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ABSTRACT | An increasing number of distributed energy

resources (DERs), such as rooftop photovoltaic (PV), electric

vehicles (EVs), and distributed energy storage, are being inte-

grated into the distribution systems. The rise of DERs has

come hand-in-hand with large amounts of data generated

and explosive growth in data collection, communication, and

control devices. In addition, a massive number of consumers

are involved in the interaction with the power grid to pro-

vide flexibility. Electricity consumers, power networks, and

communication networks are three main parts of the dis-

tribution systems, which are deeply coupled. In this sense,

smart distribution systems can be essentially viewed as cyber–

physical–social systems. So far, extensive works have been

conducted on the intersection of cyber, physical, and social

aspects in distribution systems. These works involve two or

three of the cyber, physical, and social aspects. Having a
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better understanding of how the three aspects are coupled

can help to better model, monitor, control, and operate future

smart distribution systems. In this regard, this article provides

a comprehensive review of the coupling relationships among

the cyber, physical, and social aspects of distribution systems.

Remarkably, several emerging topics that challenge future

cyber–physical–social distribution systems, including applica-

tions of 5G communication, the impact of COVID-19, and data

privacy issues, are discussed. This article also envisions sev-

eral future research directions or challenges regarding cyber–

physical–social distribution systems.

KEYWORDS | 5G communication; COVID-19; cyber–physical–

social systems; data analytics; data privacy; demand response

(DR); distribution systems; energy justice; smart grid; social–

technological integration; wireless communication.

I. I N T R O D U C T I O N

Traditional distribution systems “passively” receive and

consume electricity from main transmission systems and

are operated without advanced monitoring and control

but with simple open-loop control methods. In the new

century, distribution systems are becoming more and more

modernized. We can clearly see three transformations

in future smart distribution systems, i.e., digitalization,

decentralization, and decarbonization (3D) [1].

1) Digitalization: Large amounts of data collection, com-

munication, and control devices are being installed

in distribution systems for real-time monitoring and

control, such as smart meters (SMs) and distrib-

uted energy storage control units. These devices are

connected with each other or to the control center

through wired or wireless communication techniques.
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Distribution systems become cyber–physical systems

on the way to digitalization [2].

2) Decentralization: An increasing number of distributed

energy resources (DERs), such as rooftop photovoltaic

(PV), electric vehicles (EVs), and distributed energy

storage, are being integrated into the distribution

systems. Future distribution systems will be oper-

ated in a more decentralized way, where electricity

consumers will be more involved in decision-making

in distribution systems, such as home energy man-

agement and biding in peer-to-peer markets. Human

behavior should be fully considered in this situation.

Thus, the cyber–physical distribution systems should

be extended to cyber–physical–social distribution

systems [3].

3) Decarbonization: Countries around the world are

sparing no effort to reduce carbon emissions and

finally achieve carbon neutrality [4]. Decarbonization

is the ultimate goal of constructing smart cyber–

physical–social distribution systems, which can be

realized by enhancing energy efficiency, promoting

the accommodation of local energy, and providing

flexibility to transmission systems.

Since the concept of “Smart Grid” was proposed in

2007 [5], the research of “cyber–physical” power systems

has been receiving increasing attention, emphasizing bidi-

rectional power and information flows. Extensive works

have been done on the cybersecurity of power systems. Dif-

ferent types of cyberattacks and the modeling, simulation,

and analysis approaches of these attacks in power systems

were summarized [6]. The cybersecurity issues of micro-

grids were the main focus of Li et al. [7], where the impacts

of potential risks attributed to cyberattacks on microgrids

were examined, and the corresponding countermeasures

were provided. The cyber–physical resilience in power

systems was defined in [8]. The resilience of power sys-

tems was reviewed in [9] from the cyber–physical perspec-

tive, where how external environments, such as hazards,

cyberattacks, and human behaviors, influence the system

resilience was discussed. The vulnerability assessment and

resilience quantification methods for cyber–physical power

systems were summarized in [10].

Compared to the cybersecurity of power systems, there

are fewer works on the cyber–physical–social power sys-

tems. How to model the behaviors of humans in power

systems from the social perspective, especially for a

massive number of electricity consumers, has not been

well addressed. Nowadays, behavioral and social sci-

ences research in different industries attracts increasing

attention. For example, the Nature publisher set up an

online community forum for researchers to discuss and

share behavioral and sociological research and its appli-

cations in various industries [11]. The cyber–physical–

social system is a new way of thinking about the control,

operation, and planning of future distribution systems,

covering broad research topics. Many works have been

conducted at the intersection of cyber, physical, and social

aspects in distribution systems. Take demand response

(DR) as an example; it involves remote control in the

cyber system, electrical appliances in the physical system,

and behavior analysis in the social system. According to

what the work emphasizes, this article roughly summa-

rizes these works into three categories: cyber–physical,

physical–social, and cyber–social couplings. It is impossible

to provide an exhaustive review of all the works done

for cyber–physical–social distribution systems, which is not

the goal of this article. Instead, this article aims to select

several interesting, important, and correlated topics from

the three categories and summarize the works on these

topics. In this way, any possible overlap with existing

reviews of related topics can be avoided. We hope that

this article can inspire novel and comprehensive research

in distribution systems from the cyber–physical–social

perspectives.

The contributions of this article are given as follows:

1) analyzing cyber–physical–social couplings in future

distribution systems and conducting a comprehensive

literature review of future smart distribution systems

from a cyber–physical–social perspective;

2) providing a well-designed taxonomy for cyber–

physical–social distribution systems from three cat-

egories: cyber–physical coupling, physical–social

coupling, and cyber–social coupling;

3) discussing future potential research directions or chal-

lenges, including human behavior modeling, cyber

systems operation and planning, and data supply

chain in distribution systems.

The rest of this article is organized as follows. Section II

introduces the coupling relationship among the physical

system, the cyber system, and the social system of the

distribution systems. Sections III–V summarize the recent

research works on the cyber–physical coupling, physical–

social coupling, and cyber–social coupling in distribution

systems, respectively. Section VI provides several open

research issues that need to be fully addressed for better

operating future smart distribution systems. Section VII

draws the conclusions.

II. C Y B E R – P H Y S I C A L – S O C I A L

D I S T R I B U T I O N S Y S T E M S

The concept of cyber–physical–social systems comes

from two possible ways. The first is the evolution and

expansion from cyber–physical systems to cyber–physical–

social systems by putting humans into the loop [12].

The second is the integration of cyber–physical systems

and cyber–social systems, where the cyber system is the

bridge between the physical system and social system [13].

Even though there is no universal definition of cyber–

physical–social systems, deep fusion among humans, com-

munication networks, computers, and things is the basic

characteristic. Cyber–physical–social systems provide a

new paradigm for the operation of real-world systems
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Table 1 Illustrative Cyber–Physical–Social Coupled Businesses in Distribution Systems

where cyber, physical, and social systems should be care-

fully and comprehensively considered for decision-making

of real-world systems [14]. This concept has been used

for the new-generation intelligent manufacturing [15],

aeronautics and space [16], smart cities [17], and so on.

Distribution systems have undergone at least two

upgrades. The first upgrade is from simple power dis-

tribution systems to cyber–physical distribution systems,

accompanied by the construction of the smart grid. Vari-

ous advanced communication and control infrastructures

have been installed for the monitoring and closed-loop

control of distribution systems. The second upgrade is from

cyber–physical distribution systems to cyber–physical–

social distribution systems, where human participation and

interaction become more and more critical with the inte-

gration of DERs and the implementation of various busi-

ness models. It is necessary to put humans in the decision

loop of distribution systems [9]. In cyber–physical–social

distribution systems, the cyber system (communication

networks, control center, and so on), physical system

(power networks, power transformer, and so on), and

social system (consumers, retailers, system operator, and

so on) are deeply coupled.

Table 1 provides several businesses in distribution sys-

tems that illustrate the coupling relationship among cyber,

physical, and social systems. Take SM installation as an

example; how to efficiently collect a large amount of

distributed SM data is studied in the cyber system; the SM

installation should follow the house distribution and power

network topology in the physical system; and the attitude

and acceptance levels of consumers for SMs should be

carefully considered in the social system. Thus, installing

and popularizing SMs in the distribution systems are an

integrated cyber–physical–social problem. It is the same

for DR, electricity trading, network dispatch, and so on in

future smart distribution systems.

