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ABSTRACT | An increasing number of distributed energy
resources (DERs), such as rooftop photovoltaic (PV), electric
vehicles (EVs), and distributed energy storage, are being inte-
grated into the distribution systems. The rise of DERs has
come hand-in-hand with large amounts of data generated
and explosive growth in data collection, communication, and
control devices. In addition, a massive number of consumers
are involved in the interaction with the power grid to pro-
vide flexibility. Electricity consumers, power networks, and
communication networks are three main parts of the dis-
tribution systems, which are deeply coupled. In this sense,
smart distribution systems can be essentially viewed as cyber-
physical-social systems. So far, extensive works have been
conducted on the intersection of cyber, physical, and social
aspects in distribution systems. These works involve two or
three of the cyber, physical, and social aspects. Having a
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better understanding of how the three aspects are coupled
can help to better model, monitor, control, and operate future
smart distribution systems. In this regard, this article provides
a comprehensive review of the coupling relationships among
the cyber, physical, and social aspects of distribution systems.
Remarkably, several emerging topics that challenge future
cyber-physical-social distribution systems, including applica-
tions of 5G communication, the impact of COVID-19, and data
privacy issues, are discussed. This article also envisions sev-
eral future research directions or challenges regarding cyber-
physical-social distribution systems.

KEYWORDS | 5G communication; COVID-19; cyber-physical-
social systems; data analytics; data privacy; demand response
(DR); distribution systems; energy justice; smart grid; social-
technological integration; wireless communication.

L. INTRODUCTION

Traditional distribution systems “passively” receive and
consume electricity from main transmission systems and
are operated without advanced monitoring and control
but with simple open-loop control methods. In the new
century, distribution systems are becoming more and more
modernized. We can clearly see three transformations
in future smart distribution systems, i.e., digitalization,
decentralization, and decarbonization (3D) [1].

1) Digitalization: Large amounts of data collection, com-
munication, and control devices are being installed
in distribution systems for real-time monitoring and
control, such as smart meters (SMs) and distrib-
uted energy storage control units. These devices are
connected with each other or to the control center
through wired or wireless communication techniques.
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Distribution systems become cyber—physical systems
on the way to digitalization [2].

2) Decentralization: An increasing number of distributed
energy resources (DERs), such as rooftop photovoltaic
(PV), electric vehicles (EVs), and distributed energy
storage, are being integrated into the distribution
systems. Future distribution systems will be oper-
ated in a more decentralized way, where electricity
consumers will be more involved in decision-making
in distribution systems, such as home energy man-
agement and biding in peer-to-peer markets. Human
behavior should be fully considered in this situation.
Thus, the cyber—physical distribution systems should
be extended to cyber—physical-social distribution
systems [3].

3) Decarbonization: Countries around the world are
sparing no effort to reduce carbon emissions and
finally achieve carbon neutrality [4]. Decarbonization
is the ultimate goal of constructing smart cyber—
physical-social distribution systems, which can be
realized by enhancing energy efficiency, promoting
the accommodation of local energy, and providing
flexibility to transmission systems.

Since the concept of “Smart Grid” was proposed in
2007 [5], the research of “cyber—physical” power systems
has been receiving increasing attention, emphasizing bidi-
rectional power and information flows. Extensive works
have been done on the cybersecurity of power systems. Dif-
ferent types of cyberattacks and the modeling, simulation,
and analysis approaches of these attacks in power systems
were summarized [6]. The cybersecurity issues of micro-
grids were the main focus of Li et al. [7], where the impacts
of potential risks attributed to cyberattacks on microgrids
were examined, and the corresponding countermeasures
were provided. The cyber—physical resilience in power
systems was defined in [8]. The resilience of power sys-
tems was reviewed in [9] from the cyber—physical perspec-
tive, where how external environments, such as hazards,
cyberattacks, and human behaviors, influence the system
resilience was discussed. The vulnerability assessment and
resilience quantification methods for cyber—physical power
systems were summarized in [10].

Compared to the cybersecurity of power systems, there
are fewer works on the cyber—physical-social power sys-
tems. How to model the behaviors of humans in power
systems from the social perspective, especially for a
massive number of electricity consumers, has not been
well addressed. Nowadays, behavioral and social sci-
ences research in different industries attracts increasing
attention. For example, the Nature publisher set up an
online community forum for researchers to discuss and
share behavioral and sociological research and its appli-
cations in various industries [11]. The cyber—physical—
social system is a new way of thinking about the control,
operation, and planning of future distribution systems,
covering broad research topics. Many works have been
conducted at the intersection of cyber, physical, and social
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aspects in distribution systems. Take demand response
(DR) as an example; it involves remote control in the
cyber system, electrical appliances in the physical system,
and behavior analysis in the social system. According to
what the work emphasizes, this article roughly summa-
rizes these works into three categories: cyber—physical,
physical-social, and cyber—social couplings. It is impossible
to provide an exhaustive review of all the works done
for cyber—physical-social distribution systems, which is not
the goal of this article. Instead, this article aims to select
several interesting, important, and correlated topics from
the three categories and summarize the works on these
topics. In this way, any possible overlap with existing
reviews of related topics can be avoided. We hope that
this article can inspire novel and comprehensive research
in distribution systems from the cyber—physical-social
perspectives.
The contributions of this article are given as follows:

1) analyzing cyber—physical-social couplings in future
distribution systems and conducting a comprehensive
literature review of future smart distribution systems
from a cyber—physical-social perspective;

2) providing a well-designed taxonomy for cyber—
physical-social distribution systems from three cat-
egories: cyber—physical coupling, physical-social
coupling, and cyber—social coupling;

3) discussing future potential research directions or chal-
lenges, including human behavior modeling, cyber
systems operation and planning, and data supply
chain in distribution systems.

The rest of this article is organized as follows. Section II
introduces the coupling relationship among the physical
system, the cyber system, and the social system of the
distribution systems. Sections III-V summarize the recent
research works on the cyber—physical coupling, physical-
social coupling, and cyber—social coupling in distribution
systems, respectively. Section VI provides several open
research issues that need to be fully addressed for better
operating future smart distribution systems. Section VII
draws the conclusions.

I. CYBER-PHYSICAL-SOCIAL
DISTRIBUTION SYSTEMS

The concept of cyber—physical-social systems comes
from two possible ways. The first is the evolution and
expansion from cyber—physical systems to cyber—physical—
social systems by putting humans into the loop [12].
The second is the integration of cyber—physical systems
and cyber—social systems, where the cyber system is the
bridge between the physical system and social system [13].
Even though there is no universal definition of cyber—
physical-social systems, deep fusion among humans, com-
munication networks, computers, and things is the basic
characteristic. Cyber—physical-social systems provide a
new paradigm for the operation of real-world systems
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Table 1 Illustrative Cyber-Physical-Social Coupled Businesses in Distribution Systems

Business Cyber system

Physical system

Social system

SM installation SM data collection

House distribution & network topology

Consumers’ acceptance of SM

Demand response Control signal transmission

Characteristics of DERs

Consumers’ willingness for demand response

Electricity retailing | Load and price data analytics

Power balance constraints

Consumers’ behavior & game among retailers

Network dispatch Dispatch order transmission

Network constraints

Policy and system operator’s preference

where cyber, physical, and social systems should be care-
fully and comprehensively considered for decision-making
of real-world systems [14]. This concept has been used
for the new-generation intelligent manufacturing [15],
aeronautics and space [16], smart cities [17], and so on.
Distribution systems have undergone at least two
upgrades. The first upgrade is from simple power dis-
tribution systems to cyber—physical distribution systems,
accompanied by the construction of the smart grid. Vari-
ous advanced communication and control infrastructures
have been installed for the monitoring and closed-loop
control of distribution systems. The second upgrade is from
cyber—physical distribution systems to cyber—physical—
social distribution systems, where human participation and
interaction become more and more critical with the inte-
gration of DERs and the implementation of various busi-
ness models. It is necessary to put humans in the decision
loop of distribution systems [9]. In cyber—physical-social
distribution systems, the cyber system (communication
networks, control center, and so on), physical system

(power networks, power transformer, and so on), and
social system (consumers, retailers, system operator, and
so on) are deeply coupled.

Table 1 provides several businesses in distribution sys-
tems that illustrate the coupling relationship among cyber,
physical, and social systems. Take SM installation as an
example; how to efficiently collect a large amount of
distributed SM data is studied in the cyber system; the SM
installation should follow the house distribution and power
network topology in the physical system; and the attitude
and acceptance levels of consumers for SMs should be
carefully considered in the social system. Thus, installing
and popularizing SMs in the distribution systems are an
integrated cyber—physical-social problem. It is the same
for DR, electricity trading, network dispatch, and so on in
future smart distribution systems.

To facilitate the planning and operation of distribution
systems, interdisciplinary research should be conducted.
As shown in Fig. 1, the research involves power engi-
neering, communication engineering, social psychology,
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Fig. 1. Cyber-physical-social coupling in distribution systems.
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data science, and so on. Even though different businesses
couple cyber, physical, and social systems, they may be
more related to two of the three systems. Thus, this article
roughly divides different businesses or technical issues into
three categories according to which two systems are more
coupled.

The first is cyber-physical coupling. Since several
reviews of security and resilience of cyber—physical power
systems already exist, to avoid overlap with these reviews,
this article focuses more on methods or algorithms for
wireless communication for monitoring and control of dis-
tribution systems and their interdependent relationships in
distribution systems. In addition, since 5G is an emerging
wireless communication technique, we will inevitably also
discuss its role in distribution system communications.

The second is social-physical coupling. Adopting new
technologies, including SMs, DERs, and EVs, is a typical
social problem in distribution systems. Instead of establish-
ing different optimization models for DR programs, how to
efficiently implement DR will also be investigated from a
social perspective. COVID-19 has a profound impact on the
whole society of the world. How it influences distribution
systems will be discussed.

The third is cyber—social coupling. In addition to com-
munication networks, social networks, which are at the
intersection of cyber and social systems, can also be used
for situation awareness of distribution systems where the
social sensors are widely distributed to consumers. Nowa-
days, people are paying more and more attention to pri-
vacy protection. The privacy issue in distribution systems
will also be studied.

The following three sections will detail these businesses
or technical issues in the three categories.

IIIl. CYBER-PHYSICAL COUPLING
IN DISTRIBUTION SYSTEMS

One basic characteristic of smart gird is the two-way
electricity flow and communication flow. Future distrib-
ution systems will be equipped with sophisticated mon-
itoring and control capabilities that require the sup-
port of advanced communication technologies and net-
works [18]. Different types of communication technologies
and networks, such as power line communications, optical
fiber communications, wireless sensor networks, and wide
area communication networks, have been proposed to
meet different communication requirements of distribution
systems [19].

Power line communications use the existing power line
cables for smart grid communications. By avoiding the
need to install new communication links, power line com-
munications can enable fast and economical deployment
of smart grid communication networks [20]. Despite the
benefits, power line communications do come with a few
issues [21]. It is difficult to establish an accurate channel
model for power line communications due to the noisy
background of power cables. More importantly, power line
communications have a low signal-to-noise ratio and, thus,

Cyber-Physical-Social Perspective on Future Smart Distribution Systems

are not suitable for high bit rate applications across a
distance beyond a few hundred meters [22]. For high
bit rate transmissions over a long distance, optical fiber
communications can be used. With the inherent immunity
to electromagnetic interference, optical fiber communica-
tions are suitable for applications within an interference-
rich and noisy environment to which a power system
belongs. Similar to power line communications, optical
fiber communications suffer from problems that are com-
mon to wired communication technologies, such as the
lack of flexibility in device locations. Compared to wired
communications, wireless communications can be rapidly
deployed to cover a large area with a desirable high bit
rate. Wireless sensor networks, which are low-cost, energy-
efficient, and capable of self-organize and self-healing, can
be an essential part of the communication network of
distribution systems [23]. Unfortunately, wireless sensor
networks are usually private networks and do not provide
universal coverage to all areas. It is likely that some devices
in a smart grid are not reachable by a wireless sensor net-
work. In this case, we need a wide-area wireless network,
such as a cellular network or satellite communication
network.

