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Abstract
We give an example of a class of distributions that is learnable in total variation distance with a

finite number of samples, but not learnable under pε, δq-differential privacy. This refutes a conjecture
of Ashtiani.
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1. Introduction

Given samples from a distribution D belonging to some class of distributions H, can we output a
distribution D1 that is close to D in total variation distance? This problem, known as distribution
learning or density estimation, has enjoyed significant study by a number of communities, including
Computer Science, Statistics, and Information Theory (see, e.g., (Devroye and Lugosi, 2001; Kearns
et al., 1994; Daskalakis et al., 2012; Ashtiani et al., 2020)).

A recent line of work studies distribution learning under differential privacy (Dwork et al., 2006),
giving sample complexity bounds for several classes of interest. However, many of these algorithms
are ad hoc, exploiting idiosyncrasies of the class of interest (see, e.g., (Karwa and Vadhan, 2018;
Kamath et al., 2019a)). Recent efforts have succeeded in weakening assumptions and designing
increasingly general learning algorithms and frameworks (see, e.g., (Liu et al., 2022; Kamath et al.,
2022b; Ashtiani and Liaw, 2022; Kothari et al., 2022; Afzali et al., 2023)). It is natural to wonder
how far this agenda can be pushed – what are the limits of private learning? Specifically, we consider
the following question:

Question 1 Is every learnable class of distributions H also learnable under the constraint of
pε, δq-differential privacy?

The answer is known to be “no” under the stronger constraint of pε, 0q-DP (i.e., pure DP). Bun,
Kamath, Steinke, and Wu (Bun et al., 2019) showed that the covering and packing numbers of a
distribution class H give sample complexity upper and lower bounds, respectively, for learning the
class H. Consequently, this immediately gives separations between learning and pε, 0q-DP learning.1

. Authors are listed in alphabetical order.
1. The simplest natural example is the class of univariate unit-variance Gaussians with unbounded mean.

© 2024 M. Bun, G. Kamath, A. Mouzakis & V. Singhal.



BUN KAMATH MOUZAKIS SINGHAL

However, they do not prove any sample complexity lower bounds for pε, δq-DP (i.e., approximate
DP) learning, leaving open the possibility that every learnable distribution class is privately learnable.

On the related task of PAC learning of functions, a rich line of work shows that there exist strong
separations between non-private learning and private learning, under both pε, 0q-DP (Beimel et al.,
2014; Feldman and Xiao, 2015) and pε, δq-DP (Bun et al., 2015; Alon et al., 2019; Bun et al., 2020).
In particular, for approximate DP, learnability is characterized by the Littlestone dimension, rather
than the VC dimension as in the non-private setting. However, given substantial differences in the
setting, it is unclear whether these separations have any implications for private distribution learning.

At a July 2022 workshop at the Fields Institute, Ashtiani explicitly conjectured an affirmative
answer to Question 1: every learnable class of distributions is privately learnable (Ashtiani, 2022).
Indeed, as mentioned before, the community (including contributions by Ashtiani, as well as others)
has designed increasingly generic algorithms for private distribution learning (Ashtiani and Liaw,
2022; Tsfadia et al., 2022; Afzali et al., 2023), often depending only on a non-private learner in a
black-box manner.

We refute Ashtiani’s conjecture, and give an explicit class of distributions which is learnable
from a constant number of samples, but is not privately learnable with any finite number of samples.

Theorem 2 (Informal version of Theorem 12) There exists a class of distributions H such that,
for an absolute constant c:

1. There exists an algorithm which, given Θp1q samples from any distribution D P H, outputs a
pD P H such that P

”

dTV

´

pD,D
¯

ď c
ı

ě 0.9.

