth-order baseline MeZO [87] and compare them with first-order methods in Table 2. The
memory consumption and per-iteration runtime are shown in Table 3. DP first-order methods introduce
additional overhead in both memory and runtime compared to non-DP baselines, with a maximum accuracy
drop of 9.5% when " = 6. However, DPZero enjoys the same benefit as MeZO on memory efficiency and
achieves near-zero additional costs, with at max only a 2.6% drop in the accuracy. In our experiments, we
notice that the clipping threshold of DPZero is typically larger compared to DP first-order methods; see
Figure 3 in the appendix. This is consistent with the results in Theorem 3 regarding the selection of the
clipping threshold C.

Compared with DP first-order methods, the main benefit of DPZero is memory efficiency. Such memory
savings are even greater than those observed in non-DP domains, thanks to DPZero’s efficient clipping (cf.
Remark 4.5). We note that the aim of Table 3 is to explain that DP first-order methods need considerable
memory and runtime overhead compared to non-DP methods, while DPZero does not. Such comparisons
happen between DP and non-DP algorithms, respectively. We do not intend to directly compare the runtime
of DPZero to DP first-order methods as it depends on the implementation. In general, zeroth-order methods
require more iterations to attain the same level of performance as first-order methods [87]. In our case, DP

9

Table 2: Experiments on RoBERTa (355M). We report both mean and standard error of the accuracy (%) across three
random seeds. Zero-shot results with no fine-tuning provide lower bounds (taken from Malladi et al. [87]), since they
can be achieved with no private data. MeZO is not private and serves as an upper bound of DPZero. LoRA [58] and
DP-LoRA adopt AdamW [83] as their optimizer. All first-order methods (AdamW, LoRA, and their private versions)
utilize the implementation by Li et al. [71]. Thanks to DPZero, the performance gaps between zeroth and first-order
methods are made smaller in private fine-tuning.

Task SST-2 SST-5 SNLI MNLI RTE TREC
—— Sentiment —— —— Natural Language Inference —— — Topic —

AdamW 93.1± 0.3 56.6± 0.3 86.4± 0.8 81.4± 0.9 83.6± 1.6 95.9± 0.2
DP-AdamW (" = 6) 91.6± 1.2 49.0± 0.3 81.5± 1.4 76.3± 0.9 77.3± 1.1 89.9± 0.8
DP-AdamW (" = 2) 90.5± 1.5 47.5± 0.5 74.6± 1.0 70.3± 0.8 72.8± 0.9 85.0± 0.5

LoRA 93.3± 0.4 55.3± 1.0 85.9± 0.7 82.2± 0.7 84.2± 0.4 94.6± 0.4
DP-LoRA (" = 6) 91.0± 1.3 48.8± 0.5 81.0± 1.5 72.8± 1.8 74.7± 1.3 89.2± 0.8
DP-LoRA (" = 2) 90.2± 1.2 47.1± 0.4 74.7± 1.6 65.7± 0.9 69.2± 1.1 83.2± 2.3

MeZO 92.5± 0.3 50.8± 0.8 80.4± 0.6 69.2± 0.3 72.8± 1.0 88.9± 0.1
DPZero (" = 6) 92.2± 0.3 49.3± 0.6 77.8± 1.0 67.4± 0.3 71.9± 0.9 87.6± 0.9
DPZero (" = 2) 91.8± 0.1 47.1± 0.9 73.6± 0.9 62.7± 0.9 70.4± 0.7 82.0± 1.6

Zero-Shot 79.0 35.5 50.2 48.8 51.4 32.0

Table 3: Runtime per iteration (s) and memory consumption (MiB) when fine-tuning RoBERTa (355M) for SST-2.
Private methods in the table ensure (" = 2, � = 10�5)-DP. DPZero is as memory and runtime efficient as the non-private
zeroth-order method MeZO [87]. First-order methods DP-AdamW and DP-LoRA (AdamW as the optimizer) both
introduce considerable memory and runtime overhead compared to their non-private baselines. All first-order methods
use the implementation by Li et al. [71]. Comparisons with other implementations of DP first-order methods can be
found in Table 9 in the appendix.

Method Time (s/iter) Memory (MiB)

AdamW 1.25 15820
DP-AdamW 2.12 17126

LoRA 0.821 10366
DP-LoRA 1.05 10496

MeZO 0.345 2668
DPZero 0.347 2668

first-order methods take 1,000 iterations while DPZero need 10,000 iterations. This aligns with Theorem 3,
which states that DPZero requires O(r) times more iterations than DP-GD to attain the same level of error
rate, where r is the effective rank. However, DPZero can still be efficient for large models in terms of GPU
hours, because first-order methods often require communication-heavy distributed training over more GPUs
each with limited memory; see Appendix F.6 of Malladi et al. [87].

5.3 Fine-tuning on OPT

We also provide experiments on fine-tuning OPT [148] in the few-shot setting to illustrate the scalability of
DPZero. On our device (a GPU with 24 GiB memory), the largest model that can fit in for zeroth-order
methods is OPT-6.7B, while first-order methods already run out of memory for OPT-1.3B; see Table 11 in the
appendix for a detailed comparison of the memory consumption. The results of DPZero’s test performance
on four downstream tasks are reported in Tables 4 and 5. DPZero demonstrates the same level of scalability
as MeZO, with the ability to fine-tune models wherever MeZO is applicable, and experiences only small drops
in performance due to privacy (up to 0.9% when " = 6). Our results indicate the effectiveness of DPZero for
privately fine-tuning pretrained LLMs and confirm that it does not suffer in high dimensions.

10

Table 4: Experiments on OPT for classification tasks. We report mean and standard error of the accuracy (%) across
three random seeds.

Model OPT-1.3B OPT-2.7B OPT-6.7B
Task SST-2 BoolQ SST-2 BoolQ SST-2 BoolQ

MeZO 88.2± 0.9 63.2± 0.8 91.9± 0.5 65.3± 1.3 93.0± 0.2 67.4± 2.3

DPZero (" = 6) 88.2± 1.1 62.4± 0.8 91.5± 1.7 65.4± 1.6 92.6± 0.7 66.8± 1.6
DPZero (" = 2) 86.8± 1.7 61.6± 1.1 90.5± 0.9 63.7± 0.7 90.6± 1.3 63.7± 0.7

Zero-Shot 53.6 45.3 56.3 47.7 61.2 59.4

Table 5: Experiments on OPT for generation tasks. We report both mean and standard error of the f1 score (%) across
three random seeds.

Model OPT-1.3B OPT-2.7B OPT-6.7B
Task SQuAD DROP SQuAD DROP SQuAD DROP

MeZO 73.5± 1.2 24.4± 0.2 76.3± 0.8 25.5± 1.2 79.7± 1.1 28.8± 0.7

DPZero (" = 6) 72.6± 0.8 24.7± 1.0 75.7± 1.5 24.6± 0.5 79.5± 0.9 28.4± 1.3
DPZero (" = 2) 70.1± 1.6 23.9± 1.2 71.9± 1.2 23.1± 0.9 77.1± 1.0 27.6± 0.7

Zero-Shot 26.8 11.1 29.8 9.7 36.5 17.8

6 Conclusion
DPZero is proposed to privately fine-tune language models in a memory efficient manner by avoiding
backpropagation. Theoretically, DPZero enjoys a provably near dimension-free rate under low-rank structures,
clearing the barriers for scaling private fine-tuning of LLMs. When deploying DPZero, the elimination of
gradient computation not only significantly saves memory, but avoids the overhead in gradient clipping as well.
Thus the benefit of using zeroth-order method is more significant for private optimization. The theoretical
guarantees on scalability and the practical merits of DPZero are validated on private fine-tuning of RoBERTa
and OPT on several downstream tasks.

DPZero uses the full batch gradient every iteration, and the analysis guarantees an upper bound on the
empirical average gradient assuming smooth nonconvex objectives. We defer extensions to the stochastic
mini-batch setting, guarantees on the population loss leveraging the stability of zeroth-order methods [95], and
considerations of other assumptions on objective functions like convexity or nonsmoothness to future research.
We believe this work opens up a plethora of other prospective directions in DP zeroth-order optimization.
These include, but are not limited to, understanding advantages of the intrinsic noise in zeroth-order gradient
estimators, discovering other structural assumptions like the restricted Lipschitz condition [70] for dimension-
independent rates, exploring alternative private mechanisms for the privacy guarantees of DPZero (e.g., the
Laplace mechanism for pure DP [117]), and utilizing momentum [122] or variance reduction [4] techniques for
an improved rate and computational complexity.

Acknowledgements
We are grateful to Gavin Brown and Divyansh Pareek for their insightful discussions regarding the proofs. We
also thank Fanny Yang for proofreading of the paper. Additionally, we thank all anonymous reviewers for
their valuable suggestions. L.Z. gratefully acknowledges funding by the Max Planck ETH Center for Learning
Systems (CLS). This work does not relate to the current position of K.T. at Amazon. N.H. is supported
by ETH research grant funded through ETH Zurich Foundations and Swiss National Science Foundation
Project Funding No. 200021-207343. S.O. is supported in part by the National Science Foundation under grant
no. 2019844, 2112471, and 2229876 supported in part by funds provided by the National Science Foundation, by
the Department of Homeland Security, and by IBM. Any opinions, findings, and conclusions or recommendations

11

expressed in this material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation or its federal agency and industry partners.

Impact Statement
A major concern with current use-cases of large language models is privacy of the fine-tuning data. Fine-tuning
on in-domain data greatly improves performance and is now a default option. However, in-domain data can
contain sensitive information about the participants of the dataset. The proposed solution makes privacy
protection easier, consuming less resources, thus democratizing the use of privacy enhancing technology beyond
those who have access to large amounts of resources.

References
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and

Li Zhang. Deep learning with differential privacy. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security, pages 308–318, 2016.

[2] Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the effectiveness
of language model fine-tuning. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics and the International Joint Conference on Natural Language Processing, pages 7319–7328,
2021.

[3] Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory efficient adaptive optimization.
Advances in Neural Information Processing Systems, 32, 2019.

[4] Raman Arora, Raef Bassily, Tomás González, Cristóbal A Guzmán, Michael Menart, and Enayat Ullah.
Faster rates of convergence to stationary points in differentially private optimization. In International
Conference on Machine Learning, pages 1060–1092. PMLR, 2023.

[5] Hilal Asi, Vitaly Feldman, Tomer Koren, and Kunal Talwar. Private stochastic convex optimization:
Optimal rates in `1 geometry. In International Conference on Machine Learning, pages 393–403. PMLR,
2021.

[6] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47:235–256, 2002.

[7] Krishnakumar Balasubramanian and Saeed Ghadimi. Zeroth-order (non)-convex stochastic optimization
via conditional gradient and gradient updates. Advances in Neural Information Processing Systems, 31,
2018.

[8] Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization: Efficient
algorithms and tight error bounds. In IEEE Annual Symposium on Foundations of Computer Science,
pages 464–473. IEEE, 2014.

[9] Raef Bassily, Vitaly Feldman, Kunal Talwar, and Abhradeep Guha Thakurta. Private stochastic convex
optimization with optimal rates. Advances in Neural Information Processing Systems, 32, 2019.

[10] Raef Bassily, Vitaly Feldman, Cristóbal Guzmán, and Kunal Talwar. Stability of stochastic gradient
descent on nonsmooth convex losses. Advances in Neural Information Processing Systems, 33, 2020.

[11] Atılım Güneş Baydin, Barak A Pearlmutter, Don Syme, Frank Wood, and Philip Torr. Gradients without
backpropagation. arXiv preprint arXiv:2202.08587, 2022.

[12] Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The fifth PASCAL recognizing
textual entailment challenge, 2009.

12

[13] Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large annotated
corpus for learning natural language inference. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 632–642, 2015.

[14] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

[15] Zhiqi Bu, Justin Chiu, Ruixuan Liu, Sheng Zha, and George Karypis. Zero redundancy distributed
learning with differential privacy. arXiv preprint arXiv:2311.11822, 2023.

[16] Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Differentially private optimization on large
model at small cost. In International Conference on Machine Learning, pages 3192–3218. PMLR, 2023.

[17] HanQin Cai, Daniel Mckenzie, Wotao Yin, and Zhenliang Zhang. Zeroth-order regularized optimization
(ZORO): Approximately sparse gradients and adaptive sampling. SIAM Journal on Optimization, 32(2):
687–714, 2022.

[18] Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially private empirical risk
minimization. Journal of Machine Learning Research, 12(3), 2011.

[19] Aochuan Chen, Yimeng Zhang, Jinghan Jia, James Diffenderfer, Konstantinos Parasyris, Jiancheng
Liu, Yihua Zhang, Zheng Zhang, Bhavya Kailkhura, and Sijia Liu. DeepZero: Scaling up zeroth-order
optimization for deep model training. In International Conference on Learning Representations, 2024.

[20] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. ZOO: Zeroth order optimization
based black-box attacks to deep neural networks without training substitute models. In Proceedings of
the ACM Workshop on Artificial Intelligence and Security, pages 15–26, 2017.

