
SHINE: Shielding Backdoors in Deep Reinforcement Learning

Zhuowen Yuan 1 Wenbo Guo 2 Jinyuan Jia 3 Bo Li 1 4 Dawn Song 5

Abstract
Recent studies have discovered that a deep rein-
forcement learning (DRL) policy is vulnerable to
backdoor attacks. Existing defenses against back-
door attacks either do not consider RL’s unique
mechanism or make unrealistic assumptions, re-
sulting in limited defense efficacy, practicability,
and generalizability. We propose SHINE, a back-
door shielding method specific for DRL. SHINE
designs novel policy explanation techniques to
identify the backdoor triggers and a policy re-
training algorithm to eliminate the impact of the
triggers on backdoored agents. We theoretically
justify that SHINE guarantees to improve a back-
doored agent’s performance in a poisoned envi-
ronment while ensuring its performance differ-
ence in the clean environment before and after
shielding is bounded. We further conduct ex-
tensive experiments that evaluate SHINE against
three mainstream DRL backdoor attacks in var-
ious benchmark RL environments. Our results
show that SHINE significantly outperforms exist-
ing defenses in mitigating these backdoor attacks.

1. Introduction
Deep reinforcement learning has achieved remarkable per-
formance in various sequential decision-making problems,
ranging from beating professorial human players in Go (Sil-
ver et al., 2016) and real-time strategy games (DeepMind,
2017; OpenAI, 2017) to controlling robots to accomplish
sophisticated tasks (Levine et al., 2016; Tai et al., 2017).
Along with its great success comes a new security concern
of the supply chain management of DRL agents – backdoor
threats. Specifically, recent research (Kiourti et al., 2019;
Wang et al., 2021a) demonstrates that an attacker could train

1University of Illinois Urbana-Champaign 2University of Cali-
fornia, Santa Barbara 3Pennsylvania State University 4University
of Chicago 5University of California Berkeley. Correspondence to:
Zhuowen Yuan <zhuowen3@illinois.edu>, Wenbo Guo <hen-
rygwb@ucsb.edu>.

Proceedings of the 41 st
International Conference on Machine

Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

a backdoored agent and outsource it to a user. After the
user deploys the agent in the corresponding environment,
the attacker places the backdoor trigger in the environment,
forcing the agent to take non-optimal actions and thus re-
duce its total reward. Defending backdoor attacks in DRL
is intrinsically challenging in that the trigger is typically
imperceptible, and the backdoored agent performs normally
at clean states. Based on different trigger patterns, exist-
ing backdoor attacks against DRL can be categorized as
perturbation-based attacks and adversarial agent attacks.

Existing backdoor defenses consider two setups – 1)
training-phase that trains a robust model from a poisoned
dataset (e.g., (Tran et al., 2018; Du et al., 2019; Weber
et al., 2020; Zhang et al., 2022; Wu et al., 2022; Zhang
et al., 2022)) and 2) testing-phase that shields a pretrained
model/policy (e.g., (Wang et al., 2019; Gao et al., 2019;
Chou et al., 2020; Ma et al., 2022; Wang et al., 2022; Guo
et al., 2022; Bharti et al., 2022)). We consider the second
setup to shield a pretrained (backdoored) agent from being
affected by the backdoor trigger. Most existing testing-phase
defenses are designed for supervised classifiers (e.g., Wang
et al. (2019); Guo et al. (2020); Liu et al. (2019); Gao et al.
(2019); Chou et al. (2020); Ma et al. (2022); Wang et al.
(2022)). Due to the significant difference between DRL
agents and classifiers in the mechanism (i.e., sequential
decision-making vs. individual class prediction) and model
output (i.e., action at each time step vs. predicted class),
these techniques either cannot be applied or demonstrate
very limited efficacy in defending backdoors in DRL agents.
Only a few defenses are designed specifically for DRL
agents (Bharti et al., 2022; Guo et al., 2022; Chen et al.,
2023). As elaborated in Section 2, these defenses either
have a different threat model from ours (Bharti et al., 2022;
Chen et al., 2023) or are effective against only a subset of
existing attacks (Bharti et al., 2022; Guo et al., 2022).

In this work, we propose SHINE, a novel method to shield
a pretrained DRL agent against both perturbation-based and
adversarial agent attacks. Technically, we first collect a set
of trajectories of the agent running in the poisoned environ-
ment and design a two-stage explanation method to identify
the backdoor trigger presented in these trajectories. Our ex-
planation method first pinpoints the states where the trigger
is most likely to be presented. Then, it identifies a common
subset of features in the trigger-presenting states that are

1

SHINE: Shielding Backdoors in Deep Reinforcement Learning

most critical to the agent’s action at these states and deems
them as the backdoor trigger. With the identified trigger, we
then design a policy retraining algorithm to shield the agent
from being affected by the backdoor. By carefully designing
the retraining objective function, we theoretically guarantee
that the retrained agent performs better in a poisoned envi-
ronment while maintaining its performance in the pristine
clean environment.

We evaluate SHINE against the three most prevalent back-
door attacks (perturbation-based attacks in single-agent RL,
adversarial agent attacks in two-player competitive RL, and
perturbation-based attacks in multi-agent cooperative RL)
in seven benchmark RL environments. Our results demon-
strate that SHINE is effective against all three attacks in
terms of faithfully identifying the trigger and improving a
backdoored agent’s performance in a poisoned environment.
Additionally, we demonstrate that SHINE outperforms sev-
eral representative defenses designed for supervised classi-
fiers (Wang et al., 2019; Gao et al., 2019; Wang et al., 2022)
and a state-of-the-art DRL defense (Bharti et al., 2022).
Second, we show that SHINE does not jeopardize a clean

agent’s performance. This is an essential property in that
users could apply SHINE to arbitrary agents without worry-
ing about the negative impact on the clean ones. Finally, we
verify that SHINE retains its effectiveness against different
attack variations (e.g., simple and complex triggers) and
possible adaptive attacks. To the best of our knowledge, this
is the first backdoor defense against both perturbation-based
and adversarial agent attacks in both single- and multi-agent
RL that does not require accessing a clean environment.

2. Related Work
Backdoor Attacks. Based on different trigger patterns and
injection methods, existing attacks can be categorized as 1)
perturbation-based attack that uses a perturbation patch as
the trigger (Kiourti et al., 2019; Wang et al., 2021b; Chen
et al., 2022b) and 2) adversarial agent attack that uses an
adversarial agent’s certain actions as the trigger (Wang et al.,
2021a). Based on the target environment, existing attacks
can be further categorized as attacks against single-agent
RL (Yang et al., 2019; Kiourti et al., 2019; Wang et al.,
2021b), attacks against two-agent competitive RL (Wang
et al., 2021a; Chen et al., 2022a), attacks against multi-agent
cooperative RL (Chen et al., 2022b;a).

Backdoor Defenses. We focus on the testing-phase defense,
and most existing works in this category target supervised
classifiers (e.g., Wang et al. (2019); Guo et al. (2020); Liu
et al. (2019); Gao et al. (2019); Chou et al. (2020); Ma
et al. (2022); Wang et al. (2022)). As we will show in Sec-
tion 4, due to the fundamental differences between RL and
supervised learning, these techniques demonstrate limited
efficacy in DRL backdoor defense. Only a few research

works have focused specifically on mitigating backdoors in
DRL agents. These methods either have a different threat
model from ours or are limited in practicability and gen-
eralizability. Specifically, the defenses proposed in Bharti
et al. (2022) and Chen et al. (2023) require accessing the
clean environment. Bharti et al. (2022) is designed only for
perturbation-based attacks, and it is only applicable to envi-
ronments with a discrete action space. The method in (Guo
et al., 2022) is designed for adversarial agent attacks. Dif-
ferent from existing methods, our defense is applicable to
both perturbation-based attacks and adversarial agent at-
tacks without requiring access to a clean environment. Note
that recent works also extend backdoor attacks and defenses
to weak-supervised learning (Saha et al., 2022; Carlini &
Terzis, 2021; Yan et al., 2021) and federated learning (Bag-
dasaryan et al., 2020; Wang et al., 2020; Xie et al., 2019),
which are beyond our scope.

Our technique is inspired by the DRL explanation methods
that identify the agent’s critical state and actions (Amir &
Amir, 2018; Huang et al., 2018; Jacq et al., 2022; Guo et al.,
2021b). Although they help pinpoint the time steps when
the trigger is likely to be presented, These methods can
neither identify the trigger nor shield the target agent from
the backdoor attack.

3. Key Technique
3.1. Overview

Notation and Attack Formulation. DRL is formally
modeled as a Markov decision process (MDP) M =
{S,A,R,P, �}.1 A well-trained and clean agent takes an
action at 2 A at each state st 2 S based on its policy ⇡

(i.e., at ⇠ ⇡(st)). The policy is trained by maximizing the
agent’s expected total reward ⌘(⇡) = E[

P
t �

t
R(s,⇡(s))].

In this work, we consider both perturbation-based and adver-
sarial agent attacks, where perturbation-based attacks add
the trigger to the agent’s perceived state without changing
the state transitions (Kiourti et al., 2019; Chen et al., 2022b).
Adversarial agent attacks use an agent’s action sequences as
the trigger, manipulating the actual state and the state transi-
tions (Wang et al., 2020). All these backdoor attacks’ goal
is to force a backdoored agent to take sub-optimal actions
whenever the trigger (denoted as T̂) is presented and thus
significantly reduce the agent’s excepted total reward ⌘(⇡).
We follow these attacks and assume the attacker injects one

backdoor, and the trigger has a fixed shape and location for
perturbation-based attacks. We refer readers to the original
papers for more details on how these attacks work.