2. Any pε, δq-DP mechanism that attains the same accuracy guarantee needs an infinite number
of samples.

We use a “trapdoor” construction, where the class of distributions consists of mixtures over two
components. The components are entangled, in the sense that they share the same set of parameters.
The first component encodes a “key” that makes it possible to identify the other component. The
second component is hard to learn individually, even without privacy. In our setting, the first
component will be a binary product distribution over t0, 1ud, whereas the other component will be a
distribution over t˘1, . . . ,˘du. However, we stress that d will not be fixed a-priori, in the sense that
our class will include distributions where d can be any positive integer. The construction will be done
in a way that the mixing weight will significantly favor the second component, but samples drawn
from it will give very little information about the overall distribution. Eventually, the hardness in the
private setting will be a consequence of reducing from lower bounds for private mean estimation of
the binary product distributions (in the appropriate error metric). We note that conceptually-similar
(but technically quite different) trapdoor constructions have recently been used to show lower bounds
for PAC learning (Lechner and Ben-David, 2023) and robust learnability (Ben-David et al., 2023).

Related Work. Gaussians are often the first class studied when considering distribution learning.
They have been studied under the constraint of differential privacy starting from the work of Karwa
and Vadhan on estimating univariate Gaussians (Karwa and Vadhan, 2018), with subsequent works
focused on understanding the multivariate setting (Kamath et al., 2019a; Bun and Steinke, 2019;
Biswas et al., 2020; Liu et al., 2021; Aden-Ali et al., 2021a; Cai et al., 2021; Tsfadia et al., 2022;
Ashtiani and Liaw, 2022; Kamath et al., 2022b; Kothari et al., 2022; Bie et al., 2022; Kamath et al.,
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2022a; Alabi et al., 2023; Hopkins et al., 2023; Asi et al., 2023; Kamath et al., 2023), as well as the
related problem of binary product distributions (Kamath et al., 2019a; Singhal, 2023). The natural
generalization to learning mixtures of Gaussians has also been studied (Nissim et al., 2007; Kamath
et al., 2019b; Aden-Ali et al., 2021b; Ashtiani and Liaw, 2022; Arbas et al., 2023; Afzali et al., 2023).
Some work focuses on estimating structured classes of distributions (Diakonikolas et al., 2015).
Other works study broad tools for distribution learning (Bun et al., 2019; Aden-Ali et al., 2021a;
Acharya et al., 2021; Tsfadia et al., 2022; Ashtiani and Liaw, 2022). See (Kamath and Ullman, 2020)
for a survey of the area.

2. Preliminaries

General Notation. We denote the set of all non-zero integers by Z˚. Additionally, given a set

S, we define Si to be the i-fold Cartesian product of the set with itself, and S` :“
8
Ť

i“1
Si. We

use the notation rns :“ t1, 2, . . . , nu and ra˘Rs :“ ra´R, a`Rs. Also, for convenience, we

will use the notations like
`

Rd
˘n

” Rnˆd and
´

t0, 1ud
¯n

” t0, 1unˆd. We use Beppq to denote a
Bernoulli distribution with probability of success p. Furthermore, given any set S, we denote the
set of all distributions over that set by ∆pSq. For any distribution D, D

Â

n denotes the product
measure where each marginal distribution is D. Thus, if we are given n independent samples
from D, we write pX1, . . . , Xnq „ D

Â

n. Also, depending on the context, we may use capital
Latin characters like X to denote either an individual sample from a distribution or a collection of
samples X :“ pX1, . . . , Xnq. To denote the j-th component of a vector, we will use a subscript
(e.g., Xj , if the vector is X). Given a pair of distributions D1,D2 over a space X , their TV-distance
is defined as dTVpD1,D2q :“ sup

AĎX
|D1pAq ´D2pAq|. If D1 and D2 are discrete, it holds that

dTVpD1,D2q “
1
2

ř

xPX
|D1pxq ´D2pxq|.

We conclude this section by introducing the definition of differential privacy and its closure
under post-processing property.

Definition 3 (Differential Privacy (DP) (Dwork et al., 2006)) A mechanism M : X n Ñ Y is said
to satisfy pε, δq-differential privacy (pε, δq-DP) if for every pair of neighboring datasets X,X 1 P X n

(i.e., datasets that differ in exactly one entry), we have:

P
M
rMpXq P Y s ď eεP

M

“

M
`

X 1
˘

P Y
‰

` δ, @ Y Ď Y.

When δ “ 0, we say that M satisfies ε-differential privacy or pure differential privacy.

