Securing Deep Neural Networks on Edge from Membership
Inference Attacks Using Trusted Execution Environments

Cheng-Yun Yang
yang2316@purdue.edu
Purdue University
West Lafayette, Indiana, USA

Purvish Jajal
pjajal@purdue.edu
Purdue University

West Lafayette, Indiana, USA

Xun Zhang
zhan4273@purdue.edu
Purdue University
West Lafayette, Indiana, USA

Gowri Ramshankar
gramshan@purdue.edu
Purdue University
West Lafayette, Indiana, USA

Sudarshan Nambiar
nambias@purdue.edu
Purdue University
West Lafayette, Indiana, USA

Dave (Jing) Tian

daveti@purdue.edu

Purdue University
West Lafayette, Indiana, USA

Nicholas Eliopoulos
neliopou@purdue.edu
Purdue University
West Lafayette, Indiana, USA

Evan Miller
mill3131@purdue.edu
Purdue University
West Lafayette, Indiana, USA

Shuo-Han Chen
shch@nycu.edu.tw
National Yang Ming Chiao Tung
University

Chiy-Ferng Perng
Alex_Perng@wistron.com
Wistron
Taipei, Taiwan

ABSTRACT

Privacy concerns arise from malicious attacks on Deep Neural
Network (DNN) applications during sensitive data inference on
edge devices. Membership Inference Attack (MIA) is developed by
adversaries to determine whether sensitive data is used to train
the DNN applications. Prior work uses Trusted Execution Envi-
ronments (TEEs) to hide DNN model inference from adversaries
on edge devices. Unfortunately, existing methods have two major
problems. First, due to the restricted memory of TEEs, prior work
cannot secure large-size DNNs from gradient-based MIAs. Second,
prior work is ineffective on output-based MIAs. To mitigate the
problems, we present a depth-wise layer partitioning method to
run large sensitive layers inside TEEs. We further propose a model
quantization strategy to improve the defense capability of DNNs
against output-based MIAs and accelerate the computation. We also
automate the process of securing PyTorch-based DNN models in-
side TEEs. Experiments on Raspberry Pi 3B+ show that our method
can reduce the accuracy of gradient-based MIAs on AlexNet, VGG-
16, and ResNet-20 evaluated on the CIFAR-100 dataset by 28.8%,
11%, and 35.3%. The accuracy of output-based MIAs on the three
models is also reduced by 18.5%, 13.4%, and 29.6%, respectively.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ISLPED °24, August 5-7, 2024, Newport Beach, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0688-2/24/08.

https://doi.org/10.1145/3665314.3670821

Hsinchu, Taiwan

Yung-Hsiang Lu
yunglu@purdue.edu
Purdue University
West Lafayette, Indiana, USA

CCS CONCEPTS

« Security and privacy — Embedded systems security; « Com-
puting methodologies — Object recognition; Neural networks.

KEYWORDS
Membership Inference Attack, ARM TrustZone, Trusted Execution
Environment, Model Partitioning, Model Quantization

ACM Reference Format:

Cheng-Yun Yang, Gowri Ramshankar, Nicholas Eliopoulos, Purvish Jajal,
Sudarshan Nambiar, Evan Miller, Xun Zhang, Dave (Jing) Tian, Shuo-Han
Chen, Chiy-Ferng Perng, and Yung-Hsiang Lu. 2024. Securing Deep Neu-
ral Networks on Edge from Membership Inference Attacks Using Trusted
Execution Environments . In Proceedings of the ACM/IEEE International
Symposium on Low Power Electronics and Design (ISLPED °24), August 5—
7, 2024, Newport Beach, CA, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3665314.3670821

1 INTRODUCTION

Deploying Deep Neural Networks (DNNs) on edge devices, such
as smartphones, wearables, and IoT devices has become popular
in recent years [1-3]. Compared with sending data to the cloud
through wireless networks, processing the data on edge has several
advantages such as low (and predictable) latency, low bandwidth
usage, and better protection of private data. Though DNNs deployed
on edge devices can directly process the data captured by sensors
such as microphones or cameras, private information can leak if
the model inference process is not well-secured.