Defense Assumptions. We assume being given a pretrained
agent operating in a potentially poisoned environment. The

1For a multi-agent environment, we fix the policy of the non-
shielding agents, and the environment becomes an MDP.

2

SHINE: Shielding Backdoors in Deep Reinforcement Learning

Feature-level explanation:
Critical
features
leading to
the agent’s
action

Most critical time steps lead to the losing

Step-level explanation:A trajectory of the DRL agent losing the game:

Identified
trigger

Backdoor Shielding: Retraining agent to unlearn the
identified trigger

The agent won after shielding

Figure 1: Overview of SHINE. The green paddle is the DRL agent, and the arrow indicates its action.

agent (denoted as the shielding agent) has a policy ⇡ that
potentially contains a backdoor. We assume the state and
action space can be discrete or continuous. Rather than
assuming a clean environment that cannot be accessed or
poisoned by the attacker, we assume the attacker and de-
fender access the same environment in which the shielding
agent operates (denoted as the operating environment). Af-
ter the agent is deployed, the attacker can place the trigger
at any desired state. As the defender, we do not assume any
knowledge of the trigger and thus cannot decide whether,
when, or where it is present.

This is a practical setup because it simulates the actual RL
operation scenarios where the environment is a natural scene
or a simulator created by a third party, and the attacker and
defender have the same privilege to access the environment.
Unlike supervised learning, where it is relatively easy to
hold out a clean validation set for the defender, constructing
a clean environment could be extremely difficult in DRL.
Take the self-driving car as an example. The defender must
construct a simulator of the actual road scenarios and traf-
fic conditions to build a clean environment. The amount
of effort required is often beyond the capacity of a policy
user, necessitating the involvement of a specialized third
party. Once released, the simulator becomes accessible to
authorized users, both benign and malicious.

Technical Overview. Our goal is to ensure the shielding

DRL agent can normally perform, regardless of whether the

trigger is presented. Take Fig. 1 as an example. The attacker
can present the trigger (small patch at the top left corner) at
any desired time steps, and we want to ensure the agent can
still obtain a decent winning rate in the poisoned/operating
environment and the original clean environment. At a high
level, SHINE has a trigger restoration step to identify the
backdoor trigger, followed by a backdoor shielding step
to prevent our shielding agent from being affected by the
backdoor. Specifically, for the trigger restoration, we draw
insights from the DRL explanation methods (Huang et al.,

2018; Guo et al., 2021b) and identify the trigger from the
previous trajectories of the shielding agent. The idea is
as follows (demonstrated in Fig. 1). Given the backdoor
attack’s goal is to fail a backdoored agent by distracting
its actions with the trigger. Here, failure means the agent
receives a very low reward (for environments with a con-
tinuous reward) or loses the game (for environments with
a discrete final reward). By analyzing and explaining why
a backdoored agent failed in its previous trajectories, we
should be able to identify the key reason, i.e., the trigger
presented in the environment. In particular, given a failed
trajectory of our shielding agent, we first utilize a step-level
explanation method – EDGE (Guo et al., 2021b) to pinpoint
the most critical time steps that led the agent to fail. For a
backdoored agent, these steps are most likely to contain the
trigger. Then, we design a more fine-grained feature-level
explanation method to further interpret why the agent took
certain actions at the pinpointed steps. Our method will iden-
tify a subset of features in the state vector that contributes
most to the agent’s actions at the pinpointed steps. Since the
trigger mostly drives the agent’s sub-optimal actions, the
identified features will likely represent the trigger.

Then, we design a backdoor shielding technique to protect
the agent from being compromised by the identified trigger.
Our high-level idea is to retrain the shielding agent to learn
to take proper actions in poisoned states and keep its original
behaviors in clean states. We reconstruct the environment
with the identified trigger and model the shielding process
as a novel optimization problem in the constructed environ-
ment. By carefully designing the policy learning objective
function, we theoretically guarantee that the shielding agent
achieves a higher reward in an operating environment while
keeping its performance in the clean environment. We use
the PPO algorithm (Schulman et al., 2017) to update the pol-
icy, whose monotonicity property speeds up the convergence
and improves the retraining efficiency.

3

SHINE: Shielding Backdoors in Deep Reinforcement Learning

3.2. Trigger Restoration

We first run the shielding agent in the operating environ-
ment and collect N trajectories {X(i)

, yi}i=1:N . X(i) =

{s(i)t ,a(i)
t }t=1:T represents the i-th trajectory. yi denotes

the total reward of the i-th trajectory (It would be the accu-
mulated reward for environments with a continuous reward).
Then, we conduct a step-level explanation to pinpoint the
time steps when the trigger is likely to show up and conduct
a feature-level explanation to identify the trigger.

Step-level Explanation. We leverage a state-of-the-art ex-
planation method EDGE (Guo et al., 2021b). At a high level,
EDGE designs a self-explainable model to fit the collected
trajectories and thus pinpoint the important time steps in
each trajectory. Technically, EDGE uses the following deep
Gaussian process-based model to fit the trajectories.

f |X ⇠ N (0, �2
tK

t
XX + �2

eK
e
XX) ,

yi|F (i) ⇠
(

Cat(softmax(f (i)(w(i))T)), If discrete reward
N (f (i)(w(i))T ,�2), otherwise

.
(1)

Where f is the output of the deep Gaussian process (DGP)
encoder. This DGP encoder first inputs a trajectory X(i)

into an RNN encoder and a shallow MLP encoder to obtain
an embedding of the state at each time step {h(i)

t }t=1:T and
an embedding of the whole trajectory e(i). It then designs
an additive GP with square exponential (SE) kernel k�t

and k�e to transform h and e into f 2 RT⇥1. With the
representation f (i)

1:T , EDGE then designs a regression model
to predict the final reward yi

Since the trigger may present at different time steps in dif-
ferent trajectories, we apply a trajectory-specific mixing
weight w(i)

t = g(h(i)
t , e(i)), where g is a shallow MLP

network. Following (Alvarez-Melis & Jaakkola, 2018), we
add a local linear constraint Le to w(i) to ensure its local
linearity. This is equivalent to conducting a piece-wise lin-
ear approximation, where the piece-wise linear function is
explainable. By ranking the mixing weight w and selecting
the time steps associated with the top mixing weights, we
can pinpoint the most critical steps for each trajectory. The
critical time steps of the failed trajectories are when the
agent took inappropriate actions and are thus the most likely
to have the trigger presented.

Feature-level Explanation. After pinpointing the poten-
tial time steps that contain the trigger (denoted as trigger-
presented time steps), we then design a feature-level expla-
nation to interpret the agent’s actions at those time steps.
Given that the trigger causes the agent’s inappropriate ac-
tions at the trigger-presented time steps. By extracting the
key sub-region/features in the state representations at the
trigger-presented time steps, we could identify the back-
door trigger. Specifically, we first extract the shielding
agent’s states and actions at the trigger-presented time steps,
denoted as D = {s(i)t ,a(i)

t }. Then, we design a feature

explanation mask m with the same dimensionality as the
state representation s. Each element in the mask mj equals
to either 0 or 1, where mj = 1 means the corresponding
(j-th) element in the state representation s(i)t is important
to the agent’s current action a(i)

t , otherwise mj = 0. We
design mj to follow a Bernoulli distribution Bern(✓j), with
the parameter ✓j . Finally, we add this explanation mask on
top of each state in D, input the masked state s̃(i)t into the
agent’s policy network, and obtain a masked action ã(i)

t .

m =
Y

j

Bern(✓j) , s̃(i)
t = s(i)

t �m , ã(i)
t ⇠ ⇡(s̃(i)

t) . (2)

Our goal is to mask as many elements in a state s(i)t as
possible but keeping its corresponding masked action ã(i)

t

as similar as the agent’s original action a(i)
t . This filters out

features that are not important to the agent’s current action
and only preserves the important ones. As discussed above,
the preserved features most likely represent the trigger that is
the reason for the agent’s inappropriate actions at the trigger-
presented time steps. Note that the trigger of adversarial
agent attacks is an action sequence, which is encoded in
certain dimensions of the state vector. By highlighting the
dimensions pertaining to the adversarial agent’s action, our
method could identify the trigger actions.

Explanation Parameter Learning. We follow (Guo et al.,
2021b) to solve the step-level explanation model. As for
the feature-level explanation model (Eqn. 2), our goal is
to minimize the difference between the masked action ã(i)

t

and the shielding agent’s original action a(i)
t at the states

in D. This is equivalent to maximize the marginal likeli-
hood p(a|s, ✓1:J), which minimizes the difference between
the distribution where ã(i)

t is sampled from (i.e., ⇡(s̃(i)t))
and the agent’s original action distribution. Unfortunately,
log p(a|s) is intractable because m is discrete and non-
differentiable. To tackle this challenge, we leverage the
concrete distribution (Maddison et al., 2016) and Jensen’s
Inequality to derive a lower bound of log p(a|s).
Theorem 1. Given mj ⇡ h✓(u) =

�(log↵j+log(uj/(1�uj))
�), where �(·) is the sigmoid

function, uj ⇠ uniform(0, 1), and ↵j =
✓j

1�✓j
. We have the

following inequality.

log p(a|s, ✓) � Eu[log p(a|s, h✓(u))] . (3)

Appendix A specifies the derivative of Eqn. 3. Instead of
maximizing the original log marginal likelihood, we maxi-
mize its lower bound. We consider the typical cases where
the agent’s policy follows a Gaussian or Categorical distri-
bution. Specifically, we have log p(a(i)

t |s(i)t , h✓(u)) equals
to ka(i)

t � ⇡(s(i)t � h✓(u))k for the Gaussian cases, and
alog p(⇡(s(i)t �h✓(u) = a) for the categorical distribution.