Lemma 4 (Post Processing (Dwork et al., 2006)) If M : X n Ñ Y is pε, δq-DP, and P : Y Ñ Z
is any randomized function, then the algorithm P ˝M is pε, δq-DP.
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3. The Construction and Proofs

We define the class of distributions Hw,d :“
!

Dw,d,p : p P r0, 1sd
)

Ď ∆
´

t0, 1ud Y t˘1, . . . ,˘du
¯

,
where each Dw,d,p has pmf qw,d,p with:

qw,d,ppxq :“

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

w,
ś

jPrds

p
xj

j p1´ pjq
1´xj ,@x P t0, 1ud

1´w
d , p

1`x
2

1 p1´ p1q
1´x
2 ,@x P t˘1u

1´w
d , p

1`x
2

2
2 p1´ p2q

1´x
2

2 ,@x P t˘2u
...

1´w
d , p

1`x
d

2
d p1´ pdq

1´x
d

2 ,@x P t˘du

.

Simply put, each Dw,d,p is a mixture of d` 1 components. The first component has mixing weight
w and is a binary product distribution over t0, 1ud with probability vector p. Each of the remaining
components has mixing weight 1´w

d and is a binary distribution that takes the value j with probability
pj and the value ´j with probability 1 ´ pj . Note, in particular, that the probability vector p is
shared for both components of the distribution. In this context, the first component can be seen as
the “key” to learning the distribution, because a single sample from it reveals information about the
whole parameter vector, in contrast to the last d components which, taken together, play the role
of the “hard distribution”, since a sample from it reveals information about only one component

of the parameter vector. Our goal will be to use Hw :“
8
Ť

d“1

Hw,d as the class that will lead to the

separation. Specifically, we will show that the sample complexity of privately learning each Hw,d

is dimension-dependent. As d grows, the sample complexity will approach infinity. At this point,
we note that lower bounds shown for individual classes Hw,d are also lower bounds for Hw which,
combined with our previous observation, implies that it’s impossible to learn Hw with a finite number
of samples.

Suppose that our target error is denoted by α. Our proof will focus on an instance of Hw

with w “ α
2 . Specifically, focusing on the sub-class Hα

2
,d for d ě 1, we will first show a lower

bound of Ω
ˆ

?
d

logp 1
αq

?
αε

˙

for density estimation up to error α with probability of success 0.9 for this

class under pε, δq-DP (Corollary 9), and then argue that the non-private sample complexity for the
same task is O

`

1
α3

˘

(Lemma 11). We conclude by formally establishing the desired separation in
Theorem 12.

We start by showing the lower bound under privacy. Doing so involves an argument which
establishes a reduction from parameter estimation for binary product distributions to density estima-
tion for the class Hα

2
,d. Formulating the reduction first necessitates showing how a mechanism that

performs density estimation for the class Hα
2
,d can be used to construct a mechanism that estimates

the parameter p of distributions in this class.

Lemma 5 Let p P r0, 1sd and X „ Dbn
α
2
,d,p. If M :

´

t0, 1ud Y t˘1, . . . ,˘du
¯n

Ñ Hα
2
,d is an

pε, δq-DP mechanism that outputs a pD such that E
X,M

”

dTV

´

pD,Dα
2
,d,p

¯ı

ď α ď 1, then it is possible

to output a pp P r0, 1sd such that E
X,M

r}pp´ p}1s ď 2dα, while preserving pε, δq-DP.
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NOT ALL LEARNABLE DISTRIBUTION CLASSES ARE PRIVATELY LEARNABLE

Proof We observe that all the distributions in the class are mixtures with two components that have
disjoint supports, and that the mixing weights are the same for all distributions. As a consequence,
given a pair p1, p2 P r0, 1sd, we have the following for the corresponding distributions:

dTV

´

Dα
2
,d,p1 ,Dα

2
,d,p2

¯

“
α

2
dTV

˜

â

jPrds

Bepp1,jq,
â

jPrds

Bepp2,jq

¸

`
1´ α

2

d
}p1 ´ p2}1. (1)

Based on the above, if we have a distribution pD ” Dα
2
,d,pp, such that E

X,M

”

dTV

´

pD,Dα
2
,d,p

¯ı

ď α, it

must always be the case that 1´α
2

d E
X,M

r}pp´ p}1s ď α ùñ E
X,M

r}pp´ p}1s ď
dα

1´α
2
ď 2dα. Thus,

all we have to do is identify the probability vector pp that corresponds to pD and output it, while privacy
is preserved thanks to Lemma 4.