From the above, it is clear that communication tech-
nologies for smart grids are very diverse. For conciseness,
this section focuses mainly on the use of wireless com-
munication technologies. As shown in Fig. 2, this section
consists of three subsections. The first subsection discusses
various existing wireless communication schemes, which
have been proposed to facilitate monitoring and control
operation in a typical distribution system. The second
subsection is dedicated to challenges that arise from the
existence of interdependent relations between power and
communication network. The roles of 5G cellular commu-
nication systems are discussed in the third subsection.

A. Distribution Systems Monitoring and Control

Fig. 3 shows the monitoring and control system of a
power distribution network using wireless communica-
tions. The sensors and controllers, such as SMs and micro-
phasor measurement units (PMUs), will be widely installed
in distribution systems for better situation awareness.
A reliable operation of distribution systems depends on
reliable communication between sensors, controllers, and
control center [24]. Various works have been done for
demand-side monitoring, distribution network monitoring,
and DER control.

1) Demand-Side Monitoring: In the context of support-
ing demand-side management, a scheme was developed
in [25] to determine the optimal number and location
of data aggregation points within a neighborhood area
network. In the scheme, the data aggregation point place-
ment is required to ensure that demand requests and
price information can be transmitted with acceptable
communication service quality. An integer programming
problem was formulated in [26] to find the optimal
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Fig. 2. Cyber-physical coupling in distribution systems with a focus on wireless communication.

data aggregation point placement to achieve the mini-
mum installation and communication cost. A suboptimal
solution was efficiently obtained by running the k-means
clustering algorithm iteratively for the original integer
optimization problem. With a system model and objective
similar to [26], another method was proposed in [27]
to solve the similarly complex integer program through
performance-guaranteed approximation. More specifically,
the approximation involved relaxing integer optimization
variables to real-valued numbers so that the integer pro-
gram could be solved as a linear program. An optimal
data aggregation point placement problem in a multihop
routing scenario was studied in [28], where SMs could
play the role of relay nodes with limited capacities. The
optimization model aimed to minimize the total installa-
tion, transmission, and delay cost, and it was solved by an
iterative and heuristic approach.

2) Distribution Networks Monitoring: In transmission
systems, some substations are installed with synchropha-
sors or PMU to measure time-synchronized phasor, fre-
quency, and the rate of change of frequency in voltage
and current. However, due to cost and small phasor
angle differences, PMUs are rarely used in distribution
systems. Compared to PMUs, micro-PMUs have a higher
angle measurement accuracy in the range of millidegree
and, therefore, are suitable for deployment in distribution
systems. In future distribution systems, micro-PMU will
also be installed at key nodes so that different power
parameters, such as power phasors, can be obtained. The
communication issues for PMU and micro-PMU are similar
in nature. Therefore, we use the terms PMU to refer to both
PMU and micro-PMU, hereafter.

The PMU data can be used for load modeling, fault
analysis, and so on but will cause a high communication

Micro PMU

/é\
- é
\

___a(((é

Data access network

Core network ’

Operatlon center

Data center

Fig. 3. Monitoring and control of distribution systems based on wireless communication.
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burden [29]. The characteristics of communication delays
incurred in centralized monitoring and control systems
that utilized multiple PMUs distributed over a large geo-
graphic area were studied in [30]. Simulation results
suggested that it is necessary to optimize the location
of the control center based on the intended smart grid
application. Apart from the control center, it is also critical
to optimize the placement of PMUs [31]. Since PMUs are
not usually installed at all substations, it is necessary to
find out the subset of substations for PMU installation to
achieve a desired performance metric, such as availability,
reliability [32], and observability [33]. The optimal PMU
placement problem has been solved using integer linear
programming [34], genetic algorithm [35], differential
evolution [36], particle swarm optimization [37], and
SO on.

In distribution network monitoring, PMUs and sensors
may be installed on power line poles. These sensors require
the support of an advanced communication network to
deliver their data to the control center or substation.
Wireless sensor networks offer a cost-efficient way to
rapidly establish an end-to-end communication connection
between such sensors and substations. In wireless sensor
networks, some poles do not have a direct communication
link with a substation. These poles must depend on their
neighboring poles as relays in sending measurement and
sensor data to the substation in a hop-by-hop transmission
manner [38]. In such a way, packets from poles that are
many hops away from substations may suffer from an
unacceptably high delay and a low packet delivery ratio.
As such, it is desirable to reduce the number of hops
and shorten the communication route. The works [39]
and [40] are separately proposed to shorten the commu-
nication route by installing cellular network modules on
the poles. As further suggested in [41], it is not necessary
to install a cellular network module on each pole but only
on selected poles. The problem of selecting a subset of
poles for cellular network module installation has been
addressed in [42]. For the purpose of minimizing installa-
tion and operational cost, Fateh et al. [42] have formulated
and solved a constrained optimization problem that finds
the desired number and locations of cellular-enabled poles.
In the optimization problem, the constraints are various
communication requirements, such as delay, connectivity,
and bandwidth.

Dynamic thermal rating for power equipment, such as
power lines and transformers, can help to improve smart
grid efficiency by increasing the power transmission capac-
ity of existing systems without installing new transmission
lines. For dynamic thermal rating, the communication net-
work is required for timely and reliable transmissions of
conductor temperature measurements from in situ sensors
to the control center [43]. Take dynamic line rating as an
example; sensors need to be installed on the power line to
measure the line’s instantaneous conductor temperature.
This temperature may affect the line’s ampacity, which is
defined as the maximum electric current that is allowed

Cyber-Physical-Social Perspective on Future Smart Distribution Systems

to flow. Ampacity may change dynamically as a result of
variations in ambient temperature and weather conditions
over time. For example, a drop in ambient temperature
alone may increase the ampacity of a power transmission
line and, thus, allow the line to carry more current to
support higher demand. Upon receiving the conductor
temperature measurements, the control center can adjust
the power injection into a power transmission line to
operate it close to its technical limits.

3) Distributed Energy Resource Control: Future distrib-
ution systems will be integrated with a large number
of DERs, such as distributed renewable energy, energy
storage units, and EVs. Due to the intermittent nature
of renewable energy outputs, it is critical to implement
dynamic control mechanisms in the distribution systems
to prevent an excessive supply-demand gap, leading to a
catastrophic system-wide failure or blackout.

In dynamic pricing, consumers are offered varying elec-
tricity tariffs at different time intervals using a price-based
program. Based on the latest price information, consumers
will logically use less electricity during high electricity
prices, and hence, demand is reduced during peak-load
hours [44]. As an effective way of demand-side manage-
ment, dynamic pricing requires a reliable communication
network to transmit the latest price information to con-
sumers. The impact of wireless communication channel
impairments on the performance of dynamic pricing was
analyzed in [45]. It showed that, in the presence of com-
munication error and delay, a tolerable supply-demand
gap would impose an upper bound on price update step
size and update interval. In [46], a cooperative communi-
cation scheme was proposed to support dynamic pricing.
The proposed scheme aimed to achieve reliable transmis-
sions of demand requests and price information between
a control center and a group of consumers. This method
exploited the broadcast nature of the radio channel to
enable a neighboring consumer to assist in retransmitting
a failed request or price message after combining the failed
request with its own demand request.

In distribution systems, energy storage systems (ESSs)
are deployed to absorb excessive fluctuation in power
flow. An ESS management scheme is needed to make
charging and discharging decisions. An ESS management
scheme was proposed in [47] to operate reliably over
error-prone wireless communication channels. The pro-
posed scheme uses the Markov decision process to make
a local decision at each ESS and aims to minimize power
loss while keeping the voltage violation probability below
an acceptable level. In practice, not every house will have
its own ESS. A realistic scenario may see multiple houses
within a neighborhood share a single ESS and form a
community smart grid. Such community smart grid may
impose additional requirements on communication net-
works because houses that are close to each other in the
distance may not be on the same electricity distribution
bus [48].
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There is a cost in achieving the desired level of com-
munication reliability. This cost often appears in the form
of reduced spectral efficiency, and it is charged to the
communication service providers. While this is the cost
of improving transmission reliability, there is also a cost
that is imposed by deteriorating transmission reliability.
Specifically, unreliable transmissions of power supply and
demand information, as well as failures in sending a new
electricity price to all consumers, may lead to an inaccurate
demand-side management operation. As such, there is
a tradeoff between incurring a cost to achieve perfect
communication reliability and tolerating a cost associated
with inaccuracy in demand-side management operation.
This tradeoff has been dealt with in [49] through a radio
resource allocation scheme.

B. Power-Communication Network
Interdependence

In distribution systems, the power network depends on
a reliable communication network to collect data and dis-
tribute control commands. On the other hand, the commu-
nication network also depends on the power network for
electricity supply to its equipment [50], [51]. This section
discusses possible cascading failures of interdependent
power-communication networks and cybersecurity issues
in distribution systems.

1) Cascading Failures: In smart grids, the interdepen-
dent relation between power and communication network
is inevitable but may make the system more vulnera-
ble [52], [53]. A failure in the communication network
may result in a loss of sensor data and control command
for the power network. The affected power network may
trigger its protection mechanisms, which may cut the
electricity supply to some communication equipment. With
more communication nodes stopping functioning, the loss
of sensor data and control command suffered by the power
network may exacerbate with more electricity supply cuts.
After a few iterations, this vicious cycle will eventually
bring down the entire smart grid. The situation can get
worse when the system recovery process is delayed by
natural disasters, severe bad weather conditions, and so
on [54]. While network interdependence is inevitable, we
must work on minimizing its impact to materialize the full
potential of a digitized power network.

The cascading failures across interdependent power-
communication networks can be prevented by satisfying
three requirements, namely, power independence, com-
munication robustness, and power robustness. Given the
requirements, Kong [55] developed a method to find
the cost-minimum locations for the installation of data
aggregation points, which are communication gateways.
For each data aggregation point, it is necessary that its
electricity supplier is not from the distribution bus that
it monitors. This condition can ensure that the data
aggregation point will continue to operate, while the
distribution bus that it monitors has failed. Separately,
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Parandehgheibi et al. [56] and Chai et al. [57] have also
studied the effects of internetwork interdependence in a
smart grid but without considering the fact that sensors
and actuators are connected to the control center through
multihop communication routes. In a practical distribution
system, communication routing is an important issue. The
work [58] has proposed a scheme to optimally choose
a communication route that can minimize the impact of
internetwork cascading failures, which are triggered by
an initial failure in either the communication or power
network. In [59], the idea of a power-disjoint commu-
nication route has been proposed. Two communication
routes are power disjoint if they do not have any router
that draws electricity supply from the same power node,
which is also an electricity supplier to the router of the
other route. According to Kong [59], in the presence of
power-communication network interdependence, system
robustness can be maximized by maximizing the number
of power-disjoint routes between communicating nodes.

2) Cybersecurity: With increasing information technolo-
gies integrated into distribution networks, the security of
the cyber system has become a significant concern for
operational efficiency [7]. Generally, there are three funda-
mental requirements for the security of the cyber system:
availability, integrity, and confidentiality [2]. However,
uncertain and unpredictable cyber contingencies, such as
communication failures and malicious attacks, may cause
violation of these requirements [60], [61], thus leading to
energy market disorders and considerable economic losses
in the distribution system.

There are two inevitable cyber factors that would
threaten the operation of distribution networks [62].

1) Packet loss: Considering a large-scale distribution net-
work, a number of SMs need to transmit data pack-
ets to the data aggregator unit for DR control. In
this case, information congestion may occur due to
the limited bandwidth of communication channels
and, thus, causes random packet losses [63]. With
data packet losses, the power supply or consumption
received by the control unit may deviate from true
values, which will break the power balance of the
network.

2) Transmission delay: Since modern distribution net-
works contain various distributed resources and
loads that are geographically dispersed, time delays
would be introduced to the information transmission
process [64] due to the physical distance between
users and control centers. If a time delay happens,
the energy management commands would not be able
to be conducted in time, which will result in a slow
reaction to external conditions, and the performance
of energy scheduling will be degraded.

Apart from the inherent communication limitations,
malicious cyberattacks would also adversely affect the
distribution networks [65]. The most likely forms of cyber-
attacks could be divided into three categories as follows.
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1) Denial of service (DoS): This kind of attack tries to
block or break the information transmission between
grid components [66]. For example, by using the
worms to send a flood of fake requests, the devices
(e.g., service providers and communication links)
would be jammed with spurious packets, which will
result in the loss of critical information exchange
and, thus, deteriorate the system performance. Under
constant DoS attacks, the functionalities of SMs will
be disabled, and the measurements could not be
delivered to the control center for several hours or
even days.

2) False data injection (FDI): The FDI attack aims to
inject malicious data packets to different network
devices, including sensors, actuators, and communi-
cation links [67]. Then, the transmitted data will be
tampered with, and erroneous values will be sent
to the operator to disturb the whole system. For
example, in the electricity market, an FDI attack can
modify the electricity pricing information from the
aggregator by injecting false data into the communi-
cation channels. As the prosumers decide their power
consumption/generation according to the received
electricity price, the electricity market will be greatly
impacted by the FDI attack, and economic losses will
be caused.

3) Replay attack: The basic principle of replay attack
is to send the previously eavesdropped information
packets from sensors to mislead the control cen-
ter [68]. More specifically, the attacker first observes
and records the readings of sensors at a certain
condition and then sends the original data to spoof
the system at the appropriate time. If the demand
in a distribution network increases, the attacker may
replay the measurements during normal operating
conditions to make the control center issues an erro-
neous energy management command.

In recent years, with more diverse and widespread
DERs integrated into distribution networks, the power
system is becoming more distributed at the generation
and control levels [69]. The management of massive
DERs depends significantly on information technology,
including the SM, the communication network, and the
intelligent controller. As a result, the increased intercon-
nection and interoperability of DERs bring more cyber
vulnerabilities into distribution networks [70]. For exam-
ple, the transmitted data are more likely to be inter-
cepted, tampered with, misrepresented, or forged in
the large-scale communication network [71]. Since the
exchanged information is adopted for the dispatch of dif-
ferent energy resources, the corrupted data would result
in decision error, which would further degrade the sys-
tem operation or lead to cascading failure in distribution
networks.

In order to sustain the safety and the efficiency of the
distribution network operation, countermeasures against
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the above cyber threats should be designed and imple-
mented [72]. Some solutions have been proposed in the
literature to address the impact of cyber threats in different
ways.

1) Robust/resilient control: Robust control methods could
enhance cyber resilience by providing adaptive mech-
anisms in the control loop [73]. For example, in [74],
a robust consensus-based distributed optimization
method is proposed to schedule the flexible loads of
distribution networks, where a corrective method is
used to compensate for the impact of packet losses.
Considering the time-varying delays and channel
noises, a delay-tolerant distributed economic dispatch
algorithm is presented in [75], where the delay toler-
ance is guaranteed by adaptively adjusting the gain
coefficients during the optimization.

2) Attack detection: The system operator could utilize
intrusion detection schemes to identify anomalous
behaviors caused by cyber incidents and then isolate
the compromised components from the network [76].
Several detection strategies, such as flow entropy and
signal strength, have been proposed to identify DoS
attacks [77]. A joint-transformation-based scheme is
presented in [78] to detect the FDI attacks in real
time, where the Kullback-Leibler distance between
the real-time and historical measurement variations
is used. In addition, Li et al. [79] develop a Bayesian
inference mechanism to detect the onset of a replay
attack in supervisory control and data acquisition
(SCADA) systems.

3) Secure state estimation: Secure state estimation meth-
ods try to systematically analyze the dynamic behav-
ior of the physical system and then reconstruct system
states from possibly corrupted information [80].
For instance, in [81], a variance-based adaptive
approach is established to estimate the renew-
able generation under unreliable communication
links, where corresponding conditions are derived
to minimize the estimation error covariance. Fur-
thermore, by adopting Kalman filtering, preselectors
and observers are developed in [82] to address the
secure estimation issues in power networks with FDI
attacks.

Nevertheless, there still exist some challenges in the reli-
ability of cyber systems, and further improvements to cur-
rent solutions need to be investigated [83]. In the future
smart grid, cyberattacks may be intelligently designed with
stealthy characteristics and bring more risks to the opera-
tion of active distribution networks [84]. To address these
problems, blockchain technology could be implemented as
a promising way to enhance data security, integrity, and
trustworthiness [85]. On the other hand, the availability
of immense data collected by various sensors makes data-
driven approaches (e.g., machine learning algorithms and
data mining algorithms) a possible solution to predict
cybersecurity incidents [86] and foreshadows the cyber
threats in advance.
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C. Provisioning of 5G for Distribution Systems

There is a significant leap from 4G to 5G new radio
(NR) cellular communication networks. Different from 4G,
also coined as long-term evaluation (LTE) networks, the
5G network targets more diversified goals. To this end,
the 5G network provides three types of services fitting
different scenarios of applications, all of which could be
of critical importance in future distribution systems: ultra-
reliable low-latency communications (URLLCs), massive
machine-type communications (mMTCs), and enhanced
mobile broadband (eMBB). In the context of smart grids,
it is not necessary to leverage the large data throughput
of eMBB since the data generated by a local area power
network are not that substantial. Meanwhile, URLLC and
mMTC types of services could be of significant usage in
smart grid, supporting highly real-time and reliable (such
as protection), or low throughput but massive (such as
SMs and micro-PMU), data flow [87]. In addition, net-
work function virtualization (NFV), mobile edge comput-
ing (MEC), and device-to-device (D2D) communication are
three new features of 5G NR, compared with 4G LTE,
which makes the 5G network an information platform,
which can accomplish the tasks of information collection,
multiplexing, delivery, and computing, which is of substan-
tial benefit for distribution systems. The applications of 5G
for distribution systems are detailed as follows.

Two concerns on the employment of 5G technology in
smart distribution systems deserve discussion.

1) Compatibility: 5G is being deployed together with
existing 4G LTE systems, whose compatibility has
been addressed in the standardization for the migra-
tion (e.g., the dual connection to both 4G and 5G).
Therefore, the device hardware in smart grids can
support the air interface of both 4G and 5G, while the
function upgrading can be accomplished in the device
software (e.g., in a remote manner).

2) Network availability: The 5G network is expected to
be deployed in populated areas due to commercial
motivations. Moreover, the coverage of 5G base sta-
tions could be much smaller than the counterparts in
4G systems. Therefore, the smart grid devices in rural
areas (e.g., the sensors on transmission lines) may
face the challenge of the availability of 5G network
coverage.

1) URLLC for Distribution Systems: In this service,
latency and reliability are the main focus, while data
throughput is of secondary importance, thus being suitable
for highly sensitive real-time control messages. In partic-
ular, the delay in the air interface is strictly limited to
1 ms, thus substantially improving the realtimeness of the
corresponding applications. Meanwhile, the high reliability
assures the operation with an error rate of up to 107>,

An illustration of possible URLLC traffic embedded in
the eMBB traffic is given in Fig. 4. In 5G networks, orthogo-
nal frequency-division multiplexing (OFDM) is used as the
signaling technique. In OFDM signaling, communication
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Hlustration of dynamic scheduling of URLLC sharing

data are modulated to multiple (e.g., 1024) subcarriers
(a.k.a. tones). The signal carrying the same set of data is
called an OFDM symbol, whose time duration is variant
in different systems (e.g., 35.7 us). Then, the new data
are loaded into the next OFDM symbol, where the data
and OFDM symbol are analogous to passengers and car
boxes of an “information train.” The frequency and time
(in the units of subcarriers and OFDM symbols) form a
grid, in which a predetermined subset of points in the grid
is called a physical resource block (PRB). Different PRBs
can be scheduled for different UEs, thus accomplishing
the resource allocation and assuring the orthogonality of
different data traffic. Note that, although the single-carrier
frequency-division multiple access (SC-FDMA) may be
used in the uplink, the conceptual image of the frequency—
time grid is similar to OFDM.

In URLLC, due to the stringent requirement on the time
delay, the data traffic can be scheduled within a very
short period of time. In release 15 of the 3rd Generation
Partnership Project (3GPP), the minimum time duration of
a URLLC packet is two OFDM symbols, whose duration is
tens of microseconds. As illustrated in Fig. 4, the URLLC
packets can be dynamically scheduled, sharing the PRBs
with ambient eMBB traffic (e.g., large-volume file trans-
mission with low requirement on the latency).

The application of URLLC type of service has been
discussed for smart grid in TR 22.804 of 3GPP in the
following aspects.

1) Power distribution grid fault and outage management:
The main focus is the distributed automation of
switching for isolation and restoration. The reliability
is required to be 99.9999%, and the latency is below
5 ms.

2) Differential protection: Due to the high requirement of
the latency of the protection, the target peer-to-peer
transfer interval is required to be 0.8 ms, while the
data packet size is 250 bytes. Moreover, the end-to-
end delay is expected to be no greater than 15 ms.

2) mMTC for Distribution Systems: mMTC can be con-
sidered as a high-end version of communication protocols
for the Internet of Things (IoT), such as narrowband IoT
(NB-IoT). The prominent feature of mMTC is not the
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narrow bandwidth for each user equipment (UE) but the
capability of supporting massive UEs (e.g., sensors). The
mMTC type of traffic is characterized by a large number of
connections, each of which has low-throughput and time-
sparse data traffic. According to [88], the related traffic
can be categorized into the following three types.

1) Command-response type: It consists of small data pack-
ets of command from the center in the downlink
(from the base station to UE) and response from the
device in the uplink (from UE to base station). The
payload could be around 20 B for the commands and
100 B for the response. The round-trip latency could
be up to 10 s.

2) Exception reports: It could be meter alerts with data of
100 B with a latency of 3-5 s.

3) Periodic reports: The reports could be the power
consumption measured by SMs. The data could
be around 100 B, while a large latency is highly
tolerable.

The main challenge of the mMTC type of service is the
large and (possibly) random connections, despite the small
packets and tolerable latency. It is suitable for supporting
various types of sensor networks or IoT. Compared with the
NB-IoT, mMTC has a much larger bandwidth (1.08 MHz
in Release 13 compared to the 180 kHz in NB-IoT) while
still being narrowband. The specific design for a narrow-
band operation has been added to the standards. For the
applicability to sensors with limited power and computing
capabilities in smart grids, the mMTC service can reuse
the legacy data channels and synchronization pilot signals.
Moreover, mMTC UEs are designed to skip the decoding
of the wideband legacy control channels, thus saving the
requirements on the radio frequency (RF) circuits and
computational capability.

3) NFV for Distribution Systems: NFV is a technology for
implementing various network functions in software run-
ning on decoupled hardware. A communication network
that is built upon NFV is called a software-defined network.
Software-defined networking (SDN) has been explored for
smart grid [89]-[91]. Compared to a traditional com-
munication network with specialized hardware, software-
defined networks implement networking middleboxes in
software on cost-efficient generic hardware [92]. With
such hardware-software decoupling, SDN can quickly build
a smart grid communication network in a cost-efficient
manner. Also, by separating the control plane from the data
plane, SDN helps the smart grid operators to manage the
network and system flexibly. As presented in [93], with
software programmability, protocol independence, and
control granularity, the software-defined network can help
smart grids to integrate different standards and protocols,
cope with diverse communication systems, and perform
traffic flow orchestration. More importantly, according
to Dong et al. [94], the software-defined network can
help smart grids in satisfying their diverse communication
service requirements and improving their resilience and
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Fig. 5. Architecture of 5G NR NFV.

robustness through network slicing. Here, network slicing
is the ability to allocate different sets of resources to
different application virtual networks.

5G NR has provisions to facilitate the implementation
of software-defined networks. In contrast to the 4G LTE
system, which simply provides the infrastructure for data
transmission (either in the air or in the core network),
the 5G NR network endows the service providers (such as
the smart grid operators) with the capability of operating
their service systems in a virtual manner by a layer of
abstraction, as if operating their own systems, without
knowing the lower layer details. This is the NFV provided
by the 5G NR network, which decouples the detailed
operations of the communication, storage, and computing
hardware from the software implementation of the service
providers. Through such NFV, various network functions
can be implemented in software running over the 5G
network hardware, which is similar to generic computer
hardware, such as CPU, hard drive, and input/output (I0).

The architecture of 5G NR NFV is illustrated in Fig. 5.
The service provider uses the infrastructure through the
virtualization infrastructure manager (VIM), similar to
implementing software to define and control the network
function. VIM is managed by the management and orches-
tration (MANO) module, which coordinates the resource
for different services (e.g., between smart grid operator
service and traffic monitoring service). The network is
controlled by the SDN controller (e.g., setting the router
configurations remotely using general-purpose network
devices). Then, the VIM operates the NFV infrastructure
(NFVI), such as base stations, core networks, and MEC,
according to the instructions from the service provider.
Although the authors have not been aware of real imple-
mentations of smart grid functions using NFV in 5G NR
networks, there have been discussions on the potential
applications [95].

4) MEC for Distribution Systems: Besides the service
of data transmission, the 5G network also provides the
substantial capability of computing at the network edge.
Without traveling to the cloud through the 5G core net-
work, the local computing using MEC can substantially
reduce the computation latency and data traffic. Since
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many computing tasks of smart grids need to be accom-
plished locally (e.g., the differential protection), the MEC
mechanism will be of critical importance for computing in
smart grids.

Note that the above URLLC service can only reduce the
latency between the UE and the RF front end of the base
station. The latency incurred by the transmission within
the core network (between the base station and the cloud)
and the computing in the cloud is not guaranteed. As a
remedy, MEC facilitates local computing without sending
the data to the cloud, thus substantially reducing the
latency [96]. It is of particular usage for real-time tasks
of smart grids, such as differential protection.

5) D2D Communication for Distribution Systems: D2D
communication is an important feature of the 5G com-
munication system. In D2D communications, two devices
are allowed to exchange messages directly without going
through a cellular base station. For spectral efficiency, a
D2D transmission may be performed concurrently with a
cellular transmission in the same time slot. As such, the
D2D transmission may impose additional interference on
the cellular transmission. Hence, in D2D communications,
it is crucial to control the transmission power to limit
interference.

Advanced D2D communications have been adopted by
Song et al. [97] to connect SMs to the control center, where
the focus was on finding the optimal transmission power
for each D2D transmission such that the aggregate cellular
transmission rate could be maximized while achieving the
desired service quality for D2D transmissions. In a 5G
communication network, the cell radius can be small due
to cell densification. As such, a D2D connection may span
across multiple cells, but a typical D2D transmission should
occur within one cell. This cross-cell D2D transmission sce-
nario was considered in [98] in the context of hierarchical
control of a microgrid system.

IV.PHYSICAL-SOCIAL COUPLING
IN DISTRIBUTION SYSTEMS

Physical-social coupling in distribution systems can
be divided into macrosocial coupling and microsocial
coupling.

The macrosocial coupling is more related to energy
policy and so on. The societal decarbonization plan is
a good example. Decarbonization is the process when
a society converts the economy from one that operates
predominantly on energy derived from fossil fuels to one
that runs almost on clean and carbon-free energy [99].
The goal of societal decarbonization plans generally has
impacts on policies, utilities, and end-users from tech-
nology adoption, consumption patterns, and information
infrastructure. Beyond the technical aspect, many state
decarbonization policies have integrated the objectives of
decarbonization with job promotion, economic develop-
ment, urban planning, and energy inequality issue. For
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example, the electrification of consumer services in the
transportation, buildings, and industrial sectors integrated
with the decarbonization of electrification generation is
one of the significant pathways to achieving a low-carbon
society in the United States [100]. The impacts of electri-
fication on the power grid and carbon emissions are also
notifiable. Household energy behavior will change based
on the societal level of decarbonization and electrification,
which indirectly will affect utilities’ decisions. For example,
current DR programs promoted by utilities need to con-
sider household EV charging time and patterns, and also
the energy inequality issues that many LIHs do not own an
EV. Regarding behavioral patterns, the adoption of energy
efficiency or electrification can produce a rebound effect.
For example, once the cost of EV charging stations or the
electricity cost of charging EVs is reduced, users’ charging
behaviors might change, and more people will charge dur-
ing the cheaper period, generating a rebound effect or peo-
ple overall use more energy because of cheaper electricity
cost [101]. Integrating social-technological and behav-
ioral strategies is important to achieve deep reductions in
greenhouse emissions. It is necessary to involve electrifi-
cation and electricity decarbonization. Future research is
needed to explore other potential implications of the wide
adoption of electrification and the risks associated with
electrification.

The microsocial coupling is more related to different
participants/stakeholders, such as consumers, retailers,
and system operators in distribution systems. This section
focuses on how the microsocial system influences the new
technologies adoption and DR implementation in the plan-
ning and operation of distribution systems, respectively. In
addition, the impact of COVID-19 on consumers’ electricity
consumption behavior has also been studied.

A. New Technologies Adoption

SM, DERs, and EVs are the three main enabling tech-
nologies for the 3D transformation of future distribution
systems. How the adoption of these three new technologies
is influenced by the different social factors is discussed in
the following.

1) Smart Meter Installation: SMs can collect fine-grained
electricity usage data from consumers and communicate
with utility companies in real time, which is an important
part of distribution systems. Accurate load forecasting
and optimal management of electricity generation and
distribution can be undertaken using these fine-grained
data, which could lead to increased overall energy savings,
reduced greenhouse gas emissions, and lower consumer
costs [102].

The opinion of residents is the most important com-
ponent in determining whether an SM can be effectively
installed in their homes, and large-scale SM installation
can only be accomplished if the majority of people wel-
come this new technology. Despite the promising future
of a large-scale installation of SMs, some opponents are
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opposed to SMs being installed in their homes for a
variety of reasons, including concerns about privacy leak-
age [103], radiation-related health concerns [104], unfa-
miliarity with the new technology [105], fears that SM
installation will increase costs [106], and so on. Thus,
it is important to investigate the factors that influence
residents’ attitudes about SMs to remove the hurdles to
large-scale SM installation, which can be summarized into
two aspects, namely, sociodemographic characteristics and
social-psychological factors, as shown in Fig. 6.

Gender, age, social class, income, and other demo-
graphic characteristics are significant for understanding
consumers’ energy consumption behavior and adoption
of new technologies [107]. Many studies have looked
into residents’ attitudes toward SM installation. Linewe-
ber [108] conducted an online survey involving over 1100
residents in the United States and found that nonwhite
and unmarried residents are more positive about SMs,
while slightly older, white, and married customers were
opposed. Another study looked at samples from 17 states
in the United States with a high rate of SM installation and
found that participants’ income and political ideology were
connected to their support for SMs. SM installation was
more likely to be supported by people with higher incomes
and who are identified as liberals [109]. Bugden and
Stedman [110] further confirmed that SM involvement
was influenced by age and income. Chawla and Kowalska-
Pyzalska [111] investigated SM awareness and acceptance
among Polish social media users and developed a model
to predict residents’ desire to install SMs. According to
their research, consumers’ propensity to accept SMs is
dependent on their age, income, and family size that SMs
are more likely to be accepted by older consumers with
higher incomes and larger families. In addition to the
works mentioned above, more demographic factors, such
as level of education, occupation, and residential area, can
be investigated in the future in order to better understand
the relationship between willingness to install SMs and
residents’ sociodemographic characteristics.

Consumers’ psychological elements, such as trust, pri-
vacy concerns, proclivity, and cognition, are the most
influential in shaping their opinions toward SM installa-
tion. For starters, numerous studies have demonstrated
that residents’ trust in utilities is a critical factor in their
acceptance of energy alternatives [112]. Consumers’ faith
in utilities may have a substantial impact on their attitudes
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toward SM installation when they are unfamiliar with
SMs and lack the necessary knowledge to assess the risk
and reward of installation [113]. Karlin [114] found trust
as a key factor influencing consumers’ reactions to SMs.
Chen et al. [115] claimed that consumers’ faith in utilities
is a nonnegligible factor that influences their adoption of
SMs in an indirect manner. Second, inhabitants’ concerns
about privacy leakage are a crucial element that influ-
ences their attitudes [116]. Chen et al. [115] found that
acceptance of SMs is adversely correlated with perceived
privacy risk, and they recommended that privacy concerns
be addressed in order to increase adoption. According to
Hmielowski et al. [109], consumers’ opinions and experi-
ences with privacy invasions are linked to levels of support
for SM installation. Customers who do not trust utilities
to protect their privacy are less likely to support SM
installation [117]. Third, individuals’ preferences influence
whether or not an SM is installed in their homes. Cus-
tomers are primarily interested in SMs because they can
conserve energy (which means lower costs), rather than
for environmental, technological, or regulatory grounds,
according to a field experiment done in Germany by
Berger et al. [118]. Idoko et al. [119] looked at SM
installation from the perspective of a developing coun-
try and found that bill estimation anxiety and perceived
behavioral control were the most important elements
in determining SM purchasing intentions. According to
Hmielowski et al. [109], individuals who believe that tech-
nology enhances people’s lives are more inclined to install
SMs in their houses. Furthermore, Nachreiner et al. [120]
and Chawla and Kowalska-Pyzalska [111] discovered that
providing homeowners with feedback information regard-
ing energy use profiles and real-time electricity prices
and, receiving recommendations from their neighbors, will
increase their proclivity for SM installation. Cognition, or
residents’ judgment of usefulness or environmental prob-
lem, is the fourth aspect that influences their choice. Per-
ceived utility was demonstrated to be a positive predictor
of SM adoption intention in [115] and [121]. Chen and
Sintov [122] conducted a survey in southern California
and discovered that residents who are more connected to
nature have a higher propensity of adopting SMs. Many
additional studies have revealed that those who are con-
cerned about the environment are more likely to approve
the installation of SMs [123].

2) Distributed Energy Resources: DERs can help to pro-
mote the accommodation of local energy and enhance
the energy efficiency of the distribution systems. However,
developing DERs needs the acceptance and cooperation of
the social public to a large extent. For example, rooftop
PV needs to be installed on the rooftops of citizens’ houses
or flats, and thus, the installation needs negotiation with
the house owners or the local authorities. Therefore, social
acceptance of DERs plays an important role in this context
and can even affect the development of DERs to some
degree.
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Social acceptance of DERs can be divided into three
dimensions: sociopolitical acceptance, community accep-
tance, and market acceptance [124]. Sociopolitical accep-
tance concerns the public acceptance and the acceptance
of key stakeholders (energy consumers and investors) of
related energy policies. Despite the general support from
the public in an opinion poll [125], there is a gap between
the support in the polls and the actual success in construct-
ing DERs [126]. The explanations of this social gap can
be three aspects: democratic deficit (i.e., the decisions are
made by the minority who opposed the DERs instead of
the majority who are in favor) [127], qualified support
(i.e., people questioned the problems of DERs’ limits and
controls) [128], and self-interest (i.e., people supporting
the DERs may oppose due to the protection of their own
self-interests) [129]. For example, those who are skepti-
cal about community-scale battery storage are concerned
with the problem of sharing [130]. Such concern reflects
people’s self-interests. Therefore, the government should
develop some related policies to reduce the social gap,
such as collaborative planning of sitting DERs and reliable
financial incentives, and, thus, improve the acceptance of
DERs.

Community acceptance focuses on the acceptance of
local stakeholders (mainly refers to local residents) to
DERs. One main hindrance to the acceptance of distrib-
uted energy by local residents is the attitude of NIMBY,
as known as “Not In My Back Yard” [131]. Those who
support NIMBY tend to express their initial support or
acceptance of the distributed energy projects as long as
they are not implemented in their back yards in the future.
The community acceptance has a temporal nature, and
in [132], a U-curve is proposed to describe the local
acceptance before, during, and after project implementa-
tion. The U-curve starts from high acceptance to lower
acceptance during the siting process, which may cause
undesirable project implementation in their communities,
and backs to a high level of acceptance after the project is
finished and benefits the local community. Consequently,
some approaches to improving community acceptance
were concluded, such as the awareness of local benefits
brought by DERs [133], the guaranteed management and
maintenance of DERs in the future [134], and the financial
compensation for installation [135]. These approaches can
help the government develop related policies and take
measures to raise social acceptance on the community
level.

Last but not least, market acceptance describes the
adoption level of actors (mainly refers to investors) in
the distributed energy market. The investments in the
DERs are mainly from two parts: traditional investors
(such as large supply utilities, project developers, and
financial institutions) and local citizens [136]. In the
countries where DERs are being deployed and devel-
oped in rapid progress (such as Ireland, Spain, and the
United Kingdom), traditional investors make up a major
part of the investment [137], while, in the countries
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pioneering the development of this field (such as Denmark
and Germany), more than 50% of the investment is
sourced from local citizens [136]. The main concerns of
local citizens of investing DERs include high-risk aversion,
a lack of access to capital, and diffidence in making
investment decisions [138]. Consequently, some top-down
policies can be adopted to relieve the public of the financial
pressure to invest and thus mobilize investment from local
citizens, including feed-in tariffs, grants, and tax incen-
tives [136]. Alternatively, traditional investors, such as
renewable energy project developers, can take the lead in
investing and alleviate citizens’ concerns about investment
risks [138]. In such a way investment from both traditional
investors and local citizens can be mobilized. Therefore,
studying these concerns and corresponding measures can
effectively help increase market acceptance.

Fig. 7 shows the structure of social acceptance men-
tioned. Although social acceptance of DERs can be divided
into three dimensions, it can be seen that these three
aspects are actually interrelated through the reviews
above. Improving one aspect of social acceptance can also
enhance other ones, forming a virtuous cycle. Therefore,
future research can be concentrated on how to inte-
grate sociopolitical acceptance, community acceptance,
and market acceptance and form a general framework for
social acceptance in the context of DERs. Meanwhile, some
previous works trying to do so can also be referred to
for further study. Pefialoza et al. [139] have researched
the combined acceptance (sociopolitical and market) of PV
panels and heat pumps. van Wijk et al. [135] proposed a
compensation scheme to improve both market and com-
munity acceptance. Devine-Wright et al. [140] proposed a
social acceptance framework for renewable energy storage
based on the integration of sociopolitical acceptance, com-
munity acceptance, and market acceptance. These works
are based on the three aspects of social acceptance and
make fusion organic, which can be referred to in future
studies.
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3) Electric Vehicle Integration: The traditional trans-
portation sector is heavily reliant on fossil fuels and
accounts for a significant portion of total greenhouse gas
emissions. Electrification of the transportation sector is
critical for reaching the decarbonization goal [141], where
EVs are at the core of transportation electrification. With
the use of vehicle-to-grid solutions, large-scale adoption
of EVs would not only help cut greenhouse gas emissions
but also provide the potential for saving surplus renew-
able output, peak load shifting, and power grid regula-
tion [142]. However, the charging behavior of EV owners
can have a substantial impact on vehicle-to-grid, which
could pose problems when large-scale EVs are integrated
into the power grid. According to Morrissey et al. [143],
most EV customers charge in the early evening at peak
load, making power balancing even more difficult. As a
result, there is a requirement for smarter EV charging man-
agement and greater utilization of its benefits as flexible
resources in the smart grid. Fig. 8 summarizes the elements
that influence people’s propensity to adopt EVs and smart
charging, as well as incentives that could encourage more
people to utilize these technologies.

Various factors influence public perceptions of EV adop-
tion, which can be divided into three categories: techno-
logical considerations, financial issues, and psychological
aspects. Technical considerations involve the character-
istics of EVs and accompanying items, such as charg-
ing stations. The biggest impediments to the large-scale
adoption of EVs are perceptions of their shortcomings,
such as range restrictions, recharging time, and a lack
of charging infrastructure [144]. Financial issues, such
as purchase price, charging price, maintenance, and recy-
cling cost, are critical when customers choose whether or
not to purchase an EV [145]. Psychological factors also
influence adoption. Customers are more likely to purchase
EVs if they perceive that purchasing EVs may have favor-
able symbolic and environmental attributes according to
Noppers et al. [146]. People are more inclined to adopt
EVs when they believe that significant others will do
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so [147]. Many incentives methodologies, both financial
and nonfinancial, have been used to reduce barriers and
encourage more people to adopt EVs. Santos and Rembal-
ski [148] indicate that current EVs are not cost-competitive
with traditional cars, and appropriate subsidies can boost
EV sales. Hardman et al. [149] investigate the impact of
financial purchase incentives and suggest that instant
incentives and tax exemptions are the most effective when
customers buy an EV. Other studies advocate bundling EVs
with auxiliary services or complementary items to encour-
age adoption, such as [150], which claims that bundling
EVs and community solar power will improve customers’
purchasing propensity. According to Hinz et al. [151] and
Fojcik and Proff [152], providing supplementary services is
necessary for EV adoption.

The adoption of EVs in the near future may pose addi-
tional challenges for power systems, increasing electricity
demand, such as in the early evening [153]. Therefore,
smart charging systems, where EVs are charged under
control at variable power to meet the collective needs
of grids (e.g., alleviating the load stress) and EV owners
(e.g., charging when the electricity price is low), become
a solution to secure grid stability and integrate renewable
energy [154]. Smart charging systems inevitably require
the participation of EV owners. The adoption of smart
charging, however, is affected by various factors con-
cerned by EV owners, which can be concluded in three
aspects: usage flexibility, minimum range requirement, and
information privacy. Usage flexibility describes EV own-
ers’ expectations of taking dominant control during smart
charging. On account of the variable power input, the
smart charging process can be longer than conventional
charging (i.e., always at the maximum power). Conse-
quently, PV owners expect to have the override option
for emergency usage instead of charging under control
during the whole process [155]. Meanwhile, PV owners
tend to make minimum range requirements for the smart
charging result. For example, in [156], EV owners stated
that they hope to drive at least 100 km after the smart
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charging process to relieve their range anxiety. Besides,
EV owners have privacy concerns. Since smart charging
usually requires some information on vehicle usage, such
as planned departure time, EV owners do not expect any
leakage of their housing and private information leading to
privacy problems [157]. It can be concluded that EV users
prefer user-managed charging to supplier-managed charg-
ing due to personal control [158]. Apparently, for now,
the complete implementation of smart charging systems is
still faced with some requirements and worries from EV
owners.

Consequently, measures should be taken by the author-
ity to encourage EV owners to actively adopt smart
charging systems, mainly from three aspects: financial
incentives, environmental appeals, and technical improve-
ment. The most common incentives are financial ones.
An investigation in [159] showed that, with high enough
financial benefits, EV users are willing to charge EVs
under control. In addition to financial incentives, envi-
ronmental appeals can act as another type of incentive.
In [160], when informed that free-cost charging in a
green way during midday hours is available (i.e., charge
for free when power generation of renewable energy
is at its peak), EV owners will change their charging
behaviors and turn to smart charging, thus increasing
renewable energy accommodation. Débelt et al. [159]
suggested that people are willing to smart charge their
vehicles for the contribution that they can make to envi-
ronmental friendliness and traffic decarbonization. Tech-
nical improvements on smart charging systems are as
important as incentives, such as optimizing the location
of smart charging stations [161], constructing more reli-
able charging systems [159], and translating battery state-
of-charge (SoC) into user-friendly information based on
their profiles (such as miles or working days that can be
covered) [162].

In conclusion, the adoption of EV and EV smart charging
systems is influenced by various factors, such as financial
issues, psychological concerns, and security worries. To
encourage the public to embrace such new technologies,
different types of incentives should be applied. To facilitate
decarbonization, both social and technical factors of the
transition to EV have been gradually studied [163]. Thus,
future works on EVs and their related technology should
not only focus on the technical improvements but also
consider the social adoption by the general EV owners.

B. Demand Response Implementation

DR has received great attention from energy policymak-
ers. Implementing DR programs is one effective approach
to decreasing or shifting energy demand by reducing cus-
tomers’ electricity usage during peak hours in response
to changes in the electricity price [101], [164], [165].
One of the major benefits of DR is to help defer or
avoid investment in new power generation or transmission
capacity; other benefits of DR include securing power
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Table 2 Multidimensional Challenges of Implementing DR and Smart
Grid Technologies

Dimensions Measures
e Perceived personal constraints
Social- . Anxi;ty andAuncerlainty in technology adoption
psychological . Pergewed fairness i
factors e Social support, social norms
e Trust in utilities and internet providers
e Energy and climate change concerns
e Income
Socio- . Gender., race/ethnicity
demographics ° Educa}lon
e Location (rural vs. urban)
e Employment status
o Disadvantaged groups (elderly, disability)
o Household size
Household e Type of housing (e.g., single house vs apartment)
characteristic e Homeownership status
& activities o Type of household activities (e.g., cooking, laundry,

entertainment, EV charging, etc)
o Building efficiency & weatherlization

Technology e Indoor environment quality

accessibility e Availability of HAVC, energy management tech-
& energy nology, and smart appliances

inequality o Energy service reliability and quality

o Frequency of power outages

o Frequency of appliance use and travel behavior for
EV

o Energy saving behaviors

Behavioral e Changes in other activities (not flying, driving,
& economic more people at home during the pandemic)
patterns e Time of using energy

e Energy efficient appliance purchase
e Hourly energy/electricity wholesale and retail
prices

supply, improving system restoration capacity, avoiding
power outages, reducing costly network reinforcements,
improving the use of renewable sources, providing power
frequency regulation services, reducing greenhouse gas
emissions, and so on [166]. DR is commonly implemented
through the decisions made by end-users in response to
a price signal. Customers can curve down their peak
load and potentially reduce overall energy consumption
by changing thermostat setpoints [167], altering the fre-
quency and time of using ACs and water heaters [168],
white goods (washing machines, dryers, and dishwashers)
usage [169], or EV charging [101]. Typically, utilities have
designed several strategies to motivate customer partici-
pation, including demand reduction focusing on overall
reduction in electricity use or DR focusing on decreasing
or increasing electricity use at specific times [170].

To successfully implement or promote DR programs,
utilities and policymakers need to understand how various
factors and challenges influence user engagement. While
a majority of DR barriers and policy focus on financial
costs, electricity rates, program complexity and structure,
and so on, we classify five main challenges based on con-
sumers’ perspectives: 1) social-psychological challenges;
2) sociodemographics; 3) household characteristics and
activities; 4) technology accessibility and energy equity;
and 5) behavioral and economic patterns, as shown in
Table 2. Since the works on behavioral and economic
patterns have been summarized in [171], only the first four
challenges are discussed in the following.
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1) Social-Psychological Challenges: Both price and
incentive-based DR programs are based on the assump-
tion of rationality and utility maximization borrowed
from microeconomic theory, arguing that people are self-
interested, instrumental, and behave as rational actors
who consistently weigh the expected costs and benefits
of their actions [165], [172]. However, individuals do
not always make rational decisions [173]. Their decisions
could depend on other social-psychological factors, such
as cognitive load, motivation, emotions, trust, perceived
risk, and behavioral control [174]. For example, some
researchers have consistently identified trust and confi-
dence in the utility companies as important influences on
a customer’s acceptance of direct load control (DLC) pro-
grams, an important type of DR [175]. Mistrust in utilities
can arise before or after DR enrollment and is often linked
either to technical issues or a lack of clarity on the types of
DR and wondering whether utilities or customers benefit
from DR [176], [177]. Other mistrust can come from con-
cerns around data privacy and autonomy connected to DLC
and consumers’ ideas of why utilities pursue DR [178].
While bill reductions and financial benefits are the most
common motivations identified, environmental and other
social benefits are also important although they may not be
obvious to users. For example, total electricity use will not
necessarily reduce from DR [179]. Other motivations for
considering DR, including override option provided [180],
included free or reduced-cost technology [181], increased
control over energy use and bills [179], and expected
fun or interesting DR participation [182]. Other social
motivations included pride discussing participation with
neighbors [183], helping to increase electricity system
reliability [178] or DR with a local focus [184]. Other
social-psychological factors include efforts, time, conve-
nience, and thermal comfort that can influence individ-
uals’ energy use [185], [186]. In addition, other factors,
such as attitudes, social norms, and behavioral tendencies,
affect people’s energy use behaviors [187], [188]. Tech-
nology anxiety negatively affects residents’ willingness to
pay for home energy management systems with DR in
Tokyo [177].

2) Sociodemographics and Household Characteristics &
Activities: Compelling evidence has shown that complex
sociodemographic and household characteristics are linked
to energy use patterns and DR participation [189], [190].
For example, age, gender, education, employment sta-
tus, income, household, and dwelling size, and home-
owner status significantly impacted household energy
use [191]. However, the relationships among sociodemo-
graphics, household characteristics, and residential energy
consumption are not always consistent and somewhat
mixed. For example, DR acceptance was higher by higher
income households in the California SPP trial [192].
A review of ten empirical studies in Europe indicated that
household size, dwelling size, income, employment status,
and living conditions (i.e., rural versus urban) have almost

always had a significant relationship with energy demand.
In contrast, age and homeownership sometimes have a
significant relationship, but the education level rarely mat-
ters [193]. Similarly, a study found that factors such as
age, gender, income, education, employment status, social
grade, and housing tenure were not consistently associated
with the willingness to switch to a TOU pricing tariff in the
United Kingdom [194]. Overall, the U.K. LCL trial found
only weak correlations between household characteristics
and DR [195]. Another study reported that willingness
to switch to a TOU tariff was not related to gender or
homeownership [196]. These social-demographical and
household characteristics can influence residents’ energy
habits and household activities, which also influences resi-
dents’ acceptance of the DR program. For example, a large-
scale survey in the United States suggests that household
appliance activities (e.g., electric water heaters and ACs)
and load profiles are related to incentive-based DR par-
ticipation for peak load curtailment through reward pay-
ment [164]. Another study conducted in Japan suggests
that household heterogeneity and multifaceted factors of
household activities, scheduling, and behavioral intention
to accept DR are related to DR flexibility potential [190].
For example, younger residents, households with children,
and household size with three or more people are more
willing to participate in DR and accept a longer shiftable
period than their counterparts. Full-time employees and
those who typically use laundry appliances during the
evenings are less likely to participate in DR and shift appli-
ance use than their counterparts. Habitual and cultural
factors also influence DR acceptance [177]. For example,
the factors of difficulties in changing the time allocation
of daily activities, preferring to dry clothes under the sun,
concerns for hygiene, and machine noise at night are the
main barriers to accepting DR and a longer shiftable period
in Japan [190].

3) Technology Accessibility and Energy Inequality: The
sociodemographic factors are much connected with the
issues of technology accessibility and energy inequal-
ity [197], [198]. The fairness of DR programs becomes
an energy equity issue based on the barriers that low-
and moderate-income households have faced, including
financial constraints, split incentives, aging, nonelectric
appliances, internet or broadband connectivity, and work
schedule [197], [199]. For example, households with more
appliances or with a more flexible working schedule are
more likely to accept DR [194]. In contrast, low-income
households (LIHs) are facing the challenge of higher costs
of peak electricity prices and smart appliances, building
and appliance inefficiencies, inflexible schedules, and lack
of awareness of energy-saving or difficulty using enabling
technologies (e.g., inefficient thermoset usage) [197]. For
example, LIHs have lower participation rates in many
energy-efficient programs and own fewer appliances and
smart grid technologies. In addition, LIHs tend to set one
fixed temperature throughout the day, even when they
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Fig. 9. Sample of 532 N.Y. residents’ weekday time of use

electricity during early COVID-19, March and April 2020 [201].

own a programmable thermostat, which might use more
energy. More importantly, many LIHs are renters. As a
result, renters often lack control over the type of appliances
installed at home. The problem of “spilt incentives” exists,
where landlords are not motivated to invest in efficient
or smart appliances because tenants receive most of the
benefits of installing upgraded appliances [200]. There-
fore, improving energy equality and technology accessibil-
ity issues through DR among the vulnerable populations
(e.g., LIHs and the elderly) is essential.

C. Impact of COVID-19 on Distribution Systems

1) Impacts on Energy Pattern: During the pandemic,
the total household energy consumption increased, but
the residential energy pattern also changed. For exam-
ple, during the early pandemic monthly, such as March
and April 2020, a study shows that home -electricity
use in New York areas began to increase significantly
between the hours of 6:00-7:59 am. and leveled off at
10:00-11:59 am. [201] (see Fig. 9). Electricity usage
continued to rise slightly until it reached peak consump-
tion level at 6:00-7:59 pm. and decreased after that fol-
lowed by a final decrease at 10:00-12:00 am. Overall, the
home energy pattern shows a continuous rise in electric-
ity use during working hours (9:00 Am-5:00 pm.) that
would usually be a “dip” from not being at home before
the pandemic. According to the U.S. Energy Information
Administration (EIA), before the pandemic, overall energy
demand levels in the United States generally rise through-
out the day, and the on-peak hours usually occurs between
7:00 am. and 10:00 em. on weekdays. In contrast, the “off-
peak” hours refer to the time when demand levels are the
lowest between 10 pm. and 7 am. and on weekends [202].
As mentioned earlier, this pattern is different from the load
curve during the pandemic.

The peak energy hours in the early mornings have
shifted to midday under work-from-home situations, with
other studies reporting increases of 30% in midday con-
sumption in the United Kingdom [203] and 23% in the

710 PROCEEDINGS OF THE IEEE | Vol. 111, No. 7, July 2023
Authorized licensed use limited to: Purdue University.

United States [204]. This shift brings challenges in man-
aging utility companies’ daily load profiles and potential
financial impacts to disadvantaged end-users who expe-
rienced increased energy bills while having their income
impacted. Researchers need to know that different income
groups have distinct energy profiles and behavioral pat-
terns. For example, LIHs are likely to have unique stay-
at-home patterns and energy practices, such as staying
at home more than the higher income groups during the
nonpandemic period, and peak hours-energy-use patterns
that also tend to differ from those of higher income
groups [197], [205].

The epidemic has a tremendous influence, but the
degree and manner of impact on different locations vary
because of differences in social development, customs, and
urban characteristics [206]. As an example, we looked
at the impact of COVID-19 on the energy pattern of
Guangdong, an affluent province in China. We chose four
periods (each containing five weekdays) for analysis based
on the end of the Chinese New Year as the dividing point:
epidemic peak period (February 3-7, 2020), epidemic mit-
igation period (March 9-13, 2020), previous year’s same
period of epidemic peak period (February 11-15, 2019),
and previous year’s same period of epidemic mitigation
period (March 18-22, 2020). The average daily load pro-
files of the whole province and its 21 cities during the four
periods are depicted in Fig. 10.

The little pictures in the first two rows correspond to
nine cities in the Guangdong-Hong Kong-Macao Greater
Bay Area. It can be seen that: 1) except for Zhaoqing,
the electricity consumption in the area has recovered
to 84.3%-93.3% during the epidemic mitigation period;
2) Dongguan and Zhongshan have the greatest reduction
in electricity consumption due to the presence of more
small and medium-sized enterprises; and 3) the electricity
ratio in Zhaoqing is higher during the epidemic’s peak
phase than it is during the remission period. One expla-
nation for this phenomenon is the slower return to work.
Another factor is that Zhaoging is in a population outflow
region, and the epidemic surges during the spring festival
when people return home. As a result of the disease iso-
lating these people in their houses, the region’s electricity
consumption has increased.

Five cities in eastern Guangdong are represented by the
small pictures in the third row.

1) The power ratios of the cities in eastern Guangdong
were all greater than the province average during
the epidemic’s peak. The fundamental reason is that
the eastern part of Guangdong is a population inflow
area during the spring festival, and regional customs
prevent local inhabitants from temporarily relocating
during the epidemic’s peak before the 15th day of the
first month.

2) The load curves in Heyuan and Meizhou during
the epidemic mitigation period have changed signif-
icantly compared to the same period in 2019, with
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Fig. 10. Daily load profiles of cities in Guangdong during four periods: 1) red solid line represents epidemic peak period; 2) blue solid
represents epidemic mitigation period; 3) gray dashed line represents previous year’s same period of epidemic peak period; and 4) black

dashed line represents previous year’s same period of epidemic mitigation period.

a similar load during the daytime peak hours but a
significantly lower load in the evening hours, which
is expected to be since some local enterprises have
not yet resumed work and fewer enterprises consume
electricity in the low valley.

Another five cities in western Guangdong are repre-
sented by the small pictures in the fourth row. We found
that the Qingyuan area has more small- and medium-sized
firms that have recently relocated to the Pearl River Delta
region, and it is not a population-moving region, resulting
in a slower rate of work resumption.

2) Impacts on Energy Insecurity and Energy Medical Needs:
Rising residential energy demand overall and during
new peak hours may pose severe burdens for LIHs and
exacerbate energy insecurity and burdens during the pan-
demic [207], [208]. LIHs and socially disadvantaged com-
munities have faced long-standing energy insecurity (i.e.,
the lack of equal access to energy resources) and energy
burdens (i.e., the inability to pay utility bills). Energy
insecurity and burdens in the United States are expected
to rise due to increased electricity prices, inefficient homes
or appliances, and extreme weather events. On average,
the median household energy burden, measured by the

Vol.
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percentage of a household’s income spent on energy bills,
is approximately 3.1% across United States cities; in con-
trast, for LIHs, this figure is more than 2.5 times as high,
at 8.1% [209]. During the early pandemic of 2020, a
study showed that higher income households contributed
higher electricity bills due to their larger homes or more
household size. However, lower income families in New
York had higher energy burdens than other higher income
groups [208]. Specifically, the average monthly energy
burdens were 4.01% for LIHs, 3.57% for lower medium,
2.54% for upper medium, and 1.85% for high-income
households.

Extreme events have intensified energy insecurity for
LIHs in many ways. For example, during the pandemic,
LIHs tend to experience layoffs that challenge their ability
to keep their home warm or afford the utilities. Race,
age, and gender inequalities have also confounded these
effects. Some LIHs who are struggling with utilities have
to make tradeoffs between utility services, food, medicine,
and other necessities by adopting certain unsafe behaviors,
such as using ovens or burning charcoal for heat [210].
LIHs are also more likely to live in less efficient and poorer
quality housing and use older, less energy-efficient appli-
ances, and HVAC systems than higher income populations.
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The energy insecurity among LIHs is exacerbated by the
private rental sector, leaving renters less able to, or owners
of rental properties, have little incentives to invest in
efficiency improvements [197]. More importantly, a lack of
quality energy infrastructure and utility services typically
happens in low-income communities [211].

Energy security and affordability are also crucial for
residents with complex health conditions during the pan-
demic, which potentially increases their need for elec-
tronic medical devices or their health that is affected
by heating and cooling [210], [212]. For example, low-
income populations generally are people over 65 and those
with disabilities or medical needs that affect heating and
cooling. A recent study found that 13% of low-income
residents in New York reported that their medical condi-
tions were affected by heating and cooling equipment use
during the early COVID pandemic. In contrast, only 3%
of medium- and 3% of high-income households had this
situation [208]. These disadvantaged groups with medical
needs are also normally suffering from high energy bur-
dens due to the conditions of housing inefficiencies, low
wages, or prioritization of other necessities [213]. Based
on an epidemiological model, researchers reported that
households’ inability to adopt social distancing because
their constraints in utility and healthcare expenditures
can drastically affect the course of COVID disease out-
breaks in five urban United States counties, including
Allegheny, Hidalgo, Los Angeles, Philadelphia, and Oak-
land [214]. Health interventions combining social distanc-
ing and resource protection strategies for LIHs, such as
providing sufficient utility and healthcare access, are the
most effective way to limit the COVID virus spread to low-,
medium-, and high-income levels. Therefore, it is critical
for policymakers to pay attention to the multidimension-
ality of energy, housing, and healthcare access for future
disasters or extreme event management.

Consequently, the bundled challenges of energy
insecurity and burdens increase the likelihood of LIHs
experiencing physical and mental health challenges, par-
ticularly during the COVID pandemic or other extreme
events [212]. Households that experience energy inse-
curity and burden situations could face many poten-
tial immediate or long-term negative impacts on their
housing quality, psychological stress, and overall well-
being. These COVID-related challenges highlight the crit-
ical need to develop a long-term plan for reliable,
equitable, and resilient energy systems to protect under-
served communities.

V.CYBER-SOCIAL COUPLING IN
DISTRIBUTION SYSTEMS

Fig. 11 shows the cyber-social coupling in distribution
systems with a focus on electricity consumers, where the
social system contains a massive number of consumers,
and the cyber systems contain different networks (i.e.,
traditional communication networks and social networks)
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Fig. 11. Cyber-social coupling in distribution systems.

and distribution systems’ control center. Consumers in
distribution systems can generate different kinds of data in
real time. These data generated from the social system can
be further processed and translated into actual information
in the cyber system. For example, the consumption behav-
ior can be analyzed, and sociodemographic information
of consumers can be inferred based on how much elec-
tricity they consume in different time periods. The works
about behavior analysis and sociodemographics informa-
tion identification were summarized in [171]. For another
example, what the consumers say in social networks, called
social sensors, can also be used for distribution systems
management, such as outage detection. In addition, the
privacy of the generated data from consumers is a signif-
icant concern that should be fully addressed. Thus, this
section discusses two topics, i.e., social sensors and data
privacy and pricing, which couples the social and cyber
systems.

A. Social Sensors for Distribution Systems

It has been proven that the reliability of grid systems
can be guaranteed by installing physical sensors. However,
due to the high time costs and economic investments, it is
difficult for countries or public utilities to achieve the wide-
spread placement of physical sensors. In addition, physical
sensors may be affected by cyber—physical attacks and may
even be destroyed during disasters. Due to these limita-
tions of physical sensors and the large amount of data
that people generate on social media, social sensors have
been regarded as another candidate method for utilities
or researchers to improve the dependability of distribution
systems. From the perspective of the application fields, the
social-sensors-based method can be mainly classified into
power outage detection and other applications.

Extremely natural disasters, such as hurricanes, earth-
quakes, and civil unrest, may cause a lot of damage to
the city, leading to a power outage in a large area. Con-
sumers who frequently use social media (such as Twitter,
Facebook, and Instagram) may post important information
related to this event during a power outage. This kind
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of data can be used to identify the outage first and then
help utility companies or the government to take measures
to tackle this problem. In [215], by using latent Dirichlet
allocation, a dataset containing keywords of the outage
was generated to detect four types of outages (e.g., power
outages, communication outages, power-communication
outages, and others). The support vector machine (SVM)
was used to detect outage-related tweets. After then, a
transfer learning model, bidirectional encoder represen-
tations from Transformers (BERT), was used to classify
the tweets into four types above. By using social media
to reinforce the capabilities and reliabilities of the smart
sensor in the power grid, Baidya et al. [216] discussed how
to use images, keywords, and geotags to identify the power
outage. In [217], a novel probabilistic model with the con-
sideration of the text, time, and posting location was pro-
posed to detect power outages. Specifically, to improve the
detection accuracy, a supervised topic model was utilized
to improve the detection accuracy. Based on the keywords
from tweets, Bauman et al. [218] focused on detecting
power outages in a local area based on a few sets of rele-
vant tweets reporting emergency events. Most importantly,
Bauman et al. [218] gave the relationship table between
the number of tweets posted and the frequency of events
that occurred. Correa et al. [219] showed the relationship
between the outage hours reported by companies and
outage hours reported by users. In addition, a novel mobile
application, Grid-Watch, was used to capture the data
and to help people automatically detect electricity outages
in [219]. In order to investigate how many phones are
needed to ensure satisfying outages detection, a stochastic
model was used to approximate the devices with the
installation of Grid-Watch. Apart from algorithm applica-
tion, in [220], hardware named GridAlert was created to
monitor the outages and power consumption in Kenyan
households by using local data from households. The
multilayer perception (MLP) neural network and natural
language processing (NLP) techniques were used in [221]
to detect power outages in real time. In [222], taking the
2019 Manhattan outage as an example, quantifications
of mental and behavioral responses were given by using
NLP to classify the sentiment into positive, negative, and
neutral and to identify six types of behavioral responses.
In fact, social sensors have many other applications that
can provide inspiration in distribution systems. The first
one is the disaster area location. As mentioned before,
extremely natural disasters may cause a lot of damage to
the city. How to locate the disaster area fast and accurately
is another vital problem since the disaster will bring the
opportunity to the government to rescue injured people
and restore the infrastructure, especially for minimizing
power outage durations and costs. In [223], an exact
power outage location was detected based on the Twitter
data without geotagged by using a two steps learning-
based framework. The first step was to find actual outage
tweets by using a probabilistic classification model. Then,
in the second step, the actual outage tweets were used
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to extract the exact outage locations using a bidirectional
LSTM deep learning neural network. A real-time natural
disaster mapping was proposed in [224] without using
geotags from Twitter. In order to avoid preprocessing of the
tweets, available street maps and geographic information
are loaded before mapping.

The second one is sentiment detection. The aim of
sentiment detection is to detect the emotion of the user
from the text, image, and video that they post on social
media. Identifying their emotion correctly can be used to
determine whether he needs help or not, especially for
people who are in depression or low emotion during a
power outage. This could help rescue workers provide
suitable services to depressed people. The traditional sen-
timent detection method aims to classify the tweets into
positive, negative, and neutral by only using the informa-
tion of text [225]. Maynard et al. [226] proposed a novel
sentiment detection method with the combination of text
information and image information. The NLP method was
used to classify the sentiment first, and locality-sensitive
hashing (LSH) was used to extract emotional features
from images. The sentiment detection can also be used
for electricity consumers so that the retailer can figure
out whether the consumers are satisfied with the current
service.

The third one is air quality monitoring. Air quality
plays an essential role in people’s daily life. A fast and
accurate air quality monitoring can allow people to prepare
in advance, for example, prepare N95 masks to prevent
PM2.5. In [227], an air quality trend monitor was con-
structed by using 93 million messages from Weibo. It was
concluded that the social media-based method could pro-
vide a faster and more accurate trend than the traditional
method. What is more, messages posted by Chinese people
contain a large amount of firsthand information that has
not been discovered. In [228], social media data from
Weibo were used to construct a dynamic population map.
Then, a well-developed satellite-ground-hybrid model was
used to estimate population exposure to PM2.5 based on
the map. Also, this kind of idea could be used in power
consumption monitoring. An accurate and real-time power
consumption monitoring can act as an aid in building
smart city services to manage power allocation [229].

To sum up, from the research above areas, the social-
sensors-based method can improve the reliability and
effectiveness of system operators’ decision-making, espe-
cially for the area that needs a fast and accurate response.
Meanwhile, it also requires high-quality data and trustwor-
thy information sources.

B. Data Privacy and Pricing

Governments or organizations worldwide are increas-
ingly committed to data privacy protection. Privacy has
become an emerging social concern. For example, different
countries have different consumer data privacy regulations
for energy consumption. The United Kingdom launched
two policies in 2018, the Smart Meter Bill [230] and The
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Fig. 12. Data barrier among data owners in distribution systems.
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Data Protection Act [231], respectively, authorizing half-
hourly electricity consumption data collection and imple-
menting general data protection regulation (GDPR) [232]
to utilize consumers’ data and protect data privacy at the
same time. To address privacy concerns with smart grid
technology, the Office of Electricity Delivery and Energy
Reliability and the Federal Smart Grid Task Force have pub-
lished a Voluntary Code of Conduct (VCC) for utilities and
third parties in the United States [233]. Data Security Law
of the Peoples’ Republic of China was passed on June 10,
2021, which strictly regularizes data collection, storage,
use, processing, transport, provision, and disclosure [234].
A comparative analysis of residential SM data privacy in
different countries can be found in [235]. Fig. 12 shows
that there is a data barrier between each two data owners.
They cannot or are not willing to directly share their data
with others because of the data privacy regulation, busi-
ness competition, and so on. Thus, it is of vital importance
to figure out how to preserve the privacy of consumers
and promote secure data sharing among each other in
distribution systems.

1) Data Privacy: Thanks to the widespread use of sen-
sors such as SMs indicated above, a considerable amount of
data regarding renewable energy generation, demand-side
power usage, and environmental factors can be captured
and transferred to data centers via the built communica-
tion network. Advanced machine learning technologies can
be used to conduct optimal energy management and accu-
rate forecasting using this aggregated copious data [236].
However, such a data-centralized method may no longer
be practicable or feasible for two key reasons. The first
reason is that, as urbanization accelerates and sensors,
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such as SMs, become more widespread, the amount of
data collected will explode. The tremendous amount of
raw data that must be delivered to the data center necessi-
tates a big transmission bandwidth and high transmission
speed, which could be a major difficulty for the com-
munication network. The second factor has to do with
concerns about privacy. Take SM data as an example;
different retailers control SM data, and data analysis helps
them better understand users’ usage patterns and offer
customized services [237]. These data owners may be
hesitant to disclose their valuable data for fear of los-
ing their competitiveness in the retail sector. Federated
learning is offered as a possible way to address the two
issues mentioned above. Multiple participants collaborate
to construct a model while maintaining the data in situ
using the federated learning framework. Instead of directly
sending raw data, each participant uses local data to
train models separately and transfers model parameters
over secure protocols [238]. Even though raw data from
many districts will not be transferred to a data center
during federated learning, it is necessary to aggregate
data received by sensors in the local area. To tackle this
challenge, a high energy-efficient and privacy-preserving
strategy for safe data aggregation was presented in [239].
The distributed federated learning approach allows for
collaboration between different data owners and parallel
computation while maintaining privacy. Because of the
appealing qualities of federated learning, a growing num-
ber of studies are focusing on how to apply this method
to the power system. For example, Wang et al. [240]
proposed using privacy-preserving principal components
analysis to extract key features from SM data and a feder-
ated learning-based neural network to identify electricity
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consumer characteristics. Goncalves et al. [241] examined
privacy-preserving collaborative forecasting methods using
a federated learning system that comprises data trans-
formation techniques, safe multiparty computation, and
decomposition-based methodologies. By combining data
transformation methods with the alternating direction
approach of multipliers, a federated learning model was
developed to increase renewable energy forecasting skills.
They also addressed the asynchronous communication
problem in both peer-to-peer and server—client federated
learning schemes [242]. For generating renewable energy
scenarios, Li et al. [243] combined least-squares generative
adversarial networks with federated learning, and their
method was shown to outperform state-of-the-art central-
ized systems.

In addition to preventing malevolent adversaries from
stealing data, protecting private information from being
inferred is another important challenge in achieving the
goal of privacy preservation. Differential privacy-based
approaches have been presented and are popular due to
their ease of implementation [244]. Differential privacy
attempts to thwart an inference attack when a single sam-
ple enters or exits a database by introducing random noise
to the input data. Based on differential privacy, a privacy-
preserving optimal power flow technique for distribution
grids was proposed in [245]. Gai et al. [246] improved
standard differential privacy approaches and presented a
noise-based approach for a consortia blockchain-enabled
neighboring energy trading system that protects members’
privacy from data-mining attacks. Even while differential
privacy-based approaches are useful in some situations,
input data with noise may deviate from the real value,
lowering the effectiveness of the model that uses these
inputs. Another viable solution for privacy preservation
in SMing systems is to employ renewable energy and
rechargeable batteries to directly adjust consumers’ actual
energy consumption profiles. The use of rechargeable bat-
teries in conjunction with renewable energy sources was
studied in [247] to limit information leakage and came
up with single-letter information-theoretic expressions for
the least information leakage rate, while using energy
storage to improve privacy will raise energy costs, which is
contrary to the original purpose of storage investment, i.e.,
saving costs. As a result, the tradeoff between maintaining
privacy and cutting costs should be carefully evaluated.
Giaconi et al. [248] discussed the characteristics of the
privacy—cost tradeoff in three scenarios: the short-horizon
model, the long-horizon model, and the practical energy
management strategy. The problem of determining the best
privacy—cost tradeoff method was abstracted as a Markov
decision process in [249] and [250], and reinforcement
learning-based algorithms were used to solve it.

2) Data Pricing: The massive number of distributed data
in the grids can be utilized to optimize the operation
and planning of power systems with data-driven methods.
For example, Bessa et al. [251] and Tastu et al. [252]

Cyber-Physical-Social Perspective on Future Smart Distribution Systems

have proved that distributed data can improve forecasting
quality for wind and solar energy, respectively. However,
as stated above, data owners are reluctant to share their
data. Despite some privacy-preserving methods, such as
data manipulation (such as additive noise) and federated
learning, which can protect the privacy of distributed data,
data owners may still be unwilling to disclose their data
unless their datasets are fairly valued and paid [253].
Consequently, data markets, where data owners are incen-
tivized to share their data through monetary compensa-
tion [254], are called for efficient data exchange as another
means. In the context of smart grids, data are usually
traded for improving energy forecasting accuracy, reducing
uncertainty, and, thus, lowering the imbalanced costs in
the energy market [255]. Consequently, data pricing in
the current stage in the context of smart grids tends to
be forecasting-based. For example, Gongalves et al. [256]
proposed an energy forecasting data market where wind
agents submitted measurement data to market operators
(market intermediates responsible for calculating pay-
ments, allocating payoffs, and return prediction results)
and got the forecasting results instead of data from other
agents. In this market, market operators made predictions
based on the ordinary least-squares (OLS) regression. Buy-
ers’ payment depended on the improvement of regression
accuracy. On this basis, regression markets for energy
forecasting were further proposed in [257]. In regression
markets, agents post regression tasks, and other agents
who are willing to share their data will be monetarily
rewarded based on Shapley values and related alloca-
tion [257]. Another method of payoff allocation in the
regression market is based on the least absolute shrinkage
and selection operator (lasso), which regularizes the use-
less features and selects useful ones for prediction [258].
Similarly, in [259], the economic value of PV-related data
was measured as the operational cost reduction induced
by forecasting improvement. Wang et al. [260] further
defined the value of data in terms of the role of data
in eliminating the impact of uncertainty on the economic
interests of the data buyers. For example, the acquisition
of data on electricity consumption by renewable energy
providers leads to a reduction in the length of the pre-
diction interval for probabilistic load forecasts, and this
reduction can correspond to an increase in revenue for the
data buyer coming to the energy market.

It has to be mentioned that data pricing models beyond
the context of smart grids can also be referred to in
future research, which can be divided into two categories:
economics-based models and data-driven-based models.
The economics-based models usually draw on traditional
economics thoughts for pricing data. A classic approach
for pricing goods is cost-based pricing, which considers
the complete cost of a commodity (including collecting,
managing, and so on) and calculates the profit as a per-
centage of the total cost. On account of the extremely
high variety of data products, standalone cost-based pric-
ing usually fails to measure the value of data [261].
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Consequently, in data markets, the economic approach of
differential pricing (i.e., setting different prices for the
data of different quality/quantity) is frequently applied to
price data. For example, the completeness of XML docu-
ment data is used to describe its quality, and the price is
determined accordingly [262]. Similarly, Shen et al. [263]
proposed a pricing mechanism for personal data according
to the measurement of information entropy. Beyond pric-
ing data from single-dimension data quality measurement,
Yu and Zhang [264] proposed a model for pricing data
according to multidimension data quality measurement.
In addition to the variety of data products, the demands
of data consumers can be also various, and thus, data
pricing can also be affected by data consumers’ demands.
Zheng et al. [265] priced mobile data considering both the
accuracy of the dataset and the tolerance level of data
consumers to inaccuracy. To avoid purchasing the whole
dataset with probable useless parts, Koutris et al. [266]
developed query-based data pricing, which can automat-
ically calculate the query price according to consumers’
queries and the view price set beforehand by data ven-
dors. Willingness To Buy and Willingness To Sell from the
perspective of both data consumers and data sellers are
modeled in [267], bridging supply and demand during
pricing data. Economics-based models usually provide gen-
eral ideas for pricing data, which means that they are not
limited to specific contexts and can be referred to in further
research.

In comparison to traditional commodities, data-driven
research can be used to investigate the potential value
of data commodities and provide economic benefits. How
to evaluate the value of data and determine a suitable
price should examine the following two aspects from
the standpoint of data-driven techniques: 1) data pricing
according to its contribution to the model and 2) profit
sharing. On the one hand, data are at the heart of data-
driven approaches, such as machine learning, and its worth
can be measured in terms of model improvement. Value-
of-Information (VoI) and influence functions can be used
to quantify the contribution, and reverse auctions can be
used to achieve it. The VoI is defined as the extent to
which provided data can aid in the elimination of uncer-
tainty during the decision-making process [268] or the
facilitation of model inference. Vol is used in healthcare
systems for decision-making [269] and pricing [270]. Koh
and Liang [271] investigated influence functions that can
explain the contribution of individual training data, and
Richardson et al. [272] proposed using influence func-
tions to reward high-quality data in a crowdsourcing data
gathering situation. When model owners are aware of the
exact types of data required to develop the model, they
can use reverse auctions to attract data contributors, such
as Singla and Krause [273] proposed regret minimization
techniques and reverse auctions for sensor data to create
truthful incentives in crowdsourcing jobs. On the other
hand, data can be valued through fair profit sharing after
the economic benefits of data donation have been realized.
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Table 3 Collection of Data Market-Related Literature
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Gollapudi et al. [274] looked at utility game theory in the
context of reasonable profit-sharing schemes. One profit-
sharing scheme adheres to egalitarian principles, which
means that all participants share the benefit equally. Other
profit-sharing schemes involve a labor union game where
profit is shared according to the marginal gain or marginal
loss when a participant enters or exits. Ghorbani and
Zou [275] presented data Shapley for establishing equi-
table data valuation in a machine learning context, and
Jia et al. [276] proposed efficient algorithms for approx-
imating the Shapley value during data pricing. Despite
the fact that data-driven approaches for pricing data often
need specific data-related tasks, these approaches mine
and evaluate the potential value of big data.

Table 3 collates the relevant literature on different pric-
ing methods in different contexts mentioned above. To
conclude, studies on data pricing in the context of smart
grids tend to be data-driven approaches, often related to
forecasting tasks, while works in the context of nonsmart-
grid context applied various pricing approaches, including
economics-based approaches and data-driven approaches.
These previous works can be further referred to and com-
bined and, thus, design a more suitable market mechanism
for smart grid data markets.

VI. OPEN RESEARCH ISSUES

Although a lot of work has been done on the intersection
of cyber, physical, and social aspects of distribution sys-
tems, cyber—physical-social distribution systems are still in
their infancy stage, and more work should be done for the
deep fusion of cyber-physical-social systems. This section
envisions three potential research directions in this area.

A. Cyber Systems Operation and Planning

1) Cyberattack Risk by Reducing Communications: As a
highly sensor-driven cyber—physical system with interde-
pendence between communication and power networks,
smart grids are inevitably exposed to cyberattacks. For
example, malicious attacks on sensor data transmissions
can mislead the power network control algorithms, leading
to catastrophic consequences, such as blackouts in a large
geographic area. Under the threats of adversaries, smart
grids need to maintain their functionality and availability.
In the context of cybersecurity, this can be achieved by
ensuring information confidentiality, integrity, and authen-
ticity. Among these different cybersecurity aspects, ensur-
ing communication confidentiality can keep sensor data
and control command a secret to ill-intentioned parties.
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This is important to prevent unauthorized profiling of the
intimate details of smart grid operation and consumer
lifestyle. Ensuring communication integrity can prevent
control commands from being illegitimately modified in
transit. Under the malicious insidious attack, the integrity
of control commands can be assured as long as they are
kept confidential. This is because an attacker must first
learn about the system behaviors and know the original
command before modifying it to gradually harm the system
without being easily detected. As such, communication
confidentiality is probably the most critical cybersecurity
aspect of smart grids.

The risk of leaking confidential information increases
with an increase in communication traffic and distance.
It is an open research challenge on how to minimize the
amount of information being communicated and commu-
nication distance while performing smart grid control. This
can probably be achieved by shifting from a centralized
control architecture to a distributed control architecture,
where multiple smaller control units are tasked to make
local control decisions for only a section of the smart
grid in a less frequent manner. These local control units
may indeed cut the risk of information eavesdropping, but
the challenge remains in closing the gap in performance
optimality between centralized and distributed controllers.

B. Human Behavior Modeling

1) Integrated Modeling of Cyber—Physical-Social Systems:
Individual modelings of cyber, physical, and social sys-
tems are the basis of integrated modeling of distribution
systems. The electromagnetic theory and the information
theory lay solid foundations for modeling physical and
cyber systems, respectively. Rigorous mathematical equa-
tions can be formulated, such as power flow equations
for power networks and data transmission equations for
wireless communication networks. However, there is no
universal modeling approach for human behavior. Humans
have a different way of cognition than computers, which
is hard to model. In addition, humans have lower pre-
dictability, i.e., they may not make the same decision in
the same situation but at different periods. It is hard to
mathematically formulate human behavior, such as cyber
and physical systems. Is there a way to define a behavior
model that can comprehensively reflect the complex cog-
nition and predictability of humans (such as consumers
and retailers)? On this basis, is it possible to develop data-
driven approaches (e.g., neural networks) to model their
behavior?

Another critical issue is integrating the models of the
three systems. Take DR as an example; many works in DR
establish optimization models to schedule different appli-
ances assuming that consumers are retinal. This is not the
case in the real world. Even though current research from
the social perspective can summarize the different influ-
encing factors and provide some explanations according to
survey data, these results cannot describe how consumers
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react to different signals (whether, price, and so on) and
are hard to be integrated with the optimization model for
DR. We call for integrated models to reflect the interactions
among cyber, physical, and social systems so that the final
decisions based on the integrated model are closer to
the real world. There are several works on system-level
modeling of cyber—physical-social systems [277], [278].
These modeling methods should be more specified for
specific problems in distribution systems.

2) Human-in-the-Loop Simulation: In addition to mod-
eling, simulation is also crucial for evaluating a decision.
Since human is the most challenging part to be mod-
eled, putting humans into the loop for simulation may
better reflect humans’ cognition and predictability. In fact,
human-in-the-loop simulation has been widely studied
for the problems outside distribution systems [279]. The
design methods can be good references for designing sim-
ulations in distribution systems, such as putting consumers
into the loop for peer-to-peer market simulation and
putting system operators into the loop for the reliability
analysis and simulation.

3) Backup Power Deployment for Cyber Systems: Due to
interdependence between communication and power net-
works, smart grids may experience internetwork cascading
failures when an initial failure propagates from one net-
work to another network through the dependent node of
a failed node. Such cascading failures may carry on for
a number of cycles and may result in a complete system
collapse. As such, internetwork cascading failure poses a
challenge to smart grid resiliency and robustness.

The impact of internetwork cascading failures can be
reduced by preventing the propagation of an initial failure.
This can be achieved by installing backup power at com-
munication nodes such that a communication node may
not fail merely due to the failure of the power node that it
depends on for its electricity supply. However, each backup
power unit incurs a cost, and it can be too costly to install
a backup power unit at each communication node. It is
an open research challenge on how to optimally deploy
backup power units for the smart grid communication
network while maximizing its robustness and resiliency.

C. Data Supply Chain

1) Data Supply Chain Management: Traditionally, the
factors of production can be divided into four main cat-
egories: land, labor, capital, and technology. In the era of
the digital economy, data will become another important
factor of production. Both physical and social systems in
the distribution systems are generating data, while the
cyber system is transmitting and analyzing data. Data
are the core of future cyber—physical-social distribution
systems, which involves data collection, data transmission,
data storage, data mining, data trading, and so on. Is
it possible to propose the concept of the data supply
chain to model the whole process from data collection to
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data-driven decisions? Each link of the data supply chain
involves various costs, such as sensor installation costs
for data collection and technology development costs for
data mining. Thus, each link should be carefully managed.
Supply chain management has been widely studied for
various commodities. Data, as a new factor of production,
have distinct characteristics compared with traditional
commodities. Effective modeling and fair management of
the data supply chain in the distribution systems will large
promote the digitalization of distribution systems.

2) Social and Technological Data Fusion: Integrating
social science and engineering concepts and methods
is critical to achieving effective interdisciplinary energy
research; however, it is often a challenge to integrate
human and physical measures and data. The first challenge
arises in the fundamental research direction design. The
potential of interdisciplinary and transdisciplinary research
design in energy and the cyber system is clear. Still, it
requires social scientists, computer scientists, and engi-
neers to incorporate social vulnerability or more social,
psychological, and behavioral measures into the broader
measurement and modeling of vulnerable community
resilience in the beginning stage of research design. Previ-
ous research in energy patterns, DR, and occupant behav-
ioral analysis has often focused on technoeconomic aspects
(e.g., building efficiency and electricity prices) without suf-
ficiently integrating particular demographic groups’ social,
psychological, and behavioral dimensions into engineer-
ing modeling. Second, the integrated measures and data
analysis are not designed fundamentally by including
social, psychological, and behavioral components in the
engineering’s physical data; instead, they often are adding-
on or post hoc analyses. However, the machine learning
methods in big data could potentially integrate social
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