[21] Tiejin Chen, Longchao Da, Huixue Zhou, Pingzhi Li, Kaixiong Zhou, Tianlong Chen, and Hua Wei.
Privacy-preserving fine-tuning of large language models through flatness. arXiv preprint arXiv:2403.04124,
2024.

[22] Xiangyi Chen, Sijia Liu, Kaidi Xu, Xingguo Li, Xue Lin, Mingyi Hong, and David Cox. ZO-AdaMM:
Zeroth-order adaptive momentum method for black-box optimization. Advances in Neural Information
Processing Systems, 32, 2019.

[23] Xiangyi Chen, Steven Z Wu, and Mingyi Hong. Understanding gradient clipping in private SGD: A
geometric perspective. Advances in Neural Information Processing Systems, 33:13773–13782, 2020.

[24] Krzysztof Choromanski, Mark Rowland, Vikas Sindhwani, Richard Turner, and Adrian Weller. Structured
evolution with compact architectures for scalable policy optimization. In International Conference on
Machine Learning, pages 970–978. PMLR, 2018.

[25] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Proceedings of
the Conference of the North American Chapter of the Association for Computational Linguistics, pages
2924–2936, 2019.

[26] Harald Cramér. Mathematical methods of statistics, volume 43. Princeton University Press, 1999.

[27] Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL recognising textual entailment
challenge, 2005.

[28] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional Transformers for language understanding. In Proceedings of the Conference of the North
American Chapter of the Association for Computational Linguistics, pages 4171–4186, 2019.

13

[29] Minxin Du, Xiang Yue, Sherman SM Chow, Tianhao Wang, Chenyu Huang, and Huan Sun. DP-Forward:
Fine-tuning and inference on language models with differential privacy in forward pass. In Proceedings of
the ACM SIGSAC Conference on Computer and Communications Security, pages 2665–2679, 2023.

[30] Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In Proceedings
of the Conference of the North American Chapter of the Association for Computational Linguistics, pages
2368–2378, 2019.

[31] John C Duchi, Peter L Bartlett, and Martin J Wainwright. Randomized smoothing for stochastic
optimization. SIAM Journal on Optimization, 22(2):674–701, 2012.

[32] John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. Optimal rates for zero-order
convex optimization: The power of two function evaluations. IEEE Transactions on Information Theory,
61(5):2788–2806, 2015.

[33] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in
private data analysis. In Theory of Cryptography Conference, pages 265–284. Springer, 2006.

[34] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations and
Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

[35] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. SPIDER: Near-optimal non-convex
optimization via stochastic path-integrated differential estimator. Advances in Neural Information
Processing Systems, 31, 2018.

[36] Huang Fang, Xiaoyun Li, Chenglin Fan, and Ping Li. Improved convergence of differential private SGD
with gradient clipping. In International Conference on Learning Representations, 2023.

[37] Wenzhi Fang, Ziyi Yu, Yuning Jiang, Yuanming Shi, Colin N Jones, and Yong Zhou. Communication-
efficient stochastic zeroth-order optimization for federated learning. IEEE Transactions on Signal
Processing, 70:5058–5073, 2022.

[38] Vitaly Feldman, Tomer Koren, and Kunal Talwar. Private stochastic convex optimization: optimal rates
in linear time. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
pages 439–449, 2020.

[39] Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online convex optimization in
the bandit setting: Gradient descent without a gradient. In Proceedings of the ACM-SIAM Symposium
on Discrete Algorithms, pages 385–394, 2005.

[40] Arun Ganesh, Mahdi Haghifam, Milad Nasr, Sewoong Oh, Thomas Steinke, Om Thakkar, Abhradeep Guha
Thakurta, and Lun Wang. Why is public pretraining necessary for private model training? In International
Conference on Machine Learning, pages 10611–10627. PMLR, 2023.

[41] Arun Ganesh, Mahdi Haghifam, Thomas Steinke, and Abhradeep Guha Thakurta. Faster differentially
private convex optimization via second-order methods. Advances in Neural Information Processing
Systems, 36, 2023.

[42] Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. In Proceedings of the Annual Meeting of the Association for Computational Linguistics and the
International Joint Conference on Natural Language Processing, pages 3816–3830, 2021.

[43] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[44] Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization via
Hessian eigenvalue density. In International Conference on Machine Learning, pages 2232–2241. PMLR,
2019.

14

[45] Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and William B Dolan. The third PASCAL recognizing
textual entailment challenge, 2007.

[46] Daniel Golovin, John Karro, Greg Kochanski, Chansoo Lee, Xingyou Song, and Qiuyi Zhang. Gradi-
entless descent: High-dimensional zeroth-order optimization. In International Conference on Learning
Representations, 2020.

[47] Cristiano Gratton, Naveen KD Venkategowda, Reza Arablouei, and Stefan Werner. Privacy-preserved
distributed learning with zeroth-order optimization. IEEE Transactions on Information Forensics and
Security, 17:265–279, 2021.

[48] Jean-Bastien Grill, Michal Valko, and Rémi Munos. Black-box optimization of noisy functions with
unknown smoothness. Advances in Neural Information Processing Systems, 28, 2015.

[49] Abhradeep Guha Thakurta and Adam Smith. (Nearly) optimal algorithms for private online learning in
full-information and bandit settings. Advances in Neural Information Processing Systems, 26, 2013.

[50] Arjun K Gupta and Saralees Nadarajah. Handbook of Beta distribution and its applications. CRC Press,
2004.

[51] Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace. arXiv
preprint arXiv:1812.04754, 2018.

[52] R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. The second PASCAL recognising textual entailment challenge, 2006.

[53] Andi Han, Bamdev Mishra, Pratik Jawanpuria, and Junbin Gao. Differentially private Riemannian
optimization. Machine Learning, 113(3):1133–1161, 2024.

[54] Jiyan He, Xuechen Li, Da Yu, Huishuai Zhang, Janardhan Kulkarni, Yin Tat Lee, Arturs Backurs,
Nenghai Yu, and Jiang Bian. Exploring the limits of differentially private deep learning with group-wise
clipping. In International Conference on Learning Representations, 2023.

[55] Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv preprint
arXiv:2212.13345, 2022.

[56] Junyuan Hong, Jiachen T. Wang, Chenhui Zhang, Zhangheng LI, Bo Li, and Zhangyang Wang. DP-OPT:
Make large language model your privacy-preserving prompt engineer. In International Conference on
Learning Representations, 2024.

[57] Bairu Hou, Joe O’connor, Jacob Andreas, Shiyu Chang, and Yang Zhang. PromptBoosting: Black-box
text classification with ten forward passes. In International Conference on Machine Learning, pages
13309–13324. PMLR, 2023.

[58] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

[59] Zonghao Huang, Rui Hu, Yuanxiong Guo, Eric Chan-Tin, and Yanmin Gong. DP-ADMM: ADMM-based
distributed learning with differential privacy. IEEE Transactions on Information Forensics and Security,
15:1002–1012, 2019.

[60] Prateek Jain and Abhradeep Guha Thakurta. (Near) dimension independent risk bounds for differentially
private learning. In International Conference on Machine Learning, pages 476–484. PMLR, 2014.

[61] Kaiyi Ji, Zhe Wang, Yi Zhou, and Yingbin Liang. Improved zeroth-order variance reduced algorithms and
analysis for nonconvex optimization. In International Conference on Machine Learning, pages 3100–3109.
PMLR, 2019.

15

[62] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition theorem for differential privacy.
In International Conference on Machine Learning, pages 1376–1385. PMLR, 2015.

[63] Peter Kairouz, Monica Ribero Diaz, Keith Rush, and Abhradeep Thakurta. (Nearly) dimension inde-
pendent private ERM with adagrad rates via publicly estimated subspaces. In Conference on Learning
Theory, pages 2717–2746. PMLR, 2021.

[64] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-gradient
methods under the Polyak-Łojasiewicz condition. In European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 795–811, 2016.

[65] Krishnaram Kenthapadi, Aleksandra Korolova, Ilya Mironov, and Nina Mishra. Privacy via the Johnson-
Lindenstrauss transform. Journal of Privacy and Confidentiality, 5(1):39–71, 2013.

[66] Anastasia Koloskova, Hadrien Hendrikx, and Sebastian U Stich. Revisiting gradient clipping: Stochastic
bias and tight convergence guarantees. In International Conference on Machine Learning, 2023.

[67] Janardhan Kulkarni, Yin Tat Lee, and Daogao Liu. Private non-smooth ERM and SCO in subquadratic
steps. Advances in Neural Information Processing Systems, 34, 2021.

[68] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension of
objective landscapes. In International Conference on Learning Representations, 2018.

[69] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the Annual Meeting of the Association for Computational Linguistics and the International
Joint Conference on Natural Language Processing, pages 4582–4597, 2021.

[70] Xuechen Li, Daogao Liu, Tatsunori B Hashimoto, Huseyin A Inan, Janardhan Kulkarni, Yin-Tat Lee,
and Abhradeep Guha Thakurta. When does differentially private learning not suffer in high dimensions?
Advances in Neural Information Processing Systems, 35:28616–28630, 2022.

[71] Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models can be
strong differentially private learners. In International Conference on Learning Representations, 2022.

[72] Xiangru Lian, Huan Zhang, Cho-Jui Hsieh, Yijun Huang, and Ji Liu. A comprehensive linear speedup
analysis for asynchronous stochastic parallel optimization from zeroth-order to first-order. Advances in
Neural Information Processing Systems, 29, 2016.

[73] Tianyi Lin, Zeyu Zheng, and Michael Jordan. Gradient-free methods for deterministic and stochastic
nonsmooth nonconvex optimization. Advances in Neural Information Processing Systems, 35:26160–26175,
2022.

[74] Daogao Liu, Arun Ganesh, Sewoong Oh, and Abhradeep Guha Thakurta. Private (stochastic) non-convex
optimization revisited: Second-order stationary points and excess risks. Advances in Neural Information
Processing Systems, 36, 2023.

[75] Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa Amini. Zeroth-order
stochastic variance reduction for nonconvex optimization. Advances in Neural Information Processing
Systems, 31, 2018.

[76] Sijia Liu, Pin-Yu Chen, Xiangyi Chen, and Mingyi Hong. SignSGD via zeroth-order oracle. In International
Conference on Learning Representations, 2019.

[77] Terrance Liu, Jingwu Tang, Giuseppe Vietri, and Steven Wu. Generating private synthetic data with
genetic algorithms. In International Conference on Machine Learning, pages 22009–22027. PMLR, 2023.

[78] Xiyang Liu, Weihao Kong, Prateek Jain, and Sewoong Oh. DP-PCA: Statistically optimal and differentially
private PCA. Advances in Neural Information Processing Systems, 35:29929–29943, 2022.

16

[79] Xiyang Liu, Prateek Jain, Weihao Kong, Sewoong Oh, and Arun Suggala. Label robust and differentially
private linear regression: Computational and statistical efficiency. Advances in Neural Information
Processing Systems, 36, 2023.

[80] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A robustly optimized BERT pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

[81] Zhihao Liu, Jian Lou, Wenjie Bao, Yuke Hu, Bo Li, Zhan Qin, and Kui Ren. Differentially private
zeroth-order methods for scalable large language model finetuning. arXiv preprint arXiv:2402.07818,
2024.

[82] Stanislaw Łojasiewicz. A topological property of real analytic subsets. Coll. du CNRS, Les équations aux
dérivées partielles, 117(87-89):2, 1963.

[83] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference
on Learning Representations, 2018.

[84] Andrew Lowy, Zeman Li, Tianjian Huang, and Meisam Razaviyayn. Optimal differentially private
learning with public data. arXiv preprint arXiv:2306.15056, 2023.

[85] Nils Lukas, Ahmed Salem, Robert Sim, Shruti Tople, Lukas Wutschitz, and Santiago Zanella-Béguelin.
Analyzing leakage of personally identifiable information in language models. In IEEE Symposium on
Security and Privacy, pages 346–363. IEEE, 2023.

[86] Yi-An Ma, Teodor Vanislavov Marinov, and Tong Zhang. Dimension independent generalization of
DP-SGD for overparameterized smooth convex optimization. arXiv preprint arXiv:2206.01836, 2022.

[87] Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information Processing
Systems, 36:53038–53075, 2023.

[88] Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search of static linear policies is
competitive for reinforcement learning. Advances in Neural Information Processing Systems, 31, 2018.

[89] George Marsaglia. Choosing a point from the surface of a sphere. The Annals of Mathematical Statistics,
43(2):645–646, 1972.

[90] Justus Mattern, Fatemehsadat Mireshghallah, Zhijing Jin, Bernhard Schölkopf, Mrinmaya Sachan, and
Taylor Berg-Kirkpatrick. Membership inference attacks against language models via neighbourhood
comparison. arXiv preprint arXiv:2305.18462, 2023.

[91] Fatemehsadat Mireshghallah, Archit Uniyal, Tianhao Wang, David Evans, and Taylor Berg-Kirkpatrick.
Memorization in NLP fine-tuning methods. arXiv preprint arXiv:2205.12506, 2022.