To complete the reduction, we need to show how, given a mechanism that performs density
estimation for the class Hα

2
,d, it is possible to use it to perform ℓ1-parameter estimation for binary

product distributions. This is done in the following lemma:

Lemma 6 Let P be a binary product distribution over t0, 1ud with mean vector p P r0, 1sd, and
let X „ Pbn. If any pε, δq-DP mechanism T : t0, 1unˆd

Ñ r0, 1sd with E
X,T

r}T pXq ´ p}1s ď 2dα

requires at least n ě n0 samples, the same sample complexity lower bound holds for any pε, δq-DP

mechanism M :
´

t0, 1ud Y t˘1, . . . ,˘du
¯n

Ñ Hα
2
,d that satisfies E

Y,M

”

dTV

´

MpY q,Dα
2
,d,p

¯ı

ď

α ď 1, where Y „ Dbn
α
2
,d,p.

Proof To establish our result, it suffices to show that estimating the parameter vector of P can be
transformed into an instance of density estimation for distributions in Hα

2
,d, implying that lower

bounds for the former problem also apply to the latter. To do so, we assume we have an pε, δq-DP

mechanism M :
´

t0, 1ud Y t˘1, . . . ,˘du
¯n

Ñ Hα
2
,d with E

Y,M

”

dTV

´

MpY q,Dα
2
,d,p

¯ı

ď α ď 1

for Y „ Dbn
α
2
,d,p. We will show how to use this mechanism to construct an pε, δq-DP mechanism

T : t0, 1unˆd
Ñ r0, 1sd with E

X,T
r}T pXq ´ p}1s ď 2dα for X „ Pbn.

The crux of the argument involves proving that, given a dataset X „ Pbn, it is possible to
generate a dataset Y „ Dbn

α
2
,d,p. The mechanism T will consist of this sampling step (pre-processing),

and an application of M over the resulting dataset. Appealing to Lemma 5 suffices to establish that
T will have the desired accuracy guarantee, so the rest of the proof is devoted to describing the
sampling process.

Given any datapoint Xi, we set Yi equal to it with probability α
2 , or, with probability 1 ´ α

2 ,
we choose one of the coordinates of Xi uniformly at random (say the j-th coordinate). If the j-th
coordinate of Xi is equal to 1, we set Yi “ j. Otherwise, we set Yi “ ´j. The resulting dataset Y
will follow the desired distribution. We stress that this process preserves privacy guarantees, because
changing a point of X can result in at most one point of Y changing (conditioned on the randomness
involved in the conversion of X to Y ).

At this point, we recall the following result from (Kamath et al., 2019a):
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Proposition 7 [Lemma 6.2 from (Kamath et al., 2019a)] Let p be any vector in
“

1
3 ,

2
3

‰d, and let
X :“ pX1, . . . , Xnq be a dataset consisting of n independent samples from a binary product
distribution P over t0, 1ud with mean p. If M : t0, 1unˆd

Ñ
“

1
3 ,

2
3

‰d is an pε, δq-DP mechanism

with ε P r0, 1s and δ “ O
`

1
n

˘

that satisfies E
X,M

”

}MpXq ´ p}22

ı

ď α2 ď Opdq,@p P
“

1
3 ,

2
3

‰d, it

must hold that n ě Ω
`

d
αε

˘

.

While phrased in terms of mechanisms with mean-squared-error guarantees, the above result
also implies a bound for ℓ1-estimation. The connection is described in the following lemma:

Lemma 8 For an absolute constant C1 ą 0, and any α ď C1, consider the class of distri-
butions Hα

2
,d. Let p P

“

1
3 ,

2
3

‰d, and let X „ Dbn
α
2
,d,p. If M :

´

t0, 1ud Y t˘1, . . . ,˘du
¯n

Ñ

Hα
2
,d is an pε, δq-DP mechanism with ε P r0, 1s and δ “ O

`

1
n

˘

that outputs a pD such that

E
X,M

”

dTV

´

pD,Dα
2
,d,p

¯ı

ď α,@p P
“

1
3 ,

2
3

‰d, it must hold that n ě Ω
´ ?

d?
αε

¯

.

