
RICE: Breaking Through the Training Bottlenecks of Reinforcement Learning
with Explanation

Zelei Cheng * 1 Xian Wu * 1 Jiahao Yu 1 Sabrina Yang 2 Gang Wang 3 Xinyu Xing 1

Abstract
Deep reinforcement learning (DRL) is playing an
increasingly important role in real-world applica-
tions. However, obtaining an optimally perform-
ing DRL agent for complex tasks, especially with
sparse rewards, remains a significant challenge.
The training of a DRL agent can be often trapped
in a bottleneck without further progress. In this
paper, we propose RICE, an innovative refining
scheme for reinforcement learning that incorpo-
rates explanation methods to break through the
training bottlenecks. The high-level idea of RICE
is to construct a new initial state distribution that
combines both the default initial states and criti-
cal states identified through explanation methods,
thereby encouraging the agent to explore from
the mixed initial states. Through careful design,
we can theoretically guarantee that our refining
scheme has a tighter sub-optimality bound. We
evaluate RICE in various popular RL environ-
ments and real-world applications. The results
demonstrate that RICE significantly outperforms
existing refining schemes in enhancing agent per-
formance.

1. Introduction
Deep reinforcement learning (DRL) has shown promising
performance in various applications ranging from playing
simulated games (Todorov et al., 2012; Mnih et al., 2013; Oh
et al., 2016; Cai et al., 2023) to completing real-world tasks
such as navigating autonomous vehicles and performing
cybersecurity attacks and defenses (Bar-Zur et al., 2023;
Vyas et al., 2023; Anderson et al., 2018; Wang et al., 2023).

*Equal contribution 1Department of Computer Science,
Northwestern University, Evanston, Illinois, USA 2Presentation
High School, San Jose, California, USA 3Department of Com-
puter Science, University of Illinois at Urbana-Champaign,
Urbana, Illinois, USA. Correspondence to: Xinyu Xing
<xinyu.xing@northwestern.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

However, training an optimal DRL agent for complex tasks,
particularly in environments with sparse rewards, presents
a significant challenge. Often cases, the training of a DRL
agent can hit a bottleneck without making further process:
its sub-optimal performance becomes evident when it makes
common mistakes or falls short of achieving the final goals.

When the DRL agent hits its training bottleneck, a refine-
ment strategy can be considered, especially if the agent is
already locally optimal. To refine the locally optimal DRL
agent, one method is to analyze its behavior and patch the
errors it made. A recent work (Cheng et al., 2023) proposes
StateMask to identify critical states of the agent using an ex-
planation method. One utility of StateMask is patching the
agent’s error, which fine-tunes the DRL agent starting from
the identified critical states (denoted as “StateMask-R”).
However, such an approach suffers from two drawbacks.
On the one hand, initializing solely from critical states will
hurt the diversity of initial states, which can cause overfitting
(see Appendix D). On the other hand, fine-tuning alone can-
not help the DRL agent jump out of the local optima. These
observations drive us to rethink how to design a proper ini-
tial distribution and apply exploration-based techniques to
patch previous errors.

Another reason behind the training bottleneck can be the
poor choice of the training algorithm. Naturally, to improve
performance, the developer needs to select another DRL
training algorithm to re-train the DRL agent. However, for
complex DRL tasks, re-training the agent from scratch is
too costly. For instance, for AlphaStar (Vinyals et al., 2019)
to attain grandmaster-level proficiency in StarCraft, its train-
ing period exceeds one month with TPUs. Retraining an
agent of this level can incur a cost amounting to millions of
dollars (Agarwal et al., 2022). Therefore, existing research
has investigated the reuse of previous DRL training (as prior
knowledge) to facilitate re-training (Ho & Ermon, 2016;
Fu et al., 2018; Cai et al., 2022). The most recent exam-
ple is Jump-Start Reinforcement Learning (JSRL) proposed
by Uchendu et al. (2023) which leverages a pre-trained
policy to design a curriculum to guide the training of a self-
improving exploration policy. However, their selection of
exploration frontiers in the curriculum is random, which
cannot guarantee that the exploration frontiers have positive

1

ar
X

iv
:2

40
5.

03
06

4v
3

 [c
s.L

G
]

6
Ju

n
20

24

RICE: Breaking Through the Training Bottlenecks of Reinforcement Learning with Explanation

returns. This motivates us to incorporate explanation meth-
ods to scrutinize the pre-trained policy and design more
effective exploration frontiers.

In this work, we propose RICE1, a Refining scheme for
ReInforCement learning with Explanation. We first lever-
age a state-of-the-art explanation method to derive a step-
level explanation for the pre-trained DRL policy. The expla-
nation method identifies the most critical states (i.e., steps
that contribute the most to the final reward of a trajectory),
which will be used to construct the exploration frontiers.
Based on the explanation results, we construct a mixed ini-
tial state distribution that combines the default initial states
and the identified critical states to prevent the overfitting
problem. By forcing the agent to revisit these exploration
frontiers, we further incentivize the agent to explore starting
from the frontiers. Through exploration, the agent is able to
expand state coverage, and therefore more effectively break
through the bottlenecks of reinforcement learning training.
Our theoretical analysis shows that this method achieves a
tighter sub-optimality bound by utilizing this mixed initial
distribution (see Section 3.4).

In addition, we introduce key improvements to the state-of-
the-art explanation method StateMask (Cheng et al., 2023)
to better facilitate our refining scheme. We reformulate the
objective function and add a new reward bonus for encour-
aging blinding when training—this significantly simplifies
the implementation without sacrificing the theoretical guar-
antee.

Evaluation and Findings. We evaluate the perfor-
mance of RICE using four MuJoCo games and four DRL-
based real-world applications, including cryptocurrency
mining (Bar-Zur et al., 2023), autonomous cyber defense
(Cage Challenge 2) (CAGE, 2022), autonomous driving (Li
et al., 2022), and malware mutation (Raff et al., 2017).
We show that the explanation derived from our new de-
sign demonstrates similar fidelity to the state-of-the-art
technique StateMask (Cheng et al., 2023) with signifi-
cantly improved training efficiency. With the explana-
tion results, we show our refining method can produce
higher performance improvements for the pre-trained DRL
agent, in comparison with existing approaches including
JSRL (Uchendu et al., 2023) and the original refining
method from StateMask (Cheng et al., 2023).

In summary, our paper has the following contributions:

• We develop a refining strategy to break through the
bottlenecks of reinforcement learning training with an
explanation (which is backed up by a theoretical anal-
ysis). We show our refining method performs better

1The source code of RICE can be found in https://
github.com/chengzelei/RICE

than those informed by random explanation.

• We propose an alternative design of StateMask to ex-
plain the agent’s policy in DRL-based applications.
Experiments show that our explanation has compara-
ble fidelity with StateMask while improving efficiency.

• With extensive evaluations and case studies, we il-
lustrate the benefits of using RICE to improve a pre-
trained policy.

2. Related Work
2.1. Explanation-based Refining

Recently, there has been some work that leverages the DRL
explanation to improve the agent’s performance. These ex-
planations can be derived from either human feedback or
automated processes. Guan et al. (2021); Van Waveren et al.
(2022) propose to utilize human feedback to correct the
agent’s failures. More specifically, when the agent fails, hu-
mans (can be non-experts) are involved to point out how to
avoid such a failure (i.e., what action should be done instead,
and what action should be forbidden). Based on human feed-
back, the DRL agent gets refined by taking human-advised
action in those important time steps and finally obtains the
corrected policy. The downside is that it relies on humans to
identify critical steps and craft rules for alternative actions.
This can be challenging for a large action space, and the re-
training process is ad-hoc and time-consuming. Cheng et al.
(2023); Yu et al. (2023) propose to use step-level DRL expla-
nation methods to automatically identify critical time steps
and refine the agent accordingly. It initiates the refining pro-
cess by resetting the environment to the critical states and
subsequently resumes training the DRL agents from these
critical states. Empirically, we observe that this refining
strategy can easily lead to overfitting (see Appendix D). In-
stead, we propose a novel refining strategy with theoretical
guarantees to improve the agent’s performance.

2.2. Leveraging Existing Policy

The utilization of existing policies to initialize RL and en-
hance exploration has been explored in previous literature.
Some studies propose to “roll-in” with an existing policy
for better exploration, as demonstrated in works (Agarwal
et al., 2020; Li et al., 2023). Similar to our approach, JSRL
(Uchendu et al., 2023) incorporates a guide policy for roll-in,
followed by a self-improving exploration policy. Techni-
cally, JSRL relies on a curriculum for the gradual update of
the exploration frontier. However, the curriculum may not
be able to truly reflect the key reasons why the guide policy
succeeds or fails. Therefore, we propose to leverage the
explanation method to automatically identify crucial states,
facilitating the rollout of the policy by integrating these iden-
tified states with the default initial states. In Section 4, we

2

https://github.com/chengzelei/RICE
https://github.com/chengzelei/RICE

RICE: Breaking Through the Training Bottlenecks of Reinforcement Learning with Explanation

Explore trajectoryOriginal trajectoryInitial stateCritical state

(a) Original trajectories generated by a
pre-trained DRL policy.

(b) Mix default initial states and identified
critical states based on explanation.

(c) Rollout new trajectories with
RND-based exploration.

Figure 1. Given a pre-trained DRL policy that is not fully optimal (a), we propose the RICE algorithm that resets the RL agent to specific
visited states (a mixture of default initial states and identified critical states) (b), followed by an exploration step initiated from these
chosen states (c).

empirically demonstrate that JSRL performs poorly in our
selected games. Chang et al. (2023) propose PPO++ that
reset the environment to a mixture of the default initial states
and the visited states of a guide policy (i.e., a pre-trained
policy). It can be viewed as a special case in our framework,
i.e., constructing a mixed initial distribution with a random
explanation. However, we claim that not all visited states
of a pre-trained policy are informative and our theoretical
analysis and experiments both show that RICE based on our
explanation method outperforms the refining method based
on a random explanation.

3. Proposed Technique
3.1. Problem Setup and Assumption

We model the problem as a Markov Decision Process
(MDP), which is defined as a tuple hS, A, P , ⇢, R,
�i. In this tuple, S and A are the state and action set,
where each st and at represents the state and action of
the agent at time t. P : S ⇥ A ! �(S) is the state
transition function, R : S ⇥ A ! R is the reward
function. � 2 (0, 1) is the discount factor. For a pol-
icy ⇡(a|s): S ! A, the value function and Q-function
is defined as V ⇡(s) = E⇡ [

P1
t=0 �

tR(st, at) | s0 = s]
and Q⇡(s, a) = E⇡ [

P1
t=0 �

tR(st, at) | s0 = s, a0 = a].
The advantage function for the policy ⇡ is denoted as
A⇡(s, a) = Q⇡(s, a) � V ⇡(s). We assume the initial
state distribution is given by ⇢: s0 ⇠ ⇢. The goal of
RL is to find an optimal policy ⇡⇤ that maximizes its ex-
pected total reward : ⇡⇤ = argmax⇡ Es⇠⇢ [V ⇡(s)]. Be-
sides, we also introduce the state occupancy distribution
and the state-action occupancy measure for ⇡, denoted
as d⇡⇢ (s) = (1 � �)

P1
t=0 �

t Pr⇡ (st = s | s0 ⇠ ⇢) and
d⇡⇢ (s, a) = d⇡⇢ (s)⇡(a|s).

In our setting, we have a pre-trained policy denoted as ⇡,

which may be sub-optimal. Our objective is to break through
the training bottlenecks of the pre-trained policy with an ex-
planation. Rather than re-training from scratch, we propose
to utilize explanation to take full advantage of the guidance
of the pre-trained policy ⇡. Importantly, we do not assume
knowledge of the original training algorithm used for pol-
icy ⇡. And we make the following assumptions about the
quality of ⇡.
Assumption 3.1. Given a random policy ⇡r, we have
Ea⇠⇡r [A⇡(s, a)]  0, 8s.