[92] Mervin E Muller. A note on a method for generating points uniformly on n-dimensional spheres.
Communications of the ACM, 2(4):19–20, 1959.

[93] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer Science
& Business Media, 2003.

[94] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions. Founda-
tions of Computational Mathematics, 17:527–566, 2017.

[95] Konstantinos Nikolakakis, Farzin Haddadpour, Dionysis Kalogerias, and Amin Karbasi. Black-box
generalization: Stability of zeroth-order learning. Advances in Neural Information Processing Systems,
35:31525–31541, 2022.

[96] OpenAI. GPT-4 Technical Report, 2023.

17

[97] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
human feedback. Advances in Neural Information Processing Systems, 35:27730–27744, 2022.

[98] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: A method for automatic evalua-
tion of machine translation. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics, pages 311–318, 2002.

[99] Jason Phang, Yi Mao, Pengcheng He, and Weizhu Chen. HyperTuning: Toward adapting large language
models without back-propagation. In International Conference on Machine Learning, pages 27854–27875.
PMLR, 2023.

[100] Boris T Polyak. Gradient methods for the minimisation of functionals. USSR Computational Mathematics
and Mathematical Physics, 3(4):864–878, 1963.

[101] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language understanding
by generative pre-training. OpenAI, 2018.

[102] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. ZeRO: Memory optimizations
toward training trillion parameter models. In International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–16. IEEE, 2020.

[103] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, pages 2383–2392, 2016.

[104] Matthew Reimherr, Karthik Bharath, and Carlos Soto. Differential privacy over Riemannian manifolds.
Advances in Neural Information Processing Systems, 34:12292–12303, 2021.

[105] Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis of the
Hessian of over-parametrized neural networks. arXiv preprint arXiv:1706.04454, 2017.

[106] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

[107] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a distilled version of
BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

[108] Ohad Shamir. An optimal algorithm for bandit and zero-order convex optimization with two-point
feedback. The Journal of Machine Learning Research, 18(1):1703–1713, 2017.

[109] Roshan Shariff and Or Sheffet. Differentially private contextual linear bandits. Advances in Neural
Information Processing Systems, 31, 2018.

[110] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost. In
International Conference on Machine Learning, pages 4596–4604. PMLR, 2018.

[111] Zebang Shen, Jiayuan Ye, Anmin Kang, Hamed Hassani, and Reza Shokri. Share your representation
only: Guaranteed improvement of the privacy-utility tradeoff in federated learning. In International
Conference on Learning Representations, 2023.

[112] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
against machine learning models. In IEEE Symposium on Security and Privacy, pages 3–18. IEEE, 2017.

[113] David Silver, Anirudh Goyal, Ivo Danihelka, Matteo Hessel, and Hado van Hasselt. Learning by directional
gradient descent. In International Conference on Learning Representations, 2022.

[114] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 1631–1642,
2013.

18

[115] Shuang Song, Kamalika Chaudhuri, and Anand D Sarwate. Stochastic gradient descent with differentially
private updates. In IEEE Global Conference on Signal and Information Processing, pages 245–248. IEEE,
2013.

[116] Shuang Song, Thomas Steinke, Om Thakkar, and Abhradeep Thakurta. Evading the curse of dimension-
ality in unconstrained private GLMs. In International Conference on Artificial Intelligence and Statistics,
pages 2638–2646. PMLR, 2021.

[117] Xinyu Tang, Ashwinee Panda, Milad Nasr, Saeed Mahloujifar, and Prateek Mittal. Private fine-tuning of
large language models with zeroth-order optimization. arXiv preprint arXiv:2401.04343, 2024.

[118] Xinyu Tang, Richard Shin, Huseyin A Inan, Andre Manoel, Fatemehsadat Mireshghallah, Zinan Lin,
Sivakanth Gopi, Janardhan Kulkarni, and Robert Sim. Privacy-preserving in-context learning with
differentially private few-shot generation. In International Conference on Learning Representations, 2024.

[119] Aristide Tossou and Christos Dimitrakakis. Algorithms for differentially private multi-armed bandits. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

[120] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. LLaMA: Open and efficient
foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[121] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. LLAMA 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[122] Hoang Tran and Ashok Cutkosky. Momentum aggregation for private non-convex ERM. Advances in
Neural Information Processing Systems, 35:10996–11008, 2022.

[123] Saiteja Utpala, Andi Han, Pratik Jawanpuria, and Bamdev Mishra. Improved differentially private
Riemannian optimization: Fast sampling and variance reduction. Transactions on Machine Learning
Research, 2023. ISSN 2835-8856.

[124] Saiteja Utpala, Praneeth Vepakomma, and Nina Miolane. Differentially private Fréchet mean on the
manifold of symmetric positive definite (SPD) matrices with log-Euclidean metric. Transactions on
Machine Learning Research, 2023. ISSN 2835-8856.

[125] Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge University Press, 2018.

[126] Paul Voigt and Axel Von dem Bussche. The EU general data protection regulation (GDPR). A Practical
Guide, 1st Ed., Cham: Springer International Publishing, 10(3152676):10–5555, 2017.

[127] Ellen M Voorhees and Dawn M Tice. Building a question answering test collection. In Proceedings of the
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 200–207, 2000.

[128] Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cambridge
University Press, 2019.

[129] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In International
Conference on Learning Representations, 2018.

[130] Di Wang, Minwei Ye, and Jinhui Xu. Differentially private empirical risk minimization revisited: Faster
and more general. Advances in Neural Information Processing Systems, 30, 2017.

[131] Di Wang, Changyou Chen, and Jinhui Xu. Differentially private empirical risk minimization with
non-convex loss functions. In International Conference on Machine Learning, pages 6526–6535. PMLR,
2019.

19

[132] Yining Wang, Simon Du, Sivaraman Balakrishnan, and Aarti Singh. Stochastic zeroth-order optimization
in high dimensions. In International Conference on Artificial Intelligence and Statistics, pages 1356–1365.
PMLR, 2018.

[133] Zhongruo Wang, Krishnakumar Balasubramanian, Shiqian Ma, and Meisam Razaviyayn. Zeroth-order
algorithms for nonconvex–strongly-concave minimax problems with improved complexities. Journal of
Global Optimization, pages 1–32, 2022.

[134] Andre Wibisono, Martin J Wainwright, Michael Jordan, and John C Duchi. Finite sample convergence
rates of zero-order stochastic optimization methods. Advances in Neural Information Processing Systems,
25, 2012.

[135] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sentence
understanding through inference. In Proceedings of the Conference of the North American Chapter of the
Association for Computational Linguistics, pages 1112–1122, 2018.

[136] Xi Wu, Fengan Li, Arun Kumar, Kamalika Chaudhuri, Somesh Jha, and Jeffrey Naughton. Bolt-on
differential privacy for scalable stochastic gradient descent-based analytics. In Proceedings of ACM
International Conference on Management of Data, pages 1307–1322, 2017.

[137] Mengwei Xu, Yaozong Wu, Dongqi Cai, Xiang Li, and Shangguang Wang. Federated fine-tuning of
billion-sized language models across mobile devices. arXiv preprint arXiv:2308.13894, 2023.

[138] Xiaodong Yang, Huishuai Zhang, Wei Chen, and Tie-Yan Liu. Normalized/Clipped SGD with perturbation
for differentially private non-convex optimization. arXiv preprint arXiv:2206.13033, 2022.

[139] Farzad Yousefian, Angelia Nedić, and Uday V Shanbhag. On stochastic gradient and subgradient methods
with adaptive steplength sequences. Automatica, 48(1):56–67, 2012.

[140] Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan
Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, Sergey Yekhanin, and Huishuai Zhang. Differen-
tially private fine-tuning of language models. In International Conference on Learning Representations,
2022.

[141] Pengyun Yue, Long Yang, Cong Fang, and Zhouchen Lin. Zeroth-order optimization with weak dimension
dependency. In Annual Conference on Learning Theory, pages 4429–4472. PMLR, 2023.

[142] Eric Zelikman, Qian Huang, Percy Liang, Nick Haber, and Noah D Goodman. Just one byte (per
gradient): A note on low-bandwidth decentralized language model finetuning using shared randomness.
arXiv preprint arXiv:2306.10015, 2023.

[143] Shenglai Zeng, Yaxin Li, Jie Ren, Yiding Liu, Han Xu, Pengfei He, Yue Xing, Shuaiqiang Wang,
Jiliang Tang, and Dawei Yin. Exploring memorization in fine-tuned language models. arXiv preprint
arXiv:2310.06714, 2023.

[144] Jiaqi Zhang, Kai Zheng, Wenlong Mou, and Liwei Wang. Efficient private ERM for smooth objectives. In
Proceedings of the 26th International Joint Conference on Artificial Intelligence, pages 3922–3928, 2017.

[145] Liang Zhang, Kiran K Thekumparampil, Sewoong Oh, and Niao He. Bring your own algorithm for
optimal differentially private stochastic minimax optimization. Advances in Neural Information Processing
Systems, 35:35174–35187, 2022.

[146] Liang Zhang, Kiran K Thekumparampil, Sewoong Oh, and Niao He. DPZero: Dimension-independent
and differentially private zeroth-order optimization. International Workshop on Federated Learning in
the Age of Foundation Models in Conjunction with NeurIPS, 2023.

[147] Qinzi Zhang, Hoang Tran, and Ashok Cutkosky. Private zeroth-order nonsmooth nonconvex optimization.
In International Conference on Learning Representations, 2024.

20

[148] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. OPT: Open pre-trained Transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

[149] Xinwei Zhang, Zhiqi Bu, Steven Wu, and Mingyi Hong. Differentially private SGD without clipping bias:
An error-feedback approach. In International Conference on Learning Representations, 2024.

[150] Yingxue Zhou, Xiangyi Chen, Mingyi Hong, Zhiwei Steven Wu, and Arindam Banerjee. Private
stochastic non-convex optimization: Adaptive algorithms and tighter generalization bounds. arXiv
preprint arXiv:2006.13501, 2020.

[151] Yingxue Zhou, Steven Wu, and Arindam Banerjee. Bypassing the ambient dimension: Private SGD with
gradient subspace identification. In International Conference on Learning Representations, 2021.

21

A Additional Related Works
Zeroth-order optimization. Nesterov and Spokoiny [94] pioneered the formal analysis of the convergence
rate of zeroth-order methods, i.e., zeroth-order (stochastic) gradient descent (ZO-SGD) that replaces gradients
in SGD by their zeroth-order estimators. This is motivated by renewed interest in adopting zeroth-order
methods in industry due to, for example, fast differentiation techniques that require storing all intermediate
computations reaching the memory limitations. Their findings on nonsmooth convex functions are later refined
by Shamir [108]. Lin et al. [73] contributed to further advancements on nonsmooth nonconvex functions
recently. Additionally, Ghadimi and Lan [43] extended the results for smooth functions into the stochastic
setting. Zeroth-order methods have also been expanded to incorporate approaches such as coordinate descent
[72], conditional gradient descent [7], variance reduction techniques [75, 35, 61], SignSGD [76], and minimax
optimization [133]. Additionally, zeroth-order methods find applications in fields such as black-box machine
learning [48, 20, 22], bandit optimization [39, 108], reinforcement learning [106, 24, 88], and distributed
learning [37, 142, 137] to reduce communication overhead.

These well-established results indicate that the norm of the zeroth-order gradient scales with the dimension
d and the required stepsize is d-times smaller than that in first-order gradient-based methods, leading to
a d-times increase in the final time complexity. For example, the convergence rate of gradient descent for
minimizing a smooth convex function f(x) is f(x̄T) � minx2Rd f(x)  O(1/T) where x̄T is the average of
T iterates [93], while the zeroth-order method only achieves a rate O(d/T). It has been shown that such
dimension dependence of zeroth-order methods is inevitable without additional structures [134, 32].

There are several recent works that relax the dimension dependence in zeroth-order methods leveraging
problem structures. Wang et al. [132] and Cai et al. [17] assumed certain sparsity structure in the problem and
applied sparse recovering algorithms, e.g. LASSO, to obtain sparse gradients from zeroth-order observations.
Golovin et al. [46] analyzed the case when the objective function is f(Px) for some low-rank projection matrix
P . These works either require the objective or the algorithm to be modified to have a dimension-independent
guarantee. Balasubramanian and Ghadimi [7] demonstrated that ZO-SGD can directly identify the sparsity of
the problem and proved a dimension-independent rate when the support of gradients remains unchanged [17].
Recently, Yue et al. [141] and Malladi et al. [87] relaxed the dependence on dimension d to a quantity related
to the trace of the loss’s Hessian.

Differentially private optimization. Previous works on DP optimization mostly center around first-order
methods. For constrained convex problems, tight utility guarantees on both excess empirical [18, 8, 136, 144, 130]
and population [9, 10, 38, 5, 67, 145] losses are well-understood. As an example, a typical result states that the
optimal rate on the excess empirical loss for convex objectives is ⇥(

p
d log(1/�)/(n")), where (", �) are privacy

parameters, n is the number of samples, and d is the dimension. The dimension dependence is fundamental as
both the upper bound [8], using differentially private (stochastic) gradient descent (DP-GD) introduced in
[115], and the lower bound [8], using a reduction to finger printing codes, have the same dependence.

