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Abstract

Temperature can influence mosquito-borne diseases like dengue. These effects are
expected to vary geographically and over time in both magnitude and direction and may
interact with other environmental variables, making it difficult to anticipate changes in
response to climate change. Here, we investigate global variation in temperature—dengue
relationship by analyzing published correlations between temperature and dengue and
matching them with remotely sensed climatic and socioeconomic data. We found that the
correlation between temperature and dengue was most positive at intermediate (near 24°C)
temperatures, as predicted from an independent mechanistic model. Positive temperature—
dengue associations were strongest when temperature variation and population density
were high and decreased with infection burden and rainfall mean and variation, suggesting
alternative limiting factors on transmission. Our results show that while climate effects on
diseases are context-dependent they are also predictable from the thermal biology of trans-
mission and its environmental and social mediators.

Introduction

Many infectious diseases are sensitive to changes in temperature [1-4]. The disease systems
most likely to exhibit these sensitivities are those with pathogens transmitted from ectothermic
hosts or vectors and/or temperature-sensitive infectious stages in the environment [5]. The
dynamics and distributions of many diseases are predicted to change with climate change [6],
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with effects on human illness [7], food security [8], and wildlife conservation [9]. Accurately
predicting the effects of temperature change on infectious diseases requires an understanding
of how nonlinear temperature effects and other factors can mediate the impact of temperature
on disease systems.

Temperature can affect biological rates and processes related to disease transmission,
including contact and infection rates [10-12]. For example, temperature increases can speed
up vector development rates, particularly at low temperatures, while also decreasing survival
probabilities, especially at high temperatures. Whether temperature increases or decreases
these rates depends on context, and this type of nonlinearity makes predicting changes in
infectious disease with climate change difficult. The functional traits of organisms that contrib-
ute to disease transmission—such as rates of development, activity, and fecundity and proba-
bilities of survival and reproduction—typically have hump-shaped responses to temperature,
increasing from zero at a critical thermal minimum up to an optimal temperature then declin-
ing to zero at a critical thermal maximum (i.e., thermal performance curves; [13-16]). As a
result of temperature effects on key demographic rates, population and community-level pro-
cesses, including population dynamics [17], disease transmission [18], and trophic interactions
[19,20], also tend to respond nonlinearly to temperature, integrating influences of temperature
on multiple life stages and organisms. Thus, the observed effects of temperature on ecological
processes can appear idiosyncratic, changing in direction and magnitude and becoming more
or less apparent under differing circumstances, making it challenging to derive general predic-
tions for how ecological processes respond to climate change [21].

To understand this apparent context-dependence in how temperature affects disease trans-
mission, it may be beneficial to consider the temperature-disease relationships at a more local
scale. Rather than considering a full nonlinear response of disease transmission across a large
temperature range, we can instead consider the rate of change in disease with respect to tem-
perature—which may vary across ecological settings—to link locally-determined relationships
across places and times. For example, we may expect that local temperature-disease relation-
ships will be weak at the cold end of a thermal performance curve describing disease transmis-
sion or incidence versus temperature, strongly positive where the slope of the curve is highest,
and zero or weak at the optimal temperature of the curve. Whether temperature increases,
decreases, or has no effect on disease transmission is therefore predicted to depend on the
local average temperature and its range.

Many factors, including rainfall, drought, habitat structure, behavior, demographic and
immune patterns, and others, affect disease transmission, and these factors may also mediate
the local effects of temperature on transmission. In particular, because body temperature and
water regulation are tightly linked organismal processes, rainfall and temperature often jointly
determine habitat availability and organismal performance [22], as has been shown for juve-
nile Ixodid ticks when seeking hosts [23,24]. Local temperature variability can also produce
effects that are distinct from those of average temperature due to Jensen’s inequality—the
mathematical property in which the expected value of a nonlinear curve across varying condi-
tions is not equal to the expected value at the average condition [25]. In this case, organismal
performance and resulting population and community processes at realized temperatures
could differ from what would be predicted at constant mean temperatures [25-27]. Notably,
more variable temperature tends to rescue disease transmission when it is cold and impair
transmission when it is warm. Beyond climatic effects, socioeconomic and anthropogenic fac-
tors impact ecological systems through processes such as land conversion, wildlife trade and
consumption, and the introduction of invasive species, which drive shifts in biodiversity,
resource availability, and species distributions [28-31]. For diseases, these and other socioeco-
nomic factors such as vector control, hygiene, and healthcare can alter the suitability of a
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location for disease transmission and opportunities for contacts among hosts and/or vectors.
Effects of temperature on disease are most detectable when conditions are otherwise suitable
for transmission, and may be dampened when other key requirements like host and vector
presence and contact are not met.

The net effects of nonlinearity and other factors mediating temperature impacts on dis-
ease will have consequences for human health, especially for vector-borne diseases. In par-
ticular, dengue is a climate-sensitive, tropical and subtropical disease caused by a flavivirus
(DENV) primarily transmitted by female Aedes aegypti mosquitoes; it causes 100-400 mil-
lion cases every year [32] and cases have been increasing dramatically both regionally and
globally over the last three decades [33]. Notably, since mosquitoes and the pathogens they
harbor are ectotherms, temperature can influence multiple stages of the mosquito life cycle
and pathogen transmission cycle, affecting the distribution and dynamics of disease [10,34-
36]. Previous research has used a combination of constant-temperature laboratory experi-
ments and mathematical modeling to first isolate the effects of temperature on different
mosquito and pathogen traits (e.g., DENV development rate within the mosquito, mosquito
lifespan and fecundity) and then combine these processes to understand how potential
transmission rates vary across temperature [34,36-39]. This has provided specific predic-
tions for how temperature affects dengue transmission in the field: small increases in tem-
perature should increase transmission up to the optimal temperature of 29°C, after which
increases in temperature should decrease transmission [10]. The greatest relative increase
in transmission per degree increase in temperature is expected to occur near 25°C (i.e., the
temperature at which the slope of the transmission versus temperature curve is steepest).
Although some empirical support for these predictions exists at broad spatial scales in the
field [e.g., 10,36,39-41], it can be difficult to infer temperature effects from field studies
when additional climatic or socioeconomic factors vary and are unaccounted for. Generally,
recognition of the importance of nonlinear effects of temperature on transmission, espe-
cially at local scales, remains limited.

Here, we consider dengue as a case study to examine correlations between temperature and
disease transmission, testing the specific predictions from an independent, mechanistic model
that the temperature-dengue relationship is most strongly positive near 25°C and declines to
zero at both lower and higher temperatures [10]. Previous work has reported both positive and
negative relationships between temperature and dengue outbreaks [39], and we expected that
these relationships may vary geographically depending on average temperature and other cli-
matic and socioeconomic factors. Specifically, we hypothesized that nonlinear effects of tem-
perature, mediated by other climatic and non-climatic factors, might explain apparent
differences in the inferred effects of temperature on dengue transmission. We searched the lit-
erature to test whether dengue transmission—measured as empirical correlations—changes
nonlinearly with average study temperature and peaks near 25°C, the temperature where the
slope of the transmission versus temperature curve was suggested to be greatest in a previously
published trait-based mathematical model [10]. We also test our predictions that the strength
of correlations increase positively with temperature variation since it should be easier to detect
effects of temperature when it is more variable, and either increase or decrease with precipita-
tion mean and variability depending on whether local vector abundance is rain- or drought-
driven [42]. Finally, we test whether correlations decrease or become more negative with infec-
tion burden in the area due to depletion of susceptible hosts, increase with population density
due to larger epidemic potential, and either decrease or become more negative with income
(measured as per-capita gross domestic product; GDP), which reduces outbreak potential and
dampens the effects of suitable temperatures.
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Materials and methods
Overview

To test our predictions, we synthesized published evidence of temperature-dengue relation-
ships using a systematic literature review. We compiled reported correlations between temper-
ature and human dengue cases or incidence from previously published studies. We did not
consistently have access to the underlying temperature and dengue data used in the original
studies that would have allowed for a reanalysis of the raw data across locations. Instead, we
paired each reported correlation with climate reanalysis data and data on factors such as
wealth and human density. This means that while we did not have the underlying data used to
estimate correlations in each study, we did have estimates of the average temperature, average
variability in temperature and precipitation, population density, and other socioeconomic and
climatic factors in each focal study area and time period.

We used this database to answer two questions: 1) Does average study temperature impact
temperature-dengue correlations? and 2) How do other climatic and socioeconomic factors
explain variation in temperature-dengue correlations? Below, we detail the database construc-
tion as well as the two separate analyses used to answer these questions.

Database construction

We downloaded abstracts and study metadata (N = 454) from Web of Science (Clarivate™) on
January 28, 2021 (accessed through the University of British Columbia Library; https://www.
library.ubc.ca/), using the search term TS = (("Aedes” OR "dengue") AND ("temperature” OR
"climat™") AND ("disease*") AND ("model™") AND ("incidence" or "prevalence" or "case™" or
"notification™")). We then systematically conducted several rounds of scoring to exclude stud-
ies with irrelevant or missing information. First, we read each abstract and scored it as
included or excluded based on the mention of factors such as measured climatic variables and
measured human disease burden, incidence, or prevalence. Studies were excluded if the
abstract mentioned only forecasting or only simulations, and a registered protocol was not
used. In total, 189 of 454 abstracts were accepted (Fig 1). Next, we read each study with an
accepted abstract, and scored the study as either included or excluded based on the presence of
effect sizes or correlations that were calculated between measured temperature metrics (typi-
cally recorded through meteorological stations or satellites) and measures of dengue disease in
humans (typically recorded through local or national epidemiological surveillance programs).
We excluded a study if only forecasting or simulation models were presented. For this step, 95
of 189 papers with accepted abstracts were accepted.

We initially planned to collect data from studies that reported either a correlation between
temperature and dengue or a coefficient estimating the effect of temperature on dengue from a
regression analysis. However, our systematic literature review revealed that most of the studies
using regressions incorporated different covariates into their models, ranging from accounting
for no covariates to accounting for the effects of multiple temperature metrics, precipitation,
GDP, and others. We conducted simulations that illustrated how these different underlying mod-
els can lead to significantly different estimates of the effects of temperature on dengue despite the
temperature and dengue data remaining identical across models (S1 Text), making comparisons
across regression models unreliable for the purposes of our study. Instead, we focused all subse-
quent analyses on reported correlations between temperature and dengue as these models do not
include any covariates, resulting in 358 reported correlations from 38 studies (Table A in S1 Text).

We included methodological information (hereafter referred to as study factors) for each
correlation, such as the location of the study, dates and length of the study, the types of
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Identification

Eligibility Screening

Included

Records identified through
database searching (n = 454)

Additional records
identified through other
sources (n =0)

Records after duplicates
removed (n = 454)

Records screened (n = 454)

Full-text articles assessed
for eligibility (n = 189)

P Records excluded (n = 265)

Full-text articles excluded,

Studies included in

gualitative synthesis (n = 38)

A 4

Studies included in
guantitative synthesis
(meta-analysis) (n = 38)

A 4

with reasons (n = 151)

Fig 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram of systematic review methods.

https://doi.org/10.1371/journal.pcim.0000152.9001

temperature (e.g., minimum weekly temperature, mean daily temperature) and disease metrics
(e.g., cases, incidence) used in the analysis, the type of correlation (Pearson, Spearman, or
cross-correlation), and the temporal lag of the effect of temperature. We also complemented
our database with data (hereafter referred to as extracted predictors) obtained from several
other sources. We used Google Earth Engine [43] to extract information on population density
and climate over the period of each study. Population density was obtained from the Global
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Human Settlement Population Grid [44] using the year closest to the median year of each
study period. Average daily mean air temperature, standard deviation in daily mean air tem-
perature, mean daily precipitation, and standard deviation in daily precipitation were obtained
from ERA5 [45] and calculated over each full study period. ERA5 is a global reanalysis that
provides spatiotemporal atmospheric data. We note that while ERA5 incorporates bias correc-
tions and generally exhibits good performance, it can still suffer from systematic biases in cer-
tain parts of the world [46], biases for which we have not accounted for in this study. Study
locations on the scale of a single city or smaller were specified using a 5-kilometer buffer
around point coordinates to roughly approximate the size of an average city or town, while
larger areas were mapped using shapefiles obtained from the Database of Global Administra-
tive Areas [47]. To reflect the climatic and population factors most relevant to where people
live (and thus where dengue cases occur), we weighted these measures over space by popula-
tion density. The estimated infection burden of dengue at the country level (in the year 2010)
was extracted from a study from Bhatt and colleagues [48] as a proxy for the degree of popula-
tion immunity or susceptibility. Data on dengue burden exists at higher spatial resolution than
the country level and/or across time (compared to only in the year 2010). However, we used
the Bhatt et al. data [48] because it represented one dataset that comprehensively covered all
locations in our study, and we considered this superior to trying to compare multiple dengue
datasets for different locations that were compiled using different methodologies. Estimates
for the year 2010 were also preferable to more recent global dengue estimates (e.g. [33]), as
estimates for 2010 are more reflective of the time period of our 38 analyzed studies (median
year = 2008; Table A in S1 Text). Country level population size in 2010 and GDP per capita
(adjusted for purchasing price parity in the year 2015) were obtained from the World Bank
[49]. Estimated dengue incidence in 2010 was calculated as estimated burden / population size
(see S1 Text for more detail).

Does average study temperature impact temperature-dengue correlations?

To test for a relationship across studies between mean study temperature (calculated as mean
average daily temperature across the study period) and observed correlation between tempera-
ture and dengue within that study, we fit a series of linear mixed effects models using reported
correlations as response variables. Prior to fitting these models, we limited the dataset to
exclude observations that were generated using lags > 4 months (our estimate of the maxi-
mum biologically relevant window on which temperature could directly affect dengue trans-
mission), and included only one observation per location and temperature metric per study to
avoid having multiple observations estimated across different lags. For example, if a study
reported five correlation values between minimum monthly temperature and dengue for a
specific location using lags of 0, 1, 2, 3, and 4 months, we would only select the observation
closest to the midpoint of 2 months. This resulted in 78 correlation observations from 37 stud-
ies (one of the 38 studies used only lags > 4 months).

We aimed to test whether the measured relationship between temperature and dengue
depended on the average temperature during the study, as well as whether ecological theory
based on a lab-parameterized, trait-based model of dengue transmission across temperature
[10] could accurately predict how correlations vary across mean temperature. Specifically, we
fit a null model and four alternative mixed-effects models in R [50] using maximum likelihood
with the Imer function [51]. The null model included only a random effect for study ID, the
basic model included the study ID random effect and an additional fixed effect for the type of
temperature metric used in the study (minimum, mean, or maximum temperature), and the
final three models included the previously described effects and additionally a fixed effect for
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either a linear effect of average temperature, a quadratic effect of average temperature, or for
the derivative of the transmission curve from Mordecai and colleagues [10] evaluated at the
mean study temperature. The purpose of including this final model was to compare the
observed relationship based on reported correlations to the a priori theoretical relationship
that first motivated us to look for a concave-down pattern in correlations between 20°C and
29°C, as a relationship between the a priori predictions from thermal biology and temperature-
dengue correlations should be unlikely to be spurious. However, we note that the derivative of
model-predicted dengue basic reproduction number (R,) represents a mathematical quantity
that is distinct from a correlation between temperature and dengue. Therefore, while we sus-
pected that these two values may follow the same qualitative patterns across temperature, they
are not mathematically equivalent because Ry does not predict incidence directly [52].

We compared the five models using AIC and extracted Nagelkerke’s pseudo-R* values
using the MuMIn package [53]. We did not incorporate error around reported correlation
estimates because this information was not available, though we repeated the analyses
described here while weighting estimates by the square root of their sample size, a method
used in meta-analyses when error estimates are unavailable [54].

How do other climatic and socioeconomic factors explain variation in
temperature-dengue correlations?

Next, we aimed to test how additional climatic factors such as precipitation and socioeconomic
factors such as country-level GDP impacted the observed effects of temperature on dengue. As
described in the Introduction, we predicted that temperature-dengue correlations would be
more positive with higher temperature variation and population density, lower with higher
infection burden and GDP, and modified (either positively or negatively) by precipitation
mean and variability. While we originally intended to estimate how each of these extracted
predictors separately mediates the effects of temperature, this was not possible due to the high
collinearity between predictors (Fig C in S1 Text). We therefore conducted a two-step PCA
regression analysis, collapsing the variance from all predictors with a principal component
analysis (PCA) and evaluating the PCA components along with study factors in linear regres-
sion models. This approach allows us to remove multicollinearity between predictors and
instead interpret the effect of components that are each associated with one or more of the cor-
related predictors.

The PCA incorporated seven extracted predictors: log-transformed country-level GDP,
country-level infection incidence, and five metrics calculated by study: log-transformed popu-
lation density, mean precipitation, standard deviation of precipitation, standard deviation of
temperature, and marginal temperature suitability (the derivative of the Mordecai et al. [10]
dengue transmission curve evaluated at the mean study temperature, as described above). We
sampled the unique sets of these extracted predictors, then used the principal function from
the psych package [55] to load the seven predictors across four principal components that were
rotated using Varimax rotation. While traditional PCA typically rotates axes to explain the
maximal amount of variation using the first component, Varimax rotation maximizes the sum
of the variances of the squared loadings, allowing for better interpretability of which predictors
are more strongly associated with which components.

We fit regressions using the full dataset of correlations (n = 358) as response variables. Pre-
dictors included the four rotated components from the PCA analysis, as well as study factors
to help control for variation introduced by different study methods: the temperature metric
used in the study (minimum, mean, or maximum), the disease metric used in the study (inci-
dence or cases), the temporal scale of the study (daily, weekly, monthly, or annual), and the
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type of correlation used in the study (Pearson, Spearman’s, or cross-correlation). We also
included a term for a spline (dimension of the basis = 3 to ensure a relatively simple shape that
is less likely to overfit) for the effect of temporal lag in months on the effect of temperature on
dengue. We did not include interactions between these predictors. We also did not include a
factor for the named location where a study occurred (e.g., “Brazil”) because we have already
explicitly included the climatic and socioeconomic variables associated with each location. We
fit the regressions using the gam function in the mgcv package [56] due to the inclusion of the
spline term for lags. We did not want studies that provided relatively more observations (either
because they estimated effects across multiple lags, multiple temperature metrics, or multiple
locations) to be overrepresented in our regression. We therefore bootstrapped 10,000 times,
each time first sampling studies (n = 38) with replacement and then sampling one observation
within that study, until we generated a dataset equal in size to the original (n = 358) to reduce
overrepresentation of studies with many data points. We extracted the mean and 0.025 and
0.975 quantiles for each predictor coefficient estimate across the 10,000 bootstraps. To inter-
pret the regression results, each predictor’s positive or negative association with its rotated
component can be combined with the sign of its component’s regression coefficient, yielding
the direction of the relationship between each predictor and temperature-dengue correlations.

Results

We obtained 358 reported correlations between temperature and dengue from 38 studies,
ranging from 1981 to 2017 and spanning seven global health regions (Southeast Asia, East
Asia, South Asia, Central Latin America, Tropical Latin America, Oceania and Caribbean;
Moran et al. 2012) (Fig 2). The estimates were variable with 19% negative and 81% positive
(Fig 2).

Supporting predictions, we found that the best model included a nonlinear (quadratic)
effect of mean study temperature on reported correlations (AAIC from null model = 10.3;
pseudo-R* = 0.209). The quadratic model estimates that reported correlations peak at mean
study temperatures of 24.2°C (95% CI: 23.5-24.9°C; Fig 3). The second-best model included
the nonlinear effect of mean study temperature calculated from the derivative of the Mordecai
etal. [10] transmission curve, which peaks at 25.3°C (AAIC = 8.0; pseudo-R2 = 0.165), suggest-
ing that ecological models based on vector and parasite biology can help predict how correla-
tions vary across average temperatures. The model incorporating a linear effect of mean study
temperature (AAIC = 5.0; pseudo-R* = 0.132) did not perform better than the basic model that
did not include any effect of mean study temperature (AAIC = 5.9; pseudo-R* = 0.119).
Repeating these analyses while weighting by the square root of the study sample size produced
qualitatively similar results (S1 Text).

We then examined the factors beyond mean temperature that mediated the observed rela-
tionship between temperature and dengue. Using PCA to decompose correlated climatic and
socioeconomic predictors into fewer, uncorrelated rotated components (RCs) meant that we
were not able to estimate the specific effect of each predictor on reported relationships between
temperature and dengue. However, this method was useful for identifying RCs that have sig-
nificant effects on our response, which we can then interpret as the underlying predictors asso-
ciated with each component having a positive or negative relationship with the response.

Several RCs had a significant relationship with reported correlations (Fig 4), generally sup-
porting our hypotheses. Infection burden (RC1) had a negative relationship with reported cor-
relations, while temperature variation (RC1) and marginal temperature suitability (i.e., the
derivative of the predicted transmission curve; RC3) had positive relationships. We did not
have a directional prediction for the effects of mean precipitation (RC2) and precipitation
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Fig 2. Reported correlations between temperature and dengue range from negative to positive. A) Locations of observations in the global health regions of
Southeast Asia, East Asia, South Asia, and Oceania. B) Locations of observations in the global health regions of Central Latin America, Tropical Latin America,
and Caribbean; C) Histogram showing the frequency of the 358 reported correlations between temperature and dengue. Country base map layers in panels A

and B sourced from rnaturalearth [57].

https://doi.org/10.1371/journal.pcim.0000152.9002

variation (RC2) but found that they had negative relationships. Higher population density was
associated with two different rotated components, and exhibited a significant, positive rela-
tionship associated with RC1 and a non-significant, positive relationship when combined with
lower GDP (RC4). Several study factors also had significant effects on reported correlations:
most notably, we found that studies that used a metric of minimum or mean temperature
reported more positive correlations between temperature and dengue than those studies that
used a metric of maximum temperature (Fig D in S1 Text; Fig E in S1 Text).

Discussion

Our examination of reported correlations between temperature and dengue support predic-
tions that the effects of temperature on many ecological processes are nonlinear with small or
negative effects expected at low and high temperatures, and large positive effects expected in
some intermediate temperature range. Specifically, studies that occurred at relatively cool or
warm average temperatures reported lower correlations than those that occurred at tempera-
tures near the intermediate range, where transmission is expected to be most sensitive to tem-
perature (24°C; Fig 3). Our results illustrate that locations differ in their underlying
vulnerability to warming-induced disease outbreaks, and that this variability in vulnerability
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Fig 3. The correlation between temperature and dengue peaks at 24.2°C, controlling for study factors. Quadratic model partial residuals (points) and fitted
predictions (black line) with 95% confidence intervals (shaded region) for the relationship between mean study temperature and reported correlations between
temperature and dengue. Partial residuals and fitted predictions are from the mixed effects model with a quadratic effect of mean study temperature (black
line), which was significantly better than alternative models that included a linear effect or no effect of mean study temperature (AAIC from null model = 10.3;
pseudo-R* = 0.209). Partial residuals are calculated as model errors plus the model-estimated relationship between temperature and dengue. Confidence
intervals generated using the effects package in R [58]. Fig B in S1 Text shows the same fitted model plotted over raw correlation data.

https://doi.org/10.1371/journal.pcim.0000152.g003

can be explained by nonlinearity and average temperatures, as well as other climatic and socio-
economic factors such as precipitation and disease burden.

The average temperature at which a study occurred had a significant quadratic relationship
with the correlation between temperature and dengue, with a peak at 24.2°C (95% CI: 23.5-
24.9°C; Fig 3). This is close to but slightly cooler than the prediction from the derivative of the
trait-based, dengue transmission curve that is informed by laboratory studies on the vector
Aedes aegypti (25.3°C; [10]). One possible explanation for the cooler predicted optimum is
that some of the human dengue cases underlying a subset of the studies analyzed were likely
transmitted by the Aedes albopictus mosquito, which has a cooler optimal transmission tem-
perature than Aedes aegypti [10]. However, we were unable to test this hypothesis as informa-
tion on which species were responsible for transmission was not consistently available across
studies. Both the flexible quadratic temperature model and the a priori marginal temperature
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https://doi.org/10.1371/journal.pcim.0000152.9004

suitability model (the derivative of the Mordecai et al. [10] model) were significantly better
than the simpler models that assumed the correlation between temperature and dengue was
constant or linear across average temperature. Further, in a PCA that controlled for multiple
climatic and non-climatic factors, the component that was highly associated with the a priori
marginal temperature suitability model had a significant positive relationship with correlations
(Fig 4). These results build on observations that reported temperature effects on dengue varied
across average temperatures or climates [39,59,60] by quantitatively testing whether effects
vary nonlinearly as predicted by ecological theory. Additionally, our database and analyses dif-
fered both by using reported correlations rather than coefficients from regression models, as
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well as by using standardized remotely sensed temperature data across studies rather than
using average temperatures reported by each original study. Overall, our results suggest that
ecological theory can be used to predict how relationships between temperature and disease
vary with average temperature, an often underappreciated facet of the impact of climate
change on infectious disease.

In addition to temperature having a direct nonlinear impact on dengue across average
study temperatures, we found that several other climatic factors mediated these effects. While
our interpretation was somewhat limited because we were unable to estimate independent
effects of each climatic factor due to high multicollinearity, using PCA regression revealed that
precipitation and variation in precipitation had significant negative relationships (via their
association with RC2) with reported correlations between temperature and dengue (Fig 4).
Precipitation could modulate the temperature-dengue relationship through several alternative
mechanisms, though our approach does not allow us to differentiate between them. When
temperature is not strongly limiting to transmission but immature vector habitat is inconsis-
tently available, precipitation may be the main limiting factor, obscuring the relationship
between temperature and dengue. Alternatively, both temperature and precipitation may be
limiting in some settings, such that even when suitable temperatures occur there is insufficient
vector habitat to promote transmission. Finally, correlations between temperature and rainfall
regimes (e.g., seasonality) may obscure the causal relationships between each variable and den-
gue. While precipitation may not mediate temperature effects in all ecological or disease sys-
tems, it could play a key mediating role in systems with animals that require pools of water for
habitat or breeding (e.g., other mosquito-borne diseases; [61]) in waterborne-disease systems
such as cholera, and in plant systems in which rainfall has been shown to impact disease levels
[62,63].

In contrast to precipitation, average temperature variability during a study had a significant
positive relationship (via its association with RC1) with the correlation between temperature
and dengue, potentially because it is easier to detect correlations when temperature fluctuates
over a wider range. Additionally, Jensen’s inequality can cause more positive effects of temper-
ature variation on dengue at ranges where the temperature-transmission relationship is con-
cave-up than concave-down [37]. Consideration of temperature variability should become
more important with climate change, as large changes in temperature variability and in the fre-
quency, magnitude, and duration of temperature extremes are expected in many regions but
their impacts on ecological processes have received relatively little attention [64-68]. Together
these results provide an important biological insight: effects of temperature on ecological pro-
cesses can be exacerbated or masked by other aspects of climate suitability, including rainfall
and variation in temperature.

Immunological and other non-climatic factors also affected local relationships between
temperature and dengue. As predicted, we observed a strong negative relationship with infec-
tion burden (as estimated for the year 2010; [48]) in which locations with higher levels of den-
gue reported weaker or more negative correlations between temperature and dengue. One
possible explanation for this is that populations with historically high dengue burden have pro-
portionally high levels of immunity and partial immunity [69], thereby leaving fewer people
susceptible to infection when temperature conditions become more optimal. One limitation
when interpreting these effects is that the Bhatt et al. model [48] used additional data inputs
beyond dengue cases—including temperature suitability—to estimate country-level infection
burden, meaning that estimated dengue burden is not completely independent from tempera-
ture. Our predictions that population density would increase temperature effects due to larger
epidemic potential, while higher GDP would decrease temperature effects due to higher
income leading to better health infrastructure and disease mitigation were generally supported
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(Fig 4). Further research exploring how these factors modulate temperature effects at a local
scale—rather than a country scale, as we were limited to analyzing here—is necessary, as het-
erogeneity in population density, socioeconomic status, and temperature at scales less than a
kilometer can impact dengue burden [70-72].

Because of the thermal physiology of organisms, we expect many ecological systems and
processes to be nonlinearly dependent on temperature, and these temperature effects are likely
to be mediated by other ecological and socioeconomic factors. Here, we paired reported corre-
lations with climate reanalysis data because we did not consistently have access to the tempera-
ture and dengue time series data underlying the original studies. Future work that compiles
this data across different climates should enable the application of alternative quantitative anal-
yses, such as scale-dependent correlation analysis (e.g., [73]) or wavelet coherence analyses
(e.g., [74]), that account for nonlinear or nonstationary climatic effects on disease. Generally,
dengue provides a relatively well-studied example for detecting these nonlinear and mediated
effects, which may not be possible for more data-limited ecological systems. Primary studies
that investigate nonlinear effects of temperature on ecological processes explicitly, and the
mediators of these effects, are critical for more generally anticipating the impact of climate
change on ecological systems.

Many ecological systems are dominated by physiological processes that respond nonlinearly
to temperature [14,75], making them prone to climate change impacts that vary in magnitude
and direction across ecological settings. Recognizing this nonlinearity as a fundamental driver
of context-dependent responses is a critical conceptual gap in many ecological studies of cli-
mate change. This can help to resolve inconsistent correlations with temperature found
between different field locations, as has been found with withering syndrome in abalone [76]
and sea star wasting disease [77-79], as well as in other ecological contexts beyond disease
[80]. At the same time, the magnitude of nonlinear effects of temperature depends on a range
of environmental, anthropogenic, and biogeographic factors, including climatic variation in
rainfall, temperature, humidity, and extreme events, human-driven changes in habitat struc-
ture and species composition, and evolutionary history. Together, these factors mediate eco-
logical effects of temperature by affecting body condition, behavior, species interactions, and
evolutionary processes [81]. Research that combines a mechanistic understanding of the non-
linear impacts of temperature on ecological processes with explicit consideration of important
modifiers of temperature responses—through either comparative approaches like that taken
here or experimental approaches that manipulate multiple drivers directly (e.g., [82])—can
help to capture realistic variation in the effects of climate change across settings.
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