Intuitively, the above assumption implies that taking an
action based on a random policy ⇡r will provide a lower ad-
vantage than taking actions based on the policy ⇡. This is a
reasonable assumption since ⇡ is a pre-trained policy, thus it
would perform much better than an untrained (i.e., random)
policy.
Assumption 3.2. The pre-trained policy ⇡ cover the states

visited by the optimal policy ⇡⇤:
����
d⇡⇤
⇢

d⇡
⇢

����
1

 C, where C is

a constant.

In other words, Assumption 3.2 requires that the pre-trained
policy visits all good states in the state space. Note that it is
a standard assumption in the online policy gradient learning
(Agarwal et al., 2021; Uchendu et al., 2023; Li et al., 2023)
and is much weaker than the single policy concentrateabil-
ity coefficient assumption (Rashidinejad et al., 2021; Xie
et al., 2021), which requires the pre-trained policy visits all
good state-action pairs. The ratio in Assumption 3.2 is also
referred to as the distribution mismatch coefficient.

3.2. Technical Overview

Recall our goal is to refine the pre-trained DRL agent to
break through the training bottlenecks. At a high level, the
RICE algorithm integrates a roll-in step, where the RL agent
is reset to specific visited states, followed by an exploration

3

RICE: Breaking Through the Training Bottlenecks of Reinforcement Learning with Explanation

step initiated from these chosen states. During the roll-in
step, we draw inspiration from established RL-explanation
methods (Puri et al., 2019; Guo et al., 2021; Cheng et al.,
2023) to identify critical states, referred to as exploration
frontiers, within the given policy ⇡. As depicted in Figure 1,
when presented with a trajectory sampled from the policy
⇡, we employ a step-level explanation method – StateMask
(Cheng et al., 2023) to identify the most crucial time steps
influencing the final rewards in this trajectory. Subsequently,
we guide the RL agent to revisit these selected states. The
rationale behind revisiting these states lies in their ability to
offer an expanded initial state distribution compared to ⇢,
thereby enabling the agent to explore diverse and relevant
states it might otherwise neglect. Additionally, we intro-
duce a mixing of these selected states with the initial states
sampled from ⇢. This mixing approach serves the purpose
of preventing the agent from overfitting to specific states.
In Section 3.4, we theoretically show that RICE achieves
a tighter regret bound through the utilization of this mixed
initial distribution.

Then, we propose an exploration-based method to further
enhance the DRL agent’s performance. The high-level idea
is to incentivize the agent to explore when initiating actions
from these frontiers. Intuitively, the pre-trained policy ⇡
might converge to a local optimal, as shown in Figure 1.
Through exploration, we aim to expand state coverage by
rewarding the agent for visiting novel states, thereby in-
creasing the likelihood of successfully completing the task.
Specifically, we utilize the Proximal Policy Optimization
(PPO) algorithm (Schulman et al., 2017) for refining the
DRL agent, leveraging the monotonicity of PPO.

3.3. Technique Detail

Step-level Explanation. We leverage a state-of-the-art
explanation method StateMask (Cheng et al., 2023). At a
high level, StateMask parameterizes the importance of the
target agent’s current time step as a neural network model
(i.e., mask network). This neural network takes the current
state as input and then outputs this step’s importance score
with respect to the agent’s final reward. To do so, StateMask
learns a policy to “blind” the target agent at certain steps
without changing the agent’s final reward. Specifically, for
an input state st, the mask net outputs a binary action amt of
either “zero” or “one”, and the target agent will sample the
action at from its policy. The final action is determined by
the following equation

at � amt =

(
at, if amt = 0 ,

arandom if amt = 1 ,
(1)

The mask net is then trained to minimize the following
objective function:

J(✓) = min |⌘(⇡)� ⌘(⇡̄)| , (2)

Algorithm 1 Training the Mask Network.
Input: Target agent’s policy ⇡
Output: Mask network ⇡̃✓

Initialization: Initialize the weights ✓ for the mask net ⇡̃✓

✓old ✓
for iteration=1, 2, . . . do

Set the initial state s0 ⇠ ⇢
D ;

for t=0 to T do
Sample at ⇠ ⇡(at|st)
Sample am

t ⇠ ⇡̃✓old(a
m
t |st)

Compute the actual taken action a at � am
t

(st+1, R
0
t) env.step(a) and record (st, st+1, a

m
t , R0

t)
in D

end for
update ✓old ✓ using D by PPO algorithm

end for

where ⇡ denotes the policy of the target agent (i.e., our pre-
trained policy), ⇡̄ denotes the policy of the perturbed agent
(i.e., integrating the random policy and the target agent ⇡
via the mask network ⇡̃), ⌘(·) is the expected total reward of
an agent by following a certain policy. To solve the Eqn. (2)
with monotonicaly guarantee, StateMask carefully designs
a surrogate function and utilize the prime-dual methods to
optimize the ⇡̃. However, we can optimize the learning
process of mask net within our setting to enhance simplicity.
Specifically, we have the following theorem

Theorem 3.3. Under Assumption 3.1, we have ⌘(⇡̄) upper-
bounded by ⌘(⇡): ⌘(⇡̄)  ⌘(⇡).

The proof of the theorem can be found in Appendix A.
Leveraging this theorem, we can transform the objective
function to J(✓) = max ⌘(⇡̄). With this reformulation,
we can utilize the vanilla PPO algorithm to train the state
mask without sacrificing the theoretical guarantee. How-
ever, naı̈vely maximizing the expected total reward may
introduce a trivial solution to the problem which is to not
blind the target agent at all (always outputs “0”). To tackle
this problem, we add an additional reward by giving an extra
bonus when the mask net outputs “1”. The new reward can
be written as R0(st, at) = R(st, at) + ↵amt where ↵ is a
hyper-parameter. We present the learning process of the
mask network in Algorithm 1. By applying this resolved
mask to each state, we will be able to assess the state impor-
tance (i.e., the probability of mask network outputting “0”)
at any time step.

Constructing Mixed Initial State Distribution. With the
state mask ⇡̃, we construct a mixed initial state distribution
to expand the coverage of the state space. Initially, we
randomly sample a trajectory by executing the pre-trained
policy ⇡. Subsequently, the state mask is applied to pinpoint
the most important state within the episode ⌧ by assessing
the significance of each state. The resulting distribution of
these identified critical states is denoted as d⇡̂⇢ (s). Indeed,

4

RICE: Breaking Through the Training Bottlenecks of Reinforcement Learning with Explanation

Algorithm 2 Refining the DRL Agent.
Input: Pre-trained policy ⇡, corresponding state mask ⇡̃, default
initial state distribution ⇢, reset probability threshold p
Output: The agent’s policy after refining ⇡0

for iteration=1, 2, . . . do
D ;

RAND NUM RAND(0,1)
if RAND NUM < p then

Run ⇡ to obtain a trajectory ⌧ of length K
Identify the most critical state st in ⌧ via state mask ⇡̃
Set the initial state s0 st

else
Set the initial state s0 ⇠ ⇢

end if
for t=0 to T do

Sample at ⇠ ⇡(at|st)
(st+1, Rt) env.step(at)

Calculate RND bonus RRND
t =

���f (st+1)� f̂ (st+1)
���
2

with normalization
Add (st, st+1, at, Rt + �RRND

t) to D

end for
Optimize ⇡✓ w.r.t PPO loss on D

Optimize f̂✓ w.r.t. MSE loss on D using Adam
end for
⇡0
 ⇡✓

in Section 3.4, we demonstrate that this re-weighting-like
sampling is equivalent to sampling the state from a better
policy ⇡̂. We then set the initial distribution µ as a mixture
of the selected important states distribution d⇡̂⇢ (s) and the
original initial distribution of interest ⇢: µ(s) = �d⇡̂⇢ (s) +
(1� �)⇢(s), where � is a hyper-parameter.

Exploration with Random Network Distillation. Start-
ing from the new initial state distribution, we continue train-
ing the DRL agent while encouraging the agent to do ex-
ploration. In contrast to goal-conditional RL (Ren et al.,
2019; Ecoffet et al., 2019), which typically involve ran-
dom exploration from identified frontiers, we advocate for
the RL agent to explore novel states to increase the state
coverage. Motivated by this, we adopt Random Network
Distillation (RND) (Burda et al., 2018) which is proved to
be an effective exploration bonus, especially in large and
continuous state spaces where count-based bonuses (Belle-
mare et al., 2016; Ostrovski et al., 2017) can be hard
to extend. Specifically, we directly utilize the PPO al-
gorithm to update the policy ⇡, except that we add the
intrinsic reward to the task reward, that is, we optimize
R0(st, at) = R(st, at) + �|f(st+1) � f̂(st+1)|2, where �
controls the trade-off between the task reward and explo-
ration bonus. Along with the policy parameters, the RND
predictor network f̂ is updated to regress to the target net-
work f . Note that, as the state coverage increases, RND
bonuses decay to zero and a performed policy is recovered.
We present our proposed refining method in Algorithm 2.

3.4. Theoretical Analysis

Finally, we provide theoretical analysis demonstrating that
our refining algorithm can tighten the sub-optimality gap:
SubOpt := V ⇡⇤

(⇢) � V ⇡0
(⇢), (i.e., the gap between the

long-term reward collected by the optimal policy ⇡⇤ and
that obtained by the refined policy ⇡0 when starting from
the default initial state distribution ⇢).

In particular, we aim to answer the following two questions:
Q1:What are the benefits of incorporating StateMask to
determine the exploration frontier?

Q2: what advantages does starting exploration from the
mixed initial distribution offer?

To answer the questions, we first show that determining the
exploration frontiers based on StateMask is equivalent to
sampling states from a better policy compared to ⇡. Then,
we demonstrate that under the mixed initial distribution as
introduced in Section 3.3, we could provide a tighter upper
bound for the sub-optimality of trained policy ⇡ compared
with randomly selecting visited states to form the initial
distribution.

In order to answer Q1, we begin with Assumption 3.4 to
assume the relationship between the policy value and the
state distribution mismatch coefficient.
Assumption 3.4. For two polices ⇡ and ⇡̂, if ⌘(⇡̂) � ⌘(⇡),

then we have
����
d⇡⇤
⇢

d⇡̂
⇢

����
1


����
d⇡⇤
⇢

d⇡
⇢

����
1

.

Intuitively, this assumption posits that a superior policy
would inherently possess a greater likelihood of visiting all
favorable states. We give validation of this assumption in a
2-state MDP in Appendix B.1.

We further present Lemma 3.5 to answer Q1, i.e., the bene-
fits of incorporating StateMask to determine the exploration
frontier. The proof of Lemma 3.5 can be found in Appendix
B.2.
Lemma 3.5. Given a pre-trained policy ⇡, our MaskNet-
based sampling approach in Section 3.3 is equivalent to
sampling states from a state occupation distribution induced
by an improved policy ⇡̂.

In order to answer Q2, we start with presenting Theorem
3.6 to bound the sub-optimality via the state distribution
mismatch coefficient.
Theorem 3.6. Assume that for the refined policy ⇡0,
Es⇠d⇡0

µ

h
maxa A⇡0

(s, a)
i
< ✏. For two initial state dis-

tributions µ and ⇢, we have the following bound (Kakade &
Langford, 2002)

V ⇡⇤
(⇢)� V ⇡0

(⇢)  O(
✏

(1� �)2

�����
d⇡

⇤
⇢

d⇡̂⇢

�����
1

). (3)

5

RICE: Breaking Through the Training Bottlenecks of Reinforcement Learning with Explanation

The proof of Theorem 3.6 can be found in Appendix B.3.
It indicates that the upper bound on the difference between
the performance of the optimal policy ⇡⇤ and that of the

policy ⇡0 after refining is proportional to
����
d⇡⇤
⇢

d⇡̂
⇢

����
1

. With

Assumption 3.4 and Lemma 3.5, we now claim that our re-
fining method with our explanation could further tighten the
sub-optimality gap via reducing the distribution mismatch
coefficient compared with forming an initial distribution by
random selecting visited states, i.e., with a random explana-
tion.