When the problem is nonconvex, i.e., the setting of our interest, DP-GD achieves a rate of O(
p
d log(1/�)/(n"))

on the squared norm of the gradient [130, 150]. We show that DPZero matches this rate with access only
to the zeroth-order oracle in Theorem 3. Given access to the first-order oracle, it has been recently shown
that such rate can be improved to O((

p
d log(1/�)/(n"))4/3) leveraging momentum [122] or variance reduction

techniques [4]. Further, the convergence to second-order stationary points in nonconvex DP optimization
is studied in [74]. Recent advancements in DP optimization have also delved into the understanding of the
potential of public data [40, 84], the convergence properties of per-sample gradient clipping [138, 36, 66, 149],
and the relaxation of the dimension dependence in the utility upper bound [86, 70].

Early works established that dimension-independent rates can be attained when the gradients lie in some
fixed low-rank subspace [60, 116]. By first identifying this gradient subspace, dimension-independent algorithms
can be designed [151, 63]. Closest to our result is Song et al. [116], which demonstrated that the rate of
DP-GD for smooth nonconvex optimization can be improved to O(

p
r log(1/�)/(n")) under certain structural

assumptions, i.e., for generalized linear models (GLMs) with a rank-r feature matrix. DPZero matches this
result with access only to the zeroth-order oracle in Theorem 3 for more general problems beyond low-rank
GLMs. Our result is inspired by Li et al. [70] that introduced a relaxed Lipschitz condition for the gradients
and provided dimension-free bounds when the loss is convex and the relaxed Lipschitz parameters decay rapidly.
Similarly, Ma et al. [86] suggested that the dependence on d in the utility upper bound for DP stochastic

22

convex optimization can be improved to a dependence on the trace of the Hessian. There is also a line of
work on DP Riemannian optimization that achieves utility bounds dependent on the intrinsic dimension of the
manifold [104, 124, 123, 53]. Further exploration of its connection to the low-rank structure in this work is
reserved for future.

Literature on DP optimization beyond first-order methods remains less explored. Ganesh et al. [41]
investigated the potential of second-order methods for DP convex optimization. Gratton et al. [47] proposed to
use zeroth-order methods for DP-ADMM [59] in distributed learning. They state that the noise intrinsic in
zeroth-order methods is enough to provide privacy guarantee and rely on the output of zeroth-order methods
being Gaussian, which is unverified to the best of our knowledge. Liu et al. [77] proposed a private genetic
algorithm based on zeroth-order optimization heuristics for private synthetic data generation. Recently, Zhang
et al. [147] studied the problem of private zeroth-order nonsmooth nonconvex optimization and achieved a
rate that depends on the dimension d. After the workshop version of our paper [146] was released, Tang
et al. [117] concurrently discovered the same algorithm as DPZero (up to a minor difference in how ut

is drawn) and showed empirical benefits when applied to fine-tuning OPT models but without theoretical
analysis. Also building upon the workshop version of our paper, Liu et al. [81] introduced DP-ZOSO, a
stage-wise zeroth-order method with an additional quadratic regularizer. With extra hyper-parameters to be
tuned, DP-ZOSO demonstrates further empirical gain over DPZero. However, Liu et al. [81] only provided
dimension-dependent guarantees. As far as we are aware, no prior studies have addressed the challenge of
deriving a dimension-independent rate in DP zeroth-order optimization.

Other relevant works. Du et al. [29] introduced a novel noise adding mechanism that happens in the
forward pass of training. Although the algorithm is termed “DP-Forward”, it still requires backpropagation
for training. In a separate context, Bu et al. [15] coincidentally proposed DP-ZeRO, a term identical to ours,
denoting a private version of the zero redundancy optimizer (ZeRO) by Rajbhandari et al. [102] that aims
at enhancing memory efficiency in data and model parallelisms. DP prompt tuning [56] and DP in-context
learning [118] provide resource-efficient alternatives compared to private fine-tuning, enabling the private
adaptation of pretrained LLMs to specific tasks without extensive computational demands. Investigating
how DPZero performs relative to these methods and whether different techniques can be integrated is an
interesting research problem. More recently, Chen et al. [21] proposed differentially private algorithms that
enforce weight flatness to improve generalization, which can also handle zeroth-order oracles. There is also
another line of research [49, 119, 109] on the design of differentially private algorithms for the stochastic bandit
problem based on upper confidence bound [6]. Their algorithms are not directly applicable to our setting.

B Additional Experiment Details
In this section, we discuss our experimental setups in detail.

B.1 Synthetic Example on a Quadratic Loss

Given a training dataset S = {x1, · · · , xn} with each coordinate of xi 2 Rd sampled independently from the
Gaussian N (1, 1), we implement DPZero on the quadratic loss

min
x2Rd

FS(x) =
1

2n

nX

i=1

(x� xi)
>
A(x� xi),

with a fixed Hessian A 2 Rd⇥d that can be designed to implement different effective ranks r = Tr(A)/kAk2
according to Assumption 3.5. We compare DPZero (Algorithm 2) with DPGD-0th (Algorithm 1) and
first-order algorithm DP-GD on three patterns of the effective rank

(a) Tr(A) = O(d) : A = diag{1, 1, · · · , 1};

(b) Tr(A) = O(
p

d) : A = diag{1, 1/
p
2, · · · , 1/

p

d};

(c) Tr(A) = O(log d) : A = diag{1, 1/2, · · · , 1/d}.

23

(a) Tr(A) = O(d). (b) Tr(A) = O(
p
d). (c) Tr(A) = O(log d).

(d) Tr(A) = O(d). (e) Tr(A) = O(
p
d). (f) Tr(A) = O(log d).

Figure 2: Experiments on the quadratic loss with effective rank Tr(A). For three different modes, we increase the
dimension and report the best loss evaluated on both training set ((a), (b), and (c)) and test set ((d), (e), and (f)).

Since kAk2 = 1 in all cases, the effective rank r = Tr(A). For each mode of the effective rank, we increase
the problem dimension d from 20 to 2000. We perform a parameter search and plot the best gradient norm
evaluated on the training set and a test set that follows the same distribution of the training set in Figure 1.
For completeness, we also plot both training and test loss in Figure 2. The key hyper-parameters used for the
experiments are summarized in Table 6.

Table 6: Hyper-parameters used for the synthetic example on the quadratic loss. The number of iterations, stepsize,
and clipping threshold are optimized through a grid search using given values. Other parameters are fixed to the values.

Hyper-parameters Values

Number of training samples 10000
Number of test samples 10000

Dimension d {20, 50, 100, 200, 500, 1000, 2000}
Privacy (" = 2, � = 10�6)

Smoothing � (DPZero and DPGD-0th) 10�4

Number of iterations {10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120}
Stepsize {10�5

, 3⇥ 10�5
, 10�4

, 3⇥ 10�4
, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1}

Clipping {0.1, 0.3, 1, 3, 10, 30, 100, 300}

In all figures, we observe that the performance of each method is improved with smaller effective rank.
For each pattern of the effective rank, DPGD-0th (Algorithm 1) has the worst performance, while DP-GD
consistently achieves the best results. When the effective rank is d, every method scales with the dimension.
When the effective rank improves to log d, DPZero and DP-GD become nearly dimension-independent, and
DPZero matches the performance of the first-order method DP-GD. This validates our theoretical findings, as
summarized in Table 1, and demonstrates the effectiveness of DPZero. We want to mention that a similar set
of experiments to verify the performance of DP-GD when dimension increases was also provided by Li et al.
[70]. Our implementation of this synthetic example is based on their code.

24

B.2 Private Fine-Tuning of the Language Model RoBERTa

We follow experiment settings in Malladi et al. [87] to evaluate the performance of DPZero in the private
fine-tuning of RoBERTa [80] across six sentence classification datasets: SST-2 and SST-5 [114] for sentiment
classification, SNLI [13], MNLI [135], and RTE [27, 52, 45, 12, 129] for natural language inference tasks, and
TREC [127] for topic classification. In our experiments, we employ the same prompts as used in Malladi et al.
[87], which are adapted from Gao et al. [42].

Implementation details. Our implementation of DPZero utilizes the codebase provided by Malladi et al.
[87]. For easier implementation and better memory efficiency, we follow Malladi et al. [87] to sample the
zeroth-order direction ut from the Gaussian distribution N (0, Id) instead of the sphere as stated in Algorithm
2. Table 7 compares the performance of DPZero on SST-2 and SST-5 when ut is sampled from Gaussian and
sphere. Given the negligible differences between the two sampling strategies, we continue with the Gaussian
sampling for its simplicity. Another strategy in the implementation to further save memory involves storing
only the random seed for the generation of the zeroth-order direction ut, rather than the complete vector, and
regenerating this direction whenever it’s used. Although DPZero is stated for the full-batch case in Algorithm
2, we adopt a mini-batch setting in the experiments.

Table 7: Test accuracy (mean % ± standard error %) of DPZero when fine-tuning RoBERTa (355M) for SST-2 and
SST-5 with (" = {2, 6}, � = 10�5)-DP and using different sampling strategies of the zeroth-order update direction ut.
No notable difference is observed when ut is sampled from either the Gaussian distribution or the Euclidean sphere.

Randomness Gaussian Sphere
" = 6 " = 2 " = 6 " = 2

SST-2 92.2± 0.3 91.8± 0.1 91.8± 0.1 91.5± 0.5

SST-5 49.3± 0.6 47.1± 0.9 49.9± 1.3 47.4± 1.3

Hyper-parameter selection. For all experiments, we employ a few-shot setting, utilizing 512 samples per
class in the training set, randomly selected from the original dataset. The test set is also composed of 1000
randomly selected samples from the original test dataset. We fix the total number of iterations to be 10000, the
batch size to be 64, and the smoothing parameter � = 10�3 for both DPZero and the non-private zeroth-order
baseline MeZO [87]. Note that the original results of MeZO reported in Malladi et al. [87] run for 100000
iterations. A parameter search of the learning rate for MeZO is performed, and it turns out 10�6 consistently
yields the best performance. We then fix the learning rate to be 10�6 for DPZero and only search for the
clipping threshold for different tasks. There is potential for improved performance by well-optimizing other
hyper-parameters, such as the learning rate and the number of iterations. All results are averaged through
three different random seeds {42, 13, 21} for selecting the few-shot datasets. The hyper-parameters used for
our language model fine-tuning experiments are summarized in Table 8.

Comparison with first-order methods. Regarding the first-order methods, we use the same few-shot
setting as before, and the results are averaged over three different random seeds {42, 13, 21}. The number
of iterations is set to be 1000, and the batch size is fixed to be 64. The learning rate is optimized by a grid
search over {5 ⇥ 10�5

, 10�4
, 5 ⇥ 10�4

, 10�3
}, and the clipping threshold is optimized by a grid search over

{0.1, 0.5, 1, 10}. In the experiments for LoRA, we set the rank to be 8 and the LoRA ↵ = 16, which remain the
same as in the original paper [58]. All other parameters are fixed to their default values. In addition to Li
et al. [71] in Tables 2 and 3, we also compare the performance of DPZero to two other implementations of
DP first-order methods, Yu et al. [140] and Bu et al. [16], in Table 9. DPZero achieves similar performance
on SST-2 as DP first-order methods, while saving a significant amount of memory. Such memory savings are
greater than the savings of MeZO [87] over AdamW [83] and LoRA [58] (AdamW as the optimizer), due to
DPZero’s simpler clipping (cf. Remark 4.5).

25

Table 8: Hyper-parameters used in DPZero for fine-tuning RoBERTa (355M). We only optimize the clipping threshold
through a grid search from 50 to 400. Other parameters are fixed to the listed values.

Hyper-parameters Values

Number of training samples 512 per class
Number of test samples 1000
Number of iterations 10000

Batch size 64
Privacy (" = {2, 6}, � = 10�5)

Smoothing � 10�3

Stepsize 10�6

Clipping {50, 100, 150, 200, 250, 300, 400}

Table 9: Test accuracy (%), runtime per iteration (s), and memory consumption (MiB) when fine-tuning RoBERTa
(355M) for SST-2. Private methods in the table guarantee (" = 2, � = 10�5)-DP. A fair comparison is ensured among Li
et al. [71] and Bu et al. [16], as they are implemented using the same codebase. It is important to note, however, that
they cannot be directly compared with those of Yu et al. [140], due to differences in implementations. LoRA [58] and
DP-LoRA use the first-order method AdamW [83] as the optimizer. DP first-order methods introduce considerable
overheads in both memory and runtime compared to their non-DP baselines, while DPZero does not, thanks to its
novel design of the efficient clipping. Also note that such comparisons between DP and non-DP algorithms are fair since
they use the same codebase.