To facilitate the planning and operation of distribution

systems, interdisciplinary research should be conducted.

As shown in Fig. 1, the research involves power engi-

neering, communication engineering, social psychology,

Fig. 1. Cyber–physical–social coupling in distribution systems.
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data science, and so on. Even though different businesses

couple cyber, physical, and social systems, they may be

more related to two of the three systems. Thus, this article

roughly divides different businesses or technical issues into

three categories according to which two systems are more

coupled.

The first is cyber–physical coupling. Since several

reviews of security and resilience of cyber–physical power

systems already exist, to avoid overlap with these reviews,

this article focuses more on methods or algorithms for

wireless communication for monitoring and control of dis-

tribution systems and their interdependent relationships in

distribution systems. In addition, since 5G is an emerging

wireless communication technique, we will inevitably also

discuss its role in distribution system communications.

The second is social-physical coupling. Adopting new

technologies, including SMs, DERs, and EVs, is a typical

social problem in distribution systems. Instead of establish-

ing different optimization models for DR programs, how to

efficiently implement DR will also be investigated from a

social perspective. COVID-19 has a profound impact on the

whole society of the world. How it influences distribution

systems will be discussed.

The third is cyber–social coupling. In addition to com-

munication networks, social networks, which are at the

intersection of cyber and social systems, can also be used

for situation awareness of distribution systems where the

social sensors are widely distributed to consumers. Nowa-

days, people are paying more and more attention to pri-

vacy protection. The privacy issue in distribution systems

will also be studied.

The following three sections will detail these businesses

or technical issues in the three categories.

III. C Y B E R – P H Y S I C A L C O U P L I N G

I N D I S T R I B U T I O N S Y S T E M S

One basic characteristic of smart gird is the two-way

electricity flow and communication flow. Future distrib-

ution systems will be equipped with sophisticated mon-

itoring and control capabilities that require the sup-

port of advanced communication technologies and net-

works [18]. Different types of communication technologies

and networks, such as power line communications, optical

fiber communications, wireless sensor networks, and wide

area communication networks, have been proposed to

meet different communication requirements of distribution

systems [19].

Power line communications use the existing power line

cables for smart grid communications. By avoiding the

need to install new communication links, power line com-

munications can enable fast and economical deployment

of smart grid communication networks [20]. Despite the

benefits, power line communications do come with a few

issues [21]. It is difficult to establish an accurate channel

model for power line communications due to the noisy

background of power cables. More importantly, power line

communications have a low signal-to-noise ratio and, thus,

are not suitable for high bit rate applications across a

distance beyond a few hundred meters [22]. For high

bit rate transmissions over a long distance, optical fiber

communications can be used. With the inherent immunity

to electromagnetic interference, optical fiber communica-

tions are suitable for applications within an interference-

rich and noisy environment to which a power system

belongs. Similar to power line communications, optical

fiber communications suffer from problems that are com-

mon to wired communication technologies, such as the

lack of flexibility in device locations. Compared to wired

communications, wireless communications can be rapidly

deployed to cover a large area with a desirable high bit

rate. Wireless sensor networks, which are low-cost, energy-

efficient, and capable of self-organize and self-healing, can

be an essential part of the communication network of

distribution systems [23]. Unfortunately, wireless sensor

networks are usually private networks and do not provide

universal coverage to all areas. It is likely that some devices

in a smart grid are not reachable by a wireless sensor net-

work. In this case, we need a wide-area wireless network,

such as a cellular network or satellite communication

network.

From the above, it is clear that communication tech-

nologies for smart grids are very diverse. For conciseness,

this section focuses mainly on the use of wireless com-

munication technologies. As shown in Fig. 2, this section

consists of three subsections. The first subsection discusses

various existing wireless communication schemes, which

have been proposed to facilitate monitoring and control

operation in a typical distribution system. The second

subsection is dedicated to challenges that arise from the

existence of interdependent relations between power and

communication network. The roles of 5G cellular commu-

nication systems are discussed in the third subsection.

A. Distribution Systems Monitoring and Control

Fig. 3 shows the monitoring and control system of a

power distribution network using wireless communica-

tions. The sensors and controllers, such as SMs and micro-

phasor measurement units (PMUs), will be widely installed

in distribution systems for better situation awareness.

A reliable operation of distribution systems depends on

reliable communication between sensors, controllers, and

control center [24]. Various works have been done for

demand-side monitoring, distribution network monitoring,

and DER control.

1) Demand-Side Monitoring: In the context of support-

ing demand-side management, a scheme was developed

in [25] to determine the optimal number and location

of data aggregation points within a neighborhood area

network. In the scheme, the data aggregation point place-

ment is required to ensure that demand requests and

price information can be transmitted with acceptable

communication service quality. An integer programming

problem was formulated in [26] to find the optimal
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Fig. 2. Cyber–physical coupling in distribution systems with a focus on wireless communication.

data aggregation point placement to achieve the mini-

mum installation and communication cost. A suboptimal

solution was efficiently obtained by running the k-means

clustering algorithm iteratively for the original integer

optimization problem. With a system model and objective

similar to [26], another method was proposed in [27]

to solve the similarly complex integer program through

performance-guaranteed approximation. More specifically,

the approximation involved relaxing integer optimization

variables to real-valued numbers so that the integer pro-

gram could be solved as a linear program. An optimal

data aggregation point placement problem in a multihop

routing scenario was studied in [28], where SMs could

play the role of relay nodes with limited capacities. The

optimization model aimed to minimize the total installa-

tion, transmission, and delay cost, and it was solved by an

iterative and heuristic approach.

2) Distribution Networks Monitoring: In transmission

systems, some substations are installed with synchropha-

sors or PMU to measure time-synchronized phasor, fre-

quency, and the rate of change of frequency in voltage

and current. However, due to cost and small phasor

angle differences, PMUs are rarely used in distribution

systems. Compared to PMUs, micro-PMUs have a higher

angle measurement accuracy in the range of millidegree

and, therefore, are suitable for deployment in distribution

systems. In future distribution systems, micro-PMU will

also be installed at key nodes so that different power

parameters, such as power phasors, can be obtained. The

communication issues for PMU and micro-PMU are similar

in nature. Therefore, we use the terms PMU to refer to both

PMU and micro-PMU, hereafter.

The PMU data can be used for load modeling, fault

analysis, and so on but will cause a high communication

Fig. 3. Monitoring and control of distribution systems based on wireless communication.
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burden [29]. The characteristics of communication delays

incurred in centralized monitoring and control systems

that utilized multiple PMUs distributed over a large geo-

graphic area were studied in [30]. Simulation results

suggested that it is necessary to optimize the location

of the control center based on the intended smart grid

application. Apart from the control center, it is also critical

to optimize the placement of PMUs [31]. Since PMUs are

not usually installed at all substations, it is necessary to

find out the subset of substations for PMU installation to

achieve a desired performance metric, such as availability,

reliability [32], and observability [33]. The optimal PMU

placement problem has been solved using integer linear

programming [34], genetic algorithm [35], differential

evolution [36], particle swarm optimization [37], and

so on.

In distribution network monitoring, PMUs and sensors

may be installed on power line poles. These sensors require

the support of an advanced communication network to

deliver their data to the control center or substation.

Wireless sensor networks offer a cost-efficient way to

rapidly establish an end-to-end communication connection

between such sensors and substations. In wireless sensor

networks, some poles do not have a direct communication

link with a substation. These poles must depend on their

neighboring poles as relays in sending measurement and

sensor data to the substation in a hop-by-hop transmission

manner [38]. In such a way, packets from poles that are

many hops away from substations may suffer from an

unacceptably high delay and a low packet delivery ratio.

As such, it is desirable to reduce the number of hops

and shorten the communication route. The works [39]

and [40] are separately proposed to shorten the commu-

nication route by installing cellular network modules on

the poles. As further suggested in [41], it is not necessary

to install a cellular network module on each pole but only

on selected poles. The problem of selecting a subset of

poles for cellular network module installation has been

addressed in [42]. For the purpose of minimizing installa-

tion and operational cost, Fateh et al. [42] have formulated

and solved a constrained optimization problem that finds

the desired number and locations of cellular-enabled poles.

In the optimization problem, the constraints are various

communication requirements, such as delay, connectivity,

and bandwidth.

Dynamic thermal rating for power equipment, such as

power lines and transformers, can help to improve smart

grid efficiency by increasing the power transmission capac-

ity of existing systems without installing new transmission

lines. For dynamic thermal rating, the communication net-

work is required for timely and reliable transmissions of

conductor temperature measurements from in situ sensors

to the control center [43]. Take dynamic line rating as an

example; sensors need to be installed on the power line to

measure the line’s instantaneous conductor temperature.

This temperature may affect the line’s ampacity, which is

defined as the maximum electric current that is allowed

to flow. Ampacity may change dynamically as a result of

variations in ambient temperature and weather conditions

over time. For example, a drop in ambient temperature

alone may increase the ampacity of a power transmission

line and, thus, allow the line to carry more current to

support higher demand. Upon receiving the conductor

temperature measurements, the control center can adjust

the power injection into a power transmission line to

operate it close to its technical limits.

3) Distributed Energy Resource Control: Future distrib-

ution systems will be integrated with a large number

of DERs, such as distributed renewable energy, energy

storage units, and EVs. Due to the intermittent nature

of renewable energy outputs, it is critical to implement

dynamic control mechanisms in the distribution systems

to prevent an excessive supply–demand gap, leading to a

catastrophic system-wide failure or blackout.

In dynamic pricing, consumers are offered varying elec-

tricity tariffs at different time intervals using a price-based

program. Based on the latest price information, consumers

will logically use less electricity during high electricity

prices, and hence, demand is reduced during peak-load

hours [44]. As an effective way of demand-side manage-

ment, dynamic pricing requires a reliable communication

network to transmit the latest price information to con-

sumers. The impact of wireless communication channel

impairments on the performance of dynamic pricing was

analyzed in [45]. It showed that, in the presence of com-

munication error and delay, a tolerable supply–demand

gap would impose an upper bound on price update step

size and update interval. In [46], a cooperative communi-

cation scheme was proposed to support dynamic pricing.

The proposed scheme aimed to achieve reliable transmis-

sions of demand requests and price information between

a control center and a group of consumers. This method

exploited the broadcast nature of the radio channel to

enable a neighboring consumer to assist in retransmitting

a failed request or price message after combining the failed

request with its own demand request.

In distribution systems, energy storage systems (ESSs)

are deployed to absorb excessive fluctuation in power

flow. An ESS management scheme is needed to make

charging and discharging decisions. An ESS management

scheme was proposed in [47] to operate reliably over

error-prone wireless communication channels. The pro-

posed scheme uses the Markov decision process to make

a local decision at each ESS and aims to minimize power

loss while keeping the voltage violation probability below

an acceptable level. In practice, not every house will have

its own ESS. A realistic scenario may see multiple houses

within a neighborhood share a single ESS and form a

community smart grid. Such community smart grid may

impose additional requirements on communication net-

works because houses that are close to each other in the

distance may not be on the same electricity distribution

bus [48].
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There is a cost in achieving the desired level of com-

munication reliability. This cost often appears in the form

of reduced spectral efficiency, and it is charged to the

communication service providers. While this is the cost

of improving transmission reliability, there is also a cost

that is imposed by deteriorating transmission reliability.

Specifically, unreliable transmissions of power supply and

demand information, as well as failures in sending a new

electricity price to all consumers, may lead to an inaccurate

demand-side management operation. As such, there is

a tradeoff between incurring a cost to achieve perfect

communication reliability and tolerating a cost associated

with inaccuracy in demand-side management operation.

This tradeoff has been dealt with in [49] through a radio

resource allocation scheme.

B. Power-Communication Network

Interdependence

In distribution systems, the power network depends on

a reliable communication network to collect data and dis-

tribute control commands. On the other hand, the commu-

nication network also depends on the power network for

electricity supply to its equipment [50], [51]. This section

discusses possible cascading failures of interdependent

power-communication networks and cybersecurity issues

in distribution systems.

1) Cascading Failures: In smart grids, the interdepen-

dent relation between power and communication network

is inevitable but may make the system more vulnera-

ble [52], [53]. A failure in the communication network

may result in a loss of sensor data and control command

for the power network. The affected power network may

trigger its protection mechanisms, which may cut the

electricity supply to some communication equipment. With

more communication nodes stopping functioning, the loss

of sensor data and control command suffered by the power

network may exacerbate with more electricity supply cuts.

After a few iterations, this vicious cycle will eventually

bring down the entire smart grid. The situation can get

worse when the system recovery process is delayed by

natural disasters, severe bad weather conditions, and so

on [54]. While network interdependence is inevitable, we

must work on minimizing its impact to materialize the full

potential of a digitized power network.

The cascading failures across interdependent power-

communication networks can be prevented by satisfying

three requirements, namely, power independence, com-

munication robustness, and power robustness. Given the

requirements, Kong [55] developed a method to find

the cost-minimum locations for the installation of data

aggregation points, which are communication gateways.

For each data aggregation point, it is necessary that its

electricity supplier is not from the distribution bus that

it monitors. This condition can ensure that the data

aggregation point will continue to operate, while the

distribution bus that it monitors has failed. Separately,

Parandehgheibi et al. [56] and Chai et al. [57] have also

studied the effects of internetwork interdependence in a

smart grid but without considering the fact that sensors

and actuators are connected to the control center through

multihop communication routes. In a practical distribution

system, communication routing is an important issue. The

work [58] has proposed a scheme to optimally choose

a communication route that can minimize the impact of

internetwork cascading failures, which are triggered by

an initial failure in either the communication or power

network. In [59], the idea of a power-disjoint commu-

nication route has been proposed. Two communication

routes are power disjoint if they do not have any router

that draws electricity supply from the same power node,

which is also an electricity supplier to the router of the

other route. According to Kong [59], in the presence of

power-communication network interdependence, system

robustness can be maximized by maximizing the number

of power-disjoint routes between communicating nodes.

2) Cybersecurity: With increasing information technolo-

gies integrated into distribution networks, the security of

the cyber system has become a significant concern for

operational efficiency [7]. Generally, there are three funda-

mental requirements for the security of the cyber system:

availability, integrity, and confidentiality [2]. However,

uncertain and unpredictable cyber contingencies, such as

communication failures and malicious attacks, may cause

violation of these requirements [60], [61], thus leading to

energy market disorders and considerable economic losses

in the distribution system.

There are two inevitable cyber factors that would

threaten the operation of distribution networks [62].

1) Packet loss: Considering a large-scale distribution net-

work, a number of SMs need to transmit data pack-

ets to the data aggregator unit for DR control. In

this case, information congestion may occur due to

the limited bandwidth of communication channels

and, thus, causes random packet losses [63]. With

data packet losses, the power supply or consumption

received by the control unit may deviate from true

values, which will break the power balance of the

network.

2) Transmission delay: Since modern distribution net-

works contain various distributed resources and

loads that are geographically dispersed, time delays

would be introduced to the information transmission

process [64] due to the physical distance between

users and control centers. If a time delay happens,

the energy management commands would not be able

to be conducted in time, which will result in a slow

reaction to external conditions, and the performance

of energy scheduling will be degraded.

Apart from the inherent communication limitations,

malicious cyberattacks would also adversely affect the

distribution networks [65]. The most likely forms of cyber-

attacks could be divided into three categories as follows.
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1) Denial of service (DoS): This kind of attack tries to

block or break the information transmission between

grid components [66]. For example, by using the

worms to send a flood of fake requests, the devices

(e.g., service providers and communication links)

would be jammed with spurious packets, which will

result in the loss of critical information exchange

and, thus, deteriorate the system performance. Under

constant DoS attacks, the functionalities of SMs will

be disabled, and the measurements could not be

delivered to the control center for several hours or

even days.

2) False data injection (FDI): The FDI attack aims to

inject malicious data packets to different network

devices, including sensors, actuators, and communi-

cation links [67]. Then, the transmitted data will be

tampered with, and erroneous values will be sent

to the operator to disturb the whole system. For

example, in the electricity market, an FDI attack can

modify the electricity pricing information from the

aggregator by injecting false data into the communi-

cation channels. As the prosumers decide their power

consumption/generation according to the received

electricity price, the electricity market will be greatly

impacted by the FDI attack, and economic losses will

be caused.