Claim 1. We can form a better (mixed) initial state dis-
tribution µ with our explanation method and tighten the
upper bound of V ⇡⇤

(⇢) � V ⇡0
(⇢) compared with random

explanation.

The details of the analysis can be found in Appendix B.4.
Based on Assumption 3.2 and Claim 1, we can learn to
perform as well as the optimal policy as long as the visited
states of the optimal policy are covered by the (mixed) initial
distribution.

4. Evaluation
In this section, we start with our experiment setup and de-
sign, followed by experiment results and analysis. We pro-
vide additional evaluation details in Appendix C.

4.1. Experiment Setup

Environment Selection. We select eight representative
environments to demonstrate the effectiveness of RICE
across two categories: simulated games (Hopper, Walker2d,
Reacher, and HalfCheetah of the MuJoCo games) and real-
world applications (selfish mining, network defense, au-
tonomous driving, and malware mutation) 2. We addition-
ally run the experiments in the three sparse MuJoCo games
introduced by Mazoure et al. (2019). The details of these
applications can be found in Appendix C.2.

Baseline Explanation Methods. Since our explanation
method proposes an alternative design of StateMask, the first
baseline is StateMask. We compare our explanation method
with StateMask to show the equivalence and efficiency of
our method. Additionally, we introduce “Random” as a
baseline explanation method. “Random” identifies critical
steps by randomly selecting a visited state as the critical
state.

Baseline Refining Methods. We compare our refining
method with three baselines. The first baseline is “PPO

2These are representative security applications that have a sig-
nificant impact on the security community (Anderson et al., 2018)
and they represent RL tasks with sparse rewards, which are com-
mon in security applications.

fine-tuning” (Schulman et al., 2017), i.e., lowering the learn-
ing rate and continuing training with the PPO algorithm.
The second baseline is a refining method introduced by
StateMask (Cheng et al., 2023), i.e., resetting to the crit-
ical state and continuing training from the critical state.
The third baseline is Jump-Start Reinforcement Learning
(referred to as “JSRL”) (Uchendu et al., 2023). JSRL in-
troduces a guided policy ⇡g to set up a curriculum to train
an exploration policy ⇡e. Through initializing ⇡e = ⇡g , we
can transform JSRL to be a refining method that can further
improve the performance of the guided policy.

Evaluation Metrics. To evaluate the fidelity of the gen-
erated explanation, we utilize an established fidelity score
metric defined in StateMask (Cheng et al., 2023). The idea
is to use a sliding window to step through all time steps and
then choose the window with the highest average impor-
tance score (scored by the explanation method). The width
of the sliding window is l while the whole trajectory length
is L. Then we randomize the action(s) at the selected critical
step(s) in the selected window (i.e., masking) and measure
the average reward change as d. Additionally, we denote
the maximum possible reward change as dmax. Therefore,
the fidelity score is calculated as log(d/dmax)� log(l/L).
A higher fidelity score indicates higher fidelity.

For the applications with dense rewards except the malware
mutation application, we measure the reward of the target
agent before and after refining. In the case of the malware
mutation application, we report the “final reward” as the
probability of evading the malware detector, both before
and after refining. For the applications with sparse rewards,
we report the performance during the refining process.

4.2. Experiment Design

We use the following experiments to evaluate the fidelity
and efficiency of the explanation method, the effectiveness
of the refining method and other factors that influenced the
system performance (e.g., alternative design choices, hyper-
parameters).

Experiment I. To show the equivalence of our explanation
method with StateMask, we compare the fidelity of our
method with StateMask. Given a trajectory, the explanation
method first identifies and ranks top-K important time steps.
An accurate explanation means the important time steps
have significant contributions to the final reward. To validate
this, we let the agent fast-forward to the critical step and
force the target agent to take random actions. Then we
follow the target agent’s policy to complete the rest of the
time steps. If the explanation is accurate, we expect a major
change to the final reward by randomizing the actions at
the important steps. We compute the fidelity score of each
explanation method as mentioned in StateMask across 500
trajectories. We set K = 10%, 20%, 30%, 40% and report

6

RICE: Breaking Through the Training Bottlenecks of Reinforcement Learning with Explanation

the fidelity of the selected methods under each setup. We
repeat each experiment 3 times with various random seeds
and report the mean and standard deviation. Additionally,
to show the efficiency of our design, we report the training
time of the mask network using StateMask and our method
when given a fixed number of training samples.

Experiment II. To show the effectiveness of the refin-
ing method, we compare the agent’s performance after re-
fining using our method and three aforementioned base-
line methods, i.e., PPO fine-tuning (Schulman et al., 2017),
StateMask’s fine-tuning from critical steps (Cheng et al.,
2023), and Jump-Start Reinforcement Learning (Uchendu
et al., 2023). For this experiment, all the refining meth-
ods use the same explanation generated by our explanation
method if needed, to ensure a fair comparison. Addition-
ally, we conduct a qualitative study to understand how our
refining method influences agent behavior and performance.

Experiment III To investigate how the quality of expla-
nation affects the downstream refining process, we run our
proposed refining method based on the critical steps identi-
fied by different explanation methods (Random, StateMask,
and our method) and compare the agent’s performance after
refining.

Experiment IV. To show the versatility of our method,
we examine the refining performance when the pre-trained
agent was trained by other algorithms such as Soft Actor-
Critic (SAC) (Haarnoja et al., 2018). First, we obtain a
pre-trained SAC agent and then use Generative Adversarial
Imitation Learning (GAIL) (Ho & Ermon, 2016) to learn
an approximated policy network. We compare the refining
performance using our method against baseline methods,
i.e., PPO fine-tuning (Schulman et al., 2017), StateMask’s
fine-tuning from critical steps (Cheng et al., 2023), and
Jump-Start Reinforcement Learning (Uchendu et al., 2023).
In addition, we also include fine-tuning the pre-trained SAC
agent with the SAC algorithm as a baseline.

Experiment V. We test the impact of hyper-parameter
choices for two primary hyper-parameters for refining: p
(used to control the mixed initial state distribution) and �
(used to control the exploration bonus). For our refining
method, we vary p from {0, 0.25, 0.5, 0.75, 1} and vary �
from {0, 0.1, 0.01, 0.001}. By examining the agent’s per-
formance with various � values, we can further investigate
the necessity of the exploration bonus. Additionally, we
evaluate the choice of ↵ for our explanation method (used to
control the mask ratio for the mask network). Specifically,
we vary ↵ from {0.01, 0.001, 0.0001}.

4.3. Experiment Results

Fidelity and Efficiency of Explanation. We compare the
fidelity scores of our method with StateMask in all applica-

tions and provide the full results in Figure 5 of Appendix
C.3. We observe that the fidelity scores of StateMask and
our method are comparable. Furthermore, We evaluate
the efficiency of our explanation method compared with
StateMask. We report the cost time and the number of sam-
ples when training our explanation method and StateMask
in Table 4 of Appendix C.3. We observe an average of
16.8% drop in the training time compared with StateMask.
The reason is that the training algorithm of the mask net-
work in StateMask involves an estimation of the discounted
accumulated reward with respect to the current policy of
the perturbed agent and the policy of the target agent which
requires additional computation cost. In contrast, our design
only adds an additional term to the reward which is simple
but effective.

Effectiveness of Refining. We compare the agent’s per-
formance after refining using different retaining methods
across all applications with dense rewards in Table 1. The
performance is measured by the final reward of the refined
agent. In most applications, rewards are typically assigned
positive values. However, in Cage Challenge 2, the reward is
designed to incorporate negative values (see Appendix C.2).
We have three main observations. First, we observe that
our refining method can bring the largest improvement for
the target agent in all applications. Second, we find that the
PPO fine-tuning method only has marginal improvements
for the agents due to its incapability of jumping out of local
optima. Third, the refining method proposed in StateMask
(which is to start fine-tuning only from critical steps) cannot
always improve the agent’s performance. The reason is that
this refining strategy can cause overfitting and thus harm the
agent’s performance. We illustrate this problem in greater
detail in a case study of Malware Mutation in Appendix D.
It is also worth mentioning that we discover design flows of
Malware Mutation and present the details in Appendix D.

We also run our experiments of varying refining methods
on selected MuJoCo games with sparse rewards. Figure 2
shows the results of our method against other baselines in
SparseHopper and SparseHalfCheetah games. We observe
that our refining method has significant advantages over
other baselines with respect to final performance and refin-
ing efficiency. Through varying explanation methods, we
confirm that the contribution should owe to our explana-
tion method. We leave the refining results of the Sparse-
Walker2d game and the hyper-parameter sensitivity results
of all sparse MuJoCo games in Appendix C.4.

In addition to numerical results, we also provide a qualita-
tive analysis of the autonomous driving case to understand
how RICE influences agent behavior and performance, par-
ticularly in a critical state, in Appendix C.5. We visualize
the agent’s behavior before and after refining the agent to
show that RICE is able to help the agent break through

7

RICE: Breaking Through the Training Bottlenecks of Reinforcement Learning with Explanation

Table 1. Agent Refining Performance—“No Refine” indicates the target agent’s performance before refining. For the first group of
experiments (left), we fixed the explanation method to our method (mask network) and varied the refining methods. For the second
group of experiments (right), we fixed the refining method to our method and varied the explanation methods. We report the mean value
(standard deviations) of the final reward after refining. A higher value is better.

Task No Refine Fix Explanation; Vary Refine Methods Fix Refine; Vary Explanation Methods
PPO JSRL StateMask-R Ours Random StateMask Ours

Hopper 3559.44 (19.15) 3638.75 (16.67) 3635.08 (9.82) 3652.06 (8.63) 3663.91 (20.98) 3648.98 (39.06) 3661.86 (19.95) 3663.91 (20.98)
Walker2d 3768.79 (18.68) 3965.63 (9.46) 3963.57 (6.73) 3966.96 (3.39) 3982.79 (3.15) 3969.64(6.38) 3982.67 (5.55) 3982.79 (3.15)
Reacher -5.79 (0.73) -3.04 (0.04) -3.23 (0.26) -3.45 (0.32) -2.66 (0.03) -3.11 (0.42) -2.69 (0.28) -2.66 (0.03)

HalfCheetah 2024.09 (28.34) 2133.31 (4.11) 2128.04 (0.91) 2085.28 (1.92) 2138.89 (3.22) 2132.01 (0.76) 2136.23 (0.49) 2138.89 (3.22)
Selfish Mining 14.36 (0.24) 14.93 (0.45) 14.88 (0.51) 14.53 (0.33) 16.56 (0.63) 15.09 (0.28) 16.49 (0.46) 16.56 (0.63)

Cage Challenge 2 -23.64 (0.27) -23.58 (0.37) -22.97 (0.57) -26.98 (0.84) -20.02 (0.32) -25.94 (2.34) -20.07 (1.33) -20.02 (0.32)
Auto Driving 10.30 (2.25) 13.37 (3.10) 11.26 (3.66) 7.62 (1.77) 17.03 (1.65) 11.72 (1.77) 16.28 (2.33) 17.03 (1.65)

Malware Mutation 42.20 (6.86) 49.33 (8.59) 43.10 (7.24) 50.13 (8.14) 57.53 (8.71) 48.60 (7.60) 57.16 (8.51) 57.53 (8.71)

(a) Fix Explanation; Vary Refine (b) Fix Refine; Vary Explanation
SparseHopper SparseHopper SparseHalfCheetahSparseHalfCheetah

Figure 2. Agent Refining Performance in two Sparse MuJoCo Games—For Group (a), we fix the explanation method to our method
(mask network) if needed while varying refining methods. For Group (b), we fix the refining method to our method while varying the
explanation methods.

the bottleneck based on the identified critical states of the
failure.