Method Acc. Time (s/iter) Memory (MiB)

AdamW [71] 93.1 1.25 15820
DP-AdamW [71] 90.5 2.12 17126
DP-AdamW [16] 91.1 1.55 18372

AdamW [140] 94.4 0.425 16960
DP-AdamW [140] 92.3 2.33 21494

LoRA [71] 93.3 0.821 10366
DP-LoRA [71] 90.2 1.05 10496

LoRA [140] 94.3 0.301 11512
DP-LoRA [140] 91.3 0.332 11522

MeZO 92.5 0.345 2668
DPZero 91.8 0.347 2668

Comparison with DPGD-0th. In the previous synthetic example, DPGD-0th suffers from worse per-
formance in larger dimensions. To provide a more complete comparison, we also evaluate the performance
of DPGD-0th (Algorithm 1) for fine-tuning RoBERTa-large on the dataset TREC with a privacy budget of
" = 2 (the same setting as Table 2). DPGD-0th only achieves a test accuracy of 67.0, while DPZero attains
82.0. Moreover, DPGD-0th still requires per-sample clipping of the gradient estimator, which is costly in both
memory and runtime compared to DPZero.

Clipping threshold. Our findings indicate that the optimal clipping threshold for DPZero tends to be
higher than that for first-order methods. This observation aligns with the theoretical outcomes presented in
Theorem 3, where the clipping threshold for DPZero is C = O(L

p
log(nd)), in contrast to the O(L) threshold

adequate for first-order methods. In the concurrent study by [117], the chosen clipping threshold is 0.05.
However, their implementation applies the clipping to the term f(x+�u; ⇠)� f(x��u; ⇠). After normalization
by � = 10�3, it aligns with the order of magnitude used in our method. The validity of opting for a larger
clipping threshold in DPZero is further confirmed through the private fine-tuning of RoBERTa (125M) on the
SNLI dataset in Figure 3. An additional observation from our experiments is that the non-private baseline
MeZO also appears to benefit from clipping. For instance, without clipping, the original MeZO encounters

26

(a) Training Loss. (b) Test Loss. (c) Test Accuracy (%).

Figure 3: Experiments on private fine-tuning RoBERTa (125M) for SNLI with DPZero. (a) (Smoothed) training
curves when fixing the stepsize to be 5 ⇥ 10�6 and varying the clipping threshold from 1 to 500. In the choice of
clipping, a tradeoff emerges; larger clipping values result in unnecessarily high privacy noise, while smaller values can
induce increased bias in the optimization process. (b) and (c) Test loss and accuracy (%) when varying the stepsize
and clipping threshold together. Consistent with first-order methods [71], we observe that larger clipping necessitates
smaller stepsizes, whereas smaller clipping favors larger stepsizes.

non-convergence issues at a stepsize of 5⇥ 10�6. Conversely, incorporating clipping permits the use of larger
stepsizes and yields better results. A thorough investigation of this phenomenon is reserved for future research.

B.3 Private Fine-Tuning of the Language Model OPT

Table 10: Hyper-parameters used for fine-tuning OPT. We randomly sample 1000 samples for training and 1000 samples
for testing. Stepsize and clipping are optimized through a grid search over the listed values. Other parameters are fixed.

Hyper-parameters Values

Number of training samples 1000
Number of test samples 1000
Number of iterations 20000

Batch size 8
Privacy (" = {2, 6}, � = 10�5)

Smoothing � 10�3

Stepsize {10�6
, 10�7

}

Clipping {10, 50, 100, 200}

Table 11: Memory consumption (MiB) when fine-tuning OPT for BoolQ with batch size 8. All experiments are tested
on a single GPU with 24 GiB memory. ‘-’ in the table denotes out of memory. MeZO and DPZero can fit models up
to OPT-6.7B, while the first-order method AdamW already runs out of memory on OPT-1.3B.

Method OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B

AdamW - - - -

MeZO 7866 11602 20548 -
DPZero 7866 11602 20548 -

We follow experiment settings in Malladi et al. [87] to evaluate the performance of DPZero in the private
fine-tuning of OPT [148] across four different datasets: SST-2 [114] for sentiment classification and BoolQ [25],
SQuAD [103], and DROP [30] for question answering. In our experiments, we employ the same prompts as
used in Malladi et al. [87] and use the same implementation as explained before. All results are averaged over

27

three random seeds {0, 29, 83}. The hyper-parameters used for our experiments are summarized in Table 10,
and the memory usages on the dataset BoolQ are reported in Table 11.

C Technical Lemmas
Lemma C.1. Let u be uniformly sampled from the Euclidean sphere

p
d Sd�1, a 2 Rd be some fixed vector

independent of u, and H 2 Rd⇥d be some fixed matrix independent of u. We have that

(i) E[u] = 0 and E[uu>] = Id.

(ii) Eu[u>
a] = 0, Eu[(u>

a)2] = kak2 and 8C � 0,

P(|u>
a| � C)  2

p
2⇡ exp

✓
�

C
2

8kak2

◆
.

(iii) Eu[(u>
a)u] = a and

Eu[(u
>
a)2kuk2] = dkak

2
,

Eu[(u
>
a)2uu>] =

d

d+ 2

�
2aa> + kak2Id

�
.

(iv) Eu[u>
Hu] = Tr(H) and

Eu[(u
>
a)2u>

Hu] =
d

d+ 2

�
2a>Ha+ kak2 Tr(H)

�
.

Proof. (i) is a standard result, e.g., in Duchi et al. [32], and follows by the symmetry of the sphere. For
any u 2

p
d · Sd�1, it must be the case that �u 2

p
d · Sd�1 as well, which suggests that E[u] = 0. Since

E[
P

d

i=1 u
2
i
] = Ekuk2 = d, we immediately have that E[u2

i
] = 1 for every i by symmetry. Then for the

off-diagonal terms, since for any u = (u1, · · · , ui, · · · , uj , · · · , ud) 2
p
d · Sd�1, it must be the case that

(u1, · · · , ui, · · · ,�uj , · · · , ud) 2
p
d · Sd�1 as well, which suggests that E[uiuj] = 0 when i 6= j. As a result, we

can conclude that the matrix E[uu>] = Id.
We then show (ii). Applying (i), we have that Eu[u>

a] = 0, and that

Eu[(u
>
a)2] =

dX

i=1

a
2
i
E[u2

i
] +
X

i 6=j

aiajE[uiuj]

= kak2.

The tail bound follows from Example 3.12 in Wainwright [128], where they showed that for any function
h : Sd�1

! R such that 8x, y 2 Sd�1,

|h(x)� h(y)|  arccos(x>
y),

when x is uniformly sampled from Sd�1, it holds that 8 � � 0,

P(|h(x)� E[h(x)]| � �)  2
p
2⇡ exp

✓
�
d�

2

8

◆
. (8)

Let h(x) = x
>
a/kak for x 2 Sd�1. First, we have that 8x, y 2 Sd�1,

|h(x)� h(y)|2 =
|(x� y)>a|2

kak2

 kx� yk
2

= 2(1� x
>
y)

 (arccos(x>
y))2,

28

where we use the inequality that ✓
2
/2 + cos(✓) � 1 � 0 for ✓ 2 [0,⇡] and let x

>
y = cos(✓) such that

arccos(x>
y) = ✓ for some ✓ 2 [0,⇡]. When u is uniformly sampled from

p
d · Sd�1, we know u/

p
d is uniformly

from Sd�1. Applying (8) for h(x) = x
>
a/kak where x 2 Sd�1, we obtain that

P
✓����

u
>
a

p
dkak

�
E[u>

a]
p
dkak

���� � �

◆
 2
p
2⇡ exp

✓
�
d�

2

8

◆
.

Setting C = �
p
dkak, the proof is complete since E[u>

a] = 0. Similar results also exist in Theorem 5.1.4 of
Vershynin [125], with all constants hidden behind some absolute c.

Next, we prove (iii). Applying (i), we have that

Eu[(u
>
a)ui] = aiE[u2

i
] +
X

j 6=i

ajE[uiuj]

= ai.

This implies that Eu[(u>
a)u] = a. Applying (ii), we obtain that

Eu[(u
>
a)2kuk2] = d · Eu[(u

>
a)2]

= dkak
2
.

For the expectation of the matrix, we start from the diagonal terms.

Eu[(u
>
a)2u2

i
] =

dX

j=1

a
2
j
E[u2

j
u
2
i
] +
X

j 6=k

ajakE[ujuku
2
i
]

= a
2
i
E[u4

i
] +
X

j 6=i

a
2
j
E[u2

j
u
2
i
].

(9)

Here, we use the property that E[ujuku
2
i
] = 0 for every i when j 6= k. This follows from symmetry

of the sphere such that for any u = (u1, · · · , uj , · · · , uk, · · · , ud) 2
p
d · Sd�1, it must be the case that

(u1, · · · , uj , · · · ,�uk, · · · , ud) 2
p
d · Sd�1 as well. Again by symmetry, we have E[u4

i
] remains the same for

every i, and E[u2
i
u
2
j
] is the same for every i 6= j. Denote w1 = E[u4

i
] and w2 = E[u2

i
u
2
j
]. Since it holds that

dX

i=1

Eu[(u
>
a)2u2

i
] = Eu[(u

>
a)2kuk2]

= dkak
2
,

taking summation over (9), we can have that

dkak
2 =

dX

i=1

a
2
i
E[u4

i
] +

dX

i=1

dX

j=1,j 6=i

a
2
j
E[u2

j
u
2
i
]

= w1kak
2 + w2

dX

i=1

(kak2 � a
2
i
)

= w1kak
2 + (d� 1)w2kak

2
.

This holds for arbitrary a 2 Rd, and thus we obtain that

w1 + (d� 1)w2 = d. (10)

We only compute w1 = E[u4
i
] by showing that u

2
i
/d actually follows the Beta distribution, and the value of w2

can be derived from (10). First, z/kzk is uniformly distributed on the unit sphere Sd�1 for z 2 Rd sampled
from the standard multivariate Gaussian N (0, Id) [92, 89]. This means that z

2
i

is distributed according to the
�
2-distribution with 1 degree of freedom, and z̄

2
i
:=
P

j 6=i
z
2
j

is distributed according to the �
2-distribution with

29

degree (d� 1). Since �
2-distribution is a special case of the Gamma distribution and z

2
i
, z̄2

i
are independent,

we conclude that z
2
i
/(z2

i
+ z̄

2
i
) has the Beta distribution with parameters 1/2 and (d� 1)/2 [26, 50]. Finally,

since u/
p
d is uniformly distributed on Sd�1, by symmetry of the sphere, we know that u2

i
/d has the same Beta

distribution as z
2
i
/(z2

i
+ z̄

2
i
). The mean and variance of Beta(1/2, (d� 1)/2) is 1/d and 2(d� 1)/(d2(d+ 2)).

This suggests that E[u2
i
] = 1, as already proved in (i), and that

w1 = E[(u2
i
� E[u2

i
])2] + (E[u2

i
])2

= d
2

✓
2(d� 1)

d2(d+ 2)
+

1

d2

◆

=
3d

d+ 2
.

By (10), we know w2 = d/(d+ 2). According to (9), we have that the diagonal terms

Eu[(u
>
a)2u2

i
] = w1a

2
i
+ w2(kak

2
� a

2
i
)

=
2d

d+ 2
a
2
i
+

d

d+ 2
kak

2
.

Then we compute the off-diagonal entries for i 6= j. By the same reasoning as (9), we have that

Eu[(u
>
a)2uiuj] =

X

i 6=j

aiajE[u2
i
u
2
j
]

=
2d

d+ 2
aiaj .

All other terms equal to 0 by symmetry of the sphere. Combining both diagonal and off-diagonal elements,
we have that Eu[(u>

a)2uu>] = (d/(d+ 2))(2aa> + kak2Id). Similar results are also shown in Appendix F of
Malladi et al. [87].

Finally, we give the proof of (iv). For the first statement, applying (i) in this lemma, we have that

Eu

⇥
u
>
Hu
⇤
= E

h
Tr(uu>

H)
i

= Tr
⇣
E[uu>] ·H

⌘

= Tr(H).

Similarly for the second statement, we apply (iii) in this lemma and obtain that

Eu

⇥
(u>

a)2u>
Hu
⇤
= E

h
(u>

a)2 · Tr(uu>
H)
i

= E
h
Tr
⇣
(u>

a)2uu>
·H

⌘i

= Tr
⇣
E
h
(u>

a)2uu>
i
·H

⌘

=
2d

d+ 2
Tr(aa>H) +

d

d+ 2
kak

2 Tr(H)

=
2d

d+ 2
a
>
Ha+

d

d+ 2
kak

2 Tr(H).

This concludes the proof.

Lemma C.2. Let u be uniformly sampled from the Euclidean sphere
p
d Sd�1 and v be uniformly sampled

from the Euclidean ball
p
dBd = {x 2 Rd

| kxk 
p
d}. For any function f(x) : Rd

! R and � > 0, we define
its zeroth-order gradient estimator as g�(x) = ((f(x+ �u)� f(x� �u))/(2�))u and the smoothed function as
f�(x) = Ev[f(x+ �v)]. The following properties hold:

(i) f�(x) is differentiable and Eu[g�(x)] = rf�(x).

30

(ii) If f(x) is `-smooth, then we have that

krf(x)�rf�(x)k 
`

2
�d

3/2
,

Eu[kg�(x)k
2]  2d · krf(x)k2 +

`
2

2
�
2
d
3
.

The above results are consistent with (iii) in Lemma C.1 when �! 0 and f(x) is differentiable such that the
two-point estimator reduces to the directional derivative g0(x) = u

>
rf(x)u.

Proof. We first show (i). Similarly to Lemma 10 in Shamir [108], we have that

E
u2

p
d·Sd�1 [g�(x)] = E

u2
p
d·Sd�1


f(x+ �u)u

�

�
.

Applying Lemma 2.1 in Flaxman et al. [39], we know

Eu02Sd�1 [f(x+ �
0
u
0)u0] =

�
0

d
rEv02Bd [f(x+ �

0
v
0)].

Introducing u =
p
du

0, v =
p
dv

0 and � = �
0
/
p
d, we thus obtain

E
u2

p
d·Sd�1


f(x+ �u)u

�

�
= Eu02Sd�1


f(x+ �

0
u
0)u0

d

�0

�

= rEv02Bd [f(x+ �
0
v
0)]

= rE
v2

p
d·Bd [f(x+ �v)].

The proof of (ii) mostly follows from Nesterov and Spokoiny [94], where the results are originally obtained
for the case that u is sampled from the standard multivariate Gaussian distribution. By (iii) in Lemma C.1
and (i) here, we have that for u uniformly sampled from

p
d · Sd�1,

krf(x)�rf�(x)k =

����Eu[(u
>
rf(x))u]� Eu


f(x+ �u)� f(x� �u)

2�
u

�����

 Eu

����

✓
f(x+ �u)� f(x� �u)

2�
� u

>
rf(x)

◆
u

����



p
d

2�
Eu|f(x+ �u)� f(x)� �u

>
rf(x)|

+

p
d

2�
Eu|f(x)� f(x� �u)� �u

>
rf(x)|


`

2
�d

3/2
,

where in the last step we use smoothness of f(x) such that |f(x+ �u)� f(x)� �u
>
rf(x)|  `�

2
d/2 and the

same holds for |f(x)� f(x� �u)� �u
>
rf(x)| = |f(x� �u)� f(x) + �u

>
rf(x)|. The last statement holds

similarly:

Eu[kg�(x)k
2] =

d

4�2
Eu[(f(x+ �u)� f(x� �u))2]

 2d · Eu[(u
>
rf(x))2] +

d

2�2
Eu[(f(x+ �u)� f(x� �u)� 2�u>

rf(x))2]

 2d · Eu[(u
>
rf(x))2] +

d

�2
Eu[(f(x+ �u)� f(x)� �u

>
rf(x))2]

+
d

�2
Eu[(f(x)� f(x� �u)� �u

>
rf(x))2]

 2d · krf(x)k2 +
`
2

2
�
2
d
3
, (11)

where in the last step we use Lemma C.1 and smoothness of f(x).

31

D Detailed Proof and Analysis of DPGD-0th (Algorithm 1)
Proof of Theorem 1. The privacy guarantees directly follow from Lemma 2.2 noticing that the sensitivity is
2C/n. Note that the original advanced composition theorem in Kairouz et al. [62] is stated for the case where
the output of A is a scalar. Given the spherical symmetry properties of Gaussian noise, the results can be
readily extended to multiple dimensions, as outlined in Lemma 1 of Kenthapadi et al. [65] where the basis can
be selected in a way such that A(S) and A(S0) differ in exactly one dimension.

We then focus on the utility guarantee on E[krFS(x⌧)k2]. Since f(x; ⇠) is L-Lipschitz for every ⇠ by
Assumption 3.1 and kutk =

p
d by its construction, we have that

kg�(xt; ⇠i)k =
|f(xt + �ut; ⇠i)� f(xt � �ut; ⇠i)|

2�
kutk

 Lkutk
2

= Ld.

This means clip
C
(g�(xt; ⇠i)) = g�(xt; ⇠i) when setting C = Ld. For notation simplicity, we let

G�(xt) :=
1

n

nX

i=1

g�(xt; ⇠i)

=
1

n

nX

i=1

f(xt + �ut; ⇠i)� f(xt � �ut; ⇠i)

2�
ut

=
FS(xt + �ut)� FS(xt � �ut)

2�
ut.

Algorithm 1 reduces to xt+1 = xt � ↵(G�(xt) + zt). By smoothness of FS(x), we have that

FS(xt+1)  FS(xt) +rFS(xt)
>(xt+1 � xt) +

`

2
kxt+1 � xtk

2

= FS(xt)� ↵rFS(xt)
>(G�(xt) + zt) +

`

2
↵
2
kG�(xt)k

2 +
`

2
↵
2
kztk

2 + `↵
2
z
>
t
G�(xt).

Since zt is sampled from N (0,�2Id) and is independent of xt, ut and S, we have that

Ezt [FS(xt+1)]  FS(xt)� ↵rFS(xt)
>
G�(xt) +

`

2
↵
2
kG�(xt)k

2 +
`

2
↵
2
d�

2
.

Define F�(x) := Ev[FS(x+ �v)] for v sampled uniformly from the Euclidean ball
p
d · Bd. By Lemma C.2, we

know Eut [G�(xt)] = rF�(xt). Since ut is independent of xt and S, taking expectation with respect to ut and
applying (ii) in Lemma C.2, we obtain that

Ezt,ut [FS(xt+1)]  FS(xt)� ↵rFS(xt)
>
rF�(xt) +

`

2
↵
2Eut [kG�(xt)k

2] +
`

2
↵
2
d�

2

= FS(xt)�
↵

2
krFS(xt)k

2
�

↵

2
krF�(xt)k

2 +
↵

2
krF�(xt)�rFS(xt)k

2

+
`

2
↵
2 Eut [kG�(xt)k

2] +
`

2
↵
2
d�

2

 FS(xt)�
↵

2
(1� 2d`↵)krFS(xt)k

2 +
`
2

8
↵(1 + 2`↵)�2

d
3 +

`

2
↵
2
d�

2
. (12)

Choosing ↵ = 1/(4`d) such that 1� 2d`↵ = 1/2 and 2`↵ < 1, we obtain that

E[krFS(xt)k
2] <

4E[FS(xt)� FS(xt+1)]

↵
+ `

2
�
2
d
3 + 2`↵ d�

2

=
4E[FS(xt)� FS(xt+1)]

↵
+ `

2
�
2
d
3 +

64`C2
↵T d log(e+ ("/�))

n2"2

=
4E[FS(xt)� FS(xt+1)]

↵
+ `

2
�
2
d
3 +

64`L2
↵T d

3 log(e+ ("/�))

n2"2
.

32

As a result, taking summation from t = 0 to T � 1 and dividing both sides by T , we have that

E[krFS(x⌧)k
2] =

1

T

T�1X

t=0

E[krFS(xt)k
2]


4(FS(x0)� F

⇤
S
)

↵T
+ `

2
�
2
d
3 +

64`L2
↵T d

3 log(e+ ("/�))

n2"2


16(`(FS(x0)� F

⇤
S
) + 2L2)d

p
d log(e+ ("/�))

n"
,

with the choice of parameters

↵T =
n"

4`d
p
d log(e+ ("/�))

, � 
4L

`d

 p
d log(e+ ("/�))

n"

!1/2

.

This suggests that the total number of iteration is T = n"/

p
d log(e+ ("/�)) and the total number of zeroth-

order gradient computations is nT = n
2
"/

p
d log(e+ ("/�)). Note that the above selection of parameters

ensures scale invariance.

Proof of Theorem 2. The privacy analysis remains the same as before, and we focus on the utility analysis on
EkrFS(x⌧)k2. By the same reasoning, when setting C = Ld, Algorithm 1 reduces to xt+1 = xt�↵(G�(xt)+zt)
where G�(xt) = (FS(xt+�ut)�FS(xt��ut))ut/(2�). By Taylor’s theorem with remainder, for some ✓ 2 (0, 1),
we have that

FS(xt+1) = FS(xt) +rFS(xt)
>(xt+1 � xt) +

1

2
(xt+1 � xt)

>
r

2
FS(xt + ✓(xt+1 � xt))(xt+1 � xt)

 FS(xt)� ↵rFS(xt)
> (G�(xt) + zt) +

↵
2

2
G�(xt)

>
HG�(xt) +

↵
2

2
z
>
t
Hzt

+
↵
2

2

�
G�(xt)

>
Hzt + z

>
t
HG�(xt)

�
.

Here in the inequality, we use Assumption 3.5 such that r2
FS(x) � H for any x 2 Rd. Similarly to (iv) in

Lemma C.1, we have that E[z>
t
Hzt] = Tr(E[ztz>t]H) = �

2 Tr(H). Since zt is sampled from N (0,�2Id) and is
independent of ut, xt and the dataset S, taking expectation with respect to zt, we can then obtain that

Ezt [FS(xt+1)]  FS(xt)� ↵rFS(xt)
>
G�(xt) +

↵
2

2
G�(xt)

>
HG�(xt) +

↵
2

2
Ezt [z

>
t
Hzt]

= FS(xt)� ↵rFS(xt)
>
G�(xt) +

↵
2

2
G�(xt)

>
HG�(xt) +

↵
2
�
2

2
Tr(H).

(13)

Assumption 3.5 implies FS(x) is also `-smooth. By a similar argument as (11) in the proof of (ii) in Lemma
C.2, we have ✓

FS(xt + �ut)� FS(xt � �ut)

2�

◆2

 2
�
u
>
t
rFS(xt)

�2
+

`
2

2
�
2
d
2
. (14)

As u
>
t
Hut � 0, by (iv) in Lemma C.1 and Assumption 3.5, we have that

E
⇥
G�(xt)

>
HG�(xt)

⇤
= E

"✓
FS(xt + �ut)� FS(xt � �ut)

2�

◆2

u
>
t
Hut

#

 2E
h�
u
>
t
rFS(xt)

�2
u
>
t
Hut

i
+

`
2

2
�
2
d
2 E
⇥
u
>
t
Hut

⇤

=
2d

d+ 2

�
2rFS(xt)

>
HrFS(xt) + krFS(xt)k

2 Tr(H)
�
+

`
2

2
�
2
d
2 Tr(H)

 2`(r + 2)krFS(xt)k
2 +

`
3

2
�
2
d
2
r.

33

Taking expectation of (13) with respect to ut, by Lemma C.2 for F�(x) = Ev[FS(x+ �v)] with v uniformly
sampled from

p
d · Bd, we have that

E[FS(xt+1)]  FS(xt)� ↵rFS(xt)
>
rF�(xt) + `↵

2(r + 2)krFS(xt)k
2 +

`
3
↵
2
�
2
d
2
r

4
+

`↵
2
r�

2

2

 FS(xt)�
↵

2
(1� 2(r + 2)`↵)krFS(xt)k

2 +
↵

2
krFS(xt)�rF�(xt)k

2 +
`
3
↵
2
�
2
d
2
r

4
+

`↵
2
r�

2

2

 FS(xt)�
↵

2
(1� 2(r + 2)`↵)krFS(xt)k

2 +
`
2
↵�

2
d
2(d+ 2r`↵)

8
+

`↵
2
r�

2

2
. (15)

Choosing ↵ = 1/(4`(r + 2)) such that 1� 2(r + 2)`↵ = 1/2 and 2`↵r < 1  d, we have that

E[krFS(xt)k
2] <

4E[FS(xt)� FS(xt+1)]

↵
+ `

2
�
2
d
3 + 2`↵ r�

2

=
4E[FS(xt)� FS(xt+1)]

↵
+ `

2
�
2
d
3 +

64`C2
↵T r log(e+ ("/�))

n2"2

=
4E[FS(xt)� FS(xt+1)]

↵
+ `

2
�
2
d
3 +

64`L2
↵T d

2
r log(e+ ("/�))

n2"2
.

As a result, taking summation from t = 0 to T � 1 and dividing both sides by T , we have that

E[krFS(x⌧)k
2] =

1

T

T�1X

t=0

E[krFS(xt)k
2]


4(FS(x0)� F

⇤
S
)

↵T
+ `

2
�
2
d
3 +

64`L2
↵T d

2
r log(e+ ("/�))

n2"2


16(`(FS(x0)� F

⇤
S
) + 2L2)d

p
r log(e+ ("/�))

n"
,

with the choice of parameters

↵T =
n"

4`d
p
r log(e+ ("/�))

, � 
4L

`d

 p
r log(e+ ("/�))

n"

!1/2

.

This suggests that the total number of iteration is T = n(r + 2)"/(d
p
r log(e+ ("/�))) and the total number

of zeroth-order gradient computations is nT = n
2(r + 2)"/(d

p
r log(e+ ("/�))). The above selection ensures

scale invariance.

E Detailed Proof and Analysis of DPZero (Algorithm 2)
Privacy guarantee. Since ut is independent of the dataset S, the privacy guarantees directly follow from
Lemma 2.2 and post-processing [34] noticing that the sensitivity is 2C/n. We want to emphasis that the
randomness of ut is never used for the privacy guarantee, and the analysis holds for any ut as long as it is
independent of the dataset.

Utility guarantee. We then focus on the utility guarantee on EkrFS(x⌧)k2. Since f(x; ⇠) is `-smooth for
every ⇠ by Assumption 3.5, we have that

|f(xt + �ut; ⇠i)� f(xt � �ut; ⇠i)|

2�
 |u

>
t
rf(xt; ⇠i)|+

|f(xt + �ut; ⇠i)� f(xt; ⇠i)� �u
>
t
rf(xt; ⇠i)|

2�

+
|f(xt � �ut; ⇠i)� f(xt; ⇠i) + �u

>
t
rf(xt; ⇠i)|

2�

 |u
>
t
rf(xt; ⇠i)|+

`

2
�d.

(16)

34

Therefore, by (ii) in Lemma C.1 and Lipschitzness of f(x; ⇠), we have that

P
✓
|f(xt + �ut; ⇠i)� f(xt � �ut; ⇠i)|

2�
� C0 +

`

2
�d

◆
 P(|u>

t
rf(xt; ⇠i)| � C0)

 2
p
2⇡ exp

✓
�

C
2
0

8krf(xt; ⇠i)k2

◆

 2
p
2⇡ exp

✓
�

C
2
0

8L2

◆
.

We define Qt,i to be the event that the clipping does not happen at iteration t for sample ⇠i and Q̄t,i to be the
event that the clipping does happen. The above equation implies that if the clipping threshold C � C0 + `�d/2,
then we have that P(Q̄t,i)  2

p
2⇡ exp(�C2

0/(8L
2)). Let Qt denote the event that the clipping does not happen

at iteration t for every sample 1  i  n, and let Q̄t be the event that there exist some i such that the clipping
does happen at iteration t. We also denote Q as the event that the clipping does not happen for every iteration
t = 0, 1, · · · , T � 1 and every sample 1  i  n and Q̄ as the event that there exist some t and i such that the
clipping does happen. By the union bound, we have that

P(Q̄) = P

T�1[

t=0

n[

i=1

Q̄t,i

!

 2
p
2⇡ nT exp

✓
�

C
2
0

8L2

◆
.

To simplify the notation, we let

G�(xt) =
1

n

nX

i=1

f(xt + �ut; ⇠i)� f(xt � �ut; ⇠i)

2�
ut

=
FS(xt + �ut)� FS(xt � �ut)

2�
ut,

and its per-sample clipped version as

Ĝ�(xt) =
1

n

nX

i=1

clip
C

✓
f(xt + �ut; ⇠i)� f(xt � �ut; ⇠i)

2�

◆
ut.

Algorithm 2 becomes xt+1 = xt � ↵(Ĝ�(xt) + ztut) under the above notation. By Taylor’s theorem with
remainder, for some ✓ 2 (0, 1), we have that

FS(xt+1) = FS(xt) +rFS(xt)
>(xt+1 � xt) +

1

2
(xt+1 � xt)

>
r

2
FS(xt + ✓(xt+1 � xt))(xt+1 � xt)

 FS(xt)� ↵rFS(xt)
>
⇣
Ĝ�(xt) + ztut

⌘
+

↵
2

2
Ĝ�(xt)

>
HĜ�(xt) +

↵
2

2
z
2
t
u
>
t
Hut

+
↵
2

2
zt

⇣
Ĝ�(xt)

>
Hut + u

>
t
HĜ�(xt)

⌘
.

Here in the inequality, we use Assumption 3.5 such that r2
FS(x) � H for any x 2 Rd. The event Qt depends

on the randomness in u<(t+1) := {u0, u1, · · · , ut} and z<t := {z0, z1, · · · , zt�1}. Note that the scalar noise zt

sampled from N (0,�2) is independent of u<(t+1), z<t, xt, and the dataset S. Conditioned on the event Qt and
taking expectation with respect to z<(t+1) and u<(t+1), we have that

Ez<(t+1),u<(t+1)
[FS(xt+1)|Qt]  Ez<t,u<t [FS(xt)|Qt]� ↵Ez<t,u<(t+1)

h
rFS(xt)

>
Ĝ�(xt)

���Qt

i

+
↵
2

2
Ez<t,u<(t+1)

h
Ĝ�(xt)

>
HĜ�(xt)

���Qt

i
+

↵
2
�
2

2
Ez<t,u<(t+1)

⇥
u
>
t
Hut

��Qt

⇤
.

(17)

35

Let Et := Ez<t,u<(t+1)
for simplicity. Given the condition that Qt happens, we know that Ĝ�(xt) = G�(xt) and

Et

h
Ĝ�(xt)

>
HĜ�(xt)

���Qt

i
= Et

"✓
FS(xt + �ut)� FS(xt � �ut)

2�

◆2

u
>
t
Hut

�����Qt

#
.

Since H ⌫ 0, we have that u
>
t
Hut � 0. By the law of total probability, we obtain

Et

"✓
FS(xt + �ut)� FS(xt � �ut)

2�

◆2

u
>
t
Hut

#

= Et

"✓
FS(xt + �ut)� FS(xt � �ut)

2�

◆2

u
>
t
Hut

�����Qt

#
P(Qt)

+ Et

"✓
FS(xt + �ut)� FS(xt � �ut)

2�

◆2

u
>
t
Hut

����� Q̄t

#
P(Q̄t)

� Et

"✓
FS(xt + �ut)� FS(xt � �ut)

2�

◆2

u
>
t
Hut

�����Qt

#
P(Qt).

(18)

Assumption 3.5 implies FS(x) is also `-smooth. Similarly to the proof of Theorem 2, by (14) and the fact that
u
>
t
Hut � 0, applying (iv) in Lemma C.1 and Assumption 3.5, we can then obtain that

Et

h
Ĝ�(xt)

>
HĜ�(xt)

���Qt

i


Et

⇥
(FS(xt + �ut)� FS(xt � �ut))2u>

t
Hut

⇤

4�2 · P(Qt)



Et

h
2
�
u
>
t
rFS(xt)

�2
u
>
t
Hut

i

P(Qt)
+

`
2
�
2
d
2

2P(Qt)
Et

⇥
u
>
t
Hut

⇤

=
2dEz<t,u<t

⇥
2rFS(xt)>HrFS(xt) + krFS(xt)k2 Tr(H)

⇤

(d+ 2)P(Qt)
+

`
2
�
2
d
2 Tr(H)

2P(Qt)


2`(r + 2)

P(Qt)
Ez<t,u<tkrFS(xt)k

2 +
`
3
�
2
d
2
r

2P(Qt)
. (19)

The same as (18), we can also get that

Et

⇥
u
>
t
Hut

��Qt

⇤


Et

⇥
u
>
t
Hut

⇤

P(Qt)


r`

P(Qt)
.

(20)

For the inner-product term, we have that

Et

h
rFS(xt)

>
Ĝ�(xt)

���Qt

i
= Et

⇥
rFS(xt)

>
G�(xt)

��Qt

⇤
.

By the law of total probability, since ut is independent of xt, we know that

Et

⇥
rFS(xt)

>
G�(xt)

��Qt

⇤
P(Qt) + Et

⇥
rFS(xt)

>
G�(xt)

�� Q̄t

⇤
P(Q̄t) = Et

⇥
rFS(xt)

>
G�(xt)

⇤

= Ez<t,u<t

⇥
rFS(xt)

>
rF�(xt)

⇤
,

36

where we use Lemma C.2 for F�(x) = Ev[FS(x + �v)] with v uniformly sampled from
p
dBd. Rearranging

terms, we thus obtain that

Et

⇥
rFS(xt)

>
G�(xt)

��Qt

⇤
=

Ez<t,u<t

⇥
rFS(xt)>rF�(xt)

⇤

P(Qt)
�

Et

⇥
rFS(xt)>G�(xt)

�� Q̄t

⇤
P(Q̄t)

P(Qt)

=
Ez<t,u<tkrFS(xt)k2

2P(Qt)
+

Ez<t,u<tkrF�(xt)k2

2P(Qt)
�

Ez<t,u<tkrFS(xt)�rF�(xt)k2

2P(Qt)

�
Et

⇥
rFS(xt)>G�(xt)

�� Q̄t

⇤
P(Q̄t)

P(Qt)

�
Ez<t,u<tkrFS(xt)k2

2P(Qt)
�

`
2
�
2
d
3

8P(Qt)
�

Et

⇥
rFS(xt)>G�(xt)

�� Q̄t

⇤
P(Q̄t)

P(Qt)
,

where we apply (ii) in Lemma C.2. Assumption 3.5 implies that FS(x) is also Lipschitz, and thus

rFS(xt)
>
G�(xt)  krFS(xt)kkG�(xt)k

 L
2
kutk

2

= L
2
d.

As a result, we obtain that

Et

h
rFS(xt)

>
Ĝ�(xt)

���Qt

i
�

Ez<t,u<tkrFS(xt)k2

2P(Qt)
�

`
2
�
2
d
3

8P(Qt)
�

L
2
d P(Q̄t)

P(Qt)
. (21)

Plugging (21), (19) and (20) back into (17), we obtain that

Ez<(t+1),u<(t+1)
[FS(xt+1)|Qt]  Ez<t,u<t [FS(xt)|Qt]�

↵

2
(1� 2(r + 2)`↵)

Ez<t,u<tkrFS(xt)k2

P(Qt)
+

`↵
2
r�

2

2P(Qt)

+
`
2
↵(d+ 2`↵r)�2

d
2

8P(Qt)
+

↵L
2
d P(Q̄t)

P(Qt)
. (22)

Choosing ↵ = 1/(4`(r + 2)) such that 1� 2(r + 2)`↵ = 1/2 and 2`↵r < 1  d, we have that

Ez<t,u<tkrFS(xt)k
2


4Ez<(t+1),u<(t+1)
[FS(xt)� FS(xt+1)|Qt]P(Qt)

↵
+ 2`↵ r�

2 + `
2
d
3
�
2 + 4L2

d P(Q̄t)


4Ez<(t+1),u<(t+1)

[FS(xt)� FS(xt+1)|Qt]P(Qt)

↵
+ 2`↵ r�

2 + `
2
d
3
�
2 + 4L2

d P(Q̄).

Recall Qt is the event that clipping does not happen at iteration t and Q is the event that clipping does not
happen for every iteration. By the law of total probability and the assumption that |FS(xt)|  B for every t,
we have that

Ez<(t+1),u<(t+1)
[FS(xt)� FS(xt+1)|Qt]P(Qt) = Ez<T ,u<T [FS(xt)� FS(xt+1)|Qt]P(Qt)

= Ez<T ,u<T

h
FS(xt)� FS(xt+1)

���Qt \Q

i
P(Qt \Q)

+ Ez<T ,u<T

h
FS(xt)� FS(xt+1)

���Qt \ Q̄

i
P(Qt \ Q̄)

 Ez<T ,u<T [FS(xt)� FS(xt+1)|Q]P(Q) + 2B P(Q̄).

As a result, we have that

Ez<t,u<tkrFS(xt)k
2


4Ez<T ,u<T [FS(xt)� FS(xt+1)|Q]P(Q)

↵
+2`↵ r�

2+`
2
d
3
�
2+

✓
4L2

d+
8B

↵

◆
P(Q̄). (23)

37

Taking expectation with respect to all randomness, i.e., E = Ez<T ,u<T , summing up from t = 0 to T � 1, and
dividing both sides by T , we have that

EkrFS(x⌧)k
2 =

1

T

T�1X

t=0

Ez<t,u<tkrFS(xt)k
2


4E[FS(x0)� FS(xT)|Q]P(Q)

↵T
+

64`C2
↵T r log(e+ ("/�))

n2"2
+ `

2
d
3
�
2

+ 8
p
2⇡ nT (L2

d+ 8`B(r + 2)) exp

✓
�

C
2
0

8L2

◆



⇣
64`[FS(x0)� F

⇤
S
] + 4C2

⌘p
r log(e+ ("/�))

n"
+ `

2
d
3
�
2

+
2
p
2⇡ n

2
"(r + 2)(L2

d+ 8`B(r + 2))p
r log(e+ ("/�))

exp

✓
�

C
2
0

8L2

◆
,

with the choice of parameters to be

↵T =
n"

16`
p
r log(e+ ("/�))

, ↵ =
1

4`(r + 2)
, T =

n(r + 2)"

4
p
r log(e+ ("/�))

.

When selecting �  2(
p
2� 1)C0/(`d), we can set C =

p
2C0 such that C � C0 + `�d/2 is satisfied. If C0 and

� further satisfy the conditions that

C
2
0 = 8L2 log

2
p
2⇡ n

3
"
2(r + 2)(d+ 8`B(r + 2)/L2)

r log(e+ ("/�))

!
, � 

L

`d3/2

 p
r log(e+ ("/�))

n"

!1/2

,

we can then obtain that

EkrFS(x⌧)k
2



⇣
64 `[FS(x0)� F

⇤
S
] + 4C2 + 2L2

⌘p
r log(e+ ("/�))

n"

=

64 `[FS(x0)� F

⇤
S
] + 64L2 log

2
p
2⇡ n

3
"
2(r + 2)(d+ 8`B(r + 2)/L2)

r log(e+ ("/�))

!
+ 2L2

! p
r log(e+ ("/�))

n"
.

We conclude that the clipping threshold C and smoothing parameter � should satisfy that

C = 4L

vuutlog

2
p
2⇡ n3"2(r + 2)(d+ 8`B(r + 2)/L2)

r log(e+ ("/�))

!
,

� 
L

`d
min

8
<

:4(2�
p
2)

vuutlog

2
p
2⇡ n3"2(r + 2)(d+ 8`B(r + 2)/L2)

r log(e+ ("/�))

!
,
1
p
d

 p
r log(e+ ("/�))

n"

!1/2
9
=

; .

The total number of zeroth-order gradient computations is nT = n
2(r + 2)"/(4

p
r log(e+ ("/�))).

F Extension to the PL Setting
Assumption F.1. The average loss FS(x) satisfies the PL inequality with parameter µ > 0. That is, it holds
that 8x 2 Rd,

krFS(x)k
2
� 2µ(FS(x)� F

⇤
S
).

38

Corollary F.2. Under the same setting of Theorem 1, when Assumption F.1 is also met, let  = `/µ be the
condition number, the last iterate of Algorithm 1 satisfies that

E[FS(xT)� F
⇤
S
] 

✓
`(FS(x0)� F

⇤
S
) + 64L2

 log

✓
n
2
"
2

 d3 log(e+ ("/�))

◆
+ 2L2

◆
d
3 log(e+ ("/�))

µn2"2
,

with the choice of parameters

↵ =
1

4`d
, T = 8 d log

✓
n
2
"
2

 d3 log(e+ ("/�))

◆
, � 

2L

`

p
log(e+ ("/�))

n"
, C = Ld.

The total number of zeroth-order gradient computations is nT = Õ(nd).

Proof. Starting from (12) in the proof of Theorem 1, with the choice that ↵ = 1/(4`d), we have that

Ezt,ut [FS(xt+1)]  FS(xt)�
↵

4
kFS(xt)k

2 +
↵

4
`
2
�
2
d
3 +

`

2
↵
2
d�

2

 FS(xt)�
µ↵

2
(FS(xt)� F

⇤
S
) +

↵

4
`
2
�
2
d
3 +

`

2
↵
2
d�

2
.

This gives the recursion that

E[FS(xt+1)� F
⇤
S
] 

⇣
1�

µ↵

2

⌘
E[FS(xt)� F

⇤
S
] +

↵

4
`
2
�
2
d
3 +

`

2
↵
2
d�

2
.

Resolving the recursion, we obtain that

E[FS(xT)� F
⇤
S
] 

⇣
1�

µ↵

2

⌘T
(FS(x0)� F

⇤
S
) +

✓
↵

4
`
2
�
2
d
3 +

`

2
↵
2
d�

2

◆✓⇣
1�

µ↵

2

⌘T�1
+ · · ·+

⇣
1�

µ↵

2

⌘
+ 1

◆

 exp

✓
�
µ↵T

2

◆
(FS(x0)� F

⇤
S
) +

`
2
�
2
d
3

2µ
+

`↵ d�
2

µ

= exp

✓
�
µ↵T

2

◆
(FS(x0)� F

⇤
S
) +

32`L2
↵T d

3 log(e+ ("/�))

µn2"2
+

`
2
�
2
d
3

2µ

=

✓
`(FS(x0)� F

⇤
S
) + 64L2

 log

✓
n
2
"
2

 d3 log(e+ ("/�))

◆
+ 2L2

◆
d
3 log(e+ ("/�))

µn2"2
,

with the choice of parameters

↵T =
2

µ
log

✓
n
2
"
2

 d3 log(e+ ("/�))

◆
, � 

2L

`

p
log(e+ ("/�))

n"
.

The total number of iteration is T = Õ(d).

Corollary F.3. Under the same setting of Theorem 2, when Assumption F.1 is also met, let  = `/µ be the
condition number, the last iterate of Algorithm 1 satisfies that

E[FS(xT)� F
⇤
S
] 

✓
`(FS(x0)� F

⇤
S
) + 64L2

 log

✓
n
2
"
2

 rd2 log(e+ ("/�))

◆
+ 2L2

◆
rd

2 log(e+ ("/�))

µn2"2
,

with the choice of parameters

↵ =
1

4`(r + 2)
, T = 8 (r + 2) log

✓
n
2
"
2

 rd2 log(e+ ("/�))

◆
, � 

2L

`
p
d

p
r log(e+ ("/�))

n"
, C = Ld.

The total number of zeroth-order gradient computations is nT = Õ(nr).

39

Proof. Starting from (15) in the proof of Theorem 2, with the choice that ↵ = 1/(4`(r + 2)), we have that

Ezt,ut [FS(xt+1)]  FS(xt)�
↵

4
kFS(xt)k

2 +
↵

4
`
2
�
2
d
3 +

`

2
↵
2
r�

2

 FS(xt)�
µ↵

2
(FS(xt)� F

⇤
S
) +

↵

4
`
2
�
2
d
3 +

`

2
↵
2
r�

2
.

This gives the recursion that

E[FS(xt+1)� F
⇤
S
] 

⇣
1�

µ↵

2

⌘
E[FS(xt)� F

⇤
S
] +

↵

4
`
2
�
2
d
3 +

`

2
↵
2
r�

2
.

Resolving the recursion, we obtain that

E[FS(xT)� F
⇤
S
] 

⇣
1�

µ↵

2

⌘T
(FS(x0)� F

⇤
S
) +

✓
↵

4
`
2
�
2
d
3 +

`

2
↵
2
r�

2

◆✓⇣
1�

µ↵

2

⌘T�1
+ · · ·+

⇣
1�

µ↵

2

⌘
+ 1

◆

 exp

✓
�
µ↵T

2

◆
(FS(x0)� F

⇤
S
) +

`
2
�
2
d
3

2µ
+

`↵ r�
2

µ

= exp

✓
�
µ↵T

2

◆
(FS(x0)� F

⇤
S
) +

32`L2
↵T rd

2 log(e+ ("/�))

µn2"2
+

`
2
�
2
d
3

2µ

=

✓
`(FS(x0)� F

⇤
S
) + 64L2

 log

✓
n
2
"
2

 rd2 log(e+ ("/�))

◆
+ 2L2

◆
rd

2 log(e+ ("/�))

µn2"2
,

with the choice of parameters

↵T =
2

µ
log

✓
n
2
"
2

 rd2 log(e+ ("/�))

◆
, � 

2L

`
p
d

p
r log(e+ ("/�))

n"
.

The total number of iteration is T = Õ(r).

Corollary F.4. Under the same setting of Theorem 3, when Assumption F.1 is also met, let  = `/µ be the
condition number, suppose max0tT |FS(xt)|  B and |F

⇤
S
|  B, the last iterate of Algorithm 2 satisfies that

E[FS(xT)� F
⇤
S
] 

✓
`(FS(x0)� F

⇤
S
) + log

✓
n
2
"
2

 r log(e+ ("/�))

◆⇣
L
2 + 16L̃2



⌘
+ 2L2

◆
r log(e+ ("/�))

µn2"2
,

where we define

L̃
2 = 64L2 log

32
p
2⇡ n

3
"
2(r + 2)(d+ (8`(r + 2) + µ)B/L

2)

r log(e+ ("/�))

!
,

and choose the parameters to be

↵ =
1

4`(r + 2)
, T = 8 (r + 2) log

✓
n
2
"
2

 r log(e+ ("/�))

◆
, C =

L̃

2
,

� 
1

2`d
min

(
(2�

p
2)L̃,

4L
p
d

p
r log(e+ ("/�))

n"

)
.

The total number of zeroth-order gradient computations is nT = Õ(nr).

Remark F.5. A more precise expression of our theoretical results, including Theorems 1, 2, and 3 and their
corresponding Corollaries F.2, F.3, and F.4, is to cover cases where T may be less than 1. Considering Theorem
3 as an example, a more accurate statement is

T = max

(
n(r + 2)"

4
p
r log(e+ ("/�))

, 1

)
, E[krFS(x⌧)k

2]  min

(
Õ

 p
r log(e+ ("/�))

n"

!
, L

2

)
.

For the sake of clarity and simplicity in presentation, this detail is omitted in the main results.

40

Proof. Starting from (23) in the proof of Theorem 3 with the choice ↵ = 1/(4`(r + 2)) and using Assumption
F.1 such that

EkrFS(xt)k
2
� 2µE[FS(xt)� F

⇤
S
]

= 2µE[FS(xt)� F
⇤
S
|Q]P(Q) + 2µE[FS(xt)� F

⇤
S
|Q̄]P(Q̄)

� 2µE[FS(xt)� F
⇤
S
|Q]P(Q),

we have the recursion that

E[FS(xt+1)� F
⇤
S
|Q]P(Q) 

⇣
1�

µ↵

2

⌘
E[FS(xt)� F

⇤
S
|Q]P(Q) +

↵

4
`
2
�
2
d
3 +

`

2
↵
2
r�

2 + (L2
d↵+ 2B)P(Q̄).

Resolving the recursion, we obtain that

E[FS(xT)� F
⇤
S
|Q]P(Q) 

⇣
1�

µ↵

2

⌘T
(FS(x0)� F

⇤
S
) +

2

µ↵

✓
↵

4
`
2
�
2
d
3 +

`

2
↵
2
r�

2 + (L2
d↵+ 2B)P(Q̄)

◆

 exp

✓
�
µ↵T

2

◆
(FS(x0)� F

⇤
S
) +

`
2
�
2
d
3

2µ
+

`↵ r�
2

µ
+

(2L2
d+ 4B/↵)P(Q̄)

µ
.

Since the event Q happens with high probability, the above results can be refined to

E[FS(xT)� F
⇤
S
] = E[FS(xT)� F

⇤
S
|Q]P(Q) + E[FS(xT)� F

⇤
S
|Q̄]P(Q̄)

 E[FS(xT)� F
⇤
S
|Q]P(Q) + 2B P(Q̄).

Therefore, we can obtain that

E[FS(xT)� F
⇤
S
]  exp

✓
�
µ↵T

2

◆
(FS(x0)� F

⇤
S
) +

32`C2
↵T r log(e+ ("/�))

µn2"2

+
4
p
2⇡nT (L2

d+ 2B/↵+Bµ)

µ
exp

✓
�

C
2
0

8L2

◆
+

`
2
�
2
d
3

2µ

=

✓
`(FS(x0)� F

⇤
S
) + L

2 log

✓
n
2
"
2

 r log(e+ ("/�))

◆◆
r log(e+ ("/�))

µn2"2

+
32`C2

↵T r log(e+ ("/�))

µn2"2
+

`
2
�
2
d
3

2µ
,

with the choice of parameters

↵T =
2

µ
log

✓
n
2
"
2

 r log(e+ ("/�))

◆
, C

2
0 = 8L2 log

32
p
2⇡ n

3
"
2(r + 2)(d+ (8`(r + 2) + µ)B/L

2)

r log(e+ ("/�))

!
.

When selecting � to be

�  min

(
2(
p
2� 1)C0

`d
,

2L

`d3/2

p
r log(e+ ("/�))

n"

)
,

we can set C =
p
2C0 such that C � C0 + `�d/2 is satisfied, and thus

E[FS(xT)� F
⇤
S
] 

✓
`(FS(x0)� F

⇤
S
) + log

✓
n
2
"
2

 r log(e+ ("/�))

◆⇣
L
2 + 16L̃2



⌘
+ 2L2

◆
r log(e+ ("/�))

µn2"2
,

where we define

L̃
2 = 64L2 log

32
p
2⇡ n

3
"
2(r + 2)(d+ (8`(r + 2) + µ)B/L

2)

r log(e+ ("/�))

!
.

The total number of iteration is T = Õ(r).

41

	Introduction
	Related Works

	Preliminaries
	Differential Privacy
	Zeroth-Order Optimization

	DP-GD with Zeroth-Order Gradients Suffers in High Dimensions
	Direct Integration Leads to an O(d3/2) Rate
	Rate Improves to O(d) under Low Effective Rank

	DPZero: Nearly Dimension-Independent Private Zeroth-Order Optimization
	Experiments
	Synthetic Example
	Fine-tuning on RoBERTa
	Fine-tuning on OPT

	Conclusion
	Additional Related Works
	Additional Experiment Details
	Synthetic Example on a Quadratic Loss
	Private Fine-Tuning of the Language Model RoBERTa
	Private Fine-Tuning of the Language Model OPT

	Technical Lemmas
	Detailed Proof and Analysis of DPGD-0th (Algorithm 1)
	Detailed Proof and Analysis of DPZero (Algorithm 2)
	Extension to the PL Setting