Membership inference attacks (MIAs) are malicious attacks that
discover whether a particular piece of data is used for training. The
attacks pose privacy threats to DNN applications on edge devices
that use private data for training or fine-tuning the DNN models.
For example, the user identity of a smartphone can be inferred by

https://orcid.org/0000-0002-2008-0621
https://orcid.org/0009-0005-4254-6663
https://orcid.org/0000-0003-1692-8586
https://orcid.org/0000-0002-1199-6363
https://orcid.org/0009-0006-2514-4205
https://orcid.org/0009-0001-0673-4887
https://orcid.org/0009-0003-4560-1993
https://orcid.org/0000-0002-7506-9593
https://orcid.org/0000-0002-1619-4335
https://orcid.org/0009-0003-0618-8315
https://orcid.org/0000-0002-5491-7661
https://doi.org/10.1145/3665314.3670821
https://doi.org/10.1145/3665314.3670821

ISLPED 24, August 5-7, 2024, Newport Beach, CA, USA

Is tbe d?g used [.(,) Obfuscated
train this model? model output

Rpi 3B+ 0.76

- 0.03
q Query DNN Predict []_'?4
k' / applications 0.02
0.05

!E"E\, |—| I—l 0.01

Sensitive Model Model
[S— Parameters Architecture
Limited information Partitionl l Encrypt

from model internal . .
Trusted Execution Environment

Figure 1: The proposed method on protecting DNN applica-
tions from gradient-based and output-based MIAs on Rasp-
berry Pi 3B+ by limiting the access to the DNN internal and
obfuscating the prediction.

launching MIAs on the built-in face recognition system. To secure
DNN applications on edge devices, recent studies propose to run
model inference inside a Trusted Execution Environment (TEE) [4].
TEE is a hardware feature that provides a secure execution envi-
ronment for sensitive applications and data. For edge devices, Arm
TrustZone [5] is the most commonly used TEE implementation.

Existing methods utilizing TEEs to secure DNN applications on
edge devices encounter two main challenges that impede their real-
world adoption. (1) They cannot secure large DNN models due to
the limited memory of the TEE operation system (OS). For example,
a popular TEE OS, OP-TEE, has a maximum of 2MB stack size
and 16MB heap size. Restricted by the memory size, DarkneTZ [6]
can run only the last layer of VGG-7 inside a TEE. T-slices [7]
partition DNN models into smaller pieces but still fail to run the
entire VGG-16 model inside a TEE due to the high peak memory of
around 923MB. (2) Existing methods are effective on defending only
gradient-based MIAs by hiding the intermediate DNN inference
process. The DNN models protected by these methods still suffer
from output-based MIAs that require only the model output.

The proposed solution alleviates the above two problems in prior
work. (1) We present a depth-wise layer partitioning method to
better utilize the memory of TEE to run computationally expensive
DNN layers. The inference of sensitive DNN layers is decomposed
into several matrix multiplications between each feature map and
kernel weight. This allows more DNN layers to be run inside TEEs.
(2) This paper proposes a MIA-aware model quantization strategy to
increase the difficulty of determining data membership solely by the
model output. It is done by finding the quantization scale that leads
to the lowest accuracy of the MIA conducted by the defender. The
DNN models after quantization are more robust to output-based
MIAs while also become lighter to be deployed on edge devices.
Figure 1 describes the two parts of our method to prevent leaking
sensitive information to membership inference attackers.

Existing methods require that developers train DNN models
from scratch using the Darknet framework or convert the models
from other frameworks. Significant effort is needed if they want to
protect customized DNN models with TEE [6, 7]. Our method can

Yang, et al.

automatically convert and encrypt the PyTorch-based DNN model
weights. This reduces the development effort to implement secure
inference on board using a TEE. For users who want to protect
their DNN models, the model weight saved in PyTorch format is
the only thing they need to prepare.

This paper has three major contributions to secure DNN model
inference system:

e With the proposed depth-wise model partitioning method,
the gradient-based MIA accuracy for a set of pre-trained
models is reduced by 8.1% to 35.3% across the Tiny ImageNet
and CIFAR-100 datasets.

e By protecting the model architecture information with TEE
and applying the proposed model quantization strategy, the
output-based MIA accuracy is reduced by 11.7% to 29.6% on
CIFAR-100 dataset.

e The proposed method supports PyTorch models. Users do
not need to convert and encrypt the DNN models manually.
Besides, the hyperparameters for building the system are
chosen based on the protected DNN models automatically.

2 BACKGROUND AND RELATED WORK
2.1 Membership Inference Attacks on DNNs

Membership Inference Attacks (MIAs) use information from
DNNs to determine whether a piece of data is used for training.
From the literature, we identify two common types of MIAs: (1)
gradient-based and (2) output-based MIAs. Gradient-based MIAs
employ backpropagation to calculate the gradients of intermedi-
ate layers and utilize them for membership prediction. In general,
training data exhibits low gradients as a well-trained DNN model
typically converges to a low training loss, consequently resulting
in low gradients for each training sample [8]. Therefore, gradients
from member and non-member data can be used to train a binary
classifier as an attack model to predict membership of unknown
data. Output-based MIAs use the output from DNNs to predict
membership of data. For an image classification task, the output is
a confidence vector comprised of the score of each possible class.
Member data usually has high score of the correct class and low
scores of the other classes while non-member exhibits a more uni-
form distribution of scores across all classes. A binary detector
for membership can thus be trained with confidence vectors from
member and no-member data. Both types of MIAs can be more
threatening if the model architecture is known to an adversary [9].

2.2 Secure DNNs on Edge from MIAs

Arm TrustZone is a security extension technology that separates
the execution environments on a single System-on-Chip into: (1) a
Trusted Execution Environments (TEE) for secure execution and (2)
a Rich Execution Environment (REE) for non-secure execution. Arm
TrustZone is widely adopted to provide security on edge devices
due to its robust hardware and software support. OP-TEE is a pop-
ular OS of edge devices that employ Arm TrustZone to ensure the
confidentiality and integrity of security-sensitive computation and
data inside the TEEs. Previous work applies TEEs to secure DNN
computation on Arm-based edge devices [6, 7]. However, these
methods have no support for PyTorch models, making protecting
modern DNN models using TEE challenging.

Securing Deep Neural Networks on Edge from Membership Inference Attacks Using Trusted Execution Environments ISLPED 24, August 5-7, 2024, Newport Beach, CA, USA

Raspberry Pi 3B+

REE (non-secure world) | | TEE (secure world) A

| Applications | | Trusted Applications

a
=
Rich OS Secure OS E
(Linux) (OPTEE) =3
—
Secure Platf é
M Firmware
anager

Firmware / Secure Monitor

Figure 2: Software architecture of a TEE deployed on Rasp-
berry Pi 3B+. A chain of trust is established starting from
the boot ROM stage and each layer of software is loaded and
checked for integrity by the previous layer.

TEE (secure world)

@* @* @*
@

REE (non-secure world)
N filters with M kernels

Kii K12 Kim KaaK2z Kem KniKnz Knm

Figure 3: Inference of a single DNN layer when the proposed
depth-wise partitioning method is applied. K,,,;, denotes the
mth kernel of the nth filter. I;, and O,, denote the nth channel
of the input and output feature map. This figure shows how
the first channel of the output feature map is calculated. The
calculation is done subsequently from O; to Oy.

DNN models protected by TEEs are still under the threat of
output-based MIAs. Most prior work tries to defend such attacks by
closing the generalization gap between the training and validation
data during the training process. Li et al. [10] employ a regularizer
using the Maximum Mean Discrepancy between the softmax output
empirical distributions. Yuan et al. [11] present an optimization
goal that minimizes the Kullback-Leibler divergence loss between
training and validation data pairs. Different from the prior work,
we propose a post-training quantization method that eliminates
the need for retraining the original model. The proposed method
facilitates the updating of DNN applications on edge devices and
benefits the defense against gradient-based MIAs since the DNN
models are quantized to have more layers run inside TEEs.

3 SECURE TRAINING DATA PRIVACY ON EDGE
3.1 Threat Model

Following the assumption of TrustZone [5], we consider the
adversary to have full access to REEs and has no control or knowl-
edge of applications running inside TEEs. The adversary can get the
gradients during the model inference process in REEs by memory
invasion attack [12]. The files stored in REE are disclosed to the

Host machine Configuration file
(encrypted)

6 PyTorch Convert and encrypt
model Model weight

1 Flash OPTEE to the edge device

Rpi 3B+
REE (non-secure world) TEE (secure world) .
Configuration file i Configuration file
(encrypted) (decrypted)
Model weight
Shared memory
[Read when the inference starts Model config]

Figure 4: The framework of protecting the configuration file
of the DNN deployed on the edge device using TEE. The file
is kept encrypted until the DNN model inference starts.

adversary. Besides, we assume that the DNN applications return the
confidence score vector as output. For an image classification task,
the output is the scores of all possible classes. We assume that the
adversary can only interact with the DNN model deployed on the
device remotely i.e., the adversary does not have physical access
to the device. Therefore, hardware-based attacks like side-channel
attacks are out of scope for this work. We assume that all firmware
and Trusted Applications (TAs) developed on TEE are manually
verified and compiled, meaning we trust the authors of all the soft-
ware developed for the TEE. The attestation mechanisms of TEE
automatically check TAs for integrity as shown in Figure 2.

3.2 Depth-wise Model Partitioning

Since the model inference in TEE is time-consuming, we only
run the most sensitive part of DNN inside a TEE. Previous work
has shown that the gradients from the layers closer to the out-
put layer contribute more to conduct successful gradient-based
MIAs [6].Thus, we run the inference of the last few DNN layers
inside a TEE so that the adversary has no access to the weights to
calculate gradients. This is done by sending the input feature maps
and model weights to TEE by invoking TAs. The TAs then use a key
that is securely stored in the TEE to decrypt the model weights and
run the computation in the secure memory of TEE. The number of
layers being protected is configurable.

The peak memory usage of a single layer from DNNs can reach
up to several hundred megabytes, beyond the size of 16 MB in
practice [7]. Therefore, we propose a depth-wise model partition-
ing method to better integrate DNN applications with TEEs. The
convolution operation of DNN model inference is split into several
iterations to execute. For each iteration, we send the weights of
a kernel and channels of feature maps into the secure world for
convolution operation. We choose the maximum number of feature
maps that can be multiplied with the weights within the trusted
memory capacity, i,e., the maximum number of Ky, * I, that can
be executed inside the secure world, until all the feature maps are
multiplied. As shown in Figure 3, the execution order of deriving
the first channel of output feature maps in the secure world follows

ISLPED 24, August 5-7, 2024, Newport Beach, CA, USA

Ki1 * I1, K12 * Iy, ..., and Kqpp * Iy, where = denotes a convolu-
tion operation. This saves the memory usage of directly running
all convolution operations inside the secure world. In addition, we
quantize the values of weights and feature maps from 32-bit floating
points to 8-bit integers to reduce the memory requirement of im2col
transformation. The detail of the applied quantization method will
be further elucidated in Section 3.3.

3.3 MIA-aware Model Quantization

Hiding the model architectures can increase the defense capa-
bility of DNN models to gradient-based MIAs. However, the DNN
models are still vulnerable to output-based MIAs that only require
the output from the models. Therefore, we propose a post-training
model quantization technique to further mitigate the threat posed
by output-based MIAs. For a DNN model with N layers, we quan-
tize the weights of the first N — 1 layers by searching for the scale
factor A, that minimizes the [2 norm distance of the output before
and after quantization:

min
A w

1

where O; and O; are the i—th entries of the output vector before and
after quantization, and A, is the scale factor used to quantize the
model weight. We search the scale factor over 100 points between
0.1 and 2. Traditional quantization methods apply Formula 1 as the
searching goal to all layers to maintain the prediction accuracy of
DNN model after quantization. We keep the same searching goal
for the N — 1 layers but change the one for the last layer to:

k
HAlin(Z(Oi - 0i)?% +a - Acepia),)
w i=1

where Accpya is the accuracy of simulated MIAs done by the de-
fender itself and « is a weighting factor empirically determined to
balance the two terms. The search goal is designed to make the
model output less informative regarding the membership of the
input data. As the defenders who have the ground truth of the
training data membership, we can train a simulated attack model
by taking the output vectors of the member data as positive samples
and those of the non-member data as negative samples. The sim-
ulated attack model can be simply done by training a multi-layer
perceptron. After that, we find the quantization scale by Formula 2
that minimizes the accuracy of the simulated attack model while
maintaining the model accuracy. We only apply Formula 2 to quan-
tize the last layer of the victim DNN model because it is the closest
one to have an impact on the output confidence vectors. Besides,
quantizing a single layer has a negligible effect on the model accu-
racy. The experiments show that the proposed model quantization
strategy can reduce the accuracy of output-based MIAs on the DNN
model by 10% on average with a trade-off of only around 1% model
accuracy drop. In addition, the DNN model is quantized from FP32
to INTS8, which provides around four times reduction on the model
size and thereby benefits the inference speed on edge devices.

3.4 Model Configuration Protection Framework
Prior work utilizing TEEs for protecting data privacy on edge
devices is susceptible to model architecture leakage if the model

Yang, et al.

configuration file is compromised [6]. This file stores the model
architecture, allowing the application to load the model weights.
MIA will be more threatening if the model architecture is known
to an adversary. Therefore, we propose a protection framework
that utilizes TEEs to prevent the model configuration file from
being accessed. We encrypt the model configuration file and load
it onto the non-secure world of the edge device using OP-TEE.
When the DNN application is triggered, a TA is invoked to transfer
the encrypted file into the secure world. Inside the secure world,
the file is decrypted and the decrypted data is stored in shared
memory for the DNN application to access. This approach prevents
an adversary from directly fetching the model configuration from
either the non-secure world or the memory location where it resides.
We choose to implement the Tiny Encryption Algorithm [13] due
to its minimal execution time overhead. The process of securing
the DNN configuration file is illustrated in Figure 4.

3.5 Secure PyTorch Models at the Edge

Figure 5 shows how the proposed method described in this sec-
tion defend against MIAs compared with that of DarkneTZ [6]. Our
system hides the inference of the last three layers and the model
architecture in the TEE. It prevents the adversary from leveraging
the gradients from these layers to train a powerful attack model.
Furthermore, the proposed MIA-aware model quantization makes
the model output less informative for the adversary to predict the
data membership. Another feature of the system is that it can di-
rectly take PyTorch models as input. Prior work [6, 7] only supports
to read DNN models built with Darknet, which is a neural network
framework rarely used for training DNN models. Our system au-
tomatically converts the PyTorch model to the format that can
work with OP-TEE and encrypt the architecture and weight of the
model. On the whole, the proposed secure system can (1) protect
any customized PyTorch-based DNN models without using Darknet
to train the models again and (2) improve the defense capability of
DNN models against MIAs compared with the existing methods.

4 EVALUATION AND RESULTS

4.1 Experimental Setup

We evaluate our method on protecting four classic DNN models
including AlexNet, VGG-11, VGG-16, and ResNet-20 against MIAs.
We target image classification task and use CIFAR-100 and Tiny
ImageNet as the benchmarks. The experiments are done on Rasp-
berry Pi 3B+ flashed with OP-TEE. We measure the efficiency of
our method by CPU execution time because the GPU computation
is not supported by OP-TEE. All the models are built with PyTorch
and trained with one NVIDIA A100 SXM GPU.

4.2 Privacy Measurement

We validate our method by measuring the accuracy of the attack
model. The attack model is a binary classifier applied by the ad-
versary to predict the membership of the test data. If the accuracy
is close to 100%, it means that the defense method is not effective.
Conversely, if the attack accuracy goes down to 50%, it becomes a
random guess, meaning that the DNN model under attack is robust
to the MIAs. The experiments involve three steps. The first step is
to train the victim model and the shadow model. The second step
involves training the attack model and the final step is assessing

Securing Deep Neural Networks on Edge from Membership Inference Attacks Using Trusted Execution Environments ISLPED 24, August 5-7, 2024, Newport Beach, CA, USA

Host machine
Flash to device ’ Rapnconeiely | {Model conﬁg]
- Output
Rpi 3B+ Last layer
ke i] Attack
: ac ! ! Output-based | model
ample |! |
| | MiA
. ;i !| DNNwio | 1
k— —»| last layer [+| TEE
i« N S
_____ — Gradient-based MIA

(2)

Host machine
PyTorch weight | | Model config
Flash to device (quantized) (encrypted)
Rpi 3B+ Output

Last n layers
Model config|
Attack (encrypted)

Attack
model

Output-based
MIA

n layers

SR R —

I

- i
a | | w/o last

ﬁ 2 1

1

— Gradient-based MIA

(b)

Figure 5: The illustration of how the adversary conducts gradient-based and output-based MIAs on the DNN applications
protected by (a) Mo et al. [6] and (b) the proposed method. The green and brown boxes denote the information available for

gradient-based and output-based MIAs, respectively.

the privacy of the victim model by leveraging the attack model. The
three steps are explained further in the following paragraphs.

First, we use half of the training and validation data to build a
victim model, which serves as the model adversaries want to attack.
Then we use the other half of the training and validation data to
build a shadow model, which serves as the surrogate of the victim
model. We assume the adversary knows which data is used to train
the shadow model. Therefore, the shadow model can be used to
guide the learning of the attack model with the training data labeled
as members and the validation data labeled as non-members.

Second, we train the attack model, a binary classifier that predicts
the membership of the victim models using the knowledge learned
from the shadow models. For gradient-based MIAs, we extract the
gradients from shadow models and concatenate them into a feature
vector, which serves as the input to the attack model. Because the
real membership of the shadow models is disclosed, the adversary
can optimize the attack model to learn the relationship between the
feature vector and the data membership. The process of building
an attack model is the same for output-based MIAs except that the
feature vector is changed to the output of the shadow model.

Finally, we assess the privacy of the victim model by leveraging
the attack model to predict the membership of test data. We first
send the test data to the victim model to collect the feature vec-
tor. Then the feature vector is fed to the attack model to predict
the possible membership of the data. The prediction of the attack
model is either in or out if the model predicts the test data to be
a member or non-member of the training data, respectively. We
measure the prediction accuracy of the attack model under three
conditions: without any defense methods, protected by Mo et al. [6],
and protected by our method. We run the last three layers of the
test models inside a TEE to achieve the best trade-off between MIA
accuracy and execution time on Raspberry-Pi 3B+. The result of
conducting gradient-based MIAs and output-based MIAs on the
DNN models is shown in Table 1 and Table 2, respectively.

Given the resource constrained environment of TEE, it is impor-
tant to quantify the efficiency of our method and understand the
feasibility for deployment on edge devices. Table 3 compares the
inference time and memory usage of the DNN models and their

Table 1: Gradient-based MIA accuracy on AlexNet, VGG-16, and
ResNet-20 when the models are under no protection, protected by
Mo et al. [6], and our method. The goal of defenders is to reduce the
attack accuracy to 50% (random guess).

MIA Accuracy
D Model

ataset ode Vanilla | Mo et al. [6] | Ours
AlexNet 88.0% 65.1% 59.2%
CIFAR-100 | VGG-16 77.9% 72.4% 66.9%
ResNet-20 85.0% 60.6% 49.7%
. AlexNet 94.1% 70.7% 59.1%

Tiny
ImageNet VGG-16 75.5% 62.4% 60.0%
& ResNet-20 65.1% 61.0% 57.0%

Table 2: Output-based MIA accuracy on victim DNN models when
various shadow models are used for training attack models. Model(Q)
represents the model that is quantized by our method. The experi-
ments are done on CIFAR-100 dataset.

Victim Shadow Model
model AlexNet | VGG-11 | VGG-16 | ResNet-20
AlexNet 87.7% 82.3% 86.7% 78.1%
AlexNet(Q) 69.9% 68.5% 69.2% 61.8%
VGG-11 88.9% 87.9% 88.4% 79.2%
VGG-ll(Q) 60.1% 77.2% 75.9% 64.0%
VGG-16 78.5% 68.2% 87.4% 77.6%
VGG-16(Q) 74.0% 63.1% 84.5% 71.5%
ResNet-20 71.7% 82.8% 63.4% 94.4%
ResNet-20(Q) | 64.8% 62.5% 62.9% 88.9%

quantized versions under two scenarios: full execution in REE and
execution with the proposed method.

4.3 Results and Discussion

As shown in Table 1, our method reduces the accuracy of the
gradient-based MIAs on AlexNet, VGG-16, and ResNet-20 by 28.8%,
11%, and 35.3% when tested on CIFAR-100 dataset. For the Tiny
ImageNet dataset, the accuracy of gradient-based MIAs is reduced
by 35%, 15.5%, and 8.1% on AlexNet, VGG-16, and ResNet-20, respec-
tively. The proposed method can effectively reduce the accuracy

ISLPED 24, August 5-7, 2024, Newport Beach, CA, USA

Table 3: Comparison of memory size and execution time per image
with and without the proposed method for AlexNet, VGG-11, VGG-
16, and ResNet-20 on Raspberry Pi 3B+.

Victim Memory | Execution Time (s)
model size (MB) | Vanilla Ours
AlexNet 9.76 4.65 13.06
AlexNet(Q) 2.44 1.88 6.62
VGG-11 36.23 3.97 10.89
VGG-11(Q) 9.06 1.61 5.53
VGG-16 57.69 4.65 11.41
VGG-16(Q) 14.42 1.88 5.80
ResNet-20 1.14 4.19 5.30
ResNet-20(Q) 0.28 1.69 2.27

of gradient-based MIAs than Mo et al. [6] does across all test DNN
models and datasets. We choose to hide the inference of the last
three layers inside a TEE. This is because we observed that hid-
ing more than three layers does not decrease the effectiveness of
gradient-based MIAs on the models employed in our experiments.
However, the number of layers being protected by our method is a
configurable parameter. Users can tailor this parameter to fit the
hardware and the models they want to protect.

Table 2 shows the accuracy of output-based MIAs on the four
models using CIFAR-100 dataset. We observe that if the adversary
knows the exact model architecture of the victim model, the output-
based MIAs will be more effective. For example, using AlexNet
architecture as the shadow model to attack the victim AlexNet
model achieves 87.7% accuracy, which is higher than using other
model architectures as shadow models. Therefore, it is necessary
to apply the model architecture protection framework described
in Section 3.4. We also observe that applying a shadow model that
has a similar model architecture to that of the victim model can
attain high attack accuracy. For instance, the attack accuracy of
using VGG-16 as the shadow model to attack VGG-11 (88.4%) is
even higher than that of using VGG-11 to attack itself (87.9%). It is
reasonable because VGG-16 is the deeper version of VGG-11.

The accuracy of output-based MIAs is further reduced by the
proposed model quantization method as mentioned in Section 3.3.
As shown in Table 2, quantization reduces the accuracy of MIAs
on all the victim models. The threat of using a similar DNN model
as the shadow model to conduct output-based MIAs is also miti-
gated. For the case we studied earlier when using VGG-16 as the
shadow model to attack, the accuracy of the same attack on VGG-11
drops from 88.4% to 75.9% after the proposed quantization method
is applied. In addition, even if the adversary can guess the right
model architecture of the victim model, the attack accuracy on the
quantized version of each victim model is constantly lower than
the vanilla model for the chosen four DNN models. Overall, the
model configuration protection framework increases the difficulty
of finding appropriate shadow models to conduct output-based
MIAs. The proposed model quantization method further obfuscates
the distribution of model output to be more challenging for the
adversary to train effective attack models for output-based MIAs.

From Table 3, we observe that the memory reduction is roughly
four times since the model is quantized from FP32 to INT8. The
execution time overhead of protecting AlexNet in our system is 8.41

Yang, et al.

seconds, which is the highest among all tested models because the
last three layers of AlexNet require the most iterations to complete
the inference. On the contrary, ResNet-20 has the lowest execution
overhead of 1.11 seconds due to the light weight of its last layers.
Deployment of the model quantization can further reduce the exe-
cution time overhead by around 50%. Applying MIA-aware model
quantization also brings a minor reduction in the test accuracy of
the victim models. The accuracy drop is 0.91%, 1.33%, 0.53%, and
0.87% for AlexNet, VGG-11, VGG-16, and ResNet-20, respectively,
which is a decent trade-off for training data privacy improvement.

5 CONCLUSION

In this paper, we present a secure method to protect DNN applica-
tions on edge from the privacy threat of MIAs. With the employ-
ment of a depth-wise model partitioning method, more sensitive
DNN layers are secured in TEE during model inference to mitigate
the threat of gradient-based MIAs. This system also features func-
tionality to safeguard the DNN model architecture. Besides, a novel
and simple enough model quantization method is applied to en-
hance the defense capability of DNN models to output-based MIAs.
Our method can be applied to any PyTorch-based DNN models
with acceptable inference time overhead and minor model accuracy
drop. For a ResNet-20 model, the system can decrease the accuracy
of gradient-based MIA by 35.3% and the output-based MIA by 29.6%
with only 0.87% drop on the image classification accuracy. We be-
lieve our method offers a simple yet effective way for engineers to
secure their DNN models on edge using TEEs.

ACKNOWLEDGMENT

This project is supported in part by NSF IIS-2229876, ONR N00014-
23-1-2157, and Wistron. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the sponsors.

REFERENCES

[1] Sebastian P Bayerl et al. “Offline model guard: Secure and private ML on
mobile devices”. Design, Automation & Test in Europe Conference & Exhibition.
2020.

[2] Han Cai et al. “Enable Deep Learning on Mobile Devices: Methods, Systems,
and Applications”. ACM Transactions on Design Automation of Electronic
System 27.3 (2022).

[3] Gianmarco Cerutti et al. “Sound event detection with binary neural networks
on tightly power-constrained IoT devices”. Proceedings of the ACM/IEEE Inter-
national Symposium on Low Power Electronics and Design. 2020.

[4] Nicholas Carlini et al. “Membership inference attacks from first principles”.
IEEE Symposium on Security and Privacy. 2022.

[5] ARM Security Technology Building a Secure System using TrustZone Technology.

[6] Fan Mo et al. “DarkneTZ: towards model privacy at the edge using trusted
execution environments”. International Conference on Mobile Systems, Appli-
cations, and Services. 2020.

[7] Md Shihabul Islam et al. “Confidential Execution of Deep Learning Inference
at the Untrusted Edge with ARM TrustZone”. ACM Conference on Data and
Application Security and Privacy. 2023.

[8] Milad Nasr et al. “Comprehensive Privacy Analysis of Deep Learning: Passive
and Active White-box Inference Attacks against Centralized and Federated
Learning”. IEEE Symposium on Security and Privacy. 2019.

[9] Reza Shokri et al. “Membership inference attacks against machine learning
models”. IEEE Symposium on Security and Privacy. 2017.

[10] Jiacheng Li et al. “Membership Inference Attacks and Defenses in Classi-
fication Models”. Proceedings of the Eleventh ACM Conference on Data and
Application Security and Privacy. 2021.

[11] Xiaoyong Yuan et al. “Membership Inference Attacks and Defenses in Neural
Network Pruning”. 31st USENIX Security Symposium. 2022.

[12] Fan Yao et al. “DeepHammer: Depleting the intelligence of deep neural net-
works through targeted chain of bit flips”. 29th USENIX Security Symposium.
2020.

[13] Simon J. Shepherd. “The Tiny Encryption Algorithm”. Cryptologia 31.3 (2007).

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Membership Inference Attacks on DNNs
	2.2 Secure DNNs on Edge from MIAs

	3 Secure Training Data Privacy on Edge
	3.1 Threat Model
	3.2 Depth-wise Model Partitioning
	3.3 MIA-aware Model Quantization
	3.4 Model Configuration Protection Framework
	3.5 Secure PyTorch Models at the Edge

	4 Evaluation and Results
	4.1 Experimental Setup
	4.2 Privacy Measurement
	4.3 Results and Discussion

	5 Conclusion