3) Replay attack: The basic principle of replay attack

is to send the previously eavesdropped information

packets from sensors to mislead the control cen-

ter [68]. More specifically, the attacker first observes

and records the readings of sensors at a certain

condition and then sends the original data to spoof

the system at the appropriate time. If the demand

in a distribution network increases, the attacker may

replay the measurements during normal operating

conditions to make the control center issues an erro-

neous energy management command.

In recent years, with more diverse and widespread

DERs integrated into distribution networks, the power

system is becoming more distributed at the generation

and control levels [69]. The management of massive

DERs depends significantly on information technology,

including the SM, the communication network, and the

intelligent controller. As a result, the increased intercon-

nection and interoperability of DERs bring more cyber

vulnerabilities into distribution networks [70]. For exam-

ple, the transmitted data are more likely to be inter-

cepted, tampered with, misrepresented, or forged in

the large-scale communication network [71]. Since the

exchanged information is adopted for the dispatch of dif-

ferent energy resources, the corrupted data would result

in decision error, which would further degrade the sys-

tem operation or lead to cascading failure in distribution

networks.

In order to sustain the safety and the efficiency of the

distribution network operation, countermeasures against

the above cyber threats should be designed and imple-

mented [72]. Some solutions have been proposed in the

literature to address the impact of cyber threats in different

ways.

1) Robust/resilient control: Robust control methods could

enhance cyber resilience by providing adaptive mech-

anisms in the control loop [73]. For example, in [74],

a robust consensus-based distributed optimization

method is proposed to schedule the flexible loads of

distribution networks, where a corrective method is

used to compensate for the impact of packet losses.

Considering the time-varying delays and channel

noises, a delay-tolerant distributed economic dispatch

algorithm is presented in [75], where the delay toler-

ance is guaranteed by adaptively adjusting the gain

coefficients during the optimization.

2) Attack detection: The system operator could utilize

intrusion detection schemes to identify anomalous

behaviors caused by cyber incidents and then isolate

the compromised components from the network [76].

Several detection strategies, such as flow entropy and

signal strength, have been proposed to identify DoS

attacks [77]. A joint-transformation-based scheme is

presented in [78] to detect the FDI attacks in real

time, where the Kullback–Leibler distance between

the real-time and historical measurement variations

is used. In addition, Li et al. [79] develop a Bayesian

inference mechanism to detect the onset of a replay

attack in supervisory control and data acquisition

(SCADA) systems.

3) Secure state estimation: Secure state estimation meth-

ods try to systematically analyze the dynamic behav-

ior of the physical system and then reconstruct system

states from possibly corrupted information [80].

For instance, in [81], a variance-based adaptive

approach is established to estimate the renew-

able generation under unreliable communication

links, where corresponding conditions are derived

to minimize the estimation error covariance. Fur-

thermore, by adopting Kalman filtering, preselectors

and observers are developed in [82] to address the

secure estimation issues in power networks with FDI

attacks.

Nevertheless, there still exist some challenges in the reli-

ability of cyber systems, and further improvements to cur-

rent solutions need to be investigated [83]. In the future

smart grid, cyberattacks may be intelligently designed with

stealthy characteristics and bring more risks to the opera-

tion of active distribution networks [84]. To address these

problems, blockchain technology could be implemented as

a promising way to enhance data security, integrity, and

trustworthiness [85]. On the other hand, the availability

of immense data collected by various sensors makes data-

driven approaches (e.g., machine learning algorithms and

data mining algorithms) a possible solution to predict

cybersecurity incidents [86] and foreshadows the cyber

threats in advance.
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C. Provisioning of 5G for Distribution Systems

There is a significant leap from 4G to 5G new radio

(NR) cellular communication networks. Different from 4G,

also coined as long-term evaluation (LTE) networks, the

5G network targets more diversified goals. To this end,

the 5G network provides three types of services fitting

different scenarios of applications, all of which could be

of critical importance in future distribution systems: ultra-

reliable low-latency communications (URLLCs), massive

machine-type communications (mMTCs), and enhanced

mobile broadband (eMBB). In the context of smart grids,

it is not necessary to leverage the large data throughput

of eMBB since the data generated by a local area power

network are not that substantial. Meanwhile, URLLC and

mMTC types of services could be of significant usage in

smart grid, supporting highly real-time and reliable (such

as protection), or low throughput but massive (such as

SMs and micro-PMU), data flow [87]. In addition, net-

work function virtualization (NFV), mobile edge comput-

ing (MEC), and device-to-device (D2D) communication are

three new features of 5G NR, compared with 4G LTE,

which makes the 5G network an information platform,

which can accomplish the tasks of information collection,

multiplexing, delivery, and computing, which is of substan-

tial benefit for distribution systems. The applications of 5G

for distribution systems are detailed as follows.

Two concerns on the employment of 5G technology in

smart distribution systems deserve discussion.

1) Compatibility: 5G is being deployed together with

existing 4G LTE systems, whose compatibility has

been addressed in the standardization for the migra-

tion (e.g., the dual connection to both 4G and 5G).

Therefore, the device hardware in smart grids can

support the air interface of both 4G and 5G, while the

function upgrading can be accomplished in the device

software (e.g., in a remote manner).

2) Network availability: The 5G network is expected to

be deployed in populated areas due to commercial

motivations. Moreover, the coverage of 5G base sta-

tions could be much smaller than the counterparts in

4G systems. Therefore, the smart grid devices in rural

areas (e.g., the sensors on transmission lines) may

face the challenge of the availability of 5G network

coverage.

1) URLLC for Distribution Systems: In this service,

latency and reliability are the main focus, while data

throughput is of secondary importance, thus being suitable

for highly sensitive real-time control messages. In partic-

ular, the delay in the air interface is strictly limited to

1 ms, thus substantially improving the realtimeness of the

corresponding applications. Meanwhile, the high reliability

assures the operation with an error rate of up to 10−5.

An illustration of possible URLLC traffic embedded in

the eMBB traffic is given in Fig. 4. In 5G networks, orthogo-

nal frequency-division multiplexing (OFDM) is used as the

signaling technique. In OFDM signaling, communication

Fig. 4. Illustration of dynamic scheduling of URLLC sharing

resource with eMBB traffic.

data are modulated to multiple (e.g., 1024) subcarriers

(a.k.a. tones). The signal carrying the same set of data is

called an OFDM symbol, whose time duration is variant

in different systems (e.g., 35.7 µs). Then, the new data

are loaded into the next OFDM symbol, where the data

and OFDM symbol are analogous to passengers and car

boxes of an “information train.” The frequency and time

(in the units of subcarriers and OFDM symbols) form a

grid, in which a predetermined subset of points in the grid

is called a physical resource block (PRB). Different PRBs

can be scheduled for different UEs, thus accomplishing

the resource allocation and assuring the orthogonality of

different data traffic. Note that, although the single-carrier

frequency-division multiple access (SC-FDMA) may be

used in the uplink, the conceptual image of the frequency–

time grid is similar to OFDM.

In URLLC, due to the stringent requirement on the time

delay, the data traffic can be scheduled within a very

short period of time. In release 15 of the 3rd Generation

Partnership Project (3GPP), the minimum time duration of

a URLLC packet is two OFDM symbols, whose duration is

tens of microseconds. As illustrated in Fig. 4, the URLLC

packets can be dynamically scheduled, sharing the PRBs

with ambient eMBB traffic (e.g., large-volume file trans-

mission with low requirement on the latency).

The application of URLLC type of service has been

discussed for smart grid in TR 22.804 of 3GPP in the

following aspects.

1) Power distribution grid fault and outage management:

The main focus is the distributed automation of

switching for isolation and restoration. The reliability

is required to be 99.9999%, and the latency is below

5 ms.

2) Differential protection: Due to the high requirement of

the latency of the protection, the target peer-to-peer

transfer interval is required to be 0.8 ms, while the

data packet size is 250 bytes. Moreover, the end-to-

end delay is expected to be no greater than 15 ms.

2) mMTC for Distribution Systems: mMTC can be con-

sidered as a high-end version of communication protocols

for the Internet of Things (IoT), such as narrowband IoT

(NB-IoT). The prominent feature of mMTC is not the
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narrow bandwidth for each user equipment (UE) but the

capability of supporting massive UEs (e.g., sensors). The

mMTC type of traffic is characterized by a large number of

connections, each of which has low-throughput and time-

sparse data traffic. According to [88], the related traffic

can be categorized into the following three types.

1) Command-response type: It consists of small data pack-

ets of command from the center in the downlink

(from the base station to UE) and response from the

device in the uplink (from UE to base station). The

payload could be around 20 B for the commands and

100 B for the response. The round-trip latency could

be up to 10 s.

2) Exception reports: It could be meter alerts with data of

100 B with a latency of 3–5 s.

3) Periodic reports: The reports could be the power

consumption measured by SMs. The data could

be around 100 B, while a large latency is highly

tolerable.

The main challenge of the mMTC type of service is the

large and (possibly) random connections, despite the small

packets and tolerable latency. It is suitable for supporting

various types of sensor networks or IoT. Compared with the

NB-IoT, mMTC has a much larger bandwidth (1.08 MHz

in Release 13 compared to the 180 kHz in NB-IoT) while

still being narrowband. The specific design for a narrow-

band operation has been added to the standards. For the

applicability to sensors with limited power and computing

capabilities in smart grids, the mMTC service can reuse

the legacy data channels and synchronization pilot signals.

Moreover, mMTC UEs are designed to skip the decoding

of the wideband legacy control channels, thus saving the

requirements on the radio frequency (RF) circuits and

computational capability.

3) NFV for Distribution Systems: NFV is a technology for

implementing various network functions in software run-

ning on decoupled hardware. A communication network

that is built upon NFV is called a software-defined network.

Software-defined networking (SDN) has been explored for

smart grid [89]–[91]. Compared to a traditional com-

munication network with specialized hardware, software-

defined networks implement networking middleboxes in

software on cost-efficient generic hardware [92]. With

such hardware-software decoupling, SDN can quickly build

a smart grid communication network in a cost-efficient

manner. Also, by separating the control plane from the data

plane, SDN helps the smart grid operators to manage the

network and system flexibly. As presented in [93], with

software programmability, protocol independence, and

control granularity, the software-defined network can help

smart grids to integrate different standards and protocols,

cope with diverse communication systems, and perform

traffic flow orchestration. More importantly, according

to Dong et al. [94], the software-defined network can

help smart grids in satisfying their diverse communication

service requirements and improving their resilience and

Fig. 5. Architecture of 5G NR NFV.

robustness through network slicing. Here, network slicing

is the ability to allocate different sets of resources to

different application virtual networks.

5G NR has provisions to facilitate the implementation

of software-defined networks. In contrast to the 4G LTE

system, which simply provides the infrastructure for data

transmission (either in the air or in the core network),

the 5G NR network endows the service providers (such as

the smart grid operators) with the capability of operating

their service systems in a virtual manner by a layer of

abstraction, as if operating their own systems, without

knowing the lower layer details. This is the NFV provided

by the 5G NR network, which decouples the detailed

operations of the communication, storage, and computing

hardware from the software implementation of the service

providers. Through such NFV, various network functions

can be implemented in software running over the 5G

network hardware, which is similar to generic computer

hardware, such as CPU, hard drive, and input/output (IO).

The architecture of 5G NR NFV is illustrated in Fig. 5.

The service provider uses the infrastructure through the

virtualization infrastructure manager (VIM), similar to

implementing software to define and control the network

function. VIM is managed by the management and orches-

tration (MANO) module, which coordinates the resource

for different services (e.g., between smart grid operator

service and traffic monitoring service). The network is

controlled by the SDN controller (e.g., setting the router

configurations remotely using general-purpose network

devices). Then, the VIM operates the NFV infrastructure

(NFVI), such as base stations, core networks, and MEC,

according to the instructions from the service provider.

Although the authors have not been aware of real imple-

mentations of smart grid functions using NFV in 5G NR

networks, there have been discussions on the potential

applications [95].

4) MEC for Distribution Systems: Besides the service

of data transmission, the 5G network also provides the

substantial capability of computing at the network edge.

Without traveling to the cloud through the 5G core net-

work, the local computing using MEC can substantially

reduce the computation latency and data traffic. Since
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many computing tasks of smart grids need to be accom-

plished locally (e.g., the differential protection), the MEC

mechanism will be of critical importance for computing in

smart grids.

Note that the above URLLC service can only reduce the

latency between the UE and the RF front end of the base

station. The latency incurred by the transmission within

the core network (between the base station and the cloud)

and the computing in the cloud is not guaranteed. As a

remedy, MEC facilitates local computing without sending

the data to the cloud, thus substantially reducing the

latency [96]. It is of particular usage for real-time tasks

of smart grids, such as differential protection.

5) D2D Communication for Distribution Systems: D2D

communication is an important feature of the 5G com-

munication system. In D2D communications, two devices

are allowed to exchange messages directly without going

through a cellular base station. For spectral efficiency, a

D2D transmission may be performed concurrently with a

cellular transmission in the same time slot. As such, the

D2D transmission may impose additional interference on

the cellular transmission. Hence, in D2D communications,

it is crucial to control the transmission power to limit

interference.

Advanced D2D communications have been adopted by

Song et al. [97] to connect SMs to the control center, where

the focus was on finding the optimal transmission power

for each D2D transmission such that the aggregate cellular

transmission rate could be maximized while achieving the

desired service quality for D2D transmissions. In a 5G

communication network, the cell radius can be small due

to cell densification. As such, a D2D connection may span

across multiple cells, but a typical D2D transmission should

occur within one cell. This cross-cell D2D transmission sce-

nario was considered in [98] in the context of hierarchical

control of a microgrid system.

IV. P H Y S I C A L – S O C I A L C O U P L I N G

I N D I S T R I B U T I O N S Y S T E M S

Physical–social coupling in distribution systems can

be divided into macrosocial coupling and microsocial

coupling.

The macrosocial coupling is more related to energy

policy and so on. The societal decarbonization plan is

a good example. Decarbonization is the process when

a society converts the economy from one that operates

predominantly on energy derived from fossil fuels to one

that runs almost on clean and carbon-free energy [99].

The goal of societal decarbonization plans generally has

impacts on policies, utilities, and end-users from tech-

nology adoption, consumption patterns, and information

infrastructure. Beyond the technical aspect, many state

decarbonization policies have integrated the objectives of

decarbonization with job promotion, economic develop-

ment, urban planning, and energy inequality issue. For

example, the electrification of consumer services in the

transportation, buildings, and industrial sectors integrated

with the decarbonization of electrification generation is

one of the significant pathways to achieving a low-carbon

society in the United States [100]. The impacts of electri-

fication on the power grid and carbon emissions are also

notifiable. Household energy behavior will change based

on the societal level of decarbonization and electrification,

which indirectly will affect utilities’ decisions. For example,

current DR programs promoted by utilities need to con-

sider household EV charging time and patterns, and also

the energy inequality issues that many LIHs do not own an

EV. Regarding behavioral patterns, the adoption of energy

efficiency or electrification can produce a rebound effect.

For example, once the cost of EV charging stations or the

electricity cost of charging EVs is reduced, users’ charging

behaviors might change, and more people will charge dur-

ing the cheaper period, generating a rebound effect or peo-

ple overall use more energy because of cheaper electricity

cost [101]. Integrating social–technological and behav-

ioral strategies is important to achieve deep reductions in

greenhouse emissions. It is necessary to involve electrifi-

cation and electricity decarbonization. Future research is

needed to explore other potential implications of the wide

adoption of electrification and the risks associated with

electrification.

The microsocial coupling is more related to different

participants/stakeholders, such as consumers, retailers,

and system operators in distribution systems. This section

focuses on how the microsocial system influences the new

technologies adoption and DR implementation in the plan-

ning and operation of distribution systems, respectively. In

addition, the impact of COVID-19 on consumers’ electricity

consumption behavior has also been studied.

A. New Technologies Adoption

SM, DERs, and EVs are the three main enabling tech-

nologies for the 3D transformation of future distribution

systems. How the adoption of these three new technologies

is influenced by the different social factors is discussed in

the following.

1) Smart Meter Installation: SMs can collect fine-grained

electricity usage data from consumers and communicate

with utility companies in real time, which is an important

part of distribution systems. Accurate load forecasting

and optimal management of electricity generation and

distribution can be undertaken using these fine-grained

data, which could lead to increased overall energy savings,

reduced greenhouse gas emissions, and lower consumer

costs [102].

The opinion of residents is the most important com-

ponent in determining whether an SM can be effectively

installed in their homes, and large-scale SM installation

can only be accomplished if the majority of people wel-

come this new technology. Despite the promising future

of a large-scale installation of SMs, some opponents are
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Fig. 6. Factors that influence residents’ attitudes toward SM

installation.

opposed to SMs being installed in their homes for a

variety of reasons, including concerns about privacy leak-

age [103], radiation-related health concerns [104], unfa-

miliarity with the new technology [105], fears that SM

installation will increase costs [106], and so on. Thus,

it is important to investigate the factors that influence

residents’ attitudes about SMs to remove the hurdles to

large-scale SM installation, which can be summarized into

two aspects, namely, sociodemographic characteristics and

social–psychological factors, as shown in Fig. 6.

Gender, age, social class, income, and other demo-

graphic characteristics are significant for understanding

consumers’ energy consumption behavior and adoption

of new technologies [107]. Many studies have looked

into residents’ attitudes toward SM installation. Linewe-

ber [108] conducted an online survey involving over 1100

residents in the United States and found that nonwhite

and unmarried residents are more positive about SMs,

while slightly older, white, and married customers were

opposed. Another study looked at samples from 17 states

in the United States with a high rate of SM installation and

found that participants’ income and political ideology were

connected to their support for SMs. SM installation was

more likely to be supported by people with higher incomes

and who are identified as liberals [109]. Bugden and

Stedman [110] further confirmed that SM involvement

was influenced by age and income. Chawla and Kowalska-

Pyzalska [111] investigated SM awareness and acceptance

among Polish social media users and developed a model

to predict residents’ desire to install SMs. According to

their research, consumers’ propensity to accept SMs is

dependent on their age, income, and family size that SMs

are more likely to be accepted by older consumers with

higher incomes and larger families. In addition to the

works mentioned above, more demographic factors, such

as level of education, occupation, and residential area, can

be investigated in the future in order to better understand

the relationship between willingness to install SMs and

residents’ sociodemographic characteristics.

Consumers’ psychological elements, such as trust, pri-

vacy concerns, proclivity, and cognition, are the most

influential in shaping their opinions toward SM installa-

tion. For starters, numerous studies have demonstrated

that residents’ trust in utilities is a critical factor in their

acceptance of energy alternatives [112]. Consumers’ faith

in utilities may have a substantial impact on their attitudes

toward SM installation when they are unfamiliar with

SMs and lack the necessary knowledge to assess the risk

and reward of installation [113]. Karlin [114] found trust

as a key factor influencing consumers’ reactions to SMs.

Chen et al. [115] claimed that consumers’ faith in utilities

is a nonnegligible factor that influences their adoption of

SMs in an indirect manner. Second, inhabitants’ concerns

about privacy leakage are a crucial element that influ-

ences their attitudes [116]. Chen et al. [115] found that

acceptance of SMs is adversely correlated with perceived

privacy risk, and they recommended that privacy concerns

be addressed in order to increase adoption. According to

Hmielowski et al. [109], consumers’ opinions and experi-

ences with privacy invasions are linked to levels of support

for SM installation. Customers who do not trust utilities

to protect their privacy are less likely to support SM

installation [117]. Third, individuals’ preferences influence

whether or not an SM is installed in their homes. Cus-

tomers are primarily interested in SMs because they can

conserve energy (which means lower costs), rather than

for environmental, technological, or regulatory grounds,

according to a field experiment done in Germany by

Berger et al. [118]. Idoko et al. [119] looked at SM

installation from the perspective of a developing coun-

try and found that bill estimation anxiety and perceived

behavioral control were the most important elements

in determining SM purchasing intentions. According to

Hmielowski et al. [109], individuals who believe that tech-

nology enhances people’s lives are more inclined to install

SMs in their houses. Furthermore, Nachreiner et al. [120]

and Chawla and Kowalska-Pyzalska [111] discovered that

providing homeowners with feedback information regard-

ing energy use profiles and real-time electricity prices

and, receiving recommendations from their neighbors, will

increase their proclivity for SM installation. Cognition, or

residents’ judgment of usefulness or environmental prob-

lem, is the fourth aspect that influences their choice. Per-

ceived utility was demonstrated to be a positive predictor

of SM adoption intention in [115] and [121]. Chen and

Sintov [122] conducted a survey in southern California

and discovered that residents who are more connected to

nature have a higher propensity of adopting SMs. Many

additional studies have revealed that those who are con-

cerned about the environment are more likely to approve

the installation of SMs [123].

2) Distributed Energy Resources: DERs can help to pro-

mote the accommodation of local energy and enhance

the energy efficiency of the distribution systems. However,

developing DERs needs the acceptance and cooperation of

the social public to a large extent. For example, rooftop

PV needs to be installed on the rooftops of citizens’ houses

or flats, and thus, the installation needs negotiation with

the house owners or the local authorities. Therefore, social

acceptance of DERs plays an important role in this context

and can even affect the development of DERs to some

degree.
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Social acceptance of DERs can be divided into three

dimensions: sociopolitical acceptance, community accep-

tance, and market acceptance [124]. Sociopolitical accep-

tance concerns the public acceptance and the acceptance

of key stakeholders (energy consumers and investors) of

related energy policies. Despite the general support from

the public in an opinion poll [125], there is a gap between

the support in the polls and the actual success in construct-

ing DERs [126]. The explanations of this social gap can

be three aspects: democratic deficit (i.e., the decisions are

made by the minority who opposed the DERs instead of

the majority who are in favor) [127], qualified support

(i.e., people questioned the problems of DERs’ limits and

controls) [128], and self-interest (i.e., people supporting

the DERs may oppose due to the protection of their own

self-interests) [129]. For example, those who are skepti-

cal about community-scale battery storage are concerned

with the problem of sharing [130]. Such concern reflects

people’s self-interests. Therefore, the government should

develop some related policies to reduce the social gap,

such as collaborative planning of sitting DERs and reliable

financial incentives, and, thus, improve the acceptance of

DERs.

Community acceptance focuses on the acceptance of

local stakeholders (mainly refers to local residents) to

DERs. One main hindrance to the acceptance of distrib-

uted energy by local residents is the attitude of NIMBY,

as known as “Not In My Back Yard” [131]. Those who

support NIMBY tend to express their initial support or

acceptance of the distributed energy projects as long as

they are not implemented in their back yards in the future.

The community acceptance has a temporal nature, and

in [132], a U-curve is proposed to describe the local

acceptance before, during, and after project implementa-

tion. The U-curve starts from high acceptance to lower

acceptance during the siting process, which may cause

undesirable project implementation in their communities,

and backs to a high level of acceptance after the project is

finished and benefits the local community. Consequently,

some approaches to improving community acceptance

were concluded, such as the awareness of local benefits

brought by DERs [133], the guaranteed management and

maintenance of DERs in the future [134], and the financial

compensation for installation [135]. These approaches can

help the government develop related policies and take

measures to raise social acceptance on the community

level.

Last but not least, market acceptance describes the

adoption level of actors (mainly refers to investors) in

the distributed energy market. The investments in the

DERs are mainly from two parts: traditional investors

(such as large supply utilities, project developers, and

financial institutions) and local citizens [136]. In the

countries where DERs are being deployed and devel-

oped in rapid progress (such as Ireland, Spain, and the

United Kingdom), traditional investors make up a major

part of the investment [137], while, in the countries

Fig. 7. Structure of social acceptance of DER.

pioneering the development of this field (such as Denmark

and Germany), more than 50% of the investment is

sourced from local citizens [136]. The main concerns of

local citizens of investing DERs include high-risk aversion,

a lack of access to capital, and diffidence in making

investment decisions [138]. Consequently, some top-down

policies can be adopted to relieve the public of the financial

pressure to invest and thus mobilize investment from local

citizens, including feed-in tariffs, grants, and tax incen-

tives [136]. Alternatively, traditional investors, such as

renewable energy project developers, can take the lead in

investing and alleviate citizens’ concerns about investment

risks [138]. In such a way investment from both traditional

investors and local citizens can be mobilized. Therefore,

studying these concerns and corresponding measures can

effectively help increase market acceptance.

Fig. 7 shows the structure of social acceptance men-

tioned. Although social acceptance of DERs can be divided

into three dimensions, it can be seen that these three

aspects are actually interrelated through the reviews

above. Improving one aspect of social acceptance can also

enhance other ones, forming a virtuous cycle. Therefore,

future research can be concentrated on how to inte-

grate sociopolitical acceptance, community acceptance,

and market acceptance and form a general framework for

social acceptance in the context of DERs. Meanwhile, some

previous works trying to do so can also be referred to

for further study. Peñaloza et al. [139] have researched

the combined acceptance (sociopolitical and market) of PV

panels and heat pumps. van Wijk et al. [135] proposed a

compensation scheme to improve both market and com-

munity acceptance. Devine-Wright et al. [140] proposed a

social acceptance framework for renewable energy storage

based on the integration of sociopolitical acceptance, com-

munity acceptance, and market acceptance. These works

are based on the three aspects of social acceptance and

make fusion organic, which can be referred to in future

studies.
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Fig. 8. Influence factors and incentives for EV integration.

3) Electric Vehicle Integration: The traditional trans-

portation sector is heavily reliant on fossil fuels and

accounts for a significant portion of total greenhouse gas

emissions. Electrification of the transportation sector is

critical for reaching the decarbonization goal [141], where

EVs are at the core of transportation electrification. With

the use of vehicle-to-grid solutions, large-scale adoption

of EVs would not only help cut greenhouse gas emissions

but also provide the potential for saving surplus renew-

able output, peak load shifting, and power grid regula-

tion [142]. However, the charging behavior of EV owners

can have a substantial impact on vehicle-to-grid, which

could pose problems when large-scale EVs are integrated

into the power grid. According to Morrissey et al. [143],

most EV customers charge in the early evening at peak

load, making power balancing even more difficult. As a

result, there is a requirement for smarter EV charging man-

agement and greater utilization of its benefits as flexible

resources in the smart grid. Fig. 8 summarizes the elements

that influence people’s propensity to adopt EVs and smart

charging, as well as incentives that could encourage more

people to utilize these technologies.

Various factors influence public perceptions of EV adop-

tion, which can be divided into three categories: techno-

logical considerations, financial issues, and psychological

aspects. Technical considerations involve the character-

istics of EVs and accompanying items, such as charg-

ing stations. The biggest impediments to the large-scale

adoption of EVs are perceptions of their shortcomings,

such as range restrictions, recharging time, and a lack

of charging infrastructure [144]. Financial issues, such

as purchase price, charging price, maintenance, and recy-

cling cost, are critical when customers choose whether or

not to purchase an EV [145]. Psychological factors also

influence adoption. Customers are more likely to purchase

EVs if they perceive that purchasing EVs may have favor-

able symbolic and environmental attributes according to

Noppers et al. [146]. People are more inclined to adopt

EVs when they believe that significant others will do

so [147]. Many incentives methodologies, both financial

and nonfinancial, have been used to reduce barriers and

encourage more people to adopt EVs. Santos and Rembal-

ski [148] indicate that current EVs are not cost-competitive

with traditional cars, and appropriate subsidies can boost

EV sales. Hardman et al. [149] investigate the impact of

financial purchase incentives and suggest that instant

incentives and tax exemptions are the most effective when

customers buy an EV. Other studies advocate bundling EVs

with auxiliary services or complementary items to encour-

age adoption, such as [150], which claims that bundling

EVs and community solar power will improve customers’

purchasing propensity. According to Hinz et al. [151] and

Fojcik and Proff [152], providing supplementary services is

necessary for EV adoption.

The adoption of EVs in the near future may pose addi-

tional challenges for power systems, increasing electricity

demand, such as in the early evening [153]. Therefore,

smart charging systems, where EVs are charged under

control at variable power to meet the collective needs

of grids (e.g., alleviating the load stress) and EV owners

(e.g., charging when the electricity price is low), become

a solution to secure grid stability and integrate renewable

energy [154]. Smart charging systems inevitably require

the participation of EV owners. The adoption of smart

charging, however, is affected by various factors con-

cerned by EV owners, which can be concluded in three

aspects: usage flexibility, minimum range requirement, and

information privacy. Usage flexibility describes EV own-

ers’ expectations of taking dominant control during smart

charging. On account of the variable power input, the

smart charging process can be longer than conventional

charging (i.e., always at the maximum power). Conse-

quently, PV owners expect to have the override option

for emergency usage instead of charging under control

during the whole process [155]. Meanwhile, PV owners

tend to make minimum range requirements for the smart

charging result. For example, in [156], EV owners stated

that they hope to drive at least 100 km after the smart
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charging process to relieve their range anxiety. Besides,

EV owners have privacy concerns. Since smart charging

usually requires some information on vehicle usage, such

as planned departure time, EV owners do not expect any

leakage of their housing and private information leading to

privacy problems [157]. It can be concluded that EV users

prefer user-managed charging to supplier-managed charg-

ing due to personal control [158]. Apparently, for now,

the complete implementation of smart charging systems is

still faced with some requirements and worries from EV

owners.

Consequently, measures should be taken by the author-

ity to encourage EV owners to actively adopt smart

charging systems, mainly from three aspects: financial

incentives, environmental appeals, and technical improve-

ment. The most common incentives are financial ones.

An investigation in [159] showed that, with high enough

financial benefits, EV users are willing to charge EVs

under control. In addition to financial incentives, envi-

ronmental appeals can act as another type of incentive.

In [160], when informed that free-cost charging in a

green way during midday hours is available (i.e., charge

for free when power generation of renewable energy

is at its peak), EV owners will change their charging

behaviors and turn to smart charging, thus increasing

renewable energy accommodation. Döbelt et al. [159]

suggested that people are willing to smart charge their

vehicles for the contribution that they can make to envi-

ronmental friendliness and traffic decarbonization. Tech-

nical improvements on smart charging systems are as

important as incentives, such as optimizing the location

of smart charging stations [161], constructing more reli-

able charging systems [159], and translating battery state-

of-charge (SoC) into user-friendly information based on

their profiles (such as miles or working days that can be

covered) [162].

In conclusion, the adoption of EV and EV smart charging

systems is influenced by various factors, such as financial

issues, psychological concerns, and security worries. To

encourage the public to embrace such new technologies,

different types of incentives should be applied. To facilitate

decarbonization, both social and technical factors of the

transition to EV have been gradually studied [163]. Thus,

future works on EVs and their related technology should

not only focus on the technical improvements but also

consider the social adoption by the general EV owners.

B. Demand Response Implementation

DR has received great attention from energy policymak-

ers. Implementing DR programs is one effective approach

to decreasing or shifting energy demand by reducing cus-

tomers’ electricity usage during peak hours in response

to changes in the electricity price [101], [164], [165].

One of the major benefits of DR is to help defer or

avoid investment in new power generation or transmission

capacity; other benefits of DR include securing power

Table 2 Multidimensional Challenges of Implementing DR and Smart

Grid Technologies

supply, improving system restoration capacity, avoiding

power outages, reducing costly network reinforcements,

improving the use of renewable sources, providing power

frequency regulation services, reducing greenhouse gas

emissions, and so on [166]. DR is commonly implemented

through the decisions made by end-users in response to

a price signal. Customers can curve down their peak

load and potentially reduce overall energy consumption

by changing thermostat setpoints [167], altering the fre-

quency and time of using ACs and water heaters [168],

white goods (washing machines, dryers, and dishwashers)

usage [169], or EV charging [101]. Typically, utilities have

designed several strategies to motivate customer partici-

pation, including demand reduction focusing on overall

reduction in electricity use or DR focusing on decreasing

or increasing electricity use at specific times [170].

To successfully implement or promote DR programs,

utilities and policymakers need to understand how various

factors and challenges influence user engagement. While

a majority of DR barriers and policy focus on financial

costs, electricity rates, program complexity and structure,

and so on, we classify five main challenges based on con-

sumers’ perspectives: 1) social–psychological challenges;

2) sociodemographics; 3) household characteristics and

activities; 4) technology accessibility and energy equity;

and 5) behavioral and economic patterns, as shown in

Table 2. Since the works on behavioral and economic

patterns have been summarized in [171], only the first four

challenges are discussed in the following.
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1) Social–Psychological Challenges: Both price and

incentive-based DR programs are based on the assump-

tion of rationality and utility maximization borrowed

from microeconomic theory, arguing that people are self-

interested, instrumental, and behave as rational actors

who consistently weigh the expected costs and benefits

of their actions [165], [172]. However, individuals do

not always make rational decisions [173]. Their decisions

could depend on other social–psychological factors, such

as cognitive load, motivation, emotions, trust, perceived

risk, and behavioral control [174]. For example, some

researchers have consistently identified trust and confi-

dence in the utility companies as important influences on

a customer’s acceptance of direct load control (DLC) pro-

grams, an important type of DR [175]. Mistrust in utilities

can arise before or after DR enrollment and is often linked

either to technical issues or a lack of clarity on the types of

DR and wondering whether utilities or customers benefit

from DR [176], [177]. Other mistrust can come from con-

cerns around data privacy and autonomy connected to DLC

and consumers’ ideas of why utilities pursue DR [178].

While bill reductions and financial benefits are the most

common motivations identified, environmental and other

social benefits are also important although they may not be

obvious to users. For example, total electricity use will not

necessarily reduce from DR [179]. Other motivations for

considering DR, including override option provided [180],

included free or reduced-cost technology [181], increased

control over energy use and bills [179], and expected

fun or interesting DR participation [182]. Other social

motivations included pride discussing participation with

neighbors [183], helping to increase electricity system

reliability [178] or DR with a local focus [184]. Other

social–psychological factors include efforts, time, conve-

nience, and thermal comfort that can influence individ-

uals’ energy use [185], [186]. In addition, other factors,

such as attitudes, social norms, and behavioral tendencies,

affect people’s energy use behaviors [187], [188]. Tech-

nology anxiety negatively affects residents’ willingness to

pay for home energy management systems with DR in

Tokyo [177].

2) Sociodemographics and Household Characteristics &

Activities: Compelling evidence has shown that complex

sociodemographic and household characteristics are linked

to energy use patterns and DR participation [189], [190].

For example, age, gender, education, employment sta-

tus, income, household, and dwelling size, and home-

owner status significantly impacted household energy

use [191]. However, the relationships among sociodemo-

graphics, household characteristics, and residential energy

consumption are not always consistent and somewhat

mixed. For example, DR acceptance was higher by higher

income households in the California SPP trial [192].

A review of ten empirical studies in Europe indicated that

household size, dwelling size, income, employment status,

and living conditions (i.e., rural versus urban) have almost

always had a significant relationship with energy demand.

In contrast, age and homeownership sometimes have a

significant relationship, but the education level rarely mat-

ters [193]. Similarly, a study found that factors such as

age, gender, income, education, employment status, social

grade, and housing tenure were not consistently associated

with the willingness to switch to a TOU pricing tariff in the

United Kingdom [194]. Overall, the U.K. LCL trial found

only weak correlations between household characteristics

and DR [195]. Another study reported that willingness

to switch to a TOU tariff was not related to gender or

homeownership [196]. These social–demographical and

household characteristics can influence residents’ energy

habits and household activities, which also influences resi-

dents’ acceptance of the DR program. For example, a large-

scale survey in the United States suggests that household

appliance activities (e.g., electric water heaters and ACs)

and load profiles are related to incentive-based DR par-

ticipation for peak load curtailment through reward pay-

ment [164]. Another study conducted in Japan suggests

that household heterogeneity and multifaceted factors of

household activities, scheduling, and behavioral intention

to accept DR are related to DR flexibility potential [190].

For example, younger residents, households with children,

and household size with three or more people are more

willing to participate in DR and accept a longer shiftable

period than their counterparts. Full-time employees and

those who typically use laundry appliances during the

evenings are less likely to participate in DR and shift appli-

ance use than their counterparts. Habitual and cultural

factors also influence DR acceptance [177]. For example,

the factors of difficulties in changing the time allocation

of daily activities, preferring to dry clothes under the sun,

concerns for hygiene, and machine noise at night are the

main barriers to accepting DR and a longer shiftable period

in Japan [190].

3) Technology Accessibility and Energy Inequality: The

sociodemographic factors are much connected with the

issues of technology accessibility and energy inequal-

ity [197], [198]. The fairness of DR programs becomes

an energy equity issue based on the barriers that low-

and moderate-income households have faced, including

financial constraints, split incentives, aging, nonelectric

appliances, internet or broadband connectivity, and work

schedule [197], [199]. For example, households with more

appliances or with a more flexible working schedule are

more likely to accept DR [194]. In contrast, low-income

households (LIHs) are facing the challenge of higher costs

of peak electricity prices and smart appliances, building

and appliance inefficiencies, inflexible schedules, and lack

of awareness of energy-saving or difficulty using enabling

technologies (e.g., inefficient thermoset usage) [197]. For

example, LIHs have lower participation rates in many

energy-efficient programs and own fewer appliances and

smart grid technologies. In addition, LIHs tend to set one

fixed temperature throughout the day, even when they
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Fig. 9. Sample of 532 N.Y. residents’ weekday time of use

electricity during early COVID-19, March and April 2020 [201].

own a programmable thermostat, which might use more

energy. More importantly, many LIHs are renters. As a

result, renters often lack control over the type of appliances

installed at home. The problem of “spilt incentives” exists,

where landlords are not motivated to invest in efficient

or smart appliances because tenants receive most of the

benefits of installing upgraded appliances [200]. There-

fore, improving energy equality and technology accessibil-

ity issues through DR among the vulnerable populations

(e.g., LIHs and the elderly) is essential.

C. Impact of COVID-19 on Distribution Systems

1) Impacts on Energy Pattern: During the pandemic,

the total household energy consumption increased, but

the residential energy pattern also changed. For exam-

ple, during the early pandemic monthly, such as March

and April 2020, a study shows that home electricity

use in New York areas began to increase significantly

between the hours of 6:00–7:59 A.M. and leveled off at

10:00–11:59 A.M. [201] (see Fig. 9). Electricity usage

continued to rise slightly until it reached peak consump-

tion level at 6:00–7:59 P.M. and decreased after that fol-

lowed by a final decrease at 10:00–12:00 A.M. Overall, the

home energy pattern shows a continuous rise in electric-

ity use during working hours (9:00 A.M.–5:00 P.M.) that

would usually be a “dip” from not being at home before

the pandemic. According to the U.S. Energy Information

Administration (EIA), before the pandemic, overall energy

demand levels in the United States generally rise through-

out the day, and the on-peak hours usually occurs between

7:00 A.M. and 10:00 P.M. on weekdays. In contrast, the “off-

peak” hours refer to the time when demand levels are the

lowest between 10 P.M. and 7 A.M. and on weekends [202].

As mentioned earlier, this pattern is different from the load

curve during the pandemic.

The peak energy hours in the early mornings have

shifted to midday under work-from-home situations, with

other studies reporting increases of 30% in midday con-

sumption in the United Kingdom [203] and 23% in the

United States [204]. This shift brings challenges in man-

aging utility companies’ daily load profiles and potential

financial impacts to disadvantaged end-users who expe-

rienced increased energy bills while having their income

impacted. Researchers need to know that different income

groups have distinct energy profiles and behavioral pat-

terns. For example, LIHs are likely to have unique stay-

at-home patterns and energy practices, such as staying

at home more than the higher income groups during the

nonpandemic period, and peak hours-energy-use patterns

that also tend to differ from those of higher income

groups [197], [205].

The epidemic has a tremendous influence, but the

degree and manner of impact on different locations vary

because of differences in social development, customs, and

urban characteristics [206]. As an example, we looked

at the impact of COVID-19 on the energy pattern of

Guangdong, an affluent province in China. We chose four

periods (each containing five weekdays) for analysis based

on the end of the Chinese New Year as the dividing point:

epidemic peak period (February 3–7, 2020), epidemic mit-

igation period (March 9–13, 2020), previous year’s same

period of epidemic peak period (February 11–15, 2019),

and previous year’s same period of epidemic mitigation

period (March 18–22, 2020). The average daily load pro-

files of the whole province and its 21 cities during the four

periods are depicted in Fig. 10.

The little pictures in the first two rows correspond to

nