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Abstract

We consider a cooperative learning scenario where a collection of networked agents with indi-
vidually owned classifiers dynamically update their predictions, for the same classification task,
through communication or observations of each other’s predictions. Clearly if highly influential
vertices use erroneous classifiers, there will be a negative effect on the accuracy of all the agents
in the network. We ask the following question: how can we optimally fix the prediction of a few
classifiers so as maximize the overall accuracy in the entire network. To this end we consider an
aggregate and an egalitarian objective function. We show a polynomial time algorithm for optimiz-
ing the aggregate objective function, and show that optimizing the egalitarian objective function
is NP-hard. Furthermore, we develop approximation algorithms for the egalitarian improvement.
The performance of all of our algorithms are guaranteed by mathematical analysis and backed by
experiments on synthetic and real data.

1 Introduction

With the breakthrough of AI technologies and the availability of big data, we are witnessing a flourish
of AI models that are owned by different entities and trained by using private or proprietary data,
even for generic purposes such as voice recognition, natural language processing or image segmentation.
These models do not stay in isolation. There is a natural opportunity for these models to interact with
each other and collectively improve their performance.

One of the concrete application scenarios is in cybersecurity, where security agents in a network
collectively detect anomalous traffic patterns that are potentially associated with cyber attacks. These
security agents may be affiliated with different entities in the network. They may or may not be able
to directly share their collected data due to privacy or other logistic reasons but can share their beliefs
on whether the network is under attack or not, and if so, which type of attack. In such a scenario,
improving the model of one agent by collecting more data, recruiting domain experts to provide high
quality labels of observation data, or retraining using a more powerful model can help to improve
the quality of prediction locally. As these security agents stay on a network, they naturally have
the opportunity to exchange their assessments. The quality improvement at one agent spills to other
agents in the network.

Another application scenario is in online social networks. With generative Al, it is now a lot easier
to create fake contents such as images and videos. Consider an online social network in which agents
share pictures and comment on them, e.g., Instagram. Assume that some of these pictures may be Al
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generated. While everyone can have his or her opinion on whether a wide-spreading picture is real or
fake, the participants who are more skilled in image generation or who have access to powerful models
can help the rest of the network to discern real ones and fake ones.

It is not new to utilize data and models in a distributed setting. With the explosion of personal data
from smartphones and wearable devices and the increasing awareness of data privacy, decentralized
learning, as opposed to users sharing their data to a central enterprise, has gained popularity in recent
years. Federated learning and gossip learning are such examples. However in this scenarios, the
decentralized agents are still tightly coupled — they use the same model architecture and sometimes
exchange gradient or model parameters directly. In our work, we consider a loosely coupled, cooperative
setting where agents share a general task requirement and they select individual model parameters
and architecture, train their models on their private data. Such agent autonomy is a necessity when
the agents are not affiliated with the same ownership. In addition, we consider the agents sharing their
predictions with other agents preferably those within proximity or with established trust relationships.
We call this model cooperative learning in a social setting. FEssentially each agent has her own view
of the world and through exchanging predictions with others, collectively we hope to improve the
accuracy for all agents.

When only predictions from other agents are shared, it is up to the individual agent to decide
how to update their models. On a first-order basis, we can assume for now that the outcome of
such information sharing can be approximated by a weighted linear combination of the agent u’s
own assessment and the predictions from other neighbors. The weights can be either fixed or time-
varying, e.g., based on the trust level of neighbors. This leads to two natural models, DeGroot| (1974))
and [Friedkin & Johnsen| (1990)), originally proposed in modeling opinion dynamics in social network.
In DeGroot model, each agent’s prediction is a simple weighted linear combination of neighbors’
predictions. When the weight coefficients are fixed (or when the updates are frequently enough for
time-varying weights), all agents converge to global consensus. In FJ model, each agent incorporates
in the update step a vector of personal assessment (which can be guided by the difference of local
data distribution). The model still converges, and each agent arrives at possibly different predictions,
reflecting adaptation to individual local data distributions.

The generic framework captures how a group of networked agents build their respective models
collectively. When new training data is introduced to one agent in the system, the other agents
indirectly receive the benefit of it. Therefore it is an interesting question to analyze the collective
benefit and also ask the optimization question of where to inject new training data to maximize the
collective benefit. This is the research question we focus on in this paper.

1.1 Related Work

Decentralized learning Training a single high-quality global model using decentralized data and
computation has been studied extensively in decentralized optimization (e.g., for kernel methods|Colin
et al. (2016), PCA |Fellus et al. (2015), stochastic gradient descent Blot et al. (2016)), multi-armed
bandit Lazarsfeld & Alistarh| (2023)) and generalized linear models He et al.| (2018)). Federated learn-
ing [Kone¢ny et al.| (2015} 2016aib)); McMahan et al.| (2017)); [Krishnan et al. (2024]) uses a client-server
architecture and considers multiple local models, trained using respective local data, with model pa-
rameters aggregated and shared through a central global model. Gossip learning Ormandi et al.| (2013]);
He et al.| (2018); [Heged{s et al.| (2019, |2016)); |Giaretta & Girdzijauskas (2019), on the other hand, does
not assume a central node. Instead, each node updates its own local parameters via training and then
its updated parameters are shared by information exchange with other nodes in the network. This
setting removes the single point of failure in the system and thus is more robust and scalable, without
compromised performance [Hegediis et al.| (2016, |2021). These gossip learning protocols consider the
exchange of local models (or crucial parameters such as local gradients) directly. This requires that
all agents participating in gossip learning use the same type of models, which is a limitation. It is also
known that models or gradients can reveal knowledge of the training data (thus raising concerns to
data privacy, see a recent survey here |Zhang et al. (2023)).

Social learning The study of learning and decision making in a social network has been studied
for longer than a decade. In these works, agents predict the status of the world, and based on their
prediction they take an action to maximize a utility function. In a social setting these decisions



are not made in a void, as each agent observes the prediction of her neighbors or their actions, and
henceforth updates her prediction. These models are vastly studied by economists who are interested
in understanding whether the agents’ decisions converge to the same value (consensus), how fast is the
rate of convergence, whether an equilibrium exists, and if the consensus leads agents to an optimal
decision (learning) |Acemoglu et al.| (2011); Arieli et al. (2021); |Golub & Jackson| (2010); (Golub &
Sadler (2016); [Rahimian & Jadbabaie| (2017)); Hazta et al. (2019); Eckles et al.| (2019); Bindel et al.
(2015).

Given a social network, various works tackle optimization problems in which an algorithm makes
minimal changes in the network to maximize the improvement of a desirable property. For instance,
various works consider the problem of maximizing information diffusion by seeding information in a
number of selected source vertices [Kempe et al. (2003); [Seeman & Singer| (2013)); |[Eckles et al.| (2019));
Garimella et al. (2017) or by adding links [Borgs et al.| (2014); [D’Angelo et al.| (2019). Some works
optimally insert links into a network to maximize the information flow between two groups of nodes
Cinus et al.| (2023); Zhu et al.| (2021)); |Adriaens et al. (2023); Haddadan et al. (2021} [2022)); [Santos
et al.| (2021), and others optimaly alter innate opinion of users in the FJ model to reduce polarization
or disagreements |Tsioutsiouliklis et al. (2022); [Abebe et al. (2018]); Musco et al. (2018).

Our work bridges the above lines of work. We study a framework in which agents are performing
learning tasks and exchange their predictions until each makes a final decision. Unlike prior decentral-
ized learning works, our agents do not necessarily use the same model nor they share any parameters,
they solely exchange their predictions. In this sense, our framework falls into the context of social
learning. However, instead of studying problems such as existence of consensus or convergence rates,
we focus on the problem of optimally injecting information to a selected subset of agents to improve
the overall betterness in the network. Another difference with social learning framework is that we do
not consider one fixed model of information exchange, in contrast, we assume a general linear model for
information exchange. Therefore, our methods are applicable to any linear model whether it describes
users of a social network, each evaluating the truthfulness of an online content, or whether it describes
intelligent systems in which agents cooperate for a classification task.

1.2 Summary of Contributions

Motivated by prior works on decentralized and social learning, we consider a new framework called
cooperative learning in a social setting. In this framework, we consider the problem of optimally
selecting k agents and improving their innate predictions to maximize the overall network improvement.
We consider both an aggregate objective function and an egalitarian one, and assume different levels
of access to the model’s parameters which are (1) the joint probability distribution of the classifiers
forming agents’ innate predictions, denoted by 7, and (2) the expressed social influence matrix, denoted

by W.
1. We provide a polynomial time algorithm for the aggregate improvement problem. This algorithm
uses only the innate error rates and W, and it does not need any additional knowledge of 7; see

section [4.1]

2. We show that solving the egalitarian improvement problem is hard: it is NP-hard to solve it
exactly even if both parameters are entirely known. We also show that if W and only the innate
error rates are available, without any further assumption even finding an approximation solution

is hard; see theorems[A.3 and .

3. We provide two approximation algorithms for the egalitarian improvement problem. The first al-
gorithm, EgalAlg is a greedy algorithm and needs full access to 7. The second one, EgalAlg®PP¥),
approximates the greedy choice and only needs access to the innate error rates, but it assume
that the innate predictions are pairwise independent. We show that with some modifications
EgaIAIg(appx)works under the assumption that the vertices have group dependency; see sec-

tion 4.2

4. We compare the two algorithms for egalitarian improvement by running experiments on real and
synthetic graphs and compare their performance to four benchmark methods. Our experiments
show that by modifying only a few vertices, we succeed in increasing the accuracy of a high
percentage of network’s agents; see Figure



Figure 1: Comparison of # modified nodes for Accuracy > 90% on different dataset (lower is better).
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2 Models and Problem Definition

Consider a set {2 whose elements are labeled as +1 or —1, i.e., there exists a function y : Q —
{—1,+1} such that for any a € Q, y(a) € {—1,+1} is the (true) label of a. Consider a set of agents
V ={v1,v9,...,v,} who lack access to the true labels. Given a € 2, each agent v; uses a classifier g;
to predict the label of a, i.e., we have 1, 9s,...,J, where for any i, §; : @ — {—1,+1}. The innate
error rate of each agent v; is defined as:
err(vi) = E [1(gi(a) #y(a))] = P_(gi(a) # y(a)).
a~$2 a~Q)

We assume that this error is independent of true label. This assumption merely makes our analysis
simpler and without it our results can be generalized with trivial modifications.

These predictions form the innate assessment of the agents, which we denote by z(® (i,a), for
arbitrary i and a; thus, 2(9(i,a) = §;(a). After, agents communicate with each other through a time
varying averaging process. At each point of time, each agent v; communicates with a subset of other
agents N (v;), and her assessment will update as:

a)=Ci- | >0 W (Ga) +augila) |
v EN ) (v;)

where W denotes the influence of v; on v; at time ¢, ; is v;’s stubbornness, C; is a normalizing
constant and 2=V (i, a) and 2 (i,a) respectively denote v;’s assessment before the tth round of
communication and after it.

Formally, given a € Q, let y(a) = (91(a),92(a), ... gn(a)) and 2z (a) =
sequence of n X n matrices (W(t)) _a=(a,az,...,a,) and c® = (C£ C Lo Cﬁb)). For any
t > 1 we have:

y( ) Assume having a

2(a) = €V & (W2 D (0) + a0 3(a) . 1)

where ® denotes the Hadamard product which is defined to be the vector (matrix) obtained from the
pairwise product of the elements in two other vectors (matrices). E Let z*(a) = (2*(1,a),2*(2,a),...,2*(n,a))
be the vector that the above process converges to i.e.,
* — 1 (t)
z"(a) tlggoz (a) .

We call z*(a) the the expressed prediction vector. We assume that this limit has the following closed
form:

IV eRT" st VaeQ, z*(a) = Wy(a)T . (2)

R* being the set of all non-negative real numbers. We call W the expressed (social) influence matrix.

The above assumption is indeed proven to hold true in many well studied models. To name a few:
Let A,B € R"*™ and C = A® B. We have that C € R"*™ and C;; = A;; - B;j




DeGroot Model (DeGroot, 1974) Given a row-stochastic matrix W € R*"”", DeGroot Model
evolves as:

z\!) (a) = Wzl L (a), 2! (a)

DeGrooT DeGrooT DeGrooT

y(a)7

It is known that 25 cnoor (@) = TI9(a) |

where II is a block diagonal matrix with blocks I, Ils, ..., IIx, and each block corresponds to a strongly
connected component of the graph corresponding to W. In each block all rows are identical.

Friedkin—Johnsen (FJ) Model (Friedkin & Johnsen| 1990) Given an arbitrary matrix with
non-negative weights W, for each i € [n] let C; = 1/(1+ -, nrsy Wiyj)- FJ model evolves as follows:

2} (a) = C o (Wal; V(@) +5(0)) , 2(%)(a) = 3(a).

It is known that if W is symmetric the FJ model converges to the following closed form:
zyy(a) = (I + L)7'9(a),

where L is the combinatorial Laplacian of the indirected graph corresponding to W and I denotes the
identity matrix.

Both DeGroot and FJ model use a constant matrix W in their evolution. The following shows a
time varying evolution:

Finite time Models Assume a finite sequence of row stochastic matrices W, Ww® . W) for
any t > T, let W) be the identity matrix and let o be all zeros vector. It is straightforward to see
that the general equation of eq. will converge to

T
Z;INITE(Q) = Wy(a), W = H W(l) .
i=1

2.1 Statement of Problems

Assume any time varying averaging model which converges to a close form as eq. . Thus, for a given
a € Q and v; € V the expressed prediction of v; on a is equal to

2*(i,a) = Zv’vijgj(a) .

Note that the value of z*(i,a) is a function of the expressed social influence matrix W as well as the
quality of all agents’ classifiers which is formulated in the joint probability distribution of y. If the
true label y(a) equals +1, the positive values of z*(i,a) are preferable, otherwise negative values of
z*(i,a) are better. In other words, we would like y(a) and z*(i,a) to have the same sign. We define
Z(iya) : V x Q= [-1,1] as follows:

Z(i,a) =yla) - 2*(i,a) .
The larger values for Z(i,a) correspond to the fact that agent v; makes a good prediction on an object

a. If Z(i,a) < 0 we consider this prediction faulty.

Improving quality of selected classifiers Assume that we have a tool to improve the quality of
classifiers. Formally, let ¢ € (0, 1] be a given constant. For any arbitrary agent v; we may improve ¢;
to g; : 2 — [0, 1] as follows:

Va € Q, gi(a) = (1 = ¢)gi(a) + pyla) . (3)

We would like to improve the quality of a selected subset of agents’ classifiers (innate predictions) to
maximize the overall quality of expressed predictions among all agents. Formally we are interested in
selecting a subset S of k agents, i.e., S C V, |S| = k and improve the quality of the classifier as follows:

i((l) if (Y ¢ S

<

Va € Q, fila) = {(1 —©)iia) +py(a)  ifv; €S "



Let . . N . . .
Znew(za CL) = Z Wijyj (a) & Zﬂew(zv a) = y(a) : Znew(zv a) .
j=1

In the first problem that we study, S is selected to maximize an aggregate objective function:

g8 (g) & Y Zuewlisa) - Z(i,a)
i=1

(5)

E
a~)

The above objective function is great, but it has the shortcoming of any other aggregate objective
function: it is possible that one agent benefits enormously from it at the cost of many other agents
getting extremely little.

Therefore, we also study the following egalitarian objective function in which we count the expected
number of agents whose faulty predictions will improve.

(egal) r oy &
g rs)= B

> 1(Z(i,a)<0 A Z(i,a)<Znew(i,a))] :
i=1

We are now ready to formally state the problems.

Problem 1 (Aggregate improvement through improving k selected agents). What is an optimal way
to select a subset S C V' and update their innate predictions as eq. to mazimize the following

objective function: (age)
OPT®@e8) — max G*(9).

SCV;|S|=k
Problem 2 (Egalitarian improvement through improving k selected agents). What is an optimal way
to select a subset S C V and update their innate predictions as eq. to mazimize the following

objective function: (egal)
opTle) —  max  G'*#(9) .
SCV;|S|=k

The above process has two main parameters: a joint probability distribution 7 : Q x {—1,+1}V —
[0,1], where for any a € Q and b € {—1,+1}", 7(a,b) = P(A"_,9:(a) = b;) as well as W which is
the expressed influence matrix. While in most applications W is either available in closed form (e.g.,
for DeGroot, FJ or finite models) or it can be approximated using iterative methods, our access to
m depends on assumptions which may vary depending on our application. In fact, we present our

algorithms assuming different access levels to the joint probability distribution 7.

3 Summary of Results

In this section, we present a summary of our main results. Let us first list the assumptions we make
on the access level to m and W:

Assumption 3.1 (Best scenario). Assume having complete knowledge of .

The above assumption is reasonable if ) is a small finite set. For instance in cases where ) can be
partitioned to a few types and the agents make the same predictions on any element of the same type,
e.g., see DeMarzo et al| (2003); [Hazta et al.| (2023)); |Gaitonde et al.| (2021)

Clearly, it is possible that the above assumption does not hold true. However, the algorithm needs
to have some knowledge of the probability distribution of innate predictions.

Assumption 3.2 (some knowledge of 7). Assume having some knowledge of classifiers’ depen-
dence/independence and the innate error rates.

Assumption 3.3 (minimum knowledge of 7). Assume having only knowledge of innate error rates
{err(vi) }v,ev-



The summary of our main results is that problem [I]is easy, i.e., we show an exact polynomial time
algorithm for it assuming minimum knowledge of 7. On the other hand, we show that problem [2] is
hard, i.e., we show that exactly solving it is NP-complete even assuming full knowledge of m. Note
that this hardness also holds for the cases in which we have less knowledge of 7. Later, we show greedy
algorithms for approximately solving it under different assumptions.

Initially, in all of our results we assume access to the closed form of W. We then show that the
guarantees still hold with a slight change when an approximation of W is given.

Assumption 3.4 (knowledge to an approximation of W). Assume having knowledge of W such that
W] <e,
1
where |-|; is the ¢; norm and € a precision parameter.

3.1 Optimizing the aggregate objective function

Theorem 3.5. There is an algorithm with run-time complexity © (n?) which given W and {err(v;)}1—,
as input parameters outputs S such that g(agg)(S) = OPT(es8),

Remark 3.6. Let ALG be the algorithm whose performance guarantees are presented in theorem [3.5
Let S be the output of ALG when W is given to it as input parameter, and let S’ be the output if W
is given. We have:

g(egal) (Sl) Z g(egal) (S) — 9%ke .

We present this algorithm in section and appendix [A.T]

3.2 Optimizing the egalitarian objective function

We now present our results about Problem

We call a matrix with no negative entry non-negative. In DEGROOT model if W is non-negative,
W is also non-negative and in FJ model if W is non-negative and symmetric, W is also non-negative
(Chebotarev & Shamis, 2006)) .

In this section we assume that W is non-negative.

Theorem 3.7. Under assumption@ and assuming |Q| is polynomial in n , Problem@ 1s NP-hard.

Since Problem [2]is NP-hard, we concentrate on finding an approximation algorithm for it in different
scenarios.

Approximate solution with full access to 7. Assume that € is finite and for any a € Q and
b e {—1,41}" we can evaluate the probability of the event A\?_, §:(a) = b(7).

Theorem 3.8. There is a greedy algorithm with runtime © (|Q|n2k) which by receiving ™ and W as
input parameters outputs S satisfying

G=*V(8) > (1 — 1/e)OPT(e&.

A pseudocode of our algorithm, EgalAlg is presented in appendix [A.3] an overview of main ideas
is presented section Note that the runtime of EgalAlg grows linearly in |)|. Later, we present
EgalAlg®PP) whose complexity does not grow with || (see section . Therefore, even if 7 is fully

(appx)

known, by employing EgalAlg , we may prefer to suffice to a lower quality approximation to gain

better time complexity.



Approximate solution with minimum information While the previous result shows a constant
approximation, the following theorem shows that by only having the innate error rates {err(vj)};‘=1
and W we are not able to achieve any good approximation.

Theorem 3.9. Any solution to problem |2 which only uses W and innate error rates {err(vj)}i—,
makes an error which can be as large as Q(n).

We restate and prove the above theorem in theorem [A.4

Motivated by the above results, we now present our results when more knowledge about the clas-
sifiers are available. For instance, in addition to knowing the error rates we assume that the classifiers
are pairwise independent.

Using these assumptions we design EgaIAIg(
mance.

aPPX) and show theoretical guarantees for its perfor-

Approximate solution assuming independence.  Assume that the classifiers {g; },,cv are pair-
wise independent. We have:

Theorem 3.10. There is a greedy algorithm, EgalAlg®PP | with run-time ©(n3k) which by receiving

{err(vi)}v,ev and W as input parameters outputs S satisfying
g(Egal)(S) > [(1 _ 1/6) _ Aind] . OPT(egal) ,

where A is a parameter depending on the network. If the network is nicely structured A" = o(1);
see section [{.2.1] .

We generalize the assumption of pairwise independence to group dependence as follows:

Approximate solution assuming group dependence. Assume that some agents belong to
opposing groups R and B and some agents are colorless; they are in W. The classifiers of the agents in
W are independent, and the classifiers of R and B agents have positive intra-correlation and negative
inter-correlation as described in definition 4.7l This model describes a situation when have a classifica-
tion task that can be influenced by an exogenous factor, e.g, their position or political leaning. Clearly
by setting V' = W we will have the previous model. In this case we have:

Theorem 3.11. There is a greedy algorithm, EgalAlg®PP) | with run-time ©(n®k) which by receiving
individual and group error rates and W as input parameters outputs S satisfying

g(egal)(s) > [(1 . 1/6) - Agr} . OPT(egal) ,

where A® > A s o parameter depending on the network and the dominance of colors R and B on
other agents. Not surprisingly, A8" becomes closer to A as the number of colorless agents increases.
If the network is nicely structured and nicely colored A8" = o(1); See section .

The following remark holds ture both under pairwise Independence and group dependency:
Remark 3.12. Let S be the output of EgalAlg®™)when W is given to it as input parameter, and let
S’ be the output if W is given. We have:

(') > G ()1 —ske)

4 Algorithms

In this section we present our algorithms. All of the algorithms are greedy. We provide an exact
solution for problem [I] in section In section because of the NP-harness of problem [2] we
present a constant approximation algorithm for it; we call this algorithm EgalAlg . We then present
EgalAlg®P¥) which has a lower time complexity but worst approximation guarantees assuming pairwise
independence of agents. In this case, our approximation ratio depends on the network structure. In
section we modify EgalAlg®P) so that it works under a milder assumption formalized as group
dependency.
Pseudocodes for our egalitarian algorithms are presented in appendix [A.3



4.1 The aggregate objective function

For any vertex v; let’s define the influence score and its approximation by Inf(v;) = Y7 | Wijerr(vi) .
The following lemma is proven in appendix [A.T!

Lemma 4.1. Let U = {uy, ua, ..., ux} be top-k vertices with highest value of >
that: G () = opT(eee)

uy €U Inf(u;). We have

Proof of Theorem and Remark With the above lemma, we design an algorithm that
for all v;s calculates their influence score, and outputs the top-k. The complexity of such algorithm is
O(n? + nlogn + k) = ©(n?). In appendix Ewe also prove Remark

4.2 The egalitarian objective function

Optimizing the egalitarian function is NP-hard (See theorem IE) We show that G . 2V — [0, n]
is monotonic and sub-modular (See lemmas E and . Thus, a greedy algorithm will provides a
(1 —1/e) approximation Nemhauser & Wolsey]| (1978)).

We now concentrate on obtaining the greedy choice. Formally, we define the function gr(S) : 2V —

V as follows: gr(S) = argmax g(egal) (S U {u}) _ g(Egal)(S) ) (6)
ueV

The following lemma is proven in appendix

Lemma 4.2. For any S CV we have:

gr(S) = argmax Z AGi(S,u) , (7)
u€v i=1:n
Wij?fo

where AG;(S,u) is defined to beﬂ

By | 260 <0n | A s@=is(@) | nv@in
W0

Proof of theorem Our proposed algorithm, EgalAlg starts with S = (. Tteratively, gr(S) is
added to S until |S| = k. Assume that Q is finite and we have access to 7. Using lemma we
obtain the greedy choice as follows: for any a € Q2 and v; € V, we evaluate the validity of the event

(/\ ves y(a)=y;(a) | Ay(a)#gu(a). If this event is valid, we calculate Z(i,a) and verify Z(i,a) < 0
W;i#0

which takes n steps. We find best u by using eq. and iterating over all choices of i € V and a € .
The total runtime for k iterations is ©(|Q|n?%k).

4.2.1 Independent classifiers

In this section we consider the case where the classifiers {g;},,cv are pairwise independent which
falls into the scenario in which we have some knowledge of 7w (Assumption . In this case we may
estimate the greedy choice as a function of {err(v;)}?_; and W.

Let’s state the main result of this section and then we present the steps that lead us to the selection
of the greedy choice:

Theorem 4.3. Let S be the output of a greedy algorithm which starts by taking S = 0 and for k steps
keeps updating S to S U {g} where
= argmax El S,u) ,
g = argn > AGi(S,u)

1=1n
Wiu¢0

2We use A and V to denote respectively the logical operations conjunction and disjunction which are “and” and “or”.



and Z@(S, u) is defined in lemma we have:
g(Egal)(S) > [(1 _ 1/6) _ Aind] . OPT(egal) ,
with A" = ©(|A|) and A is the set of ambiguous vertices.

Ambiguous vertices Consider the partitioning of V' with V¥ as low error vertices and V'~ as high
error vertices:

VT ={v; |err(v;) <1/2} &V~ = {v; | err(vj) > 1/2}
with respect to this partition we define the following vectors whose elements are in [0, 1]:

ET = (1—2err(vy)) & &7 = (2err(v;) — 1)

’UjEVv+ v; €V

For any arbitrary vertex v; € V, low error and high error vertices contribute in the value of Z(i,a)
through the following coefficient vectors:

W+ (W )v evi & Wii = (Wij)vjev—
The ambiguous vertices are those who are not dominated by neither V* or V~. Formally,

Definition 4.4. [Ambiguous vertices| Let W; = (W;1, Wia, ..., Wiy), ||, denote the £ norm and (-, -)
dot product. We call a vertex v; € V' ambiguous if it satisfies:

’<Wr,s+> WL E)
|Wi|2 |WZ’2

A network is nicely structured if it has no ambiguous vertex.
If a vertex is non-ambiguous we can estimate the gain associated to it very precisely:

Lemma 4.5. Let AG;(S,u) and @(s, u) be as defined respectively as in lemma@ and lemma E
If a vertex is non-ambiguous we have:

]Agi(s, u) — AG(S, u)’ <o(n7Y) .

We now present the following lemma related to the approximation of greedy choice. All the proofs
and details are presented in appendix [A.4.

Lemma 4.6. Let AG;(S,u) be as lemma @ Let @(S, u) : 2V x V = [0,1] be defined as follows:

K\gi(S, u) £ 1(V,(S,u) < 0)err(u) H (1 —err(vy)) .

’UJ'ES
Wij;éo
We have:
N ‘111(57 U)2
) _ . < W\
AG(S,u) — AG(S, u)’ < exp ( e ) :
where
U,(S,u) = —Wiy + Z WZJ + Z le [1— 2err(j)] .
v; €S j=lin
J&ZSU{u}

Proof of theorem [3.10 and remark [3.12] A complete pseudocode of our proposed algorithm,
EgaIAIg(appx) is presented in appendix|A.3 (algorlthm . It is easy to see that the runtime is dominated
by ©(n3k). Note that the correctness of theorem is directly concluded from theorem 4.3] - by setting

|A| = 0. We present the proof of theorem [4.3| and remark in appendix
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4.2.2 Group dependent classifiers

We now consider a case when agents are either red, blue or none (white). The agents who are red or
blue agent either all follow a group decision, or they independently follow an individual decision. The
group decision of the blue agents is always the opposite of the group decision of red agents.

Definition 4.7. [Group Dependence|] Assume that the set of agents V' can be partitioned as V =
RUBUW. We assume a set of classifiers gindv, gindv - gindv. ) 5 1 41} which are pairwise
independent. Furthermore, we assume two group classifiers ¢% , 9% : Q@ — {—1,+1} which satisfy:

Va € Q, 9% (a) # 9% (a) .

Given a constant p € [0, 1], these classifiers construct {g1, g, ..., Jn} as follows:
With probability p the red and blue agents follow their groups’ decision, i.e.,

Vo, € R, gi(a) = 9% (a) AV € B, §i(a) = g5 (a)

And the white agents independently follow their individual decisions, i.e, for all v; € W, g;(a) =
)
Alternatively, with probability 1 — p , all agents independently use their individual classifiers. i.e,

Yo €V, gi(a) = " (a) .

In the above setting we use the following notation: For any v; € V we define erri“d"(vj) =
P (5" (a) # y(a)), and

err(R) =P (9 (a) # y(a)) & err(B) =P (j5 (a) # y(a))

It is immediate from the definition that 1 — err(B) = err(R).

In this setting, the estimation of AG;(S,u) is more involved and is presented in section In
this case, our greedy algorithm uses {err™dV(v;) 7, err(R), err(B) and W or its approximation. The
final result follows:

Theorem 4.8. Let S be the output of a greedy algorithm which approximates greedy choice as defined
in lemma [A12. We have:

G =V (8) > [(1— 1/e) — A%] - OPT(& |

where A8 = O(p| AV| + (1 — p)|Al), A is the set of ambiguous vertices defined before and AW is the
set of VW-ambiguous vertices.

W-Ambiguous vertices. As in section [4.2.2] we partition W to low error vertices W+ and high
error vertices W™, Similarly we define £V, E¥7 and for any v; € V, WY and W)V~; for details
see appendix We define:

Definition 4.9. [ W-Ambiguous vertices | Let WY = (W;;)y,ew, and |-|, be the £ norm and (-, -)
be dot product.
We call an agent v; € V', W-ambiguous if it satisfies

< 4y/logn + AW; ,

'<WW+,ew+> e

where AW, = ‘ZvjeR Wij — Zvjeg Wi

. A network is nicely colored if no vertex is WW-ambiguous.

Proof of theorem [3.11]and remark [3.12 Pseudocode and details are presented in appendices[A.3]
E and [A.5.5 Theorem [3.11|can be directly concluded from theorem by setting |A| = ’AW| =0.
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5 Experiments

In this section, we empirically validate the effectiveness of our proposed methods for problem [2 through
a series of meticulously designed experiments. We test our algorithms EgalAlg and EgalAlg®PP%) (pseu-
docodes in appendix benchmarked against random selections together with three heuristic meth-
ods: selecting nodes based on degree (Degree), innate error rate (ErrRate), and the product of degree
and error rate (DegXErr).

Synthetic Datasets Synthetic data is generated with three components: a random graph G, a
weight matrix W and initial opinions §. To generate GG, we employ Erdés-Rényi model (ER) [Erdos
& Rényi (1959), Barabasi-Albert model (PA) [Barabasi & Albert| (1999) and Watts-Strogatz model
(WS) \Watts & Strogatz| (1998). We generate the weight matrix W using the FJ model. Each ¢;(a) is
sampled from Bernoulli distribution with a randomly chosen p;.

Table 1: Comparison of experiments on five methods Egal=EgalAlg, Appx=EgalAlg®?) Rand=Random
selection.

Datasets
Score Method | ER PA WS RandW | BIO CSPK FB WIKI
(128) (128) (128) (128) (297) (39) (620) (890)
Rand 0.11 0.88 0.53 0.18 0.80 0.63 0.35 0.48
Degree 0.08 0.96 0.42 0.12 0.78 0.84 0.36 0.49
Acc@ ErrRate 0.22 1.00 0.76 0.47 0.96 0.94 0.53 0.54
k=log(n) DegXErr | 0.18 1.00 0.89 0.37 0.96 1.00 0.72 0.78
Appx 0.18 1.00 0.87 0.41 0.94 0.84 0.62 0.64
Egal 0.27 1.00 1.00 0.58 1.00 1.00 0.88 0.96
Rand >100 7 10 34 8 10 94 22
Degree >100 4 17 45 9 4 93 26
#k @ ErrRate 71 2 7 18 3 3 19 13
Acc>90% | DegXErr | 71 2 6 18 3 3 32 7
Appx 61 1 5 18 3 5 30 15
Egal 55 1 3 12 1 1 9 2
Rand 83 8 16 61 15 14 37 55
Degree 83 5 28 64 14 6 20 54
#k @ ErrRate 46 3 10 31 5 4 14 26
Acc>T75% | DegXErr | 51 3 8 36 4 3 8 16
Appx 47 2 9 35 6 7 11 39
Egal 36 2 4 19 2 2 4 3

Real-World Graphs We also evaluate our methods on four diverse real network datasets |Rossi &
Ahmed|(2015), BIO Duch & Arenas| (2005); Bader et al. (2012), CSPK Bader et al. (2013)), FB [Rozem-
berczki et al. (2019)), WIKI|Leskovec et al. (2010). Here we also apply finite step FJ model to construct
weight matrix W and randomly sample ¥ from Bernoulli distributions.

Comparison of Algorithms on Dataset=ER Comparison of Algorithms on Dataset=FB

Accuracy
Accuracy

—e— Random Selection

Degree Selection
—— Error Rate Selection
—e— Degree*Error Selection 0.2
—+— Greedy Algorithm Approximate
—=+— Greedy Algorithm

—e— Random Selection
Degree Selection
—— Error Rate Selection
—e— Degree*Error Selection
—+— Greedy Algorithm Approximate
—=— Greedy Algorithm

100 [ 100

) ) E) B)
k := #selected nodes for intervention

Figure 2: Algorithms performance on ER (top) and WIKI (bottom).

20 ) E) B
k := #selected nodes for intervention

We define our accuracy Acc to be the achieved egalitarian gain, normalized by its upper bound.
For each dataset, we progressively increase k. Obviously, as k increases, the accuracy should increase.
Therefore, we fix the threshold value k = log(n) for different datasets and compare the corresponding
Acc of different methods. We also report the number of modified nodes k required to achieve certain
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levels of accuracy. See table [I] for details. Figure [2] shows two of these results on real and synthetic
graphs and more are presented in Figure[3] More details about experiments can be found in appendix[B.
Code of our experiments is available through link

From the results we can conclude that, in summary, all six algorithms can be categorized into four
tiers: Tierl—{EgalAlg}, Tier2—{EgalAlg®?}  Tier3—{DegXErr, ErrRate}, Tierd—{Degree, Rand}.
We rank the efficiency of these methods as: Tier1>>Tier2>Tier3>>Tierd. Our greedy algorithm EgalAlg
in general performs best on all datasets. In some datasets the EgaIAIg(apr) algorithm outperforms
algorithms in Tier3 & 4 when k is very small, however, the performances of Tier2 & 3 algorithms
quickly become similar as k increases. Tier4 algorithms are always the slowest in improving our
egalitarian objective function. On almost all datasets, our greedy algorithm can achieve more than
80% accuracy within only log n nodes selected to intervene, and it beats all the other baselines. Our
greedy approximation algorithm can achieve more than 70% accuracy. On all datasets, it beats our
two baselines in Tier4 and on some data sets it beats all the baselines of Tier3 & 4.

Conclusion

Given a network in which agents cooperatively perform a classification task, we analyse the problem of
optimally choosing k vertices and improving their innate predictions to maximize the overall network
improvement.

Limitations and Future Directions In this paper, our modeling relies on a few simplifications
which may pose limitations in the applicability of the methods, and they may be addressed in future
works:
1. We assume that the social planner is capable of improving every agent’s innate prediction equally
through eq. . In reality, this improvement may depend on the agent, i, as well as the data
point, a.

2. Our analyses are valid when the social influence graph has non-negative weights and, in the
current form, they do not generalize to graphs with negative weights, e.g., signed graphs.

We believe that overcoming any of the above limitations would be an interesting extension of our
work, and we propose them as future directions.
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A Additional material: proofs and details of algorithms

Let Qf ={a € Q| y(a) = +1} and Q~ = {a € Q | y(a) = —1}. The following are some useful lemmas
that we will use throughout:

Lemma A.1. Let v; € V be an arbitrary agent. We have:

E [gi(a)] =1 —2err(v;), E [gi(a)] = 2err(v;) — 1.

a~Qt a~Q—

Proof.
E [gi(a)] = +1-P(gi(a) = +1) = 1-P(gi(a) = 1)

a~Qt
= +1-P(ji(a) = y(a)) — 1 - P(g;(a) # y(a))
= (1 —err(v;)) — err(v;)
=1-—2err(v;) .

Similarly we have that

JE [Bi(@)] =+1-P(gi(a) # y(a)) —1-P(gi(a) = y(a)) = err(vi) — (1 —err(v;)) = 2err(v;) — 1.

O

Proposition A.2. Given any non-negative W used in equation and S on which we improve §; to
75, we have

Vi €V, Zpew(i,a) > Z(i,a) < Fv; € S,y(a)g;(a) = —1AW;; > 0.

Proof. By looking at eq. (4)), it is evident that if §;(a) = y(a) then g;(a) = §;(a). Thus, improving v,
will only improve prediction on a € Q iff §;(a) # y(a) or equivalently g;(a)y(a) = —1. Note that for
any other v; € V, §;(a) appears in Zpey (i, a) with coefficient W;;. Since the matrix is non-negative we
either have Z,ow(i,a) = Z(i,a) or Znew(i,a) > Z(i,a). Therefore, we will have Zey (i, a) > Z(i,a) iff
;(a)y(a) = —1 and W;; # 0. O

A.1 Missing proofs from section [4.1: Analysis of aggregate optimization
Proof of lemmal[j.1. Let Q" ={a € Q| y(a) =+1} and @~ = {a € Q | y(a) = —1}. We have that:

(agg) _ - Ny
G (S) = G@Q ;21 Znew(i,a) — Z(i,a)
_ : * - K + S * (- % . —
- aNH%Tr ;:1 Zrlew(z7 (I) z (Z7 a)] ]P)(CL € Q ) + aNH;:?7 |J§_1 z (Zv CL) Znew(la a)] P(a € Q )

n

:Z<a5%+ [Frew(iza) = 2" (i) Pla€ Q) + E [z*@,a)—z:;ew(z-,a)m(aesz—))_

~Q—
i=1 @

Note that:

2" (i,a) — zpew (i, a) = Z Wij (g5(a) — §5(a) = >_ Wi (G(a) — G5(a)) = ¢ Y Wijlg;(a) — y(a)]

= jes JjES
Thus,
2(i,a) — Zpey (i,a) = sOZ:JGS v J[Z{](a) +1] 1 a€ i
sOZ:J'ES Wiilyg;(a) — 1] ifaeQ



Using linearity of expectation and plugging in lemma [A.T we have:

"D esW [2err@(v;) —1+1] ifae Q-

E [Z* (i,a) Znew(Z a)] = {SDZ]ES [1 — 92¢err(0) (Uz) — 1] ifaeQF

Therefore,

E [2°(i,a) = 25y (i,a)] = 20 e (u)) Y Wiy = E [z, (i,0) = 2°(i,a)] -
jes

a~Q— a~Qt
Plugging in the above in eq. we obtain:
n
g(agg) =2 Z Z Wijerr @ (v;)[P(a € Q) +Pla € Q7)] = 2@2 Z Wijerr® (v;)
jes i=1 jesi=1

This means by picking k vertices with highest values of Inf(j) = S_1" | Wiserr® (v;) we will obtain
the optimal solution for problem |1} In order to find these values, we first need to find all the values of
Inf(5) for all j € V. Which takes ©(n?) number of steps. Then we have to find top k elements among
these values, which will take ©(kn). O

Proof of remark[3.6. Let Inf(j) = 3", /I/Tz,jerr(o) (v;). For all j, we have that

‘Inf(j) - In/\f(j)‘ = zn: ’Wij ~Wy
=1

err(O) (’Uj) S Z ‘WZ] - ﬁ;ij
i=1

Note that the right-hand side is the #; norm of the jth column of W — W, let’s denote the jth column

of these matrix respectively by W.; and W.;. Since the ¢; norm of a matrix is defined the be the
maximum over ¢; norm of all of its columns we have that

vj | () — i) < [ -, <.
In the previous theorem we showed that

g (age) = 2p Z Inf(j

jeS

Since size of S is k and ¢ < 1 the total error is bounded by 2ke . O

A.2 Missing proof from section 4.2: Analysis of egalitarian optimization
A.2.1 Hardness Results

Theorem A.3. There is a polynomial time reduction from the set cover problem to problem|I.

Proof. Consider an arbitrary S C V. We use proposition IE to simplify Q(egal)(S ). For any v; € V,
we define: Q,, £ {a € Q| y(a);(a) = —1}. For any a € €, we denote its probability by 4. For a
given S we have:

g(egal) (S) ) i 1(2(17 a,) <0OA 2(27(1) < Znew(i7a))
=1

Z ol <0) \/ (GEQUJ./\V_VU>0)

acQ i=1 v; €S
= > pal(Z(i,0)<0)-1( \/ (a€Q, AW;; >0) (9)
(a,v;)€QXV v; €S
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Using the above simplification, we now construct the following instance of the weighted set cover
problem:

Consider a bipartite graph where one part is U = {(v;,a) € V x Q| Z(i,a) < 0} and the other
part is § = V. There is an edge between any v; € V' to a pair (v;,a) € U iff a € Q,; A W;; > 0 and
the weight of each pair (a,v;) is p,. Under the new definition eq. @ is equivalent to

G (S) = Y pa1 |V (aeQy, AWy >0)

(a,v;)€EU v; ES
Note that

1 \/ (a €y, A Wij > 0) =1 <= there is an edge between v; and (a,v;) and v; € S .
'UjES

The reduction is polynomial in sizes of {2 and V. Since we assume that € has polynomial size, it is a
polynomial time reduction. This completes the proof. O

Proof of theorem [3.7. The proof follows from theorem [A.3 and the fact that set cover is NP-hard.
L

Theorem A.4. Consider problem|[2 and assume k = 1. There exist two networks with the same number
of agents, same W and same error rates {err(v;) i—1- In these network, only the joint probability
distributions w1 and o are different. There are subsets Vi,Vo C V such that V1 NVy = 0. In the
first network we have that for any u € Vi, gloe (u) = ©(n) and for any u ¢ V1 we have gloe (u) =
O(1). In the second network for any u € Vo will have Q(Cgal) (u) = ©(n) and any u ¢ Vo will satisfy
G () = ©(1).

Proof. Let V = {uy,uz,uz,us} U {v1,v2,03,...,v2,}. We define W to be the following matrix:

Wulﬂ,j = Wuw,] =1forall j=1:n,and VT/WM = Wwﬂ,j = lifor all jf n+1:2n.

For each vertex in V' we also have a self loop of weight 1, i.e., Wy, = Wy, = 1 for all 4, j.

The error rates of these agents are as follows: err(v;) = 0 for all j = 1: 2n and err(u;) = 1/2 for
all j=1:4.

In the first network the error of g,, (a) is negatively correlated with ¢, (a) and ¢, is positively
correlated with ¢, as:

P (Ju, (@) # Gus(a) =1 & P (fuy(a) = Gu,(a)) = 1
Both ¢,, and ¢,, are independent from g¢,, and g, .

Let Vi = {us,us}. We now show that (](egal) (us) = g(egal)(w;) =n and for any u ¢ V1, Q(egal)(u) €

{0,1}.

From lemma we conclude that for any vertex u we have:

g(egal)(u) _ Z P (Z(i,a) <0Ay(a) # gula))

an

;Wi #0

Thus, it is immediate that for each v;, we have Q(egal)(vj) =0.
Consider uq

G ) = 3 B (2000 S 0AY0) # (o) + B, (2(01,0) SON9(a) £ s (@)

Since u4 is connected to v1,...v,, the last summand is 0 if n > 1, and it is 1/2 if n = 1. In any case
it is a constant. We now look at the first summand.

first summand = Z QLPQ ((Ju, (@) + Guy (@) + Gi(a)) - y(a) <0 Ay(a) # Gula))

i=1:n

= P (y(a)* <0Ay(a) # ju(a)) =0

. ar~$)
i=1:n
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The last equation follows from the fact that always g, (a) # Ju,(a), and g;(a) = y(a).

Similarly we can show that e (ug) ={0,1/2}.
For ug, let ¢ be a constant which is ¢ € {0,1/2}. We have:

g(egal) (u3) = | Z P (Z(i,a) <0Ay(a) # Gus(a)) + GPQ (Z(us,a) <0Ay(a) # Jus(a))

a~$)
i=n+1:2n
= > B (@) + G, (0) +85(a)) - yl(a) < 0 Ay(a) # (@)
i=1l:n
=2 P ((y(a) —2y(a)) - y(a) < 0)err(us) +
= n/2 +c

Similarly we have gleeh (uq) € {n/2,(n+1)/2}.

Therefore, both u3 and u, can be the optimal choice for this network. And any other choice will
have an error of magnitude ©(n).

In the second network, we make the following change:

P (Gur (@) = Guy(@)) =1 & P (fus (@) # Gus(a)) =1

We still let both ¢, and §,, are independent from ¢,, and ¢,, .
Using a similar analysis we can show that

G (1)) = GF () = n/2 + 1 & Vu €V, u# ur,us = G (u) € {0,1/2} .
A.2.2 Monotonicity and submodularity of g(ega”
Lemma A.5. Assume S’ C S CV, we have: Q(egal)(S/) < Q(egal)(S) .

Proof. From proposition [A.2] that for any arbitrary S C V' we have:

() = 3 P | yla)e" (i) 0N\ (y(a) £ G5(a)
Wi #0

For §" C S, we split the event \/ ,cs (y(a) # 7;(a)) to the two following non-intersecting events:
W{j?éo

yjeS ’Li]'ES’ ’Uj_ES\S/ ’LijESl
Wij 750 Wij 750 W,,j #0 Wq‘,j 730

Eil Ei2

Since F7 and Es are non-intersecting we have:

(egal Z}P’ (i,a) < OA Ei) +ZP Z7(i,a) <ON Epp) .
i=1

Note that g(egal)(s/) =>" P(y(a)z*(i,a) < O A E;1). Therefore, we conclude the premise. O

Lemma A.6. Consider arbitrary S CV and u,v € V'\ S. We have:

g(egal)(SU {u,v}) + g(egal)(s) < g(egal)(SU {u}) +g(egal)(5«u {v}) .
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Proof. Like previous lemma, we split the events of RHS and LHS to non-intersecting smaller events.
Consider the following events:

Erpr(i) = \/ gi(a) #y(a) | A (Gula) # §la) A Wiy # 0) A (§u(a) # y(a) A Wi, #0)
vj es
Wij;ﬁO

Erpr(i)= [~ \/ di(a) # y(a) | A (Gula) # Ga) A Wiu # 0) A (9u(a) # y(a) A Wi, #0)

Errr(i) A= (Gula) # §(a) A Wiy #0) A (§u(a) # y(a) A Wi, #0)

I
J
s@)
—
S
N
N
<
—~
Q
~

Erpr(i) = [ - \/ gi(a) #y(a) | A (Gula) # §(a) A Wiy #0) A= (Gu(a) # yla) A Wi, #0)

and similar definitions for Errr (i), Eprr (i), Eprr(i) and Erppr(i).

n

G = (S Ufu o)) =Y > P(y(a)z*(i,a) < 0 A Ex,y.z(i),

1=1 (X,Y,Z)e{T,F}3\{(F,F,F)}

g =Y Y Pu@e(i,a) SOABry(i),

i=1 (Y,2)e{T,F}2

G = (sufuy) =Y P (y(a)z*(i,a) < 0 A Ex.y.z(3))
=1 (X,Y,Z)e{T,F}3\{(F,F,F),(F,F,T)}
and finally
G = (su oy =Y 3 P (y(a)z*(i,a) < 0 A Ex.y.z(i))

=1 (XY, Z2)e{T,F}3\{(F,F,F),(F,T,F)}
By counting the number of appearances of each term on the RHS and LHS we may conclude the

premise. O

A.3 Pseudocode of the greedy algorithms

In this section we present our algorithms for egalitarian improvement.

Overview of algorithms The first algorithm EgalAlg has access to m and finds the greedy choice
accurately.

The second algorithm EgalAlg®P) receives parameters mode, efr and W as input parameters. If
we assume pairwise independence of classifiers, mode = ind and efr contains agents’ error rates. If
we assume group dependency mode = gr and efr contains the agent’s individual error rates as well as
err(R) and err(B). Depending on the mode of the algorithm, EgalAlg(®™)calls subsequent procedures
EstGain'™ and EstGain®" for estimating the greedy choice.

The pseudocodes are as follows and analysis is presented in subsequent subsections:
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Algorithm 1 EgalAlg (7T7 W)

S=0

fori=1:k do
mazxval =0
for j=1:ndo

AQ(S, ’Uj) =0
for a € Q2 do
for /=1:ndo
E=Z(i,a) <O0A (/\ v;E8 y(fl)Z%(@)) A y(a)#u(a)
W;i#0

if E=T and Wy; #0 then
AG(S,vj) = AG(S,v;) + 7(E)
end if
end for
end for
if AG(S,v;) > mazval,
9=
end for
5 =Su{g}
end for

Algorithm 2 EgalAlg™™ (mode, efr, W)

S=0
fori=1:kdo
mazval = 0
for j=1:ndo
ZEIMV(S7 v;) = EstGain™(S, v;, {err(v;) )7y, W) (algorithmlél)
AG(S,v;) = A6 (S,v))
if mode = gr then
@gr(s, v;) = EstGain® (S, v;, {err(v;)}"_;, err(R), err(B), W) (algorithm
AG(S.v;) = pAG (S,v;) + (1= )AG " (S,0,)
end if
if AG(S,v;) > mazval,
g =1
end for
S=SU{g}
end for

Algorithm 3 EstGain™(S, u, {err(vj)}j_,, W)

AG(S,u) =0
for {=1:ndo
trug(S) =1
for v,, € S do
if me # 07
trug(S) = trug(S) x (1 —err(vsy,))
end for
if \I/g(S, u) < 0 and qu # 0
AG(S,u) += err(u) - trug(S)
end for
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Algorithm 4 EstGain® (S, u, {err(v;)}7_;, err(R), err(B), W)

AG(S,u) =0
boolean Casel =T
boolean Case2R = F
boolean Case2B = F
boolean Case3 = F
for /=1:ndo
trug(S) =1
for v,, € S do
if Wy, # 0 then
if v, € W then truy(S) = trug(S) x (1 —err(vy))
if (v, € R)ACasel =T then
Casel = F
Case2R =T
end if
if (v, € B)ACasel =T then
Casel = F
Case2B =T
end if
if (v, € RACase2B =T) or (v, € BACase2R=T) then
Case2B = Case2R = F
Case3 =T
end if
end if
end for
if Casel Au € W then
AG(S,u)+ = trug(S)err(u)[L(T;(BUS),RU{u})err(R) + 1(RUS), BU {u})err(B)]
end if
if Casel Au € R then
AG(S,u)+ = trug(S)err(u)1¥,;(R U S, BU{u})
end if
if Casel ANu € B then
AG(S,u)+ = trug(S)err(u)1¥,;(BUS, R U{u})
end if
if Case2B A u € VW then
AG(S,u)+ = err(u)err(R)tru(S)1¥(BU S, R U {u})
end if
if Case2R Au € W then
AG(S,u)+ = err(u)err(B)tru(S) 1T (R U S, BU {u})
end if
if Case2B A u € R then
AG(S,u)+ = err(R)tru(S)1¥(BU S, R)
end if
if Case2R AN u € B then
AG(S,u)+ = err(B)tru(S)1¥(R U S, B)
end if
end for
return AG(S, u)
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A.3.1 Finding the greedy choice

Remember from the main text that

AGi(u.8) = B[ Z(i,a) <OA [ A\ w(a)=g;(a) | Ay(a)#Gu(a)

Proof of Lemma It is immediate from proposition [A.2] that for any arbitrary S C V' we have:

v; €S

g= (5 Zp (y (i,a) SOA \/ (Wi # 0 Ay(a) # ﬁj(a)))

Writing the above for S U {u} and simplifying we obtain:

v;€SU{u}

G (S U {u}) Z]P’(y a)<0n (Wij#OAy(a)#ﬂj(a)))

~Sp (ym)z*(i,a) <OA\/ (Wi #0Ay(a) # y](a)))

i=1 v; €S

v; €S

P (ma)z*(i,a) <OA A (Wi =0V y(a) = §;(@) A (Wiu # 0 Ay(a) # ma)))

TS+ 3 P v <on | A vl = isle) | Ave) £ du)
W0 W0
=g"=(9) + 3 AG(S,w)
Wt

The following lemma is a middle step for approximation of the greedy choice:

Lemma A.7. Let AG;(S,u) be

AGi(S,u)= P | Z@ia) <OA [ A\ yla)=5;(a) | Ay(a) # jula)
We have that
AGi(S,u) = P(T;(S) A F(u) Ii(S,u) ,

where

Fi(S7 u) =P (a S QJr) ]IS,EH Z Wiﬂ)j(a) < = Wji + qu
ac j=Llin v; €S
v ESU{u}

+P (a S Qi) aGIEKDZ* Z Wijg}j(a) > Z Wji — qu
ng;@lu?u} vi€3
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and T;(S) and F(u) are the following events:

T;(S)= N #(a)=yla),  F(u)=ju(a) # y(a)
’L)J‘GS
W{j?éo

Proof. Let E denote the event

E2 1 A @ =290 | Ay(a) # dula) .
W0

We may write
P(y(a)z"(i,a) SONE) =P (y(a)z*(i,a) < 0| E)P(E)

In order find P (y(a)z*(i,a) < 0| E), we split the probability based on the true label of a:
If a € QF we have:

P(y(a)z*(i,a) <O E)=P | 2"(,a) <0| | N\ @i(a) =+1| Agula) =1

v_7‘€S
WLJ;ﬁO
Note that n
Z*(i,a) =Y Wi (a)
=1
thus,

P(y(a)z"(i,a) <O | E) =P Z Wijg;(a) + Wij = Wiy <0
j=lin v; €S
0, £50{u}

Similarly, if a € Q~ we have:

P(y(a)z"(i,a) <O|B) =P | 2*(i,a) > 0| [ A #;(a) = =1 [ Adula) = +1

v; €S
1]‘#0
Since
n
Z"(i,a) = Z Wij3;(a)
j=1
we have:

P(y(a)z*(i,a) 20| E)=P| Y Wyii(a)— > Wi+ Wi, >0
j=Llin v; €S
v, #5U{u)

Rearranging and putting together, we obtain the premise.
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A.4 Missing material from section [4.2.1; estimating greedy choice assum-

ing independence

Proof of lemma[{.6. Let

tru;(S)=P| A #;(a) =ya)
v; €S
Wi]-;éO
Using independence and from lemma [A.7 we can write

AG;(S,u) = err(u)tru;(S)T;(S,u)

In lemma which follows this proof, we show that by taking

~ 1 . >
B8 u) = {0 if W;(S,u) >0

1 otherwise
we have

~ \IJZ(S, u)2 \Ijl(u)z
4 —T. < B s RV B B S
L3 (S, u) = Ta(S, U)‘ < exp ( S Wf}) < exp < sz )

Plugging in this approximation in eq. we obtain:

Z\Qi(S, u) = {err(u)trui(S) if ¥;(S,u) <0

0 otherwise

Note that since the classifiers are independent we have

tru;(S) =P /\ gj(a) =y(a) | = H P(9;(a) =y(a)) = H (1 —err(vy)) .

v; €S8 v; €S8 v; €S
Wi;#0 W, ;#0 Wi;#0

(10)

We have tru;(S),err(u) < 1, thus the error of approximating AG;(S,u) using eq. (11)) is at most

\Ill(u)Q
exp (~gsr Wz ) -
O
Lemma A.8. Assume that all the all the classifiers y1(a),g2(a),...,Jn(a) are pairwise independent.

We can estimate T';(S,u) as follows:
~ 0 o ¥;(S,u)>0
Fi(S7u): Zf ( U)
1 otherwise
where,
v; €S j=1ln
J¢SU{u}
The error of this estimation is bounded by:
~ \Ill(S, U)2 \Ill (U)2
I5(S,u) — Fi(S»U)’ Sexp| ——=n 57 | S| = w7 |
430 Wizj 43 ng

where
n

Ui(u) =Y Wij[1 — 2err(5)] — 2err(u) Wi, .

Jj=1
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Proof. Let’s remember the definition of T';(S, u) from lemma [A.T:

Fi(S, u) =P (a S Q+) E;;Jr Wijgjj(a) < — ij T Ww
o€ j=lin v; €S
v SU{u}

+IP’(aeQ_)aeIE;r > Wiiila ZW Viu | - (12)
j=Lln ;€S

0, #5U{u}
Assume first that ¥;(S,u) > 0. We use the Hoeffding bound theorem |A.20 to estimate

B Z Wisgi(a) < =D Wi+ Wi | & P Z Wiji;(a) >
ac —1n v;€S ac =1n
7¢5u{u} 7¢Su{u}

|
§|
A\g_/
—
N/

In order to bound the first probability in eq. ,note that > j—1.n  Wy;9i(a) < — > ves Wij +

_ 7¢5U{u}
Wi iff
S Wigila)<E | > Wygila)| —E | Y Wigi(a)| = > Wiy + Wi
j=Llin j=1n j=Ln v; ES
v;¢SU{u} v; ¢ SU{u} v ¢SU{u}

furthermore, from lemma [A.1 we have a € Q% implies:

E| Y Wigila)| = > Will—2er(j)] .
j=lin Jj=ln
v;#SU{u} vy ¢ SU{u}

Thus,

ER D TIEEES SR

Jj=1lmn
v;¢SU{u}

:aeIE;;+ ];n Wijyj(a) <E ];ﬂ Wiijj(a) — ;n WZJ 1 — 2err ZE W W

v;ESU{u} Lv; €SU{u} | UJQSU{u}

= P Z Wijgi(a) <E Z Wijgi(a) | — Wi(S, u)

aeQt

Jj=1ln j=1ln
v ESU{u} Lvj #SU{u} J

Since g;(a)s are pairwise independent, and ¥;(S,u) > 0 we may use the Hoeffding bound to obtain:

Viid ¥ 1 U, (S, u 2
acrt Wiggila) < =Y Wi+ Wiu | < exp _Z(l)WZ
o #500) e vygSUfuy
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The second probability in eq. may be bounded similarly as follows:

aeI[;+ Z Wﬂy] ZWW* ui

j=lin v; €S
vy ¢SULu}

= P Z Wjigj (a) >E Z Wjigj (a) — Z Wﬂ 2err — 1 Z W Wm
;€S

aceQt i .
j=1lin j=Lin =1l:n
v; §SU{u} Lvi ¢ SU{u} i U_;’¢5U{u}
= aelg)ﬁ Z Wjiﬂj (a) >E Z Wjiij (CL) + \I/z'(S, u)
j=lin j=1ln
v; SU{u} Lv;&SU{u} i

Again, under pairwise independence and ¥;(S,u) > 0 the above probability is bounded as:

\Ill(S, ’LL)2

]P) 1 ’lL’L S T 119
acN— Z j y] Z P Z j=1lmn Wfl
Isut i€8 v;¢SU{u}
v, SU{u}
Putting together, we obtain: If ¥,;(S,u) > 0
) — + i 1
Ti(S.u)=P(ac Q) P j;n W;i;(a Ze: Wi+ Wi
v; €SU{u}
+P(aeQ) P Z W;i(a Z
a j=ln ;€S
’U]’QSU{’U,}
Wi(S,u)? _ U, (S, u)?
<exp | =——"—"— | Plac QN +PacQ)]=exp | =—-F—
Pl | Bla @) + R e 07)) = | 1
v ESU{u} v ESU{u}

Note that T';(S,u) > 0. Therefore, if ¥;(S,u) > 0, we define I';(S,u) = 0 and we will have:

= \Ill(S, ’LL)2
0<Ii(Su)—Ti(Su) <exp | ===
SIS0 - s <o |~
’LJJ‘QSU{’U/}
Let’s now find a lower bound on % which is independent of S. We have:
j=Lin ji
v;&SU{u}

T oweyw
=1

oy 50}
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and

w)=> Wi+ > Wyl —2er(j)] — Wi,
v; ES j=Llin
j¢SU{u}
> ) W[ = 2err(j)] — Wi
j=1ln
JjFu

;11— 2err(4)] — 2err(u)Wiy, = V;(u) .

||M:

Thus,
= W;(S, u)? Wi(u)?
0<FiS,u _Fi S7u Sex — _ Sex _ - _ .
B ( ) ( ) P Z j=lin W2 P ( Zj:l W2
vy ¢SU{u}

Assume now that ¥;(S,u) < 0. In this case we write the first probability in eq. as:

P > Wygila) <= Wij+ Wi | =1- P > Wigila) ==Y Wiy + Wiy

e = v €S acst j=1lmn v; €S
v;¢SU{u} v, 25U}
=1- ae]I;+ Z Wiji;(a) > E Z Wiig;(a) | — Z Wii[1 — 2err(j Z
j=lin j=lin j=ln €S
v SU{u} Lv; ¢ SU{u} | ogsotu
=B X @R 3 W) - (s
j=lin =1:n
v gSU{u} 7¢su{u} ]

Since ¥;(S,u) < 0, we have —¥,(S,u) > 0 using the pairwise independence of the classifiers, we
employ the Hoeffding bound and obtain that:

5 Y. Wiggila) <= > Wi+ Wi | >1-e (S, w)?
iYj\ad) < — ij w | Zl—exp| ~ ==
aeQt P 7Y ! P Z j=Llin Wi2'
j=1n v; €S v 25U L) j
v ¢SU{u} j
Similarly we have :
1. .5 T \I/,L(S, u)2
o _Z Wijgi(a) > > Wiy — Wi | > 1—exp s
j=ln v; €S v, 450 ) yi
v ¢SU{u} J
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Putting together, we obtain: If ¥;(S,u) <0

AG(S,u) =P(ac Q) P | 5 Wiga) <= Y Wi+ W
'Ujégb?u} el

+ P (a S Q_) ae%* Z gzyj Z

Jj=1ln €
’L)j%SU{U}

\I/l(S u)2 _ \I’Z(S u)2
>[1— e |[P(a€e Q) +Plac Q)] =1— —_——_—
21 - exp | =T IR € 0 + P € ) = 1-ewp |

v; ¢ SU{u} v;¢SU{u}

Note that T';(S,u) < 1. Therefore, if ¥;(S,u) < 0, we define fi(S, u) =1 and we will have:

~ \I’Z(S, U)2 \Ill(u)2
0 < Ti(Su) —Tu(Sou) <exp |~ | Coxp [~ ]
Z j=ln WJQ’L Zj:l WJQ’L
v ESU{u}
This completes our proof. O

A.4.1 Missing material from section related to ambiguous vertices

Lemma A.9. Let VT be those agents with error less than 1/2 and V= be those agents with error
greater than 1/2. i.e,

t={vj|err(v;) <1/2} & VT ={v;|err(v;) > 1/2}
and consider the following vectors

Wt = (Wij)vj€V+ & EF = (1 - 2err(vj))vjev+

and -
Wi = Wij)y,ev- & & = (2err(v;) — l)vjev—

and

Wi = (W’ﬂ? W’LQ? ey VV?TI)
We have that:

2
. 2 1 TVt e+ V- £—
R 107 W (R 1L O L N
4Zi:1Wij 4 |W2|2 |W1|2

1 Wt W,
_4<M| ’ |5+|2 ",

5
=
i

|
[\
N———
[\

where B
max W, 1

min W;L min E;F '

\Ill(u)2

Proof. We show the above equation by finding an lower bound for <=7 -
i=1"ij

Consider an arbitrary vector Xthe 5 norm is defined as:

Xlo = [ > o
r;€X
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Note that all of the above vectors only have positive elements.
We have:

vw? (v )
i W Wi (V)]

_ <Zviev+ Wij(1—2err(vy)) 3, ev- Wij(2err(vj) 1) 2err(w) Wi, )2

|Wi(v)}2 |WZ(V)|2 |W )|
B ((Wi+75+> B (W ,E7) B 2err(u)Wiu>2 (14)
‘Wi‘2 ’Wi’2 ’W1|2
where in the last equation () denotes dot product.
Using Poélya-Szego’s inequality we have:
(Wit et > ‘WiJr’Q . max W;" ) €71,
|Wi|2 - |VT/,-|2 minV_V;r min &+
Using Cauchy Schwarz we have
<VV{>5_> < ’7 1_‘2 e,
Wil Wil
Therefore, letting M = 2?:‘?; . ﬁgi
we have:
- - _ 2
Vi (u)? Witly oy IWily oy 2erm(w)Wi
> m- Lo et - Lo e - = T
Zz 1VV2 B ( |Wl|2 | |2 |WZ|2 ’ |2 |W1|2
The premise may be concluded from the fact that m <1.
O

Proof of lemma[{.5. From lemma [£.6] we now that

— U, 2
‘Agi(sa u) — AG;(S, u)‘ < exp (—W) ,
i=1

and from lemma [A.9 we have:

U 2 1 V_V;r V_Vi_ _ ?
i= 2 2

Putting together and assume that v; is not ambiguous. We have that:

AT W2
< exp ( (3\/@f ) ) < exp(i(5logn)> =o(nY).

— X 2
AGi(S,u) — AG; (S, U)‘ < exp <W> < exp 7% (M.
i
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A.4.2 Missing material from section [4.2.1} proof of the main theorems

In this subsection we present a pseudocode of our algorithm under the assumption that the agents are
pairwise independent.
The following theorem bounds the error of this algorithm:

Theorem A.10. Assume that S is the output of algorithm[2. We have that:

g(egal)(S) > [(1 _ 1/6) _ Aind] . OPT(cgal) ,

Aind Zexp< Z ()2 ) .

Proof. The proof immediately follows from the fact that we have a submodular and monotone function
and that the error greedy choice taken as

where

g= argmaXZ@i(S, u)

“ i=1

and that for any v; we have

— \Iji 2
|AGi(S,u) = AGi(S,u)| < exp <_42<WW2> ,
i=1 "Vij

O

Proof of theorem [{.3 and theorem [3.10 . Using the above theorem theorem[4.3and theorem[3.10
can be directly concluded just by noticing that for any non-ambiguous vertex the error induced on the
greedy choice is at most o(n~1). Thus, in total all of non-ambiguous vertices together will have an
error of o(1). The ambiguous each can have an error as large as 1. O

Assuming having access to approximation W. If we only have access to W, we may run
EgaIAIgoind using W. In this case the approximation guarantee can be concluded from the follow-
ing lemma which is similar to lemma[A.8:

Lemma A.11. Assume that all the all the classifiers §1(a), §2(a), ..., Gn(a) are pairwise independent.
We can estimate T';(S,u) (See eq. (12)) as follows:

T3 (S,u) = {0 if Wi(S,u) > 0

1 otherwise

where,

(I\/Z(S, ’LL) = Z ﬁij + Z /I/T;”[l - 2err(j)] - ﬁzu
v; €S j=Llin
J¢SU{u}

The error of this estimation is bounded by:

Dy(S,u) = Ti(5,w)] < exp ( o ) (1+9.

where

Z 311 — 2err(5)] — 2err(u) Wi, .

Jj=1
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Proof. Similar to the proof of lemma @ we may bound the two terms of I';(S, u) as follows:

aE]IS)iH— Z Wzgy] < - Z Wij + Wuz
v; €S
ngsu{u} '
< ae]IS);Jr Z Wijgjj(a) <E Z Wijg}j(a) — \/I\/Z(S, U) — 2¢
Jj=1ln j=1ln
vy #SU{u} v, SU{u}

Similarly to the previous case if \fli(S, u) > 0 we may use Hoeffding bound to bound the above
probability as:
T, (u) — 2¢)2 U, (1) — 4e)?
exp <_< (1w ~29 ) . <_< (1w ~ 49 )
Let’s now bound RHS:
(W5 (u) — 4e)? ‘I’z‘(U)Q Wi(u) Wi(u)®
eXp | ——=n =3 | S exp +8 <exp| —=n =5 T3¢
< Z]:l WE] ZJ 1 ZJ 1 W2 Z]:l Wl?]

< exp ( Z‘I]Z(u) > exp(8¢) < (1 + 8¢) exp <_\I7f:_(ul)/v2>

If U,(S,u) < 0 we may write:

ae]IS’;Jr Z Wijg)j(a) > — Z Wij + Wm
’UjES

Jj=1lmn
v ¢SU{u}
S ae]IS)iH' Z Wijgjj(a) >E Z Wijgjj(a) — {I\’Z(S, u) + 2¢
j=lin j=lin
vy ESU{u} v; ¢SU{u}

and with a similar argument we obtain the same bound. Bounding the probability in the case where
a € 2~ can be done similarly. And the rest of the proof holds similarly to proof of lemma |A.8. O

Proof of remark |3.12 independent case . The remark is a direct conclusion of the fact that the
error of the greedy choice is bounded by

ZZ:; f(Su)—Fi(S,u‘_ (1+e) Zexp( 423(7?2 > .

O

A.5 Missing proofs from section 4.2.2; Estimating greedy choice assuming
group dependence

Assume the assumption presented in definition and remember the following definition from previous
sections

AG(S,u) = B | 2G.a) <00 | A vl@) =d5(0) | Aye) £ Gul@) |

and our goal is to estimate AG;(S,u) for all S CV, u eV and i € [n].
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We may write

AG(S,u) = AGE (S, u)p + AG Y (S, u)(1 - p) ,

, where the super-scripts show whether individual or group decisions have been made. Estimation
of AG"V(S 1) can be obtained using lemma and by calling EstGain™? of algorithm [2| Estimation
of AG¥(S,u) can be done through a series of lemmas that we present here, and it depends on the
whether vertices of S;, defined as S; £ {v; € S | W;; # 0}, intersects R, B or both. A pseudocode is

presented at algorithms[2]and [dl Our analysis is presented in appendices to The following
lemma summarizes these results:

Lemma A.12. Assume the model presented in definition[4.7. Having a set S let g be the vertex which
mazximaizes the following function

g = argmax p Z AGT (S +(1—p) 3 A6, (S)

u€V i=1:n
Wi 750 W; ;i #0

——indv

Where A(] (S u) may be obtained from lemmas |A Z4L |A 14 and |A J?L and AG,  (S,u) may be
obtained from lemma- We have that:

(egal) (egal) = (U (u) — AW;)? Ui(u)?
g (Su{er(9)}) -6 (SU{Q})SP;eXP (— 15, oy W2 ) ZeXp< I, o W )

We will use the following definitions and results throughout the section.

AGE(S,u) = B (2(.0) <ONTi(S) A Fw) |

an~

where 7;(S) and F(u) are the following events:

Ti(S) = N wla)=g;(a) & Flu)=y(a) # hula) -

v; €S

for any v; and X C V we denote:

v;€EX
In addition, for any X,Y C V we define,
V(X V)= > [1=2er™M(0))] + Wi(X) = Wi(Y) .
’UjEV\(XUY)
We will use the following lemma throughout:
Lemma A.13. Let’s define
F+ — Alndv < W, .
= Bl W@ < W) - ) |
v; EV\(XUY)
and
Iyxy)= P Do Wydi(a) = Wi(X) - Wi(Y)
@€ v, EV\(XUY)

We may estimate the above probabilities as

0 if U(X,Y)>0

St - =
IF(XY) =T (X,Y) = {1 if i(X,Y) <0
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We have that:

HX,Y) —THX,Y)| <exp | — 7
' ( ) ( )‘ = oxp ( ZvJEV\(XUY) W )

and

I7(X,Y)-T; (X,Y)‘ < exp <_Z (W;(\)(();inw ) |

Proof. Assume a € Q7 in this case we have that

~indv _ indv
aeﬂgﬁ (6" (a)] = 1 — 2er™™ (v;)

Thus,

S Wug(e) < WiY) - Wi(X) =

UJEV\(XUY)
o Wi @ <E| YD WyirM@| - [E| Y. Wuie)| - W) + Wi(X) | =
v; EV\(XUY) v; EV\(XUY) v; EV\(XUY)
Z Wz Alndv( ) <E Z Wz Amdv X Y)
U]‘EV\(XUY) U]‘GV\(XUY)

If U;(X,Y) > 0 we may use the Hoeffding bound to obtain:

s > Wiyd(a) S Wi(Y) = Wi(X) | <exp <_

eQt
“ v; EV\(XUY)

(T,(X,Y))? )
Zv,-EV\(XUY) Wizj

If —0,;(X,Y) >0, we write:

vj eV\(XUY)

> Wiyi(e) > E > Wygrt(e)| - Ui(X,Y)

v; EV\(XUY) v; EV\(XUY)
Thus,
T 7 U, (X,Y))?
P > Wyd M (a) = Wi(Y) — Wi(X) | <exp (_ (¥(X,Y)) )
aceNt W
v; EV\(XUY) o €VA(XUY)
Therefore,
1. .syindv 77 7
Bl W@ < WiY) - Wi(X)
v; EV\(XUY)
=1 - P Alndv >7, T
Bl @ 2 W) - W)
v; EV\(XUY)

(V:(X,Y))*
>1 —exp _Z e .
v; EV\(XUY) "Vij

Putting together we have:

f . 2
i(X,Y)—Fj(XJf)‘ < exp [ - T Y)) Y
ZvjEV\(XuY) Wij
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Similarly if a € Q= we have:

~indv indv
ae]%_ [yj (a)] = 2err™ ™ (v;) — 1

thus,

Z Wijg}ndv(a) > Wl(X) — Wl(Y) <
’UjEV\(XUY)

Z Wij?};‘ndv(a) >E Z Wz‘ﬂ?;ndv(a) +|-E Z Wz‘jﬂ}ndv(a) + Wi(X) = Wi(Y)
v; EV\(XUY) v; EV\(XUY) v; EV\(XUY)

and

~E S W) |+ WX) = Wi(Y) == > Wy[2er™ (v)) — 1]+ Wi(X) — Wi(Y)
v; EV\(XUY) v; EV\(XUY)
= U,(X,Y).

The rest of the proof follows similarly to the previous case. O

A.5.1 Case 1. Colorless S;
Assume that S; C W,

Lemma A.14. If S; CW and u € W, for any arbitrary v; we may take:

AG; (S,u)

err™(u) - T] v,es (1 — err™¥(v;)) if Ui (RUS,BU{u}) <0 &¥;(BUS,RU{u}) <0
errndv(qy,) - HVZ;ZO(l —err™V (y,)) - err(R) if U,(RUS, BU{u}) >0 &V;(BUS,RU{u}) <0

- errndv(q,) - Htjeio(l —erf®V () - err(B) f U,(RUS,BU{u}) <0 &V;(BUS,RU{u}) >0
0 e otherwise

and we have:

15,012
Proof.
airfﬂ (Z(i,a) < OATH(S) A Flu)) = aflf2+ (2(i,a) < 0 ATH(S) A F(u) P(a € Q)
+ aflfr (2(i,0) > OATi(S) A F(w) Plac Q) .
We have:
P <OATS) AF@) = B (00 <0 TS AF@) B (TS) AF@) &
B Gl <0nTS) AFw) = B (.0 0| TS AF@) P (Ti(S8) A Fw)
Note that since S C W and u € W we have:
BT AF@) = B (T(S) A F W) = e (w) Lo eriw.
ves,
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Furthermore,

gr
P (z(i,a) < 0| T:(S)AF(u))
a~Qt+
gr — _ _
= aw%+ Z Wijyj (a) + Wij — Wi <0
j=Llin v; €S
v; ¢SU{u}
~indv 7 ~gT 7 ~gT T T
:a~%+ Z W” ] ( )+ Z Wwng (a) + Z W”ng (a) + Wij - qu S 0
v; €W v;ER v; EB v; €S
vy £5U{u}
~indv 1 T 1 1
:aNE:j)-%— Z le Y; ( ) + Z Wi — Wi + Wij — Wi <0 err(B)
vj ew UjGR ’UjEB ’UJ’ES
vj QSU{N}
+ P Z Wi g5 (a) + Wij — Wij + Wij = Wiy, <0 [ err(R)
Ot J J J J —
vj ew ’UJ'EB ’UjER ’UjGS
U.#SU{H}

=T (RUS,BU {u})err(B) + T (BUS,RU{u})err(R) .

Similarly we have that:

gr
P (:i.0) 20| T(S) A Flw)
gr _ _ _
= P > Wigila) = Y Wij+ Wiy >0
a~Q—
=1:n v; €S
vy €SU{u}
_ Alndv 7. .8T 7. .48" _ 1. . 1.
=B > W )+ > Wi (a) + > Wiyi¥ (a) Wij + Wi >0
vj ew ’U]‘GR ’UjEB ’UjGS
v; ¢SU{u}
:aN[E;;7 Z Amdv — Z Wij + Z Wij — Z Wij + Wiu >0 err(B)
vj ew vjER ’UjEB v €S
vj ¢SU{U}
Amdv T
+ aNIP;r Z Jy] Z Wl] + Z le Z Ww + Wi >0 | err(R)
v;EW v;€B v; ER v; €S
vy #SU{u}

=I'7(RUS,BU{u})err(B) +T'7(BUS,RU{u})err(R) .
Therefore, P&, (Z(i,a) < 0AT;(S) A F(u)) is equal to

err

v; €S
Wij750

indv(y) . H (1 —er™¥(v)) - ([T (RU S, BU {u})err(B) + T (BUS,R U {u})err(R)| P(a € QT)

+ ;7 (RUS, BU{u})err(B) +T'7 (BUS,RU{u})err(R)]P(a € Q7))

We may now employ lemma[A.I3 to estimate the above probabilities.
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By replacing the estimations f:r and f;

AG; (S,u)

err™(u) - [T v,es (1 — err™d¥(v;))
W;;#0
err™®(u) - [T v,es (1 — er™d¥(v;)) - err(R)
= Wi;#0
err™v(y) - TT ves (1 — errndv(y 5)) - err(B)
W;;#0
0

in the above formula we obtain:

ifw,(RUS,BU{u}) <0&T;(BUS,RU{u}) <0
ifU,(RUS,BU{u}) >0&T;(BUS,RU{u}) <0
ifU,(RUS,BU{u}) <0 &¥;(BUS,RU{u})>0

otherwise

Lemma A.15. IfS; CW and u € R, for any arbitrary v; we may take:

WU #0

AG; (S,u) =
0

If uw € B, for any arbitrary v; we may take:

errndv (y) . Il vjes (1— erri“d"(vj))

Efr(& u) = { Wij;éo
0

and in both cases we have:

errdv(y) - T ves (1 — erri“d"(vj))

if U,(BUS,RU{u}) <0

otherwise

Ui (RUS,BU{u}) <0

otherwise

e (0P (a) - AT
‘Agi (S,u) — AGE (S,u)’ < exp( iS5, 02 :

Proof. Like previous lemma we have:

P (2(i,0) < 0| Ti(S) A F(w)

a~Qt

_ ’\lndV
- aN[%_p Z 7’] y]
v; EW v;ER

v, ¢ SU{u}

+ > Widf (a)

v; EB

+ > Wi =W <0
€

If u € R since we are conditioning on F(u) the above probability is equal to:

gr

P (z(i,a) <0 | Ti(S) A

a~Qt
Similarly

gr

P (2(i,a) 2 0| Ti(S) A

a~Qt

If u € B we have

gr

P (2(i,a) <0 Ti(S) A

a~Qt
Similarly

gr

P (2(i;a) = 0| Ti(S) A

a~Qt

F(u))=TF(BUS,RU{u}) .

F(u)) =T (BUS,RU{u}) .

F(u)) =T (RUS,BU{u}) .

Fu)=T; (RUS,BU{u}) .

Putting together, and employing lemma [A.13 we get the premise.
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A.5.2 Case 2. monochromatic S;

Lemma A.16. Let C be either R or B and C be the other color. Assume S; NC # 0 and S; NC = 0.
In this case, for any u € C, we have Vi, AG¥'(S,u) = 0.
For u € C we may use the following estimation:

Efr (S.u) = err(C) H'ujesimw(l —errmV(y)) if \Ili‘(C us,C)<0
0 otherwise .

and for uw € W we may use the following estimation:

otherwise .

5 (S.u) = {err(u)err(C) [, cs.w(l —err™(v;)) i W(CUS,CU{u}) <0

The above estimations satisfy:

(07 (u) — AW;)?
4 ZijW W12]

Proof of lemma [A.76l Assume that S, intersects only with one color C and its intersection with the
other color C is empty.

If u € C, then P(T;(S) A F(u)) = 0. Thus, Vi AGE'(S,u) = 0.

Ifuec: B

We have that P(7;(S) A F(u)) = err(C) - HujeSmW(l — err™dV(y;)) . Furthermore,

‘Efr(sv u) — AGE'(S, u)’ < exp (

P (*(i,0) <O| TS AF@) =B | Y Wiyl (a) + W(C) ~ W(C) + W(SNW) <0
acQ ’UjGW\Si
~TF (CUS.C) .
Similarly,
%é (+*(i,a) > 0| Ti(S) A F(u)) =T7 (CUS.C) .
acil—

Putting together and employing lemma [A.13 we conclude the first part of the premise.
If w € W: We have that P(7;(S) A F(u)) = err(u)err(C) - ], cs,nw (L — err'®d(y;)). Furthermore,

%_F (z*(i,a) <0 ‘ 7;(5) N .7:(11,)) P Z Wijg);.“d"(a) + WZ(C) — Wz(é) + WZ(S N W) — V_Vw <0
acq v; EW\S;
rf(cus,cufu}) .

Similarly,
gr _
]IS’; (z"(i,a) > 0| Ti(S) AN F(u)) =T (CUS,CU{U}) .
acfl™
Putting together and employing lemma[A.13| we conclude the second part of the premise. O

A.5.3 Case 3. bichromatic S;
Lemma A.17. If S;NR # 0 and S; N B # 0, we have Vi AGF (S,u) = 0.
Proof. Note that P(7;(S)) = 0. Thus, we conclude the premise. O
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A.5.4 Missing material from section [4.2.2} YWW-Ambiguous vertices.

Let’s first present the definition of WW-ambiguous vertices in detail:
Consider the following partitioning of white vertices to low and high error parts:

Wt ={v; |err(v;) <1/2} & W™ = {v; | err(v;) > 1/2}
with respect to this partition we define the following vectors:

ewt_ (1- QEFF(Uj))vJ.GW+ & &V =(2err(v;) — 1)ﬂjew,

and WW+ = (Wij)yjew+ & WiW7 = (Wij)vjew_

3

Definition A.18 ( W-Ambiguous vertices ). Let W}¥ = (W;;).,ew, and ||, be the £, norm and (-, -)
be dot product.

We call an agent v; € V', W-ambiguous if it satisfies

(WY V) v e

3

WY, WY

< 4y/logn + AW; ,

where AW, = ‘Zvjen Wij — 2,8 Wi

. A network is nicely colored if no vertex is WW-ambiguous.

We now show that if a vertex is not ambiguous w.r.t. W the group gain associated to it can be
estimated with high precision:

Lemma A.19. Let Z\Qigr(S, u) be as defined in lemmas |A.14L |A.Id and |A.1’7L If a vertezr is non-
ambiguous w.r.t W we have:

|AGE (8,u) ~ AG; (S, 0)| < o0 ") .

Proof. Note that from lemmas|A.14,[A.16 and [A.17 we have that for any v;:

oK (W) — AW
‘Agi (S,u) = AG; (5, u)‘ = o < 4Zvj6W WZQJ .

Note that we have:

_ _ 2
(MWM—AMY_(%W@—AM)
Zvjew Wizj |WiW|2

_ _ _ 2
<anwt5W+> (W= EW=Y  2ere(u) Wiy, AW@)

|Wiw|2 - |Wiw|2 - |Wiw‘2 ’Wiw|2

(e ey am Y
|V_ViW’2 ’Wiw‘z ‘Wiw‘z

Assuming that the vertex is not ambiguous w.r.t. whites we have:

(W vty v e -
‘V_ViW’Q ’WZ-W‘Q > 44/logn + AW;

which implies

- N

UW(u) — AW;)? UV (u) — AW;

( Z( ) = ) _< |(sz| ) > (3y/logn)? > 5logn
v; EW 17 i 2

From which we conclude that the error is bounded as:
WY () — AT)?
o (2 0) = AW

Zv]‘ ew WZJ

> < exp(—5/4logn) = o(n™ ) .
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A.5.5 Missing material from section [4.2.2} proof of the main theorems

Proof of theorem [{.8 and remark[3.12. Note that the error of the greedy choice approxima-
— —ind
tion is either generated from approximation of ) ., AG; (S, u) or > AG, " (S,u). The error
——indv

of AG, (S,u) may be bounded similar to the independent case. To see the bound the error of
—0T

S Agf (S, u) note that the error induced by all non-ambiguous vertices is o(n x n=1) = o(1). The

error of each ambiguous vertex is at most one, therefore, we conclude the result.

Approximation when having access W. TFollows similarly as in lemma [A.11 O

A.6 Concentration Bounds

Theorem A.20. Let X1, Xo,... X}y be independent random wvariables in range [—1,1] with means
W1, .- g and let w;s be weight coefficients . Taking p = Zle w; ;. We have that for any e > 0:

k 2
€
P E wiXin—l—s) < exp <—k>,
(i—l 437 w?

k 2
€
P g wiXiS,u—E> < exp (—k>
<i:1 435 wi2

B Additional experiments and details of set up

and

Our proposed problem and methods in general do not assume any prior knowledge of the given datasets.
Our algorithms are deterministic with no parameter to tune. It has potential to be applied to any
problems as long as the objective function of the problems of interests related to our proposed objective
function. In the following, we include the parameter settings of the problems in our experiments. These
parameters are not tuned for our methods. We just fix the parameters to make sure the problems are
nontrivial enough. We use the same parameters for all methods in our experiments.

We let |©2] = 3 and for initial opinion §, we randomly generate for each agent v; a random vector
(gi(a) : a € Q) with each entry sampled from Bernoulli distribution with probability p; of §;(a) = +1
sampled uniformly from [0.3,0.9]. For random graph generators, some of the key parameters are fixed
as follows:

e Number of nodes: 128
e Erdgs-Rényi graph: Probability for edge creation p = 0.005.

e Barabasi-Albert preferential attachment model: Number of edges to attach from a new node to
existing nodes m =5

o Watts-Strogatz small-world graph: Each node is joined with its £ = 5 nearest neighbors in a ring
topology; The probability of rewiring each edge p = 0.25

In practice, we found that the infinite FJ model with weight matrix converging to (I + L)~! makes
the problem less interesting than general case in practice. The reason is that all entries of the matrix
(I + L)~! are positive and non-zero. With such weight matrix, we found even a random selection
algorithm can converge very fast. To avoid such simple cases, here we apply a finite ¢-step FJ model.
We fix t = 3 to ensure the induced matrix W is sparse enough.

Besides randomly generated graphs from tree classical models (ER, PA and WS), we also test
our algorithms on random generated matrix W directly, denoted as RandomW. Each entry of W is
independently sampled from a uniform distribution on [0,1]. We let the sparsity of W to be around
0.95. Each row of W is normalized thus sum up to be 1.

The statistics of real and synthetic datasets are summarized in table Experiment results are
illustrated in fig.
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We let the set of faulty prediction be 2 £ E,eq[> 1, 1Z(i,a) < 0] , which serves as an upper-
bound on the egalitarian improvement. We define the accuracy Acc as:

g(egal) (S)

Acc = =7

We calculate all expected values by taking averages over a € Q.

Table 2: Table of statistics of datasets. Sparsity of W represents the percentage of zero entries in W.

size sparsity of W faulty prediction Zf

ER 128 0.98 74.67
PA 128 0.37 32.0

WS 128 0.74 38.67
BIO 297 0.45 95.33
CSPK 39 0.75 14.67
FB 620 0.75 161.33
WIKI 890 0.66 238.67
RandomW 128 0.95 37.67
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Figure 3: More experimental results on different datasets.
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