Refining based on Different Explanations. To examine
how the quality of explanation affects the downstream re-
fining process, we present Table 1. We run our proposed
refining method based on the critical steps identified by
ours and Random. We have two main observations. First,
using the explanation generated by our mask network, the
refining achieves the best outcome across all applications.
Second, using the explanation generated by our explanation
significantly outperforms the random baseline. This aligns
with our theoretical analysis that our refining framework
provides a tighter bound for the sub-optimality.

Refining a Pre-trained Agent of Other Algorithms. To
show that our framework is general to refine pre-trained
agents that were not trained by PPO algorithms, we do ex-
periments on refining a SAC agent in the Hopper game.
Figure 3 demonstrates the advantage of our refining method
against other baselines when refining a SAC agent. Addi-
tionally, we observe that fine-tuning the DRL agent with
the SAC algorithm still suffers from the training bottleneck
while switching to the PPO algorithm provides an opportu-
nity to break through the bottleneck. We provide the refining
curves when varying hyper-parameters p and � in Appendix
C.3.

Impact of Hyper-parameters. Due to space limit, we
provide the sensitivity of hyper-parameters p, �, and ↵ in

Pre-train the policy(1M steps) Refine the policy(1M steps)

Figure 3. SAC Agent Refining Performance in Hopper Game
—In the left part, we show the training curve of obtaining a pre-
trained policy through the SAC algorithm. In the right part, we
show the refining curves of different methods.

Appendix C.3. We have three main observations.

First, p controls the mixing ratio of critical states (identified
by the explanation method) and the initial state distribution
for refining. The performance is low when p = 0 (all
starting from the default initial distribution) or p = 1 (all
starting from the identified critical states). The performance
has significant improvements when 0 < p < 1, i.e., using a
mixed initial state distribution. Across all applications, we
observe that setting p to 0.25 or 0.5 is most beneficial. A
mixed initial distribution can help eliminate the problem of
overfitting.

Second, as long as � > 0 (thereby enabling exploration),
there is a noticeable improvement in performance, highlight-
ing the importance of exploration in refining the pre-trained
agent. The result is less sensitive to the specific value of

8

RICE: Breaking Through the Training Bottlenecks of Reinforcement Learning with Explanation

�. In general, a � value of 0.01 yields good performance
across all four applications.

Third, recall that the hyper-parameter ↵ is to control the
bonus of blinding the target agent when training the mask
network. We vary ↵ from {0.01, 0.001, 0.0001} and find
that our explanation method is not that sensitive to ↵.

5. Discussion

Applicability. RICE is suitable for DRL applica-
tions that are trained within controllable environment
(e.g., simulators), in order to generate explanations. In fact,
most of today’s DRL applications rely on some form of
simulator for their training. For example, for safety-critical
applications such as autonomous driving, DRL agents are
usually designed, trained, and tested in a simulated environ-
ment first before moving them to real-world testing. Simu-
lation platforms broadly include Carla (Dosovitskiy et al.,
2017) and MetaDrive (Li et al., 2022) which have been used
to facilitate the training of DRL agents (Zhang et al., 2021;
Wang et al., 2023; Peng et al., 2022). Therefore, RICE
should be applicable to such DRL systems (especially dur-
ing their development phase) for refining a pre-trained DRL
agent.

Warm Start vs Cold Start. As is mentioned in Section 3,
our method requires a “warm start” setting, i.e., the agent
has good coverage of the state distribution of the optimal
policy. Even if the agent has good coverage of the state
distribution, it does not necessarily mean that the agent has
already learned a good policy due to the potential of choos-
ing wrong actions (Uchendu et al., 2023). Therefore, the
training bottleneck can still exist under a good coverage of
the state distribution. In contrast, Our method does not work
well in a “cold start” setting, i.e., when the state coverage
of the pre-trained policy is extremely poor. In that case,
step-level explanation methods cannot give useful help and
our method is actually equivalent to the RND method 3.

Critical State Filtering. Though RICE identifies critical
states based on their necessity for achieving good outcomes,
it does not fully consider their importance for further agent
learning. For instance, a state might be deemed critical,
yet the trained agent could have already converged to the
optimal action for that state. In such cases, resetting the
environment to this state doesn’t significantly benefit the
learning process. Future work could explore additional
filtering of critical states using metrics such as policy con-
vergence or temporal difference (TD) errors, which may
help concentrate efforts and accelerate refinement.

3We provide an example of Mountain Car game in Appendix E
to illustrate this limitation.

6. Conclusion
In this paper, we present RICE to break through bottle-
necks of reinforcement learning training with explanation.
We propose an alternative design of StateMask to provide
high-fidelity explanations for DRL agents’ behaviors, by
identifying critical time steps that contribute the most to
the agent’s success/failure. We encourage the agent to ex-
plore starting from a mixture of default initial states and the
identified critical states. Compared with existing refining
strategies, we empirically show that our method brings the
largest improvement after refining with theoretical guaran-
tees.

Acknowledgements
This project was supported in part by Northwestern Univer-
sity TGS Fellowship and NSF Grants 2225234, 2225225,
2229876, 1955719, and 2055233.

Impact Statement
This paper presents work whose goal is to advance the field
of reinforcement learning with explanation. There are many
potential social impacts of our work. Our approach provides
a feasible solution to break through the training bottlenecks
of reinforcement learning with explanation, which is an
automatic process and saves manual effort.

However, it is also worth noting the potential negative soci-
etal impacts of our work. Some of the real-world applica-
tions we select such as malware mutation can create attack
examples that may bring additional ethical concerns. In the
realm of security research, the ultimate goal of these tasks
is to generate stronger testing cases to enhance the defense,
and it is standard practice. Take malware mutation as an
example, the produced samples can be used to proactively
improve the robustness and effectiveness of malware de-
tection systems (e.g., through adversarial training), thereby
benefiting cybersecurity defense (Yang et al., 2017).

References
GitHub - bfilar/malware rl: Malware Bypass Research us-

ing Reinforcement Learning — github.com. https:
//github.com/bfilar/malware_rl, a.

GitHub - cage-challenge/cage-challenge-2: TTCP CAGE
Challenge 2 — github.com. https://github.com/
cage-challenge/cage-challenge-2, b.

GitHub - john-cardiff/-cyborg-cage-2 — github.com.
https://github.com/john-cardiff/
-cyborg-cage-2, c.

9

https://github.com/bfilar/malware_rl
https://github.com/bfilar/malware_rl
https://github.com/cage-challenge/cage-challenge-2
https://github.com/cage-challenge/cage-challenge-2
https://github.com/john-cardiff/-cyborg-cage-2
https://github.com/john-cardiff/-cyborg-cage-2

RICE: Breaking Through the Training Bottlenecks of Reinforcement Learning with Explanation

GitHub - roibarzur/pto-selfish-mining: Code repository
for technical papers about selfish mining analysis. —
github.com. https://github.com/roibarzur/
pto-selfish-mining, d.

Mountain car continuous. https://mgoulao.
github.io/gym-docs/environments/
classic_control/mountain_car_
continuous/. Accessed: 2024-05-24.

Agarwal, A., Henaff, M., Kakade, S., and Sun, W. Pc-
pg: Policy cover directed exploration for provable policy
gradient learning. Proc. of NeurIPS, 2020.

Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G.
On the theory of policy gradient methods: Optimality,
approximation, and distribution shift. Journal of Machine
Learning Research, 2021.

Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C.,
and Bellemare, M. Reincarnating reinforcement learning:
Reusing prior computation to accelerate progress. In Proc.
of NeurIPS, 2022.

Anderson, H. S., Kharkar, A., Filar, B., Evans, D., and Roth,
P. Learning to evade static pe machine learning mal-
ware models via reinforcement learning. arXiv preprint
arXiv:1801.08917, 2018.

Bar-Zur, R., Abu-Hanna, A., Eyal, I., and Tamar, A. Werl-
man: To tackle whale (transactions), go deep (rl). In Proc.
of IEEE S&P, 2023.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T.,
Saxton, D., and Munos, R. Unifying count-based ex-
ploration and intrinsic motivation. In Proc. of NeurIPS,
2016.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. Explo-
ration by random network distillation. In Proc. of ICLR,
2018.

CAGE. Ttcp cage challenge 2. In Proc. of AAAI-22 Work-
shop on Artificial Intelligence for Cyber Security (AICS),
2022.

Cai, X.-Q., Ding, Y.-X., Chen, Z., Jiang, Y., Sugiyama,
M., and Zhou, Z.-H. Seeing differently, acting similarly:
Heterogeneously observable imitation learning. In Proc.
of ICLR, 2022.

Cai, X.-Q., Zhang, Y.-J., Chiang, C.-K., and Sugiyama,
M. Imitation learning from vague feedback. In Proc. of
NeurIPS, 2023.

Chang, J. D., Brantley, K., Ramamurthy, R., Misra, D., and
Sun, W. Learning to generate better than your llm. arXiv
preprint arXiv:2306.11816, 2023.

Cheng, Z., Wu, X., Yu, J., Sun, W., Guo, W., and Xing,
X. Statemask: Explaining deep reinforcement learning
through state mask. In Proc. of NeurIPS, 2023.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and
Koltun, V. CARLA: An open urban driving simulator. In
Proc. of CoRL, pp. 1–16, 2017.

drive Contributors, D. DI-drive: OpenDILab deci-
sion intelligence platform for autonomous driving
simulation. https://github.com/opendilab/
DI-drive, 2021.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O.,
and Clune, J. Go-explore: a new approach for hard-
exploration problems. arXiv preprint arXiv:1901.10995,
2019.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and
Clune, J. First return, then explore. Nature, 2021.

Erez, T., Tassa, Y., and Todorov, E. Infinite-horizon
model predictive control for periodic tasks with contacts.
Robotics: Science and systems VII, pp. 73, 2012.

Eyal, I. and Sirer, E. G. Majority is not enough: Bitcoin
mining is vulnerable. Communications of the ACM, 61
(7):95–102, 2018.

Eysenbach, B., Salakhutdinov, R., and Levine, S. The infor-
mation geometry of unsupervised reinforcement learning.
In Proc. of ICLR, 2021.

Fu, J., Luo, K., and Levine, S. Learning robust rewards with
adverserial inverse reinforcement learning. In Proc. of
ICLR, 2018.

Guan, L., Verma, M., Guo, S. S., Zhang, R., and Kambham-
pati, S. Widening the pipeline in human-guided reinforce-
ment learning with explanation and context-aware data
augmentation. In Proc.of NeurIPS, 2021.

Guo, W., Wu, X., Khan, U., and Xing, X. Edge: Explaining
deep reinforcement learning policies. In Proc. of NeurIPS,
2021.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-
critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. In Proc. of ICML, pp.
1861–1870, 2018.

Ho, J. and Ermon, S. Generative adversarial imitation learn-
ing. In Proc. of NeurIPS, 2016.

Kakade, S. and Langford, J. Approximately optimal approx-
imate reinforcement learning. In Proc. of ICML, 2002.

10

https://github.com/roibarzur/pto-selfish-mining
https://github.com/roibarzur/pto-selfish-mining
https://mgoulao.github.io/gym-docs/environments/classic_control/mountain_car_continuous/
https://mgoulao.github.io/gym-docs/environments/classic_control/mountain_car_continuous/
https://mgoulao.github.io/gym-docs/environments/classic_control/mountain_car_continuous/
https://mgoulao.github.io/gym-docs/environments/classic_control/mountain_car_continuous/
https://github.com/opendilab/DI-drive
https://github.com/opendilab/DI-drive

RICE: Breaking Through the Training Bottlenecks of Reinforcement Learning with Explanation

Li, Q., Peng, Z., Feng, L., Zhang, Q., Xue, Z., and Zhou,
B. Metadrive: Composing diverse driving scenarios for
generalizable reinforcement learning. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2022.

Li, Q., Zhai, Y., Ma, Y., and Levine, S. Understanding the
complexity gains of single-task rl with a curriculum. In
Proc. of ICML, pp. 20412–20451, 2023.

Mazoure, B., Doan, T., Durand, A., Hjelm, R. D., and
Pineau, J. Leveraging exploration in off-policy algorithms
via normalizing flows. In Proc. of CoRL, 2019.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Oh, J., Chockalingam, V., Lee, H., et al. Control of memory,
active perception, and action in minecraft. In Proc. of
ICML, 2016.

Oh, J., Guo, Y., Singh, S., and Lee, H. Self-imitation learn-
ing. In Proc. of ICML, pp. 3878–3887, 2018.

Ostrovski, G., Bellemare, M. G., Oord, A., and Munos, R.
Count-based exploration with neural density models. In
Proc. of ICML, 2017.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. In Proc. of NeurIPS, 2019.

Peng, Z., Li, Q., Liu, C., and Zhou, B. Safe driving via
expert guided policy optimization. In Proc. of CoRL,
2022.

Puri, N., Verma, S., Gupta, P., Kayastha, D., Deshmukh, S.,
Krishnamurthy, B., and Singh, S. Explain your move:
Understanding agent actions using specific and relevant
feature attribution. In Proc. of ICLR, 2019.

Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro,
B., and Nicholas, C. Malware detection by eating a whole
exe. arXiv preprint arXiv:1710.09435, 2017.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,
M., and Dormann, N. Stable-baselines3: Reliable rein-
forcement learning implementations. Journal of Machine
Learning Research, 2021.

Rashidinejad, P., Zhu, B., Ma, C., Jiao, J., and Russell,
S. Bridging offline reinforcement learning and imitation
learning: A tale of pessimism. In Proc. of NeurIPS, 2021.

Ren, Z., Dong, K., Zhou, Y., Liu, Q., and Peng, J. Explo-
ration via hindsight goal generation. In Proc. of NeurIPS,
2019.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Sundararajan, M., Taly, A., and Yan, Q. Axiomatic attribu-
tion for deep networks. In Proc. of ICML, 2017.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In Proc. of IROS, 2012.

Uchendu, I., Xiao, T., Lu, Y., Zhu, B., Yan, M., Simon, J.,
Bennice, M., Fu, C., Ma, C., Jiao, J., et al. Jump-start
reinforcement learning. In Proc. of ICML, 2023.

Van Waveren, S., Pek, C., Tumova, J., and Leite, I. Correct
me if i’m wrong: Using non-experts to repair reinforce-
ment learning policies. In Proc. of HRI, 2022.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P., et al. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. Nature, 2019.

Vyas, S., Hannay, J., Bolton, A., and Burnap, P. P. Au-
tomated cyber defence: A review. arXiv preprint
arXiv:2303.04926, 2023.

Wang, X., Zhang, J., Hou, D., and Cheng, Y. Autonomous
driving based on approximate safe action. IEEE Transac-
tions on Intelligent Transportation Systems, 2023.

Weng, J., Chen, H., Yan, D., You, K., Duburcq, A., Zhang,
M., Su, Y., Su, H., and Zhu, J. Tianshou: A highly
modularized deep reinforcement learning library. Journal
of Machine Learning Research, 2022.

Xie, T., Jiang, N., Wang, H., Xiong, C., and Bai, Y. Policy
finetuning: Bridging sample-efficient offline and online
reinforcement learning. In Proc. of NeurIPS, 2021.

Yang, W., Kong, D., Xie, T., and Gunter, C. A. Malware
detection in adversarial settings: Exploiting feature evolu-
tions and confusions in android apps. In Proc. of ACSAC,
2017.

Yu, J., Guo, W., Qin, Q., Wang, G., Wang, T., and Xing, X.
Airs: Explanation for deep reinforcement learning based
security applications. In Proc. of USENIX Security, 2023.

Zhang, Z., Liniger, A., Dai, D., Yu, F., and Van Gool, L.
End-to-end urban driving by imitating a reinforcement
learning coach. In Proc. of ICCV, 2021.

11

RICE: Breaking Through the Training Bottlenecks of Reinforcement Learning with Explanation

A. Proof of Theorem 3.3
Based on the Performance Difference Lemma (Kakade & Langford, 2002), we have

⌘(⇡̄)� ⌘(⇡) =
1

1� �
Es⇠d⇡̄

⇢
Ea⇠⇡̄(·|s)A

⇡ (s, a) , (4)

where ⇡ is the policy of the target agent, ⇡̄ is the perturbed policy, ⇢ is the initial distribution, and � is the discount rate.

Note that the perturbed policy ⇡̄ is a mixture of the target agent’s policy ⇡ and a random policy ⇡r (i.e., ⇡̄(·|s) = ⇡̃(ae =
0|s)⇡(·|s) + ⇡̃(ae = 1|s)⇡r(·|s)). Denote the probability of the mask network outputting 0 at state s as ⇡̃(ae = 0|s) =
⇠(s) and the probability of the mask network outputting 1 at state s as ⇡̃(ae = 1|s) = 1 � ⇠(s) Given the fact that
A⇡ (s,⇡(·|s)) = Ea⇠⇡(s)A

⇡(s, a) = 0, we have

⌘(⇡̄)� ⌘(⇡) =
1

1� �
Es⇠d⇡̄

⇢
Ea⇠⇡̄(·|s)A

⇡ (s, a)

=
1

1� �
Es⇠d⇡̄

⇢

X

a

⇡̄(a|s)A⇡ (s, a)

=
1

1� �
Es⇠d⇡̄

⇢

X

a

⇠(s)⇡(a|s)A⇡ (s, a) +
1

1� �
Es⇠d⇡̄

⇢

X

a

(1� ⇠(s))⇡r(a|s)A⇡ (s, a)

=
1

1� �
Es⇠d⇡̄

⇢
⇠(s)Ea⇠⇡(·|s)A

⇡ (s, a) +
1

1� �
Es⇠d⇡̄

⇢
(1� ⇠(s))Ea⇠⇡r(·|s)A

⇡ (s, a)

=
1

1� �
Es⇠d⇡̄

⇢
(1� ⇠(s))Ea⇠⇡r(·|s)A

⇡ (s, a)  0.

(5)

Therefore, we show that ⌘(⇡̄) is upper bounded by ⌘(⇡) given Assumption 3.1.

B. Theoretical Guarantee
B.1. Validation of Assumption 3.4 in a 2-state MDP

In a 2-state MDP, we have two different states, namely, sA and sB . The state distribution of any policy ⇡ follows
d⇡⇢ (sA) + d⇡⇢ (sB) = 1. As such, the set of feasible state marginal distribution can be described by a line [(0, 1), (1, 0)]
in R2. Let’s denote vector s = [sA, sB]. The expected total reward of a policy ⇡ can be represented as ⌘(⇡) =<
d⇡⇢ (s), R(s) > (Eysenbach et al., 2021), where R(s) = [R(sA), R(sB)]. Figure 4 shows the area of achievable state
distribution via the initial state distribution ⇢ (highlighted in orange).

It should be noted that not all the points in the line [(0, 1), (1, 0)] corresponded to a valid Markovian policy. However, for
any convex combination of valid state occupancy measures, there exists a Markovian policy that has this state occupancy
measure. As such, the policy search occurs within a convex polytope, essentially a segment (i.e., , marked in orange) along
this line. In Figure 4, we visualize R(s) as vectors starting at the origin. Since V ⇡̂(⇢) � V ⇡(⇢), We mark d⇡̂⇢ (s) closer to
R(s) (i.e., the inner product between d⇡̂⇢ (s) and R(s) and is larger than d⇡⇢ (s) and R(s)). The following theorem explains
how we determine the location of the location of d⇡

⇤

⇢ (s) in Figure 4.
Theorem B.1 (Fact 1 (Eysenbach et al., 2021)). For every state-dependent reward function, among the set of policies that
maximize that reward function is one that lies at a vertex of the state marginal polytope.

According to Theorem B.1, d⇡
⇤

⇢ (s) located at either vertex in the orange segment. Since ⇡⇤ is the optimal policy, it lies
at the vertex that has the larger inner product within R(s). Once the position of d⇡

⇤

⇢ (s) is determined, we can easily find����
d⇡⇤
⇢ (s)

d⇡̂
⇢ (s)

����
1


����
d⇡⇤
⇢ (s)

d⇡
⇢ (s)

����
1

based on Figure 4.

B.2. Proof of Lemma 3.5

Proof. Since our explanation method provides the importance of each state, we could view the sampling based on the state’s
importance as a reweighting of the state occupancy measure. Mathematically, it can be expressed as d⇡̂⇢ (s) = d⇡⇢ (s)w(s),

12

RICE: Breaking Through the Training Bottlenecks of Reinforcement Learning with Explanation

𝑑𝑑(𝑠𝑠𝐴𝐴)

𝑑𝑑(𝑠𝑠𝐵𝐵)

1

10

𝑅𝑅(𝒔𝒔)

𝑑𝑑𝜌𝜌𝜋𝜋(𝒔𝒔)
𝑑𝑑𝜌𝜌�𝜋𝜋(𝒔𝒔)

𝑑𝑑𝜌𝜌𝜋𝜋
∗(𝒔𝒔)

Figure 4. Visualization of state occupancy measures with respect to different policies and the reward function in a 2-state MDP.

where ⇡̂ is the equivalent policy of reweighting the original policy ⇡ and w(s) is the weight provided by the mask network.
Although the mask network takes the current input state as input, it implicitly considers the current action as well, as detailed
by StateMask (Cheng et al., 2023). Consequently, a more accurate formulation is d⇡̂⇢ (s, a) = d⇡⇢ (s, a)w(s, a), where w(s, a)
represent the weight assigned by mask network.

Recall that our proposed explanation method is to randomize actions at non-critical steps, which essentially considers the
value of Qdiff = Q⇡(s, a) � Ea02A[Q⇡(s, a0)]. In fact, a larger Qdiff indicates current time step is more critical to the
agent’s final reward. Our mask network approximates the value of Qdiff via the deep neural network to determine the
importance of each step, which implies w(s, a) / Qdiff / Q⇡(s, a).

Next, we aim to prove that our MaskNet-based sampling approach is equivalent to sampling from a better policy ⇡̂.

First, the equivalent policy ⇡̂ after reweighting can be expressed as

⇡̂(a|s) =
d⇡̂⇢ (s, a)

d⇡̂⇢ (s)
=

d⇡⇢ (s, a)w(s, a)

d⇡̂⇢ (s)
= w(s, a)⇡(a|s)

d⇡⇢ (s)

d⇡̂⇢ (s)
. (6)

Further , we would like to show that if w(s, a) = f(Q⇡(s, a)) where f(·) is a monotonic increasing function, ⇡̂ is uniformly
as good as,or better than ⇡, i.e., V ⇡̂(s) � V ⇡(s).

Proposition B.2. Suppose two policies ⇡̂ and ⇡ satisfy g (⇡̂(a|s)) = g(⇡(a|s)) + h (s,Q⇡(s, a)) where g(·) is a monotoni-
cally increasing function, and h(s, ·) is monotonically increasing for any fixed s . Then we have V ⇡̂(s) � V ⇡(s), 8s 2 S.

Proof. For a given s, we partition the action set A into two subsets A1 and A2.

A1 , {a 2 A|⇡̂(a|s) > ⇡(a|s)} .

A2 , {a 2 A|⇡̂(a|s) < ⇡(a|s)} .

Thus, 8a1 2 A1, 8a2 2 A2, we have

h (s,Q⇡(s, a1)) = g (⇡̂(a1|s))� g(⇡(a1|s))
� 0

� g (⇡̂(a2|s))� g(⇡(a2|s))
= h (s,Q⇡(s, a2)) .

(7)

Let h (s,Q⇡(s, a)) = Q⇡(s, a). We can get Q⇡(s, a1) � Q⇡(s, a2) which means we can always find q(s) 2 R such that

13

RICE: Breaking Through the Training Bottlenecks of Reinforcement Learning with Explanation

Q⇡(s, a1) � q(s) � Q⇡(s, a2), 8a1 2 A1, 8a2 2 A2. Thus,
X

a2A
⇡̂(a|s)Q⇡(s, a)�

X

a2A

⇡(a|s)Q⇡(s, a)

=
X

a12A1

(⇡̂ (a1|s)� ⇡(a1|s))Q⇡ (s, a1) +
X

a22A2

(⇡̂ (a2|s)� ⇡(a2|s))Q⇡(s, a2)

�
X

a12A1

(⇡̂ (a1|s)� ⇡ (a1|s)) q(s) +
X

a22A2

(⇡̂ (a2|s)� ⇡ (a2|s)) q(s)

= q(s)
X

a2A
(⇡0(a|s)� ⇡(a|s))

= 0.

(8)

Let V0(s) = V ⇡(s). And we denote the value function of following ⇡̂ for l steps then following ⇡ as Vl(s) =
Ea⇠⇡̂(.|s)

⇥
Es0,r|s,a (r + �Vl�1 (s0))

⇤
if l � 1.

First, we observe that
V1(s) = Ea⇠⇡̂(.|s)

⇥
Es0,r|s,a (r + �V ⇡(s0))]

=
X

a2A
⇡̂(a|s)Q⇡(s, a)

>
X

a2A
⇡(a|s)Q⇡(s, a)

= V0(s).

(9)

By induction, we assume Vl(s) � Vl�1(s). Given that

Vl+1(s) = Ea⇠⇡̂

⇥
Es0,r|s,a (r + Vl (s

0))
⇤
,

Vl(s) = Ea⇠⇡̂

⇥
Es0,r|s,a (r + Vl�1 (s

0))
⇤
,

we have Vl+1(s) � Vl(s).

Therefore, we can conclude that Vl+1(s) � Vl(s), 8l � 0. We have V1(s) � V0(s) which is V ⇡̂(s) � V ⇡(s).

Based on the Proposition B.2, if we choose g as a logarithmic function and h = log(w(s, a)) + log(d⇡⇢ (s))� log(d⇡̂⇢ (s)),
we can easily verify that our MaskNet-based sampling approach is equivalent to sampling from a better policy ⇡̂.

B.3. Proof of Theorem 3.6

Proof. Given the fact that the refined policy ⇡0 is converged, (i.e., the local one-step improvement is small
Es⇠d⇡0

µ

h
maxa A⇡0

(s, a)
i
< ✏), we have

✏ >
X

s2S
d⇡

0

µ (s)
h
max

a
A⇡0

(s, a)
i

� min
s

d⇡

0

µ (s)

d⇡⇤
⇢ (s)

!
X

s

d⇡
⇤

⇢ (s)max
a

A⇡0
(s, a)

�

�����
d⇡

⇤

⇢

d⇡0
µ

�����

�1

1

X

s,a

d⇡
⇤

⇢ (s)⇡⇤(a|s)A⇡0
(s, a).

(10)

Based on the Performance Difference Lemma (Kakade & Langford, 2002), for two policies ⇡⇤,⇡0 and a state distribution ⇢,
the performance difference is bounded by

V ⇡⇤
(⇢)� V ⇡0

(⇢) =
1

1� �
Es⇠d⇡⇤

⇢
Ea⇠⇡⇤(.|s)

h
A⇡0

(s, a)
i
. (11)

14

RICE: Breaking Through the Training Bottlenecks of Reinforcement Learning with Explanation

Then we have

✏ > (1� �)

�����
d⇡

⇤

⇢

d⇡0
µ

�����

�1

1

⇣
V ⇡ (⇢)� V ⇡0

(⇢)
⌘
. (12)

Therefore, we have

V ⇡⇤
(⇢)� V ⇡0

(⇢) 
✏

1� �

�����
d⇡

⇤
⇢

d⇡0
µ

�����
1

. (13)

Due to d⇡
0

µ (s) � (1� �)µ(s), we further obtain

V ⇡⇤
(⇢)� V ⇡0

(⇢) 
✏

(1� �)2

�����
d⇡

⇤
⇢

µ

�����
1

. (14)

Since µ(s) = �d⇡̂⇢ (s) + (1� �)⇢(s) � �d⇡̂⇢ (s), we have

V ⇡⇤
(⇢)� V ⇡0

(⇢) 
✏

(1� �)2

�����
d⇡

⇤
⇢

�d⇡̂⇢

�����
1

. (15)

In our case, � is a constant (i.e., a hyper-parameter), thus we could derive that

V ⇡⇤
(⇢)� V ⇡0

(⇢)  O(
✏

(1� �)2

�����
d⇡

⇤
⇢

d⇡̂⇢

�����
1

), (16)

which completes the proof.

B.4. Analysis of Claim 1

Recall that Lemma 3.5 indicates that our MaskNet-based sampling approach is equivalent to sampling states from a better
policy ⇡̂ compared with a random explanation sampling from the policy ⇡, i.e., ⌘(⇡̂) � ⌘(⇡). Let us denote the new initial

distribution using our MaskNet-based sampling approach as µ. By Assumption 3.4, we have
����
d⇡⇤
⇢

d⇡̂
⇢

����
1


����
d⇡⇤
⇢

d⇡
⇢

����
1

. Using

our explanation method introduces a smaller distribution mismatch coefficient than using a random explanation method.
Therefore, we claim that using our explanation method, we are able to form a better initial distribution µ and tighten the
upper bound in Theorem 3.6, i.e., enhancing the agent’s performance after refining.

C. Details of Evaluation
C.1. Implementation Details

Implementation of Our Method. We implement the proposed method using PyTorch (Paszke et al., 2019). We implement
our method in four selected MuJoCo games based on Stable-Baselines3 (Raffin et al., 2021). We train the agents on a server
with 8 NVIDIA A100 GPUs for all the learning algorithms. For all our experiments, if not otherwise stated, we use a set of
default hyper-parameters for p, �, and ↵ (listed in Appendix C.3).

We implement the environment reset function similar to Ecoffet et al. (2019) to restore the environment to selected critical
states. This method is feasible in our case, as we operate within simulator-based environments. However, in the real world,
it may not be always possible to return to a certain state with the same sequences of actions due to the stochastic nature
of state transition. It’s important to note that our framework is designed to be versatile and is indeed compatible with a
goal/state-conditioned policy approach such as Ecoffet et al. (2021). Given a trajectory with an identified most important
state, we can select the most important state as the final goal and select the en-route intermediate states as sub-goals. Then
we can train an agent to reach the final goal by augmenting each state with the next goal and giving a goal-conditioned
reward once the next goal is reached until all goals are achieved.

Implementation of Baseline Methods. Regarding baseline approaches, we use the code released by the authors or
implement our own version if the authors don’t release the code. Specifically, as for StateMask, we use their released open-
sourced code from https://github.com/nuwuxian/RL-state_mask. Regarding Jump-Start Reinforcement
Learning, we use the implementation from https://github.com/steventango/jumpstart-rl.

15

https://github.com/nuwuxian/RL-state_mask
https://github.com/steventango/jumpstart-rl

RICE: Breaking Through the Training Bottlenecks of Reinforcement Learning with Explanation

C.2. Extra Introduction to Applications

Hopper. Hopper game is a captivating two-dimensional challenge featuring a one-legged figure comprising a torso, thigh,
leg, and a single supporting foot (Erez et al., 2012). The objective is to propel the Hopper forward through strategic hops by
applying torques to the three hinges connecting its body parts. Observations include positional values followed by velocities
of each body part, and the action space involves applying torques within a three-dimensional action space. Under the dense
reward setting, the reward system combines healthy reward, forward reward, and control cost. Under the sparse reward
setting (Mazoure et al., 2019), the reward informs the x position of the hopper only if x > 0.6 in our experiments. The
episode concludes if the Hopper becomes unhealthy. We use “Hopper-v3” in our experiments.

Walker2d. Walker2d is a dynamic two-dimensional challenge featuring a two-legged figure with a torso, thighs, legs, and
feet. The goal is to coordinate both sets of lower limbs to move in the forward direction by applying torques to the six hinges
connecting these body parts. The action space involves six dimensions, allowing exert torques at the hinge joints for precise
control. Observations encompass positional values and velocities of body parts, with the former preceding the latter. Under
the dense reward setting, the reward system combines a healthy reward bonus, forward reward, and control cost. Under
the sparse reward setting (Mazoure et al., 2019), the reward informs the x position of the hopper only if x > 0.6 in our
experiments. The episode concludes if the walker is deemed unhealthy. We use “Walker2d-v3” in our experiments and
normalize the observation when training the DRL agent.

Reacher. Reacher is an engaging two-jointed robot arm game where the objective is to skillfully maneuver the robot’s
end effector, known as the fingertip, towards a randomly spawned target. The action space involves applying torques at
the hinge joints. Observations include the cosine and sine of the angles of the two arms, the coordinates of the target,
angular velocities of the arms, and the vector between the target and the fingertip. It is worth noting that there is no sparse
reward implementation of Reacher-v2 in Mazoure et al. (2019). The reward system comprises two components: “reward
distance” indicating the proximity of the fingertip to the target, and “reward control” penalizing excessive actions with a
negative squared Euclidean norm. The total reward is the sum of these components, and an episode concludes either after 50
timesteps with a new random target or if any state space value becomes non-finite. We use “Reacher-v2” in our experiments.

HalfCheetah. HalfCheetah is an exhilarating 2D robot game where players control a 9-link cheetah with 8 joints, aiming to
propel it forward with applied torques for maximum speed. The action space contains six dimensions, that enable strategic
movement. Observations include positional values and velocities of body parts. Under the dense reward setting, the
reward system balances positive “forward reward” for forward motion with “control cost” penalties for excessive actions.
Under the sparse reward setting (Mazoure et al., 2019), the reward informs the x position of the hopper only if x > 5
in our experiments. Episodes conclude after 1000 timesteps, offering a finite yet thrilling gameplay experience. We use
“HalfCheetah-v3” in our experiments and normalize the observation when training the DRL agent.

Selfish Mining. Selfish mining is a security vulnerability in blockchain protocols, identified by Eyal & Sirer (2018).
When a miner holds a certain amount of computing power, they can withhold their freshly minted blocks from the public
blockchain, thereby initiating a fork that is subsequently mined ahead of the official public blockchain. With this advantage,
the miner can introduce this fork into the network, overwriting the original blockchain and obtaining more revenue.

To find the optimal selfish mining strategies, Bar-Zur et al. (2023) proposed a deep reinforcement learning model to generate
a mining policy. The policy takes the current chain state as the input and chooses from the three pre-determined actions,
i.e., adopting, revealing, and mining. With this policy network, the miner can obtain more mining rewards compared to
using heuristics-based strategies.

We train a PPO agent in the blockchain model developed by Bar-Zur et al. (git, d). The network architecture of the PPO
agent is a 4-layer Multi-Layer Perceptron (MLP) with a hidden size of 128, 128, 128, and 128 in each layer. We adopt a
similar network structure for training our mask network. The whale transaction has a fee of 10 with the occurring probability
of 0.01 while other normal transactions have a fee of 1. The agent will receive a positive reward if his block is accepted and
will be penalized if his action is determined to be unsuccessful, e.g., revealing a private chain.

In our selfish mining task (Bar-Zur et al., 2023), three distinct actions are defined as follows:

Adopt l: The miner chooses to adopt the first l blocks in the public chain while disregarding their private chain. Following
this, the miner will continue their mining efforts, commencing from the last adopted block.

Reveal l: This action becomes legal when the miner’s private chain attains a length of at least l. The consequence of this

16

RICE: Breaking Through the Training Bottlenecks of Reinforcement Learning with Explanation

action may result in either the creation of an active fork in the public chain or the overriding of the public chain.

Mine: This action simply involves continuing with the mining process. Once executed, a new block is mined and subsequently
added to either the private chain of the rational miner or to the public chain, contingent on which entity successfully mined
the block.

CAGE Challenge 2. To inspire new methods for automating cyber defense, the Technical Cooperation Program (TTCP)
launched the Autonomous Cyber Defence Challenge (CAGE Challenge) to produce AI-based blue teams for instantaneous
response against cyber attacks (CAGE, 2022). The goal is to create a DRL blue agent to protect a network against a red
agent. The action space of the blue agent includes monitoring, analyzing, decoyApache, decoyFemitter, decoyHarakaSMPT,
decoySmss, decoySSHD, decoySvchost, decoyTomcat, removing, and restoring. Note that the blue agent can receive a
negative reward when the red agent gets admin access to the system (and continues to receive negative rewards as the red
agent maintains the admin access). We use CAGE challenge 2 for our evaluation.

We choose the champion scheme proposed by Cardiff University (git, c) in CAGE challenge 2 (git, b). The target agent is a
PPO-based blue agent to defend a network against the red agent “B-line”. The trail has three different lengths, i.e., 30, 50,
and 100. The final reward is the sum of the average rewards of these three different lengths.

The action set of the blue agent is defined as follows.

Monitor: The blue agent automatically collects the information about flagged malicious activity on the system and reports
network connections and associated processes that are identified as malicious.

Analyze: The blue agent analyzes the information on files associated with recent alerts including signature and entropy.

DecoyApache, DecoyFemitter, DecoyHarakaSMPT, DecoySmss, DecoySSHD, DecoySvchost, DecoyTomcat: The blue agent
sets up the corresponding decoy service on a specified host. An alert will be raised if the red agent accesses the decoy
service.

Remove: The blue agent attempts to remove red from a host by destroying malicious processes, files, and services.

Restore: The blue agent restores a system to a known good state. Since it significantly impacts the system’s availability, a
reward penalty of -1 will be added when executing this action.

Autonomous Driving. Deep reinforcement learning has been applied in autonomous driving to enhance driving safety.
One representative driving simulator is MetaDrive (Li et al., 2022). A DRL agent is trained to guide a vehicle safely and
efficiently to travel to its destination. MetaDrive converts the Birds Eye View (BEV) of the road conditions and the sensor
information such as the vehicle’s steering, direction, velocity, and relative distance to traffic lanes into a vector representation
of the current state. The policy network takes this state vector as input and yields driving actions, including accelerating,
braking, and steering commands. MetaDrive employs a set of reward functions to shape the learning process. For instance,
penalties are assigned when the agent collides with other vehicles or drives out of the road boundary. To promote smooth and
efficient driving, MetaDrive also incorporates rewards to encourage forward motion and the maintenance of an appropriate
speed.

We select the “Macro-v1” environment powered by the MetaDrive simulator (Li et al., 2022). The goal of the agent is to
learn a deep policy to successfully cross the car flow and reach the destination. We train the target agent and our mask
network by the PPO algorithm following the implementation of DI-drive (drive Contributors, 2021). The environment
receives normalized action to control the target agent a = [a1, a2] 2 [�1, 1]2. The action vector a will then be converted to
the steering (degree), acceleration (hp), and brake signal (hp).

Malware Mutation. DRL has been used to assess the robustness of ML-based malware detectors. For example, Anderson
et al. (2018) propose a DRL-based approach to attack malware detectors for portable executable (PE) files. We use the
“Malconv” gym environment Raff et al. (2017) implemented in (git, a) for our experiments. We train a DRL agent based on
Tianshou framework (Weng et al., 2022). The input of the DRL agent is a feature vector of the target malware and outputs
the corresponding action to guide the malware manipulation. We present the action set of the MalConv gym environment in
Table 2 for ease of comprehension in the case study section. A big reward of 10 is provided when evading detection.

The reward mechanism of the “Malconv” environment is as follows. Initially, the malware detection model will provide
a score sc0 of the current malware. If sc0 is lower than some threshold, the malware has already evaded the detection.
Otherwise, the DRL agent will take some mutation actions to bypass the detection. At step t, after executing the agent’s

17

RICE: Breaking Through the Training Bottlenecks of Reinforcement Learning with Explanation

Table 2. Action set of the MalConv gym environment.
Action index Action meaning

0 “modify machine type”
1 “pad overlay”
2 “append benign data overlay”
3 “append benign binary overlay”
4 “add bytes to section cave”
5 “add section strings”
6 “add section benign data”
7 “add strings to overlay”
8 “add imports”
9 “rename section”

10 “remove debug”
11 “modify optional header”
12 “modify timestamp”
13 “break optional header checksum”
14 “upx unpack”
15 “upx pack”

Table 3. Hyper-parameter choices in Experiment I-V. “Selfish” represents Selfish Mining. “Cage” represents Cage Challenge 2. “Auto”
represents Autonomous Driving. “Malware” represents Malware Mutation.

Hyper-parameter Hopper Walker2d Reacher HalfCheetah Selfish Cage Auto Malware
p 0.25 0.25 0.50 0.50 0.25 0.50 0.25 0.50
� 0.001 0.01 0.001 0.01 0.001 0.01 0.01 0.01
↵ 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

action, the malware detection model will provide a new score sct. If sct is lower than some threshold, the mutation is
successful and a big reward of 10 will be given. Otherwise, the reward will be sc0 � sct. The maximum allowed number of
steps is 10.

C.3. Additional Experiment Results

Hyper-parameter Choices in Experiment I-V. Table 3 summarizes our hyper-parameter choices in Experiment I-V. For all
applications, we choose the coefficient of the intrinsic reward for training the mask network ↵ as 0.01. The hyper-parameters
p and � for our refining method vary by application.

Fidelity Scores in Experiment I. Figure 5 shows the fidelity score comparison across all explanation methods. We have
three key observations. First, We observe that our explanation method has similar fidelity scores with StateMask across all
applications, empirically indicating the equivalence of our explanation method with StateMask. Second, we observe that our
explanation method and StateMask have higher fidelity scores than random explanation across all applications, indicating
that the mask network provides more faithful explanations for the target agents.

Efficiency Comparison in Experiment II. Table 4 reports the efficiency evaluation results when training a mask network
using StateMask and our method. We observe that it takes 16.8% less time on average to train a mask network using our
method than using StateMask, which shows the advantage of our method with respect to efficiency.

Comparison with Self-Imitation Learning. We compare RICE against the self-imitation learning (SIL) approach (Oh
et al., 2018) across four MuJoCo games. We present the results presented in Table 5. These experiment results demonstrate
that RICE consistently outperforms the self-imitation learning method. While self-imitation learning has the advantage
of encouraging the agent to imitate past successful experiences by prioritizing them in the replay buffer, it cannot address
scenarios where the agent (and its past experience) has errors or sub-optimal actions. In contrast, RICE constructs a mixed
initial distribution based on the identified critical states (using explanation methods) and encourages the agent to explore the
new initial states. This helps the agent escape from local minima and break through the training bottlenecks.

Impact of Other Explanation Methods. We investigate the impact of other explanation methods (i.e., AIRS (Yu et al.,
2023) and Integrated Gradients (Sundararajan et al., 2017)) on four Mujoco games. we fix the refining method and use

18

RICE: Breaking Through the Training Bottlenecks of Reinforcement Learning with Explanation

Figure 5. Fidelity scores for explanation generated by baseline methods and our proposed explanation method. Note that a higher score
implies higher fidelity.

Table 4. Efficiency comparison when training the mask network. We report the number of seconds when training the mask using a fixed
number of samples. “Selfish” represents Selfish Mining. “Cage” represents Cage Challenge 2. “Auto” represents Autonomous Driving.
“Malware” represents Malware Mutation.

Applications Hopper Walker2d Reacher HalfCheetah Selfish Cage Auto Malware
Num. of samples 3⇥ 105 3⇥ 105 3⇥ 105 3⇥ 105 1.5⇥ 106 1⇥ 107 2443260 32349

StateMask 15393 2240 8571 1579 9520 79382 109802 50775
Ours 12426 1899 7033 1317 8360 65400 88761 41340

different explanation methods to identify critical steps for refinement. The results are reported in Table 6. We observe that
using the explanation generated by our mask network, the refining achieves the best outcome across all four applications.
Using other explanation methods (Integrated Gradients and AIRS), our framework still achieves better results than the
random baseline, suggesting that our framework can work with different explanation method choices.

Sensitivty of p and � in Hopper game with an imitated PPO agent. We report the sensitivity of hyper-parameters p and
� in Hopper game with an imitated PPO agent in Figure 6. We observe that in general, a mixture probability of p = 0.25 or
p = 0.5 is a better choice. An RND bonus can facilitate the agent with faster refinement.

Sensitivity of Hyper-parameters p and �. We provide the sensitivity results of p in all applications in Figure 7. We
observe that generally a mixture probability of p = 0.25 or p = 0.5 is a good choice. Additionally, recall that we need to
use the hyper-parameter � to balance the scale of the “true” environment reward and the exploration bonus. We test the
sensitivity of � from the space {0.1, 0.01, 0.001}. Figure 8 reports the agent’s performance after refining under different
settings of �. We observe that our retaining method is insensitive to the choice of �. The agent’s performance does not vary
a lot with different settings of �. But � = 0.01 gives the best performance in all applications except selfish mining.

Sensitivity of ↵. Recall that under certain assumptions, we are able to simplify the design of StateMask. We propose
an intrinsic reward mechanism to encourage the mask network to blind more states without sacrificing performance. The
hyper-parameter ↵ is then introduced to balance the performance of the perturbed agent and the need for encouraging
blinding. We test the sensitivity of ↵ from the space {0.01, 0.001, 0.0001} and report the fidelity scores under different
settings of ↵ in Figure 9. We observe that though the value of ↵ varies, the fidelity score does not change much.

C.4. Evaluation Results of MuJoCo Games with Sparse Rewards

Results of SparseWalker2d. First, we compare our refining method with other baseline methods (i.e., PPO fine-tuning,
StateMask-R, and JSRL) in the SparseWalker2d game. Figure 10 shows that our refining method is able to help the DRL
agent break through the bottleneck with the highest efficiency compared with other baseline refining methods. Additionally,
by replacing our explanation method with a random explanation, we observe that the refining performance is getting worse.

19

RICE: Breaking Through the Training Bottlenecks of Reinforcement Learning with Explanation

Figure 6. Sensitivity results of hyper-parameters p and � in Hopper game with an imitated PPO agent. We vary the hyper-parameter �
from {0, 0.1, 0.01, 0.001} and record the performance of the agent after refining. A smaller choice of � means a smaller reward bonus
for exploration.

Figure 7. Sensitivity results of hyper-parameter p in all applications. We vary the hyper-parameter p from {0, 0.25, 0.5, 0.75, 1} under
different �, and record the performance of the agent after refining. When p = 0, refining starts from the default initial states of the
environment. When p = 1, refining starts exclusively from critical states. We show that the “mixed” initial state distribution helps to
achieve a better performance.

20

RICE: Breaking Through the Training Bottlenecks of Reinforcement Learning with Explanation

Figure 8. Sensitivity results of hyper-parameter �. We vary the hyper-parameter � from {0.1, 0.01, 0.001} and record the performance of
the agent after refining. A smaller choice of � means a smaller reward bonus for exploration.

Figure 9. Sensitivity results of hyper-parameter ↵. We vary the hyper-parameter ↵ from {0.01, 0.001, 0.0001} and record the fidelity
scores of the mask network trained under different settings of ↵. A higher fidelity score means a higher fidelity.

21

RICE: Breaking Through the Training Bottlenecks of Reinforcement Learning with Explanation

Table 5. Performance comparison between Self-Imitation Learning (SIL) and RICE on four MuJoCo tasks.
Method Hopper Walker2d Reacher HalfCheetah

SIL 3646.46 (23.12) 3967.66 (1.53) -2.87 (0.09) 2069.80 (3.44)
Ours 3663.91 (20.98) 3982.79 (3.15) -2.66 (0.03) 2138.89 (3.22)

Table 6. Performance comparison when using different explanation methods across four MuJoCo tasks.
Task Random Explanation Integrated Gradients AIRS Ours

Hopper 3648.98 (39.06) 3653.24 (14.23) 3654.49 (8.12) 3663.91 (20.98)
Walker2d 3969.64 (6.38) 3972.15 (4.77) 3976.35 (2.40) 3982.79 (3.15)
Reacher -3.11 (0.42) -2.99 (0.31) -2.89 (0.19) -2.66 (0.03)

HalfCheetah 2132.01 (0.76) 2132.81 (0.83) 2133.98 (2.52) 2138.89 (3.22)

Sensitivity of p and �. We report the sensitivity of hyper-parameters p and � in the three MuJoCo games with sparse
rewards in Figure 11, Figure 12, and Figure 13. We have the following observations: First, generally, a mixed probability p
within the range of 0.25 and 0.5 would be a good choice. Second, the refining benefits from the exploration bonus in the
sparse MuJoCo games. Third, PPO fine-tuning cannot guarantee that the refined agent can achieve a good performance.
Especially in SparseWalker2d game, we observe that ppo fine-tuning cannot break through the training bottleneck of the
DRL agent.

C.5. Qualitative Analysis

We do a qualitative analysis of the autonomous driving case to understand how RICE impacts agent behavior and performance.
We visualize the agent’s behavior before and after refining the agent. Figure 14(a) shows a trajectory wherein the target
agent (depicted by the green car) fails to reach its destination due to a collision with a pink car on the road. Given the
undesired outcome, we use our method to identify the critical steps that contribute to the final (undesired) outcome. The
important steps are highlighted in red color. Our method identifies the important step as the one when the green car switches
across two lanes into the lane of the pink car. The critical state is reasonable because this early step allows the green car to
switch lanes to avoid the collision. Based on the provided explanation, we apply our refining method to improve the target
agent. The trajectory after refining is shown in Figure 14(b). It shows that after refining, the refined agent (the green car)
successfully identifies an alternative path to reach the destination while avoiding collision.

D. Case Study: Malware Mutation
D.1. Design Intuitions

First, we use malware mutation as a case study to confirm our design intuitions before the proposed refining method. Recall
that the refining method contains three important ideas. First, we integrate the explanation result (identified critical step)
into the refining process. Second, we design a mixed initial state distribution to guide the refining of the target agent. Third,
we encourage the agent to perform exploration for diverse states during the refining phase. In the following, we create
multiple baselines by gradually adding these ideas to a naive baseline to show the contribution of each idea. We also provide
evidence to support our stance against overfitting. Table 7 summarizes the results.

To start, the original agent is trained for 100 epochs until convergence. We test the target agent for 500 runs, resulting in
an average evasion probability of 33.8%. To extract behavioral patterns, we perform a frequency analysis on the mutation
actions taken by the agent across all 500 runs. As shown in the first row of Table 7, there is a clear preference for A4

(i.e., “add bytes to section cave”). A complete list of the possible actions (16 in total) is shown in Table 2 (Appendix).

Continue Learning w/o Explanation. The most common refining method is to lower the learning rate and continue
training. We continue to train this target agent using the PPO algorithm for an additional 30 epochs and evaluate its
performance over 500 runs. This yields an average evasion probability of 38.8% (second row in Table 7). It is worth noting
that A4 (i.e., “add bytes to section cave”) remains the most frequently selected action.

Leverage Explanation Results for Refining. Subsequently, we assess the refining outcome by incorporating our
explanation result into the refining process. Specifically, we initiate the refining exclusively from the critical steps identified
by the explanation method. For this setting, we do not perform exploration.

22

RICE: Breaking Through the Training Bottlenecks of Reinforcement Learning with Explanation

Figure 10. Agent Refining Performance in the SparseWalker2d Games. For the left figure, we fix the explanation method to our method
(mask network) if needed while varying refining methods. For the right figure, we fix the refining method to our method while varying the
explanation methods.

Table 7. Malware Mutation Case Study—We evaluate the evasion probability of the agent under different settings and count the
corresponding action frequencies.

Refine Setting Test Setting Action Frequency Evasion
Original agent w/o refinement From default initial S {A4: 4,914, A9: 5} 33.8%
Continue training From default initial S {A4: 2,590, A7: 55, A1: 99, A9: 95} 38.8%

Refine from critical states From critical states {A12: 2,546, A5: 138, A4: 32, A9: 8} 50.8%
From default initial S {A12: 4,728, A5: 62} 36.2%

Refine from mixed initial state dist. From default initial S {A4: 1,563, A12: 1,135, A5: 332, A6: 12} 58.4%
Refine from mixed initial state dist. + exploration From default initial S {A5: 2,448, A7: 165, A12: 138, A4: 6} 68.2%

During the test phase, we explore two testing settings. First, we artificially reset the test environment to start from these
critical steps. We find that evasion probability surges to 50.8%. A12 (i.e., “modify timestamp”) becomes as the most
frequently chosen action. This indicates the refined agent learns a policy when encountering the critical state again. However,
for more realistic testing, we need to set the test environment to the default initial state (i.e., the correct testing condition).
Under this setting, we find the evasion probability diminishes to 36.2%. This stark contrast in results shows evidence of
overfitting. The refined agent excels at solving the problem when starting from critical steps but falters when encountering
the task from default initial states.

Impact of Mixed Initial State Distribution. Given the above result, we further build a baseline by refining from the
proposed mixed initial state distribution (i.e., blending the default initial state distribution with the critical states). For this
setting, we also do not perform exploration. Through 500 runs of testing, we observe a notable improvement, with the
average evasion probability reaching 58.4% (from the previous baseline’s 36.2%). Furthermore, the action frequency pattern
has also undergone a shift. It combines the preferred actions from the two previous refining strategies, highlighting the
frequent selection of both A4 and A12.

Impact of Exploration. Finally, we explore the impact of exploration. This baseline represents the complete version
of our proposed system by adding the exploration step and using the mixed initial distribution. We notice that the
average evasion probability across 500 runs has a major increase, reaching 68.2%. The most frequent action now is A5

(i.e., “add section strings”). A4 and A12 are still among the top actions but their frequencies are lowered. This shows the
benefits of exploring previously unseen states and diverse mutation paths. In return, the refined agent is able to get out of the
local minima to identify more optimal policies.

D.2. Discovery of Design Flaws

Additionally, our explanation results have led to the discovery of design flaws in the malware mutation application (Raff
et al., 2017). We will further explain how we use RICE to identify these problems.

Questions and Intuitions. When using RICE to explain the malware mutation process, we observe a scenario where the
agent constantly chooses the same action “upx pack” in multiple consecutive steps. According to the agent, these actions

23

RICE: Breaking Through the Training Bottlenecks of Reinforcement Learning with Explanation

Figure 11. Sensitivity results of hyper-parameter � in SparseHopper game. We vary the hyper-parameter � from {0, 0.1, 0.01, 0.001} and
record the performance of the agent after refining. A smaller choice of � means a smaller reward bonus for exploration.

Figure 12. Sensitivity results of hyper-parameter � in SparseWalker2d game. We vary the hyper-parameter � from {0, 0.1, 0.01, 0.001}
and record the performance of the agent after refining. A smaller choice of � means a smaller reward bonus for exploration.

24

RICE: Breaking Through the Training Bottlenecks of Reinforcement Learning with Explanation

Figure 13. Sensitivity results of hyper-parameter � in SparseHalfCheetah game. We vary the hyper-parameter � from {0, 0.1, 0.01, 0.001}
and record the performance of the agent after refining. A smaller choice of � means a smaller reward bonus for exploration.

receive a similar reward. However, RICE (our mask network) returns different “explanations” for these steps (i.e., they have
highly different importance scores). According to RICE, only the first action holds a high importance score, while the other
consecutive actions barely have an impact on the final reward (i.e., they appear redundant). This raises the question: why
does the agent assign a similar reward to these consecutive steps in the first place?

Another interesting observation is from refining experiments. We find that PPO-based refining cannot yield substantial
improvements. While we have expected that these methods do not perform as well as ours (given our exploration step),
the difference is still bigger than we initially expected. This motivates us to further examine the reward function design to
explore whether it has inadvertently discouraged the DRL agent from finding good evasion paths.

Problems of Reward Design. Driven by the intuitions above, we examined the reward design and identified two problems.
Firstly, the reward mechanism is inherently non-Markovian which deviates from the expectation of a typical reinforcement
learning (RL) framework. In typical RL settings, rewards are contingent on the current state s and the next state s0. However,
the current design computes the reward based on the initial state s0 and the subsequent state s0. Consequently, this may
assign an identical reward for the same action (e.g., “upx pack”) in consecutive steps. This non-Markovian nature of the
reward mechanism can mislead the DRL agent and hurt its performance.

Second, we find that the intermediate rewards exhibit unusually high sparsity, i.e., many intermediate rewards tend to have
a value close to zero, which poses a significant challenge for the PPO algorithm to learn a good policy based on such
intermediate rewards. Agents refined with these methods can be easily trapped in local minima.

Fixing the Problematic Reward Design. Based on these insights, we fix the bugs in the reward design with two simple
steps: (1) We make the reward function Markovian, which depends only on the current state and the next state. (2) We
perform scaling on the intermediate reward with a coefficient of 3. After that, we re-run an experiment to evaluate the
correctness of our modifications. We train a DRL agent for 100 epochs with the same parameters under the new reward
design and test its performance over 3 trials of 500 runs. The experiment shows that the evasion probability of the agent
under the new reward design jumps from 42.2% (using the old reward function, see Table 1) to 72.0%, which further
confirms our intuitions. This case study illustrates how developers can use RICE to debug their system and improve their
designs.

25

RICE: Breaking Through the Training Bottlenecks of Reinforcement Learning with Explanation

Target agent

(a) Original trajectory with importance score

(b) Trajectory after refining with RICE

Collision

Avoid collision

low

high

Figure 14. (a): In the original trajectory, the target agent (the green car) eventually collides with the pink car, which is an undesired
outcome. Each time step is marked with a different color: “yellow” indicates the least important step and “red” represents the most
important step. (b): We highlight the critical states identified by our explanation method and the corresponding outcome after refining.
Using our explanation method, the target agent (the green car) successfully avoids collision.

0

0

50

100

1 2 3 4
Training Step (1e6)

R
ew

ar
d

Ours
RND

Figure 15. Refining performance with our method and RND method in MountainCarContinuous-v0 game. The state coverage of the
pre-trained policy is limited to a small range around the initial point.

E. Limitation
We use the continuous “Mountain Car” environment (mou) as a negative control task to illustrate a scenario where RICE
does not work well. In this “extreme” case, Assumption 3.2 is completely broken since the state coverage of the pre-trained
agent is limited to a small range around the initial point. In this experiment, we train a target agent using Proximal Policy
Optimization (PPO) for 1 million steps. The results show that the policy performance remained poor, with the agent
frequently getting trapped at the starting point of the environment. In such cases where the original policy fails to learn
an effective strategy, the role of explanations becomes highly limited. Since RICE relies on the identified critical states to
enhance the policy, if the policy itself is extremely weak (i.e., not satisfying Assumption 3.2), then the explanations will not
be meaningful, which further huts the refinement. In the case of the Mountain Car experiment, RICE essentially reduces to
being equivalent to Random Network Distillation (RND) due to the lack of meaningful explanation. We show the result
when refining the pre-trained agent using our method and RND in Figure 15.

26