Proof We recall the inequality }x}22 ď }x}8}x}1,@x P Rd. This is a consequence of Hölder’s
inequality, but can also be shown in an elementary way by remarking that:

}x}22 “
ÿ

iPrds

x2i ď max
iPrds

t|xi|u
ÿ

iPrds

|xi| “ }x}8}x}1.

Now, let X be a dataset of size n that has been drawn i.i.d. from a binary product distribution P with
mean vector p, and let T : t0, 1unˆd

Ñ r0, 1sd be an pε, δq-DP mechanism with ε P r0, 1s, δ “ O
`

1
n

˘

that satisfies E
X,T

r}T pXq ´ p}1s ď 2dα. We have }T pXq ´ p}8 ď 1 which, by an application of the

above inequality, yields }T pXq ´ p}22 ď }T pXq ´ p}1. This implies that T satisfies the guarantee

E
X,T

”

}T pXq ´ p}22

ı

ď 2dα. Consequently, the lower bound of Proposition 7 applies to T if we set

α Ñ
?
2dα. Then, appealing to Lemma 6 completes the proof.

The lower bound of Lemma 8 also holds for mechanisms that achieve the accuracy guarantee
P

X,M

”

dTV

´

pD,Dα
2
,d,p

¯

ď α
ı

ě 0.9, albeit at the cost of getting a result that’s weaker by a log-factor.

The argument is sketched in the proof of Theorem 6.1 of (Kamath et al., 2019a), so we point readers

there and do not repeat it here. The resulting sample complexity bound is n ě Ω

ˆ

?
d

logp 1
αq

?
αε

˙

.

We summarize the above remarks in the following corollary.

Corollary 9 For an absolute constant C1 ą 0, and any α ď C1, consider the class of dis-
tributions Hα

2
,d. Let p P

“

1
3 ,

2
3

‰d, and let X „ Dbn
α
2
,d,p. If M :

´

t0, 1ud Y t˘1, . . . ,˘du
¯n

Ñ

Hα
2
,d is an pε, δq-DP mechanism with ε P r0, 1s and δ “ O

`

1
n

˘

that outputs a pD such that

P
X,M

”

dTV

´

pD,Dα
2
,d,p

¯

ď α
ı

ě 0.9,@p P
“

1
3 ,

2
3

‰d, it must hold that n ě Ω

ˆ

?
d

logp 1
αq

?
αε

˙

.

Remark 10 While the lower bounds in the above statements are phrased in terms of proper learners,
they also imply the same bounds against improper learners. If computation is not a concern, an
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improper learner can be converted to a proper one by enumerating over all densities in the class and
projecting to whichever one is closest with respect to the TV-distance. Since the TV-distance satisfies
the triangle inequality, this can lead to the error increasing by a factor of 2.

We now proceed to argue that the non-private sample complexity of proper density estimation
with respect to the TV-distance for the class Hα

2
,d is independent of d.

Lemma 11 Let Dα
2
,d,p P Hα

2
,d. There exists an algorithm A :

´

t0, 1ud Y t˘1, . . . ,˘du
¯n

Ñ

Hα
2
,d which, given a dataset X „ D

Â

n
α
2
,d,p of size n “ O

˜

log
´

1
β

¯

α3

¸

, outputs a distribution pD ”

Dα
2
,d,pp P Hα

2
,d such that:

P
X

”

dTV

´

Dα
2
,d,pp,Dα

2
,d,p

¯

ď α
ı

ě 1´ β.

Proof By (1), we have:

dTV

´

Dα
2
,d,pp,Dα

2
,d,p

¯

“
α

2
dTV

˜

â

jPrds

Bepppjq,
â

jPrds

Beppjq

¸

`
1´ α

2

d
}pp´ p}1.

Based on the above, in order to attain error α in TV-distance, it suffices to p1q estimate
Â

jPrds

Beppjq

up to error 1 in TV-distance, and p2q estimate the vector p up to error dα
2 in ℓ1-distance. Statement

p1q holds trivially, since all distributions are at TV-distance 1 from each other, so we focus on p2q.
For p2q, it holds that }pp´ p}1 ď

?
d}pp´ p}2, so it suffices to have a pp such that }pp´ p}2 ď

?
dα
2 .

Assume, now, that we are given m samples drawn i.i.d. from a binary product distribution, and that
we want to estimate its parameter vector within ℓ2-error α with probability at least 1 ´ β

2 . It is a

folklore fact that m “ Θ

˜

d`log
´

1
β

¯

α2

¸

samples, are both necessary and sufficient for this task, with

the bound being attained by taking the sample mean. Thus, setting α Ñ
?
dα
2 yields Θ

˜

d`log
´

1
β

¯

dα2

¸

,

which is dominated by O

˜

log
´

1
β

¯

α2

¸

. Consequently, in order to get }pp´ p}2 ď
?
dα
2 in our setting, it

suffices to have m “ O

˜

log
´

1
β

¯

α2

¸

samples from the first component (the binary product distribution).

For that reason, assume that, for each datapoint Xi we draw from Dα
2
,d,p, we have an associated

random variable Zi „ Be
`

α
2

˘

which becomes 1 if Xi comes from the first component. We assume

now that we have n samples with nα
2 ě m. We will show that n “ O

˜

log
´

1
β

¯

α3

¸

suffices to ensure

that the event
ř

iPrns

Zi ă m doesn’t happen, except with probability at most β
2 . The Hoeffding bound

implies that:

P

»

–

ÿ

iPrns

Zi ă m

fi

fl ď P

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

iPrns

Zi ´
nα

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě
nα

2
´m

fi

fl ď e´
pnα´2mq2

2n .

7



BUN KAMATH MOUZAKIS SINGHAL

To ensure that the above is upper-bounded by β
2 , it suffices to have n ě

2
´

2αm`log
´

2
β

¯¯

α2 “

O

˜

log
´

1
β

¯

α3

¸

. By a union bound, the total probability of failure is upper-bounded by β, completing

the proof.

We are now ready to establish our main result.

Theorem 12 Given any D P Hα
2

, we have:

1. There exists an algorithm A :
`

t0, 1u` Y Z˚
˘n

Ñ Hα
2

which, given n “ Θp1q samples drawn

i.i.d. from D, outputs a pD P Hα
2

such that P
X

”

dTV

´

pD,D
¯

ď C1
2

ı

ě 0.9.

2. Let M :
`

t0, 1u` Y Z˚
˘n

Ñ Hα
2

be an pε, δq-DP mechanism with ε P r0, 1s, δ “ O
`

1
n

˘

which, given X „ Dbn, outputs a pD P Hα
2

such that P
X,M

”

dTV

´

pD,D
¯

ď C1
2

ı

ě 0.9. Then,

it must hold that n “ 8.

Proof Let a (potentially adversarially chosen) D ” Dα
2
,d,p P Hα

2
,d be our ground truth.

Without privacy constraints, all the algorithm A has to do is look at the samples to identify the
number of components d, and then calculate the corresponding sample mean (as we did in the proof
of Lemma 11). The desired guarantee is immediate by the guarantees of that lemma.

Under privacy, we will establish our result by working towards a contradiction. Let us assume
that, for some finite n there exists an pε, δq-DP mechanism M :

`

t0, 1u` Y Z˚
˘n

Ñ Hα
2

with ε P

r0, 1s, δ “ O
`

1
n

˘

which, given X „ Dbn, outputs a pD P Hα
2

such that P
X,M

”

dTV

´

pD,D
¯

ď C1

ı

ě

0.9. We note that pD might not be in Hα
2
,d (since the output range is assumed to be the entire Hα

2
).

However, working as well described in Remark 10, we can round the output to an element of Hα
2
,d,

with the TV-distance between the resulting distribution and the ground truth now being C1 (the
privacy guarantee is preserved thanks to Lemma 4). Then, by Corollary 9, it must be the case that
n ě Ω

´?
d
ε

¯

. This must hold for every d P IN, so taking d Ñ 8 leads to a contradiction.
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