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Abstract

Image datasets in specialized fields of science, such as
biomedicine, are typically smaller than traditional machine
learning datasets. As such, they present a problem for train-
ing many models. To address this challenge, researchers of-
ten attempt to incorporate priors, i.e., external knowledge,
to help the learning procedure. Geometric priors, for ex-
ample, offer to restrict the learning process to the manifold
to which the data belong. However, learning on manifolds
is sometimes computationally intensive to the point of be-
ing prohibitive. Here, we ask a provocative question: is
machine learning on manifolds really more accurate than
its linear counterpart to the extent that it is worth sacri-
ficing significant speedup in computation? We answer this
question through an extensive theoretical and experimen-
tal study of one of the most common learning methods for
manifold-valued data: geodesic regression.

1. Introduction

Collecting images in scientific domains like biomedicine
requires significant investment in time, labor, and financial
resources. Thus, such datasets are typically several orders
of magnitude smaller than datasets used in traditional ma-
chine learning. One way to enhance learning from such
small datasets is to utilize the geometry of the data man-
ifold. For example, a growing amount of biomedical re-
search seeks to relate biological shapes to their physiolog-
ical functions and, in that context, it has been recognized
that shapes constitute data points on manifolds [10] — non-
linear generalizations of vector spaces. Performing analy-
ses on these manifolds can ensure that results are invariant
to the positioning and orientation of the object, thus enhanc-
ing prediction accuracy related to objects’ shapes.

However, learning on manifolds is sometimes compu-
tationally intensive to the point of being prohibitive. For
example, fitting geodesic regression [15] — a generaliza-
tion of linear regression to manifolds — on surface shapes
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can take several days even for small datasets of surfaces dis-
cretized as meshes with only a few hundred of vertices. This
raises the question: is machine learning on manifolds really
more accurate than its linear counterpart to the extent that it
is worth sacrificing significant speedup in computation?

Contributions We answer this question by consider-
ing one of the most common generalizations of linear re-
gression to manifolds: geodesic regression, and its tra-
ditional fitting procedure, called geodesic least squares
(GLS), which computes the maximum likelihood estimator
of a generative model with Gaussian noise constrained to
the manifold of interest. We challenge several foundational
and widely adopted assumptions. First, we challenge the
assumption that noise is indeed Gaussian on the manifold.
This is rarely true for a wide range of datasets, as measure-
ment noise from real-world machines (MRIs, rulers, cam-
eras, telescopes, lasers, sensors, etc.) is typically Gaussian
in the Euclidean space that contains the data manifold, and
not subject to the manifold’s constraints. Second, we chal-
lenge the assumption that GLS provides the most accurate
estimates for geodesic regression across several noise mod-
els, including the foundational manifold Gaussian noise.

Through theoretical results and experimental validation,
we advocate for a paradigm shift in machine learning for
manifold data. We recommend a departure from the tra-
ditional and computationally intensive fitting approaches
such as GLS, and instead champion the adoption of sim-
pler, more efficient, and equally accurate, fitting procedures.
Additionally, we strongly advocate that any new method in
the field of machine learning on manifolds should compare
itself to the baseline of projecting the result of the linear
method to the manifold. Our insights open the door to
practical, yet reliable, analyses in the specialized fields of
science typically characterized by smaller datasets, starting
with biomedicine and its shape datasets.

Why is Noise Not Gaussian on the Manifold? We start
our discussion by motivating noise models that depart from
Gaussian noise on the manifold. To build intuition, let
us first consider a toy example on a simple manifold, the

2714



sphere on the left side of Fig. 1, representing the surface of
the earth. Consider a practitioner who measures the position
Y of an object on the earth. While this object exists in 3D
ambient space, physics (gravity) constrains its position to
the 2D sphere. The traditional model of geodesic regression
describes noise as being added along geodesics of the man-
ifold, represented as blue curves on the sphere in Fig. 1 (top
left). This is a realistic model of noise if the practitioner
measures the object’s position directly on the sphere, for
example using a piece of string stretched along the sphere.
Only then would the noise experience the same constraints
as the data, as (using r, ¢, 6 coordinates) the radius r would
be fixed, and the only uncertainty in the measurement would
be along ¢ and €, which are the intrinsic coordinates of the
sphere. However, most practitioners use tools that measure
the position of the object of interest in the ambient space,
i.e., in x,y, z coordinates in our toy example. Such instru-
ments are free to measure position along three degrees of
freedom, and therefore measurement uncertainty and noise
will exist along all three degrees of freedom (see blue lines
departing from the sphere in Fig. 1) (bottom left). Addition-
ally, it is important to note that linear Gaussian noise pro-
jected onto the manifold is generally different than Gaussian
noise directly generated on the manifold. This motivates the
consideration of the Euclidean and projected noise models.
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Figure 1. Common noise model (on manifold, top) versus realis-
tic noise model (in ambient Euclidean space, bottom) in machine
learning on manifolds, shown along a geodesic on the sphere (left)
and on a shape space (right). We challenge the assumption that
noise is Gaussian on the manifold (top), since it does not respect
any manifold-defining constraints. We argue that it is more realis-
tically modeled as Gaussian in ambient Euclidean space (bottom).

Second, consider a more complex example: shape data,
and specifically brain surface shape data represented as sur-
faces segmented from 3D images acquired with magnetic
resonance imaging (MRI). Without considering shape, we
can consider each surface to be one point in a Euclidean
“object space”, which we will call the space of surfaces.

N

However, to make this a “shape space” where distances be-
tween surfaces are invariant to the orientation and position
of the surfaces, practitioners often equip this space with a
Riemannian metric. The difference between Gaussian noise
in Euclidean space and Gaussian noise on shape data is
shown in Fig. | (right). Gaussian noise added in this curved
shape space would have to not affect the orientation or posi-
tion of the barycenter of the surface. However this is almost
never the case, as the noise on the brain surface comes from
two sources: first, the noise coming from the MRI acqui-
sition, and second, the error coming from the segmentation
of the brain surface from the 3D image, both of which are
Euclidean and random in nature. The noise on each vertex
of the brain surface is added randomly in three (z, y, z) di-
rections, and is typically modelled as multivariate Gaussian
in Euclidean space, before being deformed on the manifold
equipped with the Riemannian metric. This motivates the
consideration of the deformed noise model.

2. Related Works

Table 1. Noise Models in Manifold Regressions. Gaussian noise
on manifolds is one of the most popular. Alternative models have
been considered, esp. for non-geodesic regressions. However,
works do not benchmark their regression approach against differ-
ent noise models. Here, we compare how learning procedures for
geodesic regression compare across noise models.

Paper Noise on Manifold | Noise in R?
Gaus. Else Gaus.

k) This Paper v v v

% Fletcher [2, 15] v

© Myers [ 1] Ve
Hinkle [6] v

g Hanik [4] v

gﬂ Lin [9] v

& | Schotz[13] v

g Petersen [12] ve

% Kuhnel [8] v

§ Tsagkrasoulis [17] v
Davis [ 1] v
Shi [14] No Discussion of Noise

We review regression methods on manifolds and charac-
terize existing works in three categories shown in Tab. 1:
models with noise 1) Gaussian on the manifold 2) non-
Gaussian on the manifold, 3) Gaussian in Euclidean Space
R?. The categories of noise are chosen based on the ex-
periments presented in the corresponding papers. We only
review non-Bayesian regression methods where the input
space is Euclidean (either one-dimensional R or higher di-
mensional R?) and the output space is a manifold.
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Noise on the Manifold. Works that model noise as
Gaussian on the manifold (first column in Tab. 1) include
geodesic regression [2, | 5], polynomial regression on man-
ifolds [7], local extrinsic regression [9], and Bezier splines
on manifolds [4]. These are all regression methods with
one-dimensional input space and manifold output space.

Works that model noise on the manifold, but not nec-
essarily as Gaussian include the local geodesic regression
by Schotz et al. [13], who use the contracted uniform dis-
tribution which is obtained from the uniform distribution
on the sphere, and the Fréchet regression by Petersen and
Muller [ 1 2], who add Gaussian noise in the Euclidean space
of probability densitys but then deform this noise either
through application of the Wasserstein metric or through a
Wasserstein transportation.

Noise in Ambient Euclidean Space. Works that model
noise in the ambient Euclidean space first include [I1],
who propose to fit geodesic regression using linear resid-
uals instead of the geodesic residuals in [2, 15]. In the non-
geodesic regression class, we find the stochastic develop-
ment regression [8], random forest [17], and kernel regres-
sion [ 1] that model noise in ambient space.

Impact of Noise is Understudied. However, no work
considers the effect of projecting or deforming Euclidean
noise to the manifold — two noise models that are, as we
argue in introduction, realistic for real-world data. Accord-
ingly, the statistical theory of these noise models, such as
maximum likelihood estimation, is never discussed. Our
paper fills this first gap. Second, we observe that works do
not benchmark their regression approach against different
noise models. They usually choose one and perform all of
their experiments with it, even if it might not be a realis-
tic noise model for the data. Our paper evaluates the ac-
curacy of geodesic regression fitting approaches across sev-
eral noise models, thus filling this second gap. Lastly, while
manifold regressions are meant to generalize and improve
upon regressions in Euclidean space, very few works com-
pare their method against their Euclidean counterpart, ob-
tained by fitting a regression method in Euclidean space and
projecting its result to the manifold. Yet, such comparison
is crucial to show whether considering the manifold’s ge-
ometry actually provides a significant advantage. It would
show that the added complexity of manifold computations
is actually met with added accuracy.

3. Background: Fitting Geodesics

We introduce concepts of differential geometry neces-
sary for geodesic regression. Details can be found at [3].

Manifolds. A Riemannian metric G on a smooth mani-
fold M is a family (G), o, of inner products defined on
each tangent space 1), M that varies smoothly with p. A
pair (M, G)) is called a Riemannian manifold.

A geodesic is a curve 7 : [0,1] — M which minimizes

the energy functional E(y) = 1 fol G(¥t, 4t ), dt, where
Y+ € TywM is the velocity vector at point ;. Curves
minimizing the energy F also minimize the length of the
geodesic, defined as L, = fol VG, At) e dt. 1t fol-
lows that geodesics are locally distance-minimizing paths
on the manifold M, and the Riemannian metric G,, pro-
vides a notion of geodesic distance on M. Intuitively, just
as a straight line minimizes the distance between two points
in Euclidean space, a geodesic minimizes the distance be-
tween two points on a manifold.

Geodesics are computed as the solutions of the geodesic
equation, which is an ordinary differential equation (ODE)
written in local coordinates as:

FR(t) + TEA ()3 (t) = 0, (1)

for all times ¢ € [0,1] where I'}; denote the Christoffel
symbols, which are computed from the Riemannian met-
ric. Some manifolds, such as hyperspheres and hyperbolic
spaces, enjoy analytical expressions for their geodesics, i.e.,
we know closed-form solutions of Eq. (1). For example,
it is well known that the geodesics of the sphere are the
great circles. However, this is not the case for all mani-
folds. For example, we do not know closed-form solutions
for the geodesic equation on the manifold of surface shapes,
mentioned in introduction and described in more details in
the supplementary materials. Therefore, we must calculate
(approximate) geodesics between surface shapes by numer-
ically integrating the ODE from Eq. (1).

Operations on Manifolds. Let p be a point on M and
v € T, M. The exponential map (Exp) is defined as the map
(p,v) — ~¢=1. For manifolds with closed form geodesic
solutions, computing the point 7y,—; is as simple as plug-
ging ¢t = 1 into the geodesic solutions. For manifolds with
no closed form geodesic solution, we compute ;=1 by in-
tegrating the geodesic equation over ¢ from ¢ : 0 — 1 with
initial conditions (9 = p,~o = v). The inverse of Exp on
its injectivity domain is called the logarithm map (Log).

3.1. Geodesic Regression: Geodesic Least Squares

Geodesic regression (GR) [2, 16] models the relationship
between an independent variable X € R and the dependent
variable Y, which is a random variable with values on a
manifold M, as:

Y = Exp(Exp(p, Xv), €), 2)

where Exp is the exponential map defined in the previ-
ous section, Y = Exp(p, Xv) is a point on the noiseless
geodesic, Xv is the tangent vector at Y, and € is isotropic
Gaussian noise in the tangent space of Y with variance o
and mean 0. When the manifold of interest is M = R¢ (lin-
ear), the Exp operator simplifies to addition: Exp(p,v) =
p + v. Consequently, this generative model simplifies to
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the linear regression generative model, and we can think of
p and v as the geodesic regression “intercept” and “slope”.
We note that the Exp operation appears twice: to model the
geodesic itself, and to model the noise €. Fletcher et al. use
a Geodesic Least Squares (GLS) estimator, detailed later in
Eq. (5), to learn the geodesic that best fits the data, i.e., to
estimate the true intercept and slope (p, v) € M x T, M by
learning (p, 0).

Computational Costs. For some manifolds, the
geodesic least squares (GLS) problem of Eq. (5) above does
not have an analytical solution. For example, the manifold
of surface shapes, mentioned in introduction and detailed in
the supplementary materials, does not. For such manifolds,
we need to compute the estimates of the intercept and slope
with (Riemannian) gradient descent [2]. The expression of
the Riemannian gradient itself might be unknown in closed
form and must be computed numerically. In this case, tradi-
tional geodesic regression becomes computationally inten-
sive. Thus, fitting a geodesic via less computationally in-
tensive approaches, as proposed in [| 1] and detailed in the
next subsection, become attractive alternatives.

3.2. Geodesic Regression: Linear Least Squares

Fitting geodesic regression with a Linear Least Squares
(LLS) estimator can offer significant speedups from tradi-
tional geodesic regression. [ | ] propose a geodesic genera-
tive model with Euclidean noise, given by

Y = Exp(p, Xv) +¢, 3)

using the notations of Eq. (2), with the noise € modelled
as isotropic Gaussian in ambient Euclidean space. [ 1] pro-
pose to learn (p, 0) via Linear Least Squares (LLS) detailed
later in Corollary 1.

Computational Costs. For some manifolds, the linear
least squares (LLS) problem of Corollary 1 does not have
an analytical solution. Thus, LLS requires gradient descent,
just as GLS did, yet with a less computationally expensive
gradient, as ¢; = Log (fﬁ, Yi> isreplaced by ¢; = Y; — fﬁ
The replacement of a costly Log computation with a simple
subtraction operation offers significant speedup, especially
for the space of surface shapes where the closed form Log
solution is not known. However, we note that the computa-
tional cost of the Exp map defining the geodesic remains.

3.3. Projecting the Results of Linear Regression

Next, we consider the approach which projects the tra-
ditional linear regression estimate to the manifold, adapted
from [9] but for geodesic regression. We call it projected
Linear Least Squares (pLLS). Specifically, the intercept es-
timate p is projected to the manifold, and the slope estimate
¥ is projected to the tangent space of the manifold at p.

Computational Costs. Fitting linear regression with lin-
ear least squares enjoys closed form solutions for the in-
tercept and slope estimates, given by the so-called normal
equations. Thus, even for manifolds with no closed form
geodesic solutions, this method requires no gradient de-
scent operations, as all distances are calculated in Euclidean
space. Most of the computational cost of this approach, as
an estimation of the geodesic, comes from the projection
operations, which happen only once.

4. Impact of Noise Models on Geodesic Fits

Here, we address the gap in the literature by studying
how different geodesic regression approaches compare un-
der different noise models. This section specifically pro-
vides theoretical results to answer the question: is GLS re-
ally more accurate than faster alternatives (i.e. [9, | 1]) to
the extent that it is worth sacrificing significant speedup in
computation? To this aim, we leverage four different noise
models for manifold-valued data, including two new noise
models that — as we argue in introduction — are more re-
alistic than the manifold Gaussian noise model. This yields
four geodesic regression generative models, shown in the
four columns of Fig. 2. Fig. 2 also defines and illustrates
notations Y, }7, and Y used in this section. We will discuss
how each estimator (or fitting procedure), shown in the rows
of Fig. 2, performs under each generative model.

4.1. Manifold Gaussian Noise

The generative model proposed by [2, 5] assumes that
the noise is Gaussian on the manifold. We have recalled this
model in Eq. (2), and we illustrate it in Fig. 2 (first column).

Probability Density. This model yields the following
probability density of the data [2, 15]:

N\ 2

p(Y|X; p,v) = 572

where Cr (o) is the normalization constant, and o2 is the
variance of the Gaussian noise.

Maximum Likelihood Estimator. The maximum like-
lihood (ML) estimator is the geodesic least-squares (GLS)
estimator [15]:

AN\ 2
(p, )M = amin Y " d (Y Yi> (5)
Sl
n ~
= aglinz [Log(Y:, V)12, (6)
7/() 121 k2

where d denotes the geodesic distance on the manifold,
which can be equivalently expressed as the norm (computed
with the Riemannian metric) of the Log of the data points
Y at the predicted points Y.
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Figure 2. Theoretical Analyses. The four columns represent the models of noise. The four rows show the estimators: GLS, LLS for
Geodesic Regression, LLS for Linear Regression, and LLS for Linear Regression projected to the manifold. Notations: we denote
Y = Exp(p, Xv) the point on the geodesic before adding noise (orange), Y the final observed data point after Gaussian noise has been
added on the manifold or in Euclidean space (green arrows and points) and (if applicable) projection P or deformation D have been applied
(blue arrows and points). Finally, Y = Exp(p, X 0) is the predicted point on the geodesic (pink).

4.2. Euclidean Gaussian Noise

As discussed in introduction, noise added by real-world
measurements is often Euclidean in nature. The generative
model proposed by [ 1] assumes that the noise is Gaussian
in ambient Euclidean space. We have recalled this model
in Eq. (3), and we illustrate it in Fig. 2 (second column).
In this model, the data point Y is observed in the ambient
Euclidean space, and not on the manifold. We note that [1 1]
do not provide the theory associated with this model, which
we contribute here.

Probability Density. We provide the probability density
associated with this model in the lemma below.

Lemma 1. The probability density associated with the gen-
erative model with Euclidean Gaussian noise is:

1 Y _ V2
PTG 0 = gy o (‘”20”> |

where C(c) = /(2m)%024 is the normalization constant.

The proof is immediate by definition of the Gaussian dis-
tribution. This density differs from that of the classical lin-
ear regression, since Y = Exp(p, Xv) is on a geodesic.

Maximum Likelihood Estimator. We provide the max-
imum likelihood estimator associated with this model in the
lemma below. The proof is immediate given Lemma 1.

Corollary 1. The maximum likelihood estimator associated
with the generative model with Euclidean Gaussian noise is
the linear least-squares estimator (LLS):

(p, ) = amin » _[|Y; - Y;|® for Y; = Exp(p, X;d),
Py =1

where the Euclidean distance |.|| compares Y and Y .

4.3. Projected Euclidean Gaussian Noise

Now, we consider a new generative model that models
noise on the manifold as the result of orthogonally pro-
jecting Gaussian noise in ambient Euclidean space to the
manifold. The typical examples for this case are data on
the sphere S2, that is isometrically embedded in the Eu-
clidean space R®, and the hyperboloid H? that is (non-
isometrically) embedded in the vector space R3. Despite
being a realistic noise model, as argued in introduction, the
theory behind this framework has not been investigated, as
we propose to do here.

Generative Model. We propose the following genera-
tive model, shown in Fig. 2 (third column):

Y =P(Y +¢€) withY = Exp(p, Xv), (7

using notations of Eq. (2), with € isotropic Gaussian noise in
ambient Euclidean space R¢, of distribution N/ (0,02), and
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‘P an orthogonal projection to the manifold. This model ex-
plicitly acknowledges that, even though the noise € pushes
the data outside of the manifold, processing steps usually
project noisy data onto the manifold. For example, if a prac-
titioner studies positions of cities on the earth (modelled as
a sphere of radius 1), and realizes that noisy measurements
give a position z that is slightly outside the sphere, their first
step would be to normalize ﬁ, hence projecting the data
on the manifold. Often, most theory ignores the impact of
this processing step. Here, we explicitly include it through
the orthogonal projection P.

Probability Density. We provide the probability density
for this model. The proof is in supplementary materials.

Proposition 1. The probability density associated with the
model with projected Euclidean noise of Eq. (8) is:

SN 1Tt ol
Voro2™" 202 ’

where we introduce the projection Py, different from P,
that projects the noiseless data point Y onto the subspace
Ty ML, as shown in Fig. 3, and m is the intrinsic dimen-

sion of M.

p(Y | X; p,v) =

Y + noise

TyM
> 1

v
\. PLE)

TyM—_,," (Noton Manifold)

Figure 3. Notations for the Projected Euclidean Noise. Yy =
Exp(p, Xv): noise-less data point (orange), Y: noisy data point
(blue) after projection via P (blue arrow) on M. We decompose
the ambient space R? into Ty M (gray plane) and its orthogonal
Ty M (dashed line). The orthogonal projection to Ty M is de-
noted P+ (black arrow).

Maximum Likelihood Estimator. We provide the max-
imum likelihood estimator for this model in the corollary
below. The proof is immediate given Proposition 1.

Corollary 2. The maximum likelihood estimator for the
generative model with projected Euclidean Gaussian noise
is:

(5, 0)" = amin 3 ||y (¥5) ~ ¥,
=1

for Y; = Exp(p, X;0), where P;-; is the projection onto
the subspace Ty, M, as shown in Fig. 3. The estimator
depends on the data point Y through this projection. We
call this estimator projected least squares (PLS).

4.4. Deformed Euclidean Gaussian Noise

Next, we consider a new generative model that models
noise on the manifold by “deforming” a Gaussian noise,
in the sense described below. In this setting, we assume
that the Riemannian manifold M is a subset of a Euclidean
space of same dimension. Therefore, there are two Rie-
mannian metrics that we can consider on M: the Euclidean
metric or its own Riemannian metric. The typical exam-
ples for this case are the Poincaré disk model, as a subset
of the plane R?, and the manifold of surface shapes with
elastic metric, as a subset of Euclidean space of immer-
sions [5]. We model the case where the noise is Gaussian
for the Euclidean metric, but not Gaussian (instead, “de-
formed”) for the Riemannian metric. Despite being a re-
alistic noise model, as argued in introduction, the theory
behind this framework has not been studied, as we propose
to do here.

Generative Model. We propose the following genera-
tive model, shown in Fig. 2 (third column):

Y =Y +D(e) withY = Exp(p, Xv), (®)

using notations of Eq. (2), with € isotropic Gaussian noise
of variance o2 for the Euclidean metric, and D indicates
that it will be deformed since we consider the Riemannian
metric on M.

Probability Density. We provide the probability density
for this model in the proposition below.

Proposition 2. The probability density for the generative
model with deformed Euclidean Gaussian noise is:

1 Iy —v|?
=P | 5 |
C(0)/det G(Y) 202

with C(o) = /(27)P oD the normalization constant, and
G the matrix of the Riemannian metric of M atY.

p(Y | X; p,v) =

This probability density differs from that of the classical
linear regression, through the term /det G(Y"). The proof
is given in the supplementary materials.

Maximum Likelihood Estimator. We provide the max-
imum likelihood estimator associated with this model.

Corollary 3. The maximum likelihood estimator for the
model with deformed Euclidean Gaussian noise is:

n
(p, &))" = amin Y _[|Y; = Vi[> for V; = Exp(p, X;0).
LSl )

The proof is immediate by noting that the term

det G(Y) is independent of the parameters p, v. Notably,
the maximum likelihood estimator for deformed Gaussian
noise is the same as for (undeformed) Gaussian noise.
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4.5. Comparing estimators

We discuss how the maximum likelihood (ML) estima-
tors for the different models differ, i.e., how GLS, LLS
and PLS from this section compare. This amounts to com-
paring the terms that appear in their respective definitions
P(Y.Y), |Y = Y|[? and | P (V) = Y.

First, LLS can be used as an approximation to GLS,
since the Euclidean distance is an approximation of the
geodesic distance d, especially for nearby points. Here, Y
and Y are indeed close, if the noise variance o2 is small at
the scale of the curvature of the manifold. Quantitatively:

AV, V)2 =Y = Y| + éu, )

where d o denotes the difference between the squared Rie-
mannian distance on the manifold and the squared Eu-
clidean distance in R?. For a manifold M isometrically
immersed in R%, it depends on the external curvature of M.

Second, PLS can approximate LLS (and thus, GLS), if
the noise variance o2 is small, and if the manifold has low
curvature in ambient Euclidean space. Indeed, the point
P-(Y) is close to Y when the manifold has small curva-
ture, has shown in Fig. 3. Quantitatively, we have:

IPH(Y) = Y|P =Y = Y|* — |PH(Y) = Y|?, (10)

by Pythagorean theorem in the ambient Euclidean space R¢.
The difference between PLS and LLS only comes from the
second term in Eq. (10), typically small.

5. Experiments

(a) Estimators

GLS PLS
é Truth
<} Nois;
= 4 isy
2 K @ Estimated
[<}
z
s

Manifold Gaussian  Euclidean Gaussian Projected E. G. Deformed Gaussian

Figure 4. Comparison of (a) estimators and (b) noise models.

Here, we complement our theoretical analyses by study-
ing how different geodesic regression approaches com-
pare under different noise models through extensive exper-
iments. This section specifically provides practical, numer-
ical results to answer the question: is GLS really more ac-
curate than faster alternatives to the extent that it is worth
sacrificing significant speedup in computation?

We analyze how the estimators GLS, LLS, PLS, and
pLLS behave under different, realistic noise models (see
Fig. 4). Such an analysis is rarely performed in the liter-
ature, where authors often focus on one noise model, usu-
ally Gaussian. This will give us unique insights on whether

practitioners should use GLS, LLS, PLS, or pLLS, depend-
ing on which noise model is believed to best approximate
their actual data. We initialize all regression computations
with the result of linear regression in ambient space R%.

Datasets. For each manifold M considered (see below),
we generate a synthetic geodesic between two points on
M. Next, we extract n data points along this geodesic,
testing n € {5,10,20,30}. Then, we add noise to
each data point, according to the noise model of inter-
est. The Gaussian noises have standard deviations o €
{0,0.01,0.1,0.2,0.4,0.6}.

We test the generative model with manifold Gaussian
noise, Euclidean Gaussian noise, and projected Euclidean
Gaussian noise on the hypersphere and hyperboloid for di-
mensions m € {2,3,5,10}. The hypersphere and the hy-
perboloid are canonical examples of manifolds with curva-
tures 1 and -1 respectively. On these manifolds, geodesics
have well-known closed forms. Testing on these classical
manifolds thus allows us a chance to investigate whether
LLS and pLLS have advantages over GLS for manifolds
that do not require numerical approximations of geodesics.

We test the generative model with deformed Euclidean
Gaussian noise on surface shapes. For the geodesic, we
choose two simple surface shapes as our start and end
points: an (undeformed) cube and a cube that has been
twisted and stretched. We discretize the surfaces with 8 ver-
tices. We compare LLS, pLLS and GLS for this noise.

Evaluation Metrics. We measure the accuracy of each
estimator by computing the root mean square deviation
(RMSD) between data points and predictions. For data on
the hyperboloid and hypersphere, we compute RMSD as
RMSD = /13" d(Y, V)2, where d is the geodesic dis-
tance. For surface shapes, we compute a normalized RMSD
(NRMSD), where the RMSD given above is normalized by
the diameter of the mesh and the number of mesh vertices.
Each prediction from the linear regression is projected to
the manifold so that the geodesic distance d can be used.
We measure the speed of each estimator as the duration of
the fitting procedure, after initialization with the result of
the projected linear regression.

Results. Remarkably, regardless of noise model, our ex-
periments show that the RMSD does not vary significantly
between the estimators, while the projected linear regres-
sion result (pLLS) and linear regression itself (with predic-
tions projected to the manifold) take far less time.

Comparison: Manifold and Euclidean Gaussian
Noises. As shown in Fig. 5, even for the manifold Gaus-
sian noise, all four estimators perform similarly to GLS. In-
terestingly, we do observe a slight increase in accuracy for
GLS and LLS in the case of the hyperboloid only. Yet, lin-
ear regression and its projection pLLS are faster, especially
for higher dimensional hyperboloids. For example, for the
10 dimensional hyperboloid, LLS and GLS take 44 and 23
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seconds, respectively, and LR and pLLS take 11 seconds.
Though we cannot test GLS on the Euclidean Gaussian
noise model, we see in Fig. 6 that all estimators achieve
similar RMSDs in this case, while linear regression does
so in much less time than the geodesic regression model.
Compared to evaluation under manifold Gaussian noise, es-
timators exhibit lower accuracy, esp. for the hyperboloid.
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Figure 5. Comparing estimators for manifold Gaussian noise

on the hypersphere (top), and hyperboloid (bottom) according to
speed (left) and accuracy (right).
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Figure 6. Comparing estimators for Euclidean Gaussian noise
on the hypersphere (top), and hyperboloid (bottom) according to
speed (left) and accuracy (right). Notice that here, we are forced
to measure linear RMSD, as Y does not fall on the manifold.

Comparison: Projected Euclidean Gaussian Noise.
As seen in Fig. 7, all estimators perform similarly well, with
a better accuracy compared to the evaluations under the Eu-
clidean Gaussian noise model. Again, unsurprisingly, the
linear regression estimators take far less time.

Comparison: Deformed Euclidean Gaussian Noise.
Here, on surface shape data, we see in Fig. 8 that linear
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Figure 7. Comparing estimators for projected Euclidean Gaussian
Noise on the hypersphere (top), and hyperboloid (bottom) accord-
ing to speed (left) and accuracy (right).

techniques shine even brighter than for the hypersphere and
hyperboloid. Indeed, this manifold does not have a closed
form solution for geodesics. We see again that RMSD is
not affected by choice of estimator, but GLS is thousands of
times slower than its linear counterparts.
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Figure 8. Comparing estimators for Deformed Euclidean Gaussian
noise on surface shapes w.r.t. speed (left) and accuracy (right).

6. Conclusion

We asked the provocative question: do manifold re-
gressions really provide estimates that are more accurate
than their linear counterparts to the extent that it is worth
sacrificing significant speedup in computation? We pro-
vided an analysis of the most common manifold regres-
sion: geodesic regression. We showed that the computa-
tional cost of geodesic regression does not actually make
the result more accurate. In fact, its linear counterparts are
as accurate and significantly faster. We hope that this anal-
ysis can spark a discussion on when geometric priors help,
compared to cases where simpler alternatives bring faster
results without sacrificing accuracy.
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