4

SHINE: Shielding Backdoors in Deep Reinforcement Learning

With the approximations above, we can solve ✓1:J by max-
imizing ED[Eu[log p(a(i)

t |s(i)t , h✓(u))]] + �R(✓) using a
first-order optimization method. Here, R(✓) is an elastic
net (Zou & Hastie, 2005) regularization.

After conducting the two-step explanation, we identify
a potential trigger, denoted as T . In particular, for the
perturbation-based attack, we compute the average values
of the state features selected by m across trigger-present
time steps as the trigger patch (Fig. 1). For adversarial agent
attacks, we first identify a continuous trigger-present time
slice in each trajectory (t1, ..., tL). Then, we compute the
average value of the selected features in each state across
all trajectories s̄tl =

1
N

P
s̃
(i)
tl and use this average state se-

quence (s̄t1 , ..., s̄tL) as the indicator of the trigger actions.

3.3. Backdoor Shielding

We define two MDPs for the shielding agent M and M̂,
referring to the MDP of the clean and operating environment.
ŝ 2 Ŝ can be poisoned or clean, and we are not aware of its
cleanliness. For a multi-agent environment, we fix the policy
of the non-shielding agents, and the environment becomes
an MDP (Guo et al., 2021a). Given an agent’s policy ⇡,
we define its state occupancy distribution in the clean and
operating environment as ⇢

⇡(s) = (1 � �)
P

t �
t
p(st =

s|⇡) and ⇢̂
⇡(ŝ) = (1 � �)

P
t �

t
p(ŝt = ŝ|⇡). Similarly,

we also define the expected total reward of the agent in the
operating environment as ⌘̂(⇡) = E[

P
t �

t
R(ŝ,⇡(ŝ))].

Retraining Objective Function. Recall that the retraining
goal is to improve the agent’s performance in the operating
environment and maintain its performance in the clean envi-
ronment. This can be interpreted as the following objective
function: argmax⇡̂ ⌘̂(⇡̂), s.t. |⌘(⇡̂)� ⌘(⇡)|  ✏, where ⇡̂ is
the retrained policy. To solve this objective function, we first
define the following approximation of ⌘̂(⇡̂) based on ⌘̂(⇡).
L⇡(⇡̂) = ⌘̂(⇡) +

P
ŝ ⇢̂

⇡(ŝ)
P

a ⇡̂(a|ŝ)A⇡(ŝ,a), where A

is the advantage function. According to (Schulman et al.,
2015), we have the following inequality ⌘(⇡̂) � M⇡(⇡̂) =
[L⇡(⇡̂)�Cmaxŝ⇠⇢̂⇡KL(⇡(· | ŝ)k⇡̂(· | ŝ))]. By maximizing
M⇡(⇡̂), we can guarantee that M⇡(⇡̂) � M⇡(⇡) = ⌘̂(⇡).
As a result, without considering the constraint, we can guar-
antee the performance of the retrained agent will be im-
proved in the operating environment, i.e., ⌘̂(⇡̂) � ⌘̂(⇡).

To realize the constraint |⌘(⇡̂) � ⌘(⇡)|  ✏, we first intro-
duce the following theorem.
Theorem 2. Given a policy ⇡ and its retrained policy

⇡̂, we have the following inequality |⌘(⇡) � ⌘(⇡̂)| 
Cmaxs⇠⇢⇡KL(⇡(· | s)k⇡̂(· | s)).

See Appendix A for the proof. Theorem 2 states that by
constraining the maximum KL divergence between ⇡ and ⇡̂

in the clean states, we can bound the difference between the
⌘(⇡) and ⌘(⇡̂) and thus maintain the agent’s performance

in the clean environment. As such, we can transform the ob-
jective function above into the following objective function.

argmax⇡̂ L⇡(⇡̂) , s.t.

(
K̂ = Eŝ⇠⇢̂(⇡)[KL(⇡(· | ŝ)k⇡̂(· | ŝ))]  ✏ ,

K = Es⇠⇢(⇡)[KL(⇡(· | s)k⇡̂(· | s))]  ✏ .
(4)

By solving Eqn. 4 with a first-order optimization method, we
theoretically guarantee that the shielding agent achieves a
higher reward in the operating environment (⌘̂(⇡̂) � ⌘̂(⇡))
while keeping its performance in the clean environment
(|⌘(⇡̂)�⌘(⇡)|  ✏). In particular, the optimization objective
together with K̂ enforces the agent to perform better in the
poisoned environment, and K helps maintain the agent’s
performance in the clean environment.

Retraining Algorithm. We conduct the retraining in the
operating environment. To approximate the constraint K
in Eqn. 4, we need to identify a set of clean states in the
operating environment. For the perturbation-based attack,
we apply the explanation mask to the current state and com-
pare the feature values in the highlighted region with T . If
their difference is within a certain threshold, we deem st as
a poisoned state; otherwise, we treat it as a clean state. We
apply similar operations for the adversarial agent attack to
compare the agent’s current action with the identified trigger
actions. We approximate K with the clean states identified
from the operating environment and retrain the shielding
agent by maximizing Eqn. 4. Appendix B specifies imple-
mentation and hyper-parameters.

Algorithm 1 shows our final backdoor shielding algorithm.
Note that, for perturbation-based attacks, to further filter out
false positive triggers, we leverage the assumption that a
trigger is small and visually imperceptible and add a trig-
ger filter before using the identified trigger for retraining.
Specifically, we compute the l0-norm of T and only use it
if kT k0 is smaller than a threshold (e.g., 5% of the whole
state representation features).

4. Evaluation
4.1. Experiment Setup

Attacks and Environments. We first select Trojdrl (Kiourti
et al., 2019), a perturbation-based attack against single-
player environments. Trojdrl adds a 3 ⇥ 3 square patch
to the agent’s state representation and forces the backdoored
agent to take either a pre-specified action (targeted attack)
or a random action (untargeted attack) at poisoned states.
Here, we mainly test SHINE against the targeted, and Ap-
pendix E shows the results against the untargeted attack.
We follow Trojdrl and select three Atari games from the
OpenAI Gym (Brockman et al., 2016) environment pool -
Pong, Breakout, and Space Invaders. We also consider a
perturbation-based attack against the multi-agent coopera-
tive RL (Chen et al., 2022b). We select the SMAC environ-
ment and use the default attack setup to launch two attacks:

5

SHINE: Shielding Backdoors in Deep Reinforcement Learning

Table 1: Trigger restoration fidelity of SHINE, NC, and FeatureRE. Note that “-” means not applicable.

Method Pong Breakout Space Invaders SMAC You-Shall-Not-Pass Sumo-Humans Run-to-Go-Ants

NC 0.268±0.033 0.296±0.020 0.217±0.036 0.045±0.009 - - -
FeatureRE 0.936±0.005 0.962±0.012 0.927±0.006 0.896±0.011 - - -

STRIP 0.853±0.003 0.909±0.008 0.934±0.021 0.811±0.015 - - -
SHINE 0.998±0.001 0.997±0.001 0.998±0.001 0.936±0.003 0.930±0.002 0.973±0.006 0.981±0.003

Algorithm 1 Backdoor shielding algorithm.
1: Input: the operating environment that the trigger show

ups at each state with a certain probability, the shield-
ing agent’s original policy ⇡, the identified trigger T ,
threshold ⌘1 and ⌘2, retraining iteration L

2: for l = 1 to L do
3: Run the current policy ⇡̂

(l�1) in the environment and
collect a set of trajectories I .

4: Define a clean state set C.
5: for i = 1 to |I| and t = 1 to T do
6: if ksit �m� T k � ⌘2 then
7: C = C [sit
8: end if
9: end for

10: Approximate K in Eqn. (5) with K̃ =
Es2C [KL(⇡(· | s)k⇡̂(l�1)(· | s))]

11: Plug K̃ in Eqn. (5),
12: Using I, which contains poisoned states to compute

K̂ and L⇡(⇡̂).
13: Update ⇡̂

(l�1) by solving Eqn. (5) and obtain the
updated policy ⇡̂

(l)

14: end for
15: Return the retrained policy: ⇡̂ = ⇡̂

(L)

one against a Q-learning algorithm QMIX and the other
against a policy gradient algorithm COMA. Appendix A
discusses how to adapt SHINE to this attack against multi-
agent RL. Regarding the adversarial agent attack, we select
Backdoorl (Wang et al., 2021a), designed for two-player
competitive Markov games. We also use three MuJoCo
environments selected by Backdoorl, i.e., You-Shall-Not-
Pass, Sumo-Humans, and Run-To-GO-Ants (Todorov et al.,
2012). We follow Backdoorl and set the trigger actions as
standing still for a few time steps. We first train a clean
agent to achieve near-optimal performance. Then, we train
backdoored agents such that each agent’s reward reduces
dramatically when the trigger is presented while keeping
near-optimal in the clean environment. Finally, we simulate
the operating environment by presenting the trigger in the
environment with probability P↵ at each time step.

Baseline. There is no existing work that considers the
same setup and defense goal as ours. We first select three
state-of-the-art trigger restoration and identification tech-
niques designed for classifiers – NC (Wang et al., 2019),

FeatureRE (Wang et al., 2022), and STRIP (Gao et al., 2019).
In particular, we collect a set of states and actions of the
shielding agent and run these methods by treating the agent’s
actions as the target classes. We deem the restored trigger
with the smallest l0 norm as the backdoor trigger. We use
our proposed retraining method on the triggers identified by
the NC and FeatureRE to retrain the shielding agent. Note
that these methods cannot be applied to adversarial agent
attacks or environments with a continuous action space. We
also consider a straightforward baseline, that is, to directly
retrain the shielding agent in the operating environment
using the PPO algorithm without applying any shielding
(denoted as “Direct retraining”). Section 2 discusses three
other existing DRL backdoor defenses. Bharti et al. (2022);
Chen et al. (2023) requires accessing clean environments.
Appendix C shows that SHINE is more effective, generaliz-
able, and scalable than Bharti et al. (2022).2

4.2. Experiment Design

Exp-I: Trigger Restoration Faithfulness. We first eval-
uate whether SHINE faithfully identifies the trigger. For
perturbation-based attacks, we compare the trigger T iden-
tified by SHINE with the real trigger T̂ and compute the
precision kT �T̂ k1

kT k1
and recall kT �T̂ k1

kT̂ k1
. We report the F1

score as the faithfulness metric. We compare SHINE with
baselines under the perturbation-based attacks. Since ad-
versarial agent attacks do not have a fixed trigger patch, we
compare the trigger actions identified by SHINE with the
real ones designed by the attackers and report the F1 score.

Exp-II: Backdoor Shielding Effectiveness. Second, we
evaluate the efficacy of SHINE in backdoored agent shield-
ing. In particular, we retrain the backdoored agents in Exp-I
using our proposed retraining algorithm and report their
performance in the operating and clean environment before
and after retraining. We compare SHINE with the baselines.

Exp-III: SHINE on Clean Agents. We also apply SHINE
to the clean agent in each environment to verify that SHINE
will not affect a clean agent’s performance. Similar to Exp-
II, We report each agent’s performance in the operating and
clean environment before and after shielding.

2Another defense (Guo et al., 2022) is still a pre-print paper
without public implementation. Besides, it cannot be applied to
perturbation-based attacks. As such, we do not compare it with
SHINE in our experiments.

6

SHINE: Shielding Backdoors in Deep Reinforcement Learning

Table 2: Performance of backdoored agents retrained with different methods in the operating and clean environment. We report the
average score or average winning rate across 1,000 game rounds. Appendix F also conducts a paired t-test to demonstrate the statistical
significance of results in this table and analyzes the agent’s action distribution in clean and poisoned states of the operating environment.

Environment Method Pong Breakout Space
Invaders QMIX (%) COMA (%) You-Shall-

Not-Pass (%)
Sumo-

Humans (%)
Run-to-

Go-Ants (%)

Operating

Original -0.010±0.001 16.40±0.48 108.3±2.9 19.6±0.1 62.0±0.7 17.9±0.4 10.4±0.2 16.2±0.2
Direct retraining 0.032±0.002 20.37±1.72 639.0±5.4 82.6±0.5 88.9±1.8 27.8±4.3 23.6±2.8 37.6±0.3

NC -0.102±0.005 11.50±0.69 293.7±1.4 23.8±0.3 21.9±0.6 - - -
FeatureRE 0.124±0.003 15.36±1.02 403.3±2.1 33.2±0.5 23.9±0.1 - - -

STRIP 0.624±0.005 22.32±1.03 682.0±4.6 85.3±0.7 82.6±1.5 - - -
SHINE 0.728±0.027 28.63±2.05 832.9±7.5 99.1±0.8 92.3±1.2 48.2±1.8 32.4±1.3 52.4±0.6

Clean

Original 0.680±0.030 22.33±1.05 685.3±3.5 99.6±0.9 96.3±0.5 49.8±0.2 29.3±0.1 52.0±0.4
Direct retraining 0.286±0.016 21.82±1.90 723.2±2.7 99.1±0.6 96.9±1.2 38.4±3.2 23.5±3.6 51.0±1.2

NC 0.136±0.013 12.66±1.02 301.6±2.8 99.3±0.1 97.3±0.6 - - -
FeatureRE 0.293±0.021 22.57±1.42 703.9±9.2 99.2±0.1 96.9±0.5 - - -

STRIP 0.612±0.036 23.91±1.29 671.2±3.4 87.5±0.2 80.3±1.6 - - -
SHINE 0.734±0.021 25.35±1.60 835.1±3.6 99.2±0.8 97.0±0.5 49.5±1.6 33.5±1.8 52.9±0.6

Exp-IV: Sensitivity of SHINE against Attack Variations.
We use the Atari-pong environment of the perturbation-
based attack to test the sensitivity of SHINE against attacks
varied in trigger patterns, sizes, and poison rates. We craft
eight attack variations. We first vary the trigger pattern from
the dense patch to more incompact triggers (Cross and Equal
sign). We also keep the trigger pattern as dense and vary the
trigger size (3⇥ 3, 4⇥ 4, 5⇥ 5) and the trigger presenting
probabilities (P↵ = 0.1/0.2/0.3). In each environment, we
train a backdoored agent, shield it with our method and two
baseline approaches (Direct training and NC), and report
the shielding performance.

We repeat each experiment 3 times with different random
seeds and report the mean and standard deviation (std). Fur-
thermore, we conduct an ablation study, demonstrate the
computational efficiency, evaluate the hyper-parameter sen-
sitivity (including the number of trajectories needed for
explanation), and test SHINE against more attack variations.
We present these experiments in Appendix D& G.

4.3. Experiment Results

Results of Exp-I. Tab. 1 shows the trigger restoration fi-
delity. All baselines show limited fidelity because they do
not consider DRL’s sequential decision-making nature. In
contrast, SHINE can faithfully identify the trigger for both
perturbation-based attacks and adversarial agent attacks, ver-
ifying the effectiveness of our trigger restoration technique
(Appendix F showcases the identified triggers). Qualita-
tively, we demonstrate the restored and ground truth trigger
mask for the Pong game in Figure 2. The ablation study in
Appendix F further demonstrates the efficacy of step-level
and feature-level explanations, respectively.

Results of Exp-II and Exp-III. Tab. 2 shows the perfor-
mance of backdoored agents shielded by SHINE and four
baseline methods. First, NC, FeatureRE, and STRIP have

(a) Restored Trigger Masks (b) Ground Truth Masks

Figure 2: Restored and Ground truth trigger masks solved
by SHINE. We only show 50 ⇥ 50 pixels in the top-left
corner of the states for better visualization purposes since
the trigger size is small.

limited efficacy due to the low fidelity of their resolved
triggers. Direct retraining improves the retrained agent’s
performance in the operating/poisoned environment, but
the improvement is still limited. More importantly, due to
environmental variations, it cannot preserve the retrained
agent’s effectiveness in the original clean environment. In
comparison, benefiting from its high-fidelity trigger, the
agent retrained by SHINE achieves the highest performance
in the operating environment of all the games. In addition,
SHINE well retains (or even improves) the retrained agent’s
effectiveness in the original clean environment. This re-
sult is aligned with our theoretical analysis in Section 3.3,
verifying the effectiveness of our backdoor shielding in
robustifying a backdoored agent while preserving its gener-
alizability. We also notice that shielded agents sometimes
perform better than the original agent in a clean environment.
We suspect this is because the retraining process improves
the agent’s generalizability (similar to the adversarial re-
training in DNNs (Goodfellow et al., 2014)). Tab. 3 shows a
clean agent’s performance before and after shielding it with
SHINE. SHINE introduces a minor performance drop or
improves the clean agent’s performance in both operating
and clean environments. This is an important property in
that users could directly apply SHINE to arbitrary agents

7

SHINE: Shielding Backdoors in Deep Reinforcement Learning

Table 3: Performance of clean agents retrained with SHINE in the operating and clean environment. We report the average score and
average winning rate across 1,000 game rounds, respectively.

Environment Method Pong Breakout Space
Invaders QMIX (%) COMA (%) You-Shall-

Not-Pass (%)
Sumo-

Humans (%)
Run-to-

Go-Ants (%)

Operating Original 0.816±0.040 19.50±0.59 835.6±1.8 99.0±0.2 96.3±0.1 50.2±0.3 34.5±0.2 53.5±0.2
SHINE 0.818±0.038 24.99±1.07 838.2±3.6 99.3±0.6 96.9±1.7 51.3±0.9 35.3±0.5 53.9±0.3

Clean Original 0.778±0.067 27.50±1.32 836.4±3.2 99.8±0.1 96.6±0.1 51.2±0.1 35.8±0.2 54.5±0.1
SHINE 0.769±0.089 26.27±0.64 838.2±3.4 99.6±0.1 97.9±0.2 51.5±0.5 35.7±1.2 53.8±0.2

Block Cross Equal
�0.5

0

0.5

1

Trigger pattern

A
ge

nt
pe

rf
or

m
an

ce

Direct
NC
SHINE

(a)

3⇥ 3 4⇥ 4 5⇥ 5
�0.5

0

0.5

1

Trigger size

Direct
NC
SHINE

(b)

0.1 0.2 0.4
�0.5

0

0.5

1

Trigger presenting probability

Direct
NC
SHINE

(c)

Figure 3: The average score of the agent retrained with different
shielding methods against attack variations.

without making critical decisions of which ones are truly
backdoored agents, which, in general, is sensitive to the
choice of detection threshold.

Results of Exp-IV. Fig. 3 shows the retraining performance
of SHINE and baseline methods against different attack vari-
ations. SHINE only has marginal performance variations
in different setups, verifying SHINE’s insensitivity against
attack variations. This verifies the generalizability and prac-
ticability of SHINE in that users can apply SHINE without
tailoring for different variations. Fig. 3 demonstrates that
SHINE outperforms baselines against all attack variations,
further demonstrating its superiority over these methods.
In appendix F, we demonstrate the robustness of SHINE
against more variations in trigger shapes and sizes.

5. Discussion
Adaptive Attacks. We first consider a straightforward adap-
tion of the perturbation-based attack. Specifically, we allow
the trigger to present at different locations in the environ-
ment snapshot at different time steps. This adaptive attack
with a dynamic trigger could potentially bypass our method
because our feature-level explanation resolves a fixed trigger
mask across all the trigger-presented time steps. We follow
the attack method in TrojDRL (Kiourti et al., 2019) and try
to launch this attack in the Pong environment. The attack
cannot succeed even after we carefully tune the training
parameters. We can only reduce the agent’s average score in
the operating environment by 30.3% and 1.2% for targeted
and untargeted attacks, respectively. Our attempts motivate
future work to design stronger backdoor attacks that could
inject this dynamic trigger. Even if this attack succeeds, we
can adjust SHINE to defend against it. First, rather than ob-

taining a common explanation mask, we first solve a specific
mask for each state to capture the trigger movement. During
retraining, we slide our identified trigger T across the whole
state representation to decide its cleanliness (Appendix A).

Another possible adaptive attack is to attack our explanation
methods. We found only one existing attack (Huai et al.,
2020) that targets gradient/saliency-based explanation meth-
ods. Since both our step-level and feature-level explanations
have a different mechanism from these gradient-based meth-
ods, this attack cannot be directly applied to our method. To
enable an effective attack against our explanation method,
the attacker needs to first design a proper attack against
either step-level or feature-level explanation method. The
attacker also needs to consider how to properly design this
attack, such that it could work together with the trojan attack
against the DRL agent. We believe designing such an attack
requires non-trivial effort and leave it as our future work.

Distinction from Environment-perturbation Attacks
and Robust RL. Our problem differs from environment-
perturbation attacks (Russo & Proutiere, 2019; Zhang et al.,
2021; Liang et al., 2022; Sun et al., 2021; Kamalaruban
et al., 2020), which attack a pretrained agent by adding per-
turbations to its observations. Defenses against such attacks
typically limit the perturbation strength within a ✏-norm
ball and design methods to train optimal policies under this
perturbation ball. Similarly, some robust RL methods (Pinto
et al., 2017; Tessler et al., 2019) train policies under random
perturbations to the agent’s observations or actions. Due to
differences in attack/problem setups, these methods cannot
be directly applied to our problem. Our future work will ex-
plore novel DRL backdoor defenses by following the idea of
these works. For instance, we will investigate how to model
the defense against trojan attacks as a partially observable
MDP and train a robust policy accordingly.

Postmortem Defense. SHINE operates in a postmortem
fashion, meaning it conducts shielding after a backdoor
is triggered. As discussed in Section 3.1, it is difficult to
restrict attackers from accessing the environment (i.e., main-
tain a clean environment). As such, it is possible that the
attacker will trigger a backdoor and cause damage. Our
goal is to react quickly and make sure similar damage will
not happen in the future. This is a common setup even for

8

SHINE: Shielding Backdoors in Deep Reinforcement Learning

security-critical domains. Actually, a set of backdoor de-
fenses for DNN classifiers considers a similar setup (e.g.,
STRIP (Gao et al., 2019)), where they assume poisoned
inputs are available. We acknowledge that for extremely
critical applications, triggering the attack can be costly. As
demonstrated in Section 4 and Appendix D, SHINE can ef-
fectively identify triggers with only 20 failed trajectories and
when the triggers occur very infrequently (P↵ = 0.1). As
such, SHINE offers a rapid response once an attack occurs,
minimizing future damage. It represents a practical defense
approach in environments where attackers can access.

More attack variations. We first use default triggers of ex-
isting attacks to evaluate SHINE. Then, we demonstrate the
effectiveness of SHINE against perturbation-based attacks
with more complicated and incompact triggers (Exp-IV. and
Appendix G). Furthermore, we evaluate and discuss that
SHINE can handle various corner-case attacks against our
method (Appendix G). Going beyond thse cases, existing at-
tacks against supervised classifiers also explore other trigger
patterns (e.g., watermarks), which have not been used for
DRL attacks yet. In future work, we will explore designing
effective attacks with such trigger patterns and extending
SHINE to defend against these attacks.

Limitations. First, there are other methods to explain a DRL
agent’s action (e.g., (Atrey et al., 2019; Greydanus et al.,
2018; Puri et al., 2020)). Our future research endeavor will
explore extending these methods to identify the backdoor
trigger in our context. Second, we compare SHINE with
three state-of-the-art backdoor detection methods for super-
vised classifiers. Recent research proposes more defenses
for supervised classifiers (Wang et al., 2023; Tao et al.,
2022). They suffer similar limitations as the three baselines.
Our future work will test whether these methods can yield
better results than our baselines against perturbation-based
attacks in environments with a discrete action space. Third,
we evaluate SHINE against the attacks in three types of envi-
ronments. Our future work will extend the backdoor attacks
and defenses to broader types of games, including extensive-
form games (Go (Tian et al., 2019), board games (Lanctot
et al., 2019)), multi-agent competitive games (Zhang et al.,
2019). Finally, we show that SHINE can still detect and
shield a backdoored agent even when the trigger varies in
size and presenting probability. Our future work will explore
providing a theoretical guarantee against these variations.

6. Conclusion
This work proposes SHINE, a method for shielding DRL
agents against backdoor attacks. SHINE first identifies the
backdoor trigger presented in the environment and then
retrains the DRL agent to eliminate the influence of the
trigger on its policy. Our experiments in various benchmark
RL environments demonstrate SHINE’s efficacy in shielding

backdoored agents against different backdoor attacks while
maintaining the clean agents’ performance. With all these
experiments and analyses, we safely conclude that through
explanation and retraining, we can effectively shield DRL
agents from backdoor attacks in a practical scenario.

Impact Statement
Our method offers a practical tool to safeguard DRL agents
deployed in many applications, enhancing their security and
reliability. Additionally, it could potentially boost the policy-
sharing market for large-scale RL models. By raising the
bar for attackers to compromise DRL agents, our method
can contribute to pushing the arms race between defenders
and attackers in the field of DRL backdoor attacks. This can
drive further advancements in defense techniques and make
DRL systems more resilient to malicious attacks, benefiting
the broader RL-related community. There are many poten-
tial societal consequences of our work, none which we feel
must be specifically highlighted here.

Acknowledgement
This work is partially supported by ARL Grant W911NF23-
2-0137, the National Science Foundation under grant No.
1910100, No. 2046726, No. 2229876, DARPA GARD, the
National Aeronautics and Space Administration (NASA)
under grant no. 80NSSC20M0229, the Alfred P. Sloan
Fellowship, and the Amazon research award.

References
Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained

policy optimization. In ICML, 2017.

Alvarez-Melis, D. and Jaakkola, T. S. Towards robust in-
terpretability with self-explaining neural networks. In
NeurIPS, 2018.

Amir, D. and Amir, O. Highlights: Summarizing agent
behavior to people. In AAMAS, 2018.

Atrey, A., Clary, K., and Jensen, D. Exploratory not explana-
tory: Counterfactual analysis of saliency maps for deep
reinforcement learning. arXiv preprint arXiv:1912.05743,
2019.

Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., and
Shmatikov, V. How to backdoor federated learning. In
AISTAT, 2020.

Bharti, S. K., Zhang, X., Singla, A., and Zhu, X. Prov-
able defense against backdoor policies in reinforcement
learning. In NeurIPS, 2022.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,

9

SHINE: Shielding Backdoors in Deep Reinforcement Learning

Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Carlini, N. and Terzis, A. Poisoning and backdooring con-
trastive learning. arXiv preprint arXiv:2106.09667, 2021.

Chen, S., Qiu, Y., and Zhang, J. Backdoor attacks
on multiagent collaborative systems. arXiv preprint

arXiv:2211.11455, 2022a.

Chen, X., Guo, W., Tao, G., Zhang, X., and Song, D. Bird:
Generalizable backdoor detection and removal for deep
reinforcement learning. In NeurIPS, 2023.

Chen, Y., Zheng, Z., and Gong, X. Marnet: Backdoor
attacks against cooperative multi-agent reinforcement
learning. IEEE Transactions on Dependable and Secure

Computing, 2022b.

Chou, E., Tramer, F., and Pellegrino, G. Sentinet: Detecting
localized universal attacks against deep learning systems.
In IEEE Security and Privacy Workshops (SPW), 2020.

DeepMind. Alphastar: Mastering the real-time strategy
game starcraft ii. https://deepmind.com/blog/
article/alphastar, 2017.

Du, M., Jia, R., and Song, D. Robust anomaly detection and
backdoor attack detection via differential privacy. arXiv

preprint arXiv:1911.07116, 2019.

Gao, Y., Xu, C., Wang, D., Chen, S., Ranasinghe, D. C., and
Nepal, S. Strip: A defence against trojan attacks on deep
neural networks. In ACSAC, 2019.

Gardner, J. R., Pleiss, G., Bindel, D., Weinberger, K. Q.,
and Wilson, A. G. Gpytorch: Blackbox matrix-matrix
gaussian process inference with gpu acceleration. In
NeurIPS, 2018.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-
ing and harnessing adversarial examples. arXiv preprint

arXiv:1412.6572, 2014.

Greydanus, S., Koul, A., Dodge, J., and Fern, A. Visualizing
and understanding atari agents. In ICML, 2018.

Guo, J., Li, A., and Liu, C. Backdoor detection in rein-
forcement learning. arXiv preprint arXiv:2202.03609,
2022.

Guo, W., Wang, L., Xu, Y., Xing, X., Du, M., and Song, D.
Towards inspecting and eliminating trojan backdoors in
deep neural networks. In ICDM, 2020.

Guo, W., Wu, X., Huang, S., and Xing, X. Adversarial pol-
icy learning in two-player competitive games. In ICML,
2021a.

Guo, W., Wu, X., Khan, U., and Xing, X. Edge: Explaining
deep reinforcement learning policies. NeurIPS, 2021b.

Huai, M., Sun, J., Cai, R., Yao, L., and Zhang, A. Malicious
attacks against deep reinforcement learning interpreta-
tions. In KDD, 2020.

Huang, S. H., Bhatia, K., Abbeel, P., and Dragan, A. D.
Establishing appropriate trust via critical states. In IROS,
2018.

Jacq, A., Ferret, J., Pietquin, O., and Geist, M. Lazy-mdps:
Towards interpretable rl by learning when to act. In
AAMAS, 2022.

Kamalaruban, P., Huang, Y.-T., Hsieh, Y.-P., Rolland, P.,
Shi, C., and Cevher, V. Robust reinforcement learning via
adversarial training with langevin dynamics. Advances in

Neural Information Processing Systems, 33:8127–8138,
2020.

Kiourti, P., Wardega, K., Jha, S., and Li, W. Trojdrl: Trojan
attacks on deep reinforcement learning agents. arXiv

preprint arXiv:1903.06638, 2019.

Lanctot, M., Lockhart, E., Lespiau, J.-B., Zambaldi, V.,
Upadhyay, S., Pérolat, J., Srinivasan, S., Timbers, F.,
Tuyls, K., Omidshafiei, S., et al. Openspiel: A frame-
work for reinforcement learning in games. arXiv preprint

arXiv:1908.09453, 2019.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-end
training of deep visuomotor policies. Journal of Machine

Learning Research, 2016.

Liang, Y., Sun, Y., Zheng, R., and Huang, F. Efficient adver-
sarial training without attacking: Worst-case-aware robust
reinforcement learning. arXiv preprint arXiv:2210.05927,
2022.

Liu, Y., Lee, W.-C., Tao, G., Ma, S., Aafer, Y., and Zhang,
X. Abs: Scanning neural networks for back-doors by
artificial brain stimulation. In CCS, 2019.

Ma, W., Wang, D., Sun, R., Xue, M., Wen, S., and Xiang, Y.
The” beatrix”resurrections: Robust backdoor detection
via gram matrices. arXiv preprint arXiv:2209.11715,
2022.

Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete
distribution: A continuous relaxation of discrete random
variables. arXiv preprint arXiv:1611.00712, 2016.

OpenAI. Openai at the international 2017. https://
openai.com/the-international/, 2017.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance

10

https://deepmind.com/blog/article/alphastar
https://deepmind.com/blog/article/alphastar
https://openai.com/the-international/
https://openai.com/the-international/

SHINE: Shielding Backdoors in Deep Reinforcement Learning

deep learning library. arXiv preprint arXiv:1912.01703,
2019.

Pinto, L., Davidson, J., Sukthankar, R., and Gupta, A. Ro-
bust adversarial reinforcement learning. In ICML. PMLR,
2017.

Puri, N., Verma, S., Gupta, P., Kayastha, D., Deshmukh, S.,
Krishnamurthy, B., and Singh, S. Explain your move:
Understanding agent actions using specific and relevant
feature attribution. In ICLR, 2020.

Raffin, A., Hill, A., Ernestus, M., Gleave, A., Kanervisto,
A., and Dormann, N. Stable baselines3, 2019.

Russo, A. and Proutiere, A. Optimal attacks on reinforce-
ment learning policies. arXiv preprint arXiv:1907.13548,
2019.

Saha, A., Tejankar, A., Koohpayegani, S. A., and Pirsiavash,
H. Backdoor attacks on self-supervised learning. In
CVPR, 2022.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz,
P. Trust region policy optimization. In ICML, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
Nature, 2016.

Sun, Y., Zheng, R., Liang, Y., and Huang, F. Who is the
strongest enemy? towards optimal and efficient evasion
attacks in deep rl. arXiv preprint arXiv:2106.05087,
2021.

Tai, L., Paolo, G., and Liu, M. Virtual-to-real deep rein-
forcement learning: Continuous control of mobile robots
for mapless navigation. In IROS, 2017.

Tao, G., Shen, G., Liu, Y., An, S., Xu, Q., Ma, S., Li, P.,
and Zhang, X. Better trigger inversion optimization in
backdoor scanning. In CVPR, 2022.

Tessler, C., Efroni, Y., and Mannor, S. Action robust rein-
forcement learning and applications in continuous control.
In ICML, 2019.

Tian, Y., Ma, J., Gong, Q., Sengupta, S., Chen, Z., Pinkerton,
J., and Zitnick, C. L. Elf opengo: An analysis and open
reimplementation of alphazero. In ICML, 2019.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ in-

ternational conference on intelligent robots and systems,
2012.

Tran, B., Li, J., and Madry, A. Spectral signatures in back-
door attacks. In NeurIPS, 2018.

Wang, B., Yao, Y., Shan, S., Li, H., Viswanath, B., Zheng,
H., and Zhao, B. Y. Neural cleanse: Identifying and
mitigating backdoor attacks in neural networks. In S&P,
2019.

Wang, H., Sreenivasan, K., Rajput, S., Vishwakarma, H.,
Agarwal, S., Sohn, J.-y., Lee, K., and Papailiopoulos, D.
Attack of the tails: Yes, you really can backdoor federated
learning. In NeurIPS, 2020.

Wang, L., Javed, Z., Wu, X., Guo, W., Xing, X., and Song,
D. Backdoorl: Backdoor attack against competitive re-
inforcement learning. arXiv preprint arXiv:2105.00579,
2021a.

Wang, Y., Sarkar, E., Li, W., Maniatakos, M., and Jabari,
S. E. Stop-and-go: Exploring backdoor attacks on deep
reinforcement learning-based traffic congestion control
systems. IEEE Transactions on Information Forensics

and Security, 2021b.

Wang, Z., Mei, K., Ding, H., Zhai, J., and Ma, S. Rethinking
the reverse-engineering of trojan triggers. In NeurIPS,
2022.

Wang, Z., Mei, K., Zhai, J., and Ma, S. Unicorn: A unified
backdoor trigger inversion framework. In ICLR, 2023.

Weber, M., Xu, X., Karlaš, B., Zhang, C., and Li, B. Rab:
Provable robustness against backdoor attacks. arXiv

preprint arXiv:2003.08904, 2020.

Wu, F., Li, L., Xu, C., Zhang, H., Kailkhura, B., Kenthapadi,
K., Zhao, D., and Li, B. Copa: Certifying robust poli-
cies for offline reinforcement learning against poisoning
attacks. arXiv preprint arXiv:2203.08398, 2022.

Xie, C., Huang, K., Chen, P.-Y., and Li, B. Dba: Distributed
backdoor attacks against federated learning. In ICLR,
2019.

Yan, Z., Li, G., TIan, Y., Wu, J., Li, S., Chen, M., and
Poor, H. V. Dehib: Deep hidden backdoor attack on semi-
supervised learning via adversarial perturbation. In AAAI,
2021.

Yang, Z., Iyer, N., Reimann, J., and Virani, N. Design
of intentional backdoors in sequential models. arXiv

preprint arXiv:1902.09972, 2019.

11

SHINE: Shielding Backdoors in Deep Reinforcement Learning

Zhang, H., Chen, H., Boning, D., and Hsieh, C.-J. Robust
reinforcement learning on state observations with learned
optimal adversary. arXiv preprint arXiv:2101.08452,
2021.

Zhang, K., Yang, Z., and Başar, T. Multi-agent reinforce-
ment learning: A selective overview of theories and algo-
rithms. arXiv preprint arXiv:1911.10635, 2019.

Zhang, X., Chen, Y., Zhu, X., and Sun, W. Corruption-
robust offline reinforcement learning. In AISTAT, 2022.

Zou, H. and Hastie, T. Regularization and variable selection
via the elastic net. Journal of the royal statistical society:

series B (statistical methodology), 2005.

12

SHINE: Shielding Backdoors in Deep Reinforcement Learning

A. Additional Technical Details
A.1. Proof of Theorem 1

Based on Jensen’s inequality, we have the following derivative of the log marginal likelihood log p(a|s, ✓).

log p(a|s, ✓) = log
Z

p(a,m|s, ✓)dm = log
Z

p(a|m, s, ✓)p(m|✓)dm

= log Em[p(a|m, s, ✓)] � Em[log p(a|m, s, ✓)] .
(5)

As stated in Theorem 1, by defining u, where uj ⇠ uniform(0, 1), and ↵j = ✓j
1�✓j

, we can approximate mj with

h✓(u) = �(log↵j+log(uj/(1�uj))
�), where �(·) is the sigmoid function. With u, we can then derive the following inequality

from Eqn. (5)
log p(a|s, ✓) � Em[log p(a|m, s, ✓)] ⇡ Eu[log p(a|s, h✓(u))] . (6)

⇤

A.2. Proof of Theorem 2

We define H⇡(⇡̂) = ⌘(⇡)+N⇡(⇡̂) = ⌘(⇡)+
P

s ⇢
⇡
P

a ⇡̂(a | s)A⇡(s,a). According to (Schulman et al., 2015), we have

|⌘(⇡̂)�H⇡(⇡̂)|  C1maxs⇠⇢⇡KL(⇡(·|s)||⇡̂(·|s))
|⌘(⇡̂)� ⌘(⇡)�N⇡(⇡̂)|  C1maxs⇠⇢⇡KL(⇡(·|s)||⇡̂(·|s))

|⌘(⇡̂)� ⌘(⇡)|  C1maxs⇠⇢⇡KL(⇡(·|s)||⇡̂(·|s)) + |N⇡(⇡̂)| .
(7)

According to Theorem 1 in (Achiam et al., 2017), we can derive

|
X

s

⇢
⇡(s)

X

a

⇡̂(a | s)A⇡(s,a)|  Es⇠⇢,a⇠⇡,s0⇠p(·|s,a)[(
⇡̂(a|s)
⇡(a|s) � 1)R(s,a, s0)]

= Es⇠⇢,a⇠⇡[(⇡̂(a|s)� ⇡(a|s))Es0⇠p(·|s,a)R(s,a, s0)]

 C2maxs⇠⇢⇡KL(⇡(·|s)||⇡̂(·|s)) .

(8)

Based on Eqn. (7) and (8), we have the following inequality.

|⌘(⇡)� ⌘(⇡̂)|  Cmaxs⇠⇢⇡KL(⇡(· | s)k⇡̂(· | s)) (9)

⇤

A.3. Adaptions of SHINE

Adaption for Multi-agent Attacks. Recall that we also apply SHINE against an existing attack for multi-agent cooperative
RL in the SMAC environment. We use in-distribution triggers with a trigger size of 5%. We use the 2s3z and 3m map for
QMIX and COMA, respectively. To run our method, we need to apply the following adoptions. Specifically, we first applied
our explanation-based trigger detection method on the local observations of the cooperative agents to identify the backdoor
trigger. In particular, for QMIX, we performed the explanation for each local Q function and then aggregated the identified
triggers. For COMA, we directly used the global Q function since it takes the central states as input. Using the identified
trigger, we then applied the shielding procedure. Since this attack considers multiple victim agents, we retrain each agent
using algorithm 1. When updating the policy (line 13), we leverage the agent’s original training method (i.e., either QMIX
or COMA).

Adaption for Adaptive Attacks. As mentioned in Section 4, to defend against the adaptive attack where the trigger varies
its location across time, we also need to adapt our defense to solve a specific mask for each state. Specifically, we select the
states of the top important time steps identified by our step-level explanation. These states are those where the trigger is
most likely to be presented. For each state, we perturb its representation by adding Gaussian noise. Then, we use the original
and perturbed states as the input data and apply our feature-level explanation to solve an explanation mask. We solve an

13

SHINE: Shielding Backdoors in Deep Reinforcement Learning

explanation mask for each of the selected states, which highlights the different subset of features in the state representation
(i.e., different locations in the environment), capturing the movement of the trigger. By applying the explanation masks
solved from the select states to their representations, we could identify the common trigger pattern.

Note that this adaption (trigger location variation) is not applicable to the adversarial-agent attack, which does not have
a perturbation patch as the trigger. Besides, in the MuJoCo games, the feature meanings in the state representation are
pre-defined. In other words, specific dimensions of the state representation correspond to the adversarial agent’s status,
including its position and action. This indicates that no matter how the adversarial agent changes its trigger action, it will
pertain to fixed dimensions in the state representation, giving a similar explanation mask.

B. Implementation and Hyper-parameters
Implementations. We use the pytorch (Paszke et al., 2019) and the gpytorch (Gardner et al., 2018) package to implement
the trigger detection step of SHINE and stable-baseline (Raffin et al., 2019) to implement the backdoor shielding of SHINE.

Hyper-parameters. The key hyper-parameters introduced by our method are the weight of the elastic-net regularization
term in the feature-level explanation � and the strength of the KL constraint in the policy retraining ✏. We set � to
1⇥ 10�4 and ✏ to 0.01. In addition, our method inherits hyperparameters from the selected step-level explanation method –
EDGE (Guo et al., 2021b), the policy updating method – PPO (Schulman et al., 2017), and the temperature in the concrete
distribution (Maddison et al., 2016). For those hyper-parameters, we use the default choices in their original implementations.

C. SHINE against Existing Backdoor Defense in RL
We also evaluate SHINE against the latest backdoor defense against the perturbation-based attack (Bharti et al., 2022). More
specifically, we relax our assumption of only accessing to the agent’s operation environment. Instead, we allow access to the
original clean environment and apply the defense in Bharti et al. (2022). We compare the backdoored agent’s performance
after shielding with our method and the method in Bharti et al. (2022) using the Breakout environment (which is originally
used by Bharti et al. (2022) to evaluate their method). Note that we use the same backdoored agent in our evaluation, and
shield the agent with SHINE under the same environment. We use their official implementation and adopt the default
hyperparameters.

The average score of the agent shielded by our method and Bharti et al. (2022) across 1,000 rounds is 28.63 and 2.5,
respectively. SHINE achieves better performance than Bharti et al. (2022), verifying its effectiveness. We note that the
results are at a different scale from the reported numbers in Bharti et al. (2022). This is because we set a maximum length of
2,000 for each game round, while they run the game for an unlimited time until it stops naturally. As such, the agents in
their experiments collect more scores than those in our setup. Note that, following the suggestion in Bharti et al. (2022), we
tried multiple attempts for the singular value thresholds and reported the best result.

In addition, Bharti et al. (2022) requires computing the eigen-decomposition of the concatenation of the state representation,
whose complexity is cubic to the dimensionality of the input matrix. This indicates the method in Bharti et al. (2022)
will encounter scalability issues when handling environments whose state representation is of high dimensionality and
the trajectory is long. Besides, this method is designed only for perturbation-based attacks. As such, SHINE is more
generalizable and scalable than the method in Bharti et al. (2022).

D. Computational Efficiency and Hyper-parameter Sensitivity
Runtime. On average, the trigger detection stage of SHINE takes 12 hours, and the retraining stage takes 5 hours on a single
NVIDIA RTX A6000 GPU. We believe this runtime is reasonable in that it is still within the normal range of training a DRL
agent in benchmark environments. In comparison, NC and FeatureRE take 12 and 15 hours for this trigger restoration and
identification. The computational cost for retraining is the same across all baseline methods.

Hyper-parameter Sensitivity. Recall that SHINE introduces two unique hyper-parameters – the elastic-net regularization
term in the feature-level explanation � and the strength of the KL constraint in the policy retraining ✏. Here, we vary these
parameters and observe their influence on SHINE’s performance. In particular, we conduct the experiment on the Pong
environment, with the trigger setup the same as the Exp-I in Section 5. We evaluate three choices of �: 1⇥ 10�4, 2⇥ 10�4,
3 ⇥ 10�4 and three choices of ✏: 0.005, 0.01, 0.05. Tab. 4 shows the performance of the shielded agent in the operating

14

SHINE: Shielding Backdoors in Deep Reinforcement Learning

Table 4: The average score of the agent shielded by SHINE
in the operating and clean environment of the Pong game.

Environment � ✏

1⇥ 10�4 2⇥ 10�4 3⇥ 10�4 0.005 0.01 0.05

Operating 0.728 0.784 0.644 0.765 0.728 0.714
Clean 0.734 0.732 0.522 0.734 0.734 0.333

Table 5: The average score of backdoored agents shielded
with different methods in the operating and clean environ-
ment. The agents are subject to untargeted attacks.

Policy Operating Environment Clean Environment

Direct retraining 0.412 0.560
NC 0.210 0.160

SHINE 0.530 0.574

0 1 2 3 4 5
0

20

40

60

80

100

action

ac
tio

n
pr

ob
ab

ili
ty

(%
)

poisoned states
clean states

(a) Poisoned

0 1 2 3 4 5
0

20

40

60

80

100

action

ac
tio

n
pr

ob
ab

ili
ty

(%
)

poisoned states
clean states

(b) Direct Retraining

0 1 2 3 4 5
0

20

40

60

80

100

action

ac
tio

n
pr

ob
ab

ili
ty

(%
)

poisoned states
clean states

(c) NC

0 1 2 3 4 5
0

20

40

60

80

100

action

ac
tio

n
pr

ob
ab

ili
ty

(%
)

poisoned states
clean states

(d) SHINE

Figure 4: Action distributions in poisoned and clean states in the operating environment of the Atari-Pong Game, corresponding to the
results of Exp-II. A poisoned policy exhibits a higher probability of taking the target action (#2) in poisoned states than in clean states.

and clean environment under different hyper-parameter settings. The results show that SHINE is insensitive to the subtle
variations in these two hyper-parameters.

Number of trajectories used for explanation In addition to the hyper-parameter sensitivity tests mentioned above, we
also evaluate the impact of the number of trajectories on SHINE. We used the Pong game for this experiment. We vary the
number of trajectories as 200/500/1000 and report the trigger fidelity and final retraining performance. The results in Tab. 6
show that our method is not that sensitive to this factor. It also shows that SHINE does not require extensive failed cases to
apply shielding.

E. SHINE against Untargeted Attack in TrojDRL
In Tab. 5, we show the average score of SHINE and baselines on the Pong game against the untargeted attack in TrojDRL
(with the same trigger as the Exp-I. in Section 5). The table shows that SHINE is still more effective than the selected
baseline methods against the untargeted attack, which further demonstrates the effectiveness of our method.

F. Other Experiments
Paired t-test for Results in Tab.2. We conduct a paired t-test to demonstrate the statistical significance of our comparison
results in Tab. 2. More specifically, our null hypothesis is H0 : E[D]  0, where D is the reward difference between our
method and a baseline method. If the p-value is larger than an empirical threshold (e.g., 0.05), we accept H0, indicating our
method cannot outperform the baseline. We report the results in Tab. 7.

Ablation Study. We add a comprehensive ablation study in the Pong game with the TrojDRL attack (we use the default
trigger setup). Specifically, to verify the effectiveness of our trigger restoration. We first replace our trigger restoration
method with FeatureRE (Wang et al., 2022) and apply our retraining method using the trigger restored by FeatureRE (Same
as Exp-II.). Results in Tab. 10 show that SHINE is better than this baseline. We further verify the necessity of the step-level
explanation. We directly apply the feature-level explanations using all the collected states and then retrain the agent with our
proposed method. Tab. 10 (SHINE-NS vs. SHINE) shows that without the step-level explanation, we observe a performance
drop in both the trigger fidelity and the agent’s retraining performance. Note that we cannot remove the feature-level
explanation as we need it to automatically pinpoint the trigger. To demonstrate the effectiveness of our retraining method,
we replace it with direct retraining the agent in the operating environment (Same as the direct retraining in Exp-II.). Tab. 10
(DR v.s SHINE) shows the effectiveness of our proposed retraining method.

15

SHINE: Shielding Backdoors in Deep Reinforcement Learning

Table 6: The performance of SHINE with different numbers of trajectories used for explanation in the Pong game. “Operating”
and “Clean” refer to the retrained agent performance (average reward) in the operating and the clean environment.

Failed: 100 and Succeed: 900 Failed: 50 and Succeed: 450 Failed: 20 and Succeed: 180
Fidelity Operating Clean Fidelity Operating Clean Fidelity Operating Clean
0.998 0.728 0.734 0.991 0.721 0.729 0.978 0.698 0.709

Table 7: Paired t-test p-value between the performance of backdoored agents retrained with our method and those retrained with the
baseline methods in the operating environment.

Method Pong Breakout Space
Invaders QMIX COMA You-Shall-

Not-Pass
Sumo-

Humans
Run-to-
Go-Ants

Original >0.001 >0.001 >0.001 >0.001 >0.001 >0.001 >0.001 >0.001
Direct retraining >0.001 0.013 >0.001 0.001 0.004 0.002 0.004 >0.001

NC >0.001 >0.001 >0.001 >0.001 >0.001 - - -
FeatureRE >0.001 >0.001 >0.001 >0.001 >0.001 - - -

SHINE in an Operating Environment without Clean States. We consider a setup where the attacker poisons every state
in the operating environment P↵ = 1. We used the Pong and breakout game for the experiment. The results are as follows.
The retrained agent’s reward in the operating/poisoned environment is: Pong: 0.805±0.032; Breakout: 30.26±1.102. The
reward in the clean environment is: Pong: 0.705±0.023; Breakout: 20.380±1.026. Compared to the results in Table 2,
we found that the retrained agent performs better in the operating environment. However, its performance in the clean
environment drops from 0.734±0.021 to 0.705±0.023 in the pong game and from 25.350±1.609 to 20.380±1.026 in the
breakout game. This is because, without clean states, we can only simulate clean states by masking out the trigger identified
by our explanation method. Due to the inevitable approximation errors, the agent’s performance in the clean environment
drops slightly.

Visualization. Fig. 2 showcases the triggers and masks solved by SHINE for both backdoored and clean agents in the Pong
game. In addition to the overall performance, we also take a closer look into the agent’s action distribution in clean and
poisoned states of the operating environment. Fig. 4 shows the action distribution of the backdoored agent before and after
retraining in the Pong game. This result further explains the superior performance of SHINE, which enables almost identical
distribution in clean and poisoned states.

G. SHINE against more Attack Variations
SHINE against more Trigger Variations. Using the same pong environment as Exp-IV, we consider three trigger shapes:
dense square block, cross sign, and equal sign. For each shape, we consider four different sizes: 3⇥ 3, 4⇥ 4, 5⇥ 5, and
6⇥ 6. We use these 16 triggers to launch the TrojDRL attack and run SHINE for defending. We report the trigger fidelity
and final shielding performance in the operating environment in Tab. 8 and Tab. 9. The results show that our method,
including the feature-level explanation, is robust against these variations. Note that, for all the variations, we run the same
number of epochs for the feature-level explanation. They all take around 10⇠12 hours on a single NVIDIA RTX A6000
GPU, indicating the changes in trigger size and shape impose a minor influence on the runtime of SHINE.

Adaptive Attacks against Retraining. Recall that our retraining method in Section 3.3 has a masking step, which masks
out the potential trigger. An adaptive attack could be using a trigger with all zero pixels (Although this is not the case in the
original attacks (Kiourti et al., 2019; Chen et al., 2022b)). A solution to this is to replace the detected trigger with mean
pixels across all collected states. To avoid the case where the trigger consists of the mean pixels, we can further apply a
Gaussian blur on the mean pixels and then replace it with the detected trigger. To test the effectiveness of this solution, we
apply it to two attack setups in the Pong game (using a square trigger with the size of 3 ⇥ 3), where the first attack uses
the zero pixels as the trigger (denoted as attack-1) and the second attack uses the mean pixels across states as the trigger
(denoted as attack-2). The performance of our shielded agents is attack-1: 0.725 (in the operation environment)/0.731 (in
the clean environment); attack-2: 0.727 (in the operation environment)/0.732 (in the clean environment). This result is
comparable with other evaluation results, which demonstrates the effectiveness of this solution. Note that our explanation
will pinpoint the actual trigger. If we find the trigger is all zero or mean pixels, we can use this solution rather than masking.

16

SHINE: Shielding Backdoors in Deep Reinforcement Learning

Table 8: Trigger detection fidelity of SHINE under different trigger patterns and trigger sizes.

Dense Square Block Cross Sign Equal Sign

3⇥ 3 4⇥ 4 5⇥ 5 6⇥ 6 3⇥ 3 4⇥ 4 5⇥ 5 6⇥ 6 3⇥ 3 4⇥ 4 5⇥ 5 6⇥ 6

0.998 0.998 0.976 0.959 0.993 0.989 0.975 0.968 0.998 0.993 0.985 0.972

Table 9: Performance of the original poisoned agent and SHINE in the operating environment.

Agent Dense Square Block Cross Sign Equal Sign

3⇥ 3 4⇥ 4 5⇥ 5 6⇥ 6 3⇥ 3 4⇥ 4 5⇥ 5 6⇥ 6 3⇥ 3 4⇥ 4 5⇥ 5 6⇥ 6

Original -0.010 0.021 0.035 -0.082 -0.031 -0.024 -0.021 -0.039 0.019 -0.024 -0.091 0.030
Retrained 0.728 0.548 0.818 0.712 0.686 0.582 0.637 0.682 0.584 0.691 0.592 0.581

For other cases, we can still apply masking.

Clarifications about Corner Cases. Aside from the attack variations and adaptive attacks evaluated in our evaluations,
we also discuss other possible corner cases. First, as mentioned in Section 3.1 and existing attacks (Kiourti et al., 2019;
Chen et al., 2022b; Wang et al., 2021a), the goal of backdoor attacks against DRL agents is to significantly reduce the
backdoored agent’s total reward when the trigger is presented in the environment. For environments with a discrete final
reward (win or lose), the attack goal is to make the victim agent lose the game. The attack goal for environments with
continuous rewards (without a clear win or lose) is to significantly reduce the victim agent’s total reward (which is considered
a failure). As stated in Eqn. (1), the step-level explanation considers both cases. If an attack cannot significantly reduce the
backdoored agent’s total reward, it is considered unsuccessful and not that valuable for defending. Second, there could be
some trajectories where the failure is not caused by the trigger. First, SHINE works in the operating environment where the
trigger will show up. If the trigger is never presented, it belongs to a threat model different from ours. As such, the failure
trajectories will have trajectories caused by the trigger (with the trigger) and trajectories caused by other factors (without the
trigger). Our feature-level explanation will identify a dense patch or a subset of features in the state space as the trigger. We
also add the elastic net regularization when solving the trigger. This will only identify the trigger.

17

SHINE: Shielding Backdoors in Deep Reinforcement Learning

Table 10: Ablation Study. “DR“ stands for direct retraining. “SHINE-NS” means SHINE without the step-level explanation.

Environment Original FeatureRE DR SHINE-NS SHINE

Operating -0.010±0.001 0.124±0.003 0.032±0.002 0.109±0.001 0.728±0.027
Clean 0.680±0.030 0.293±0.021 0.286±0.016 -0.023±0.002 0.734±0.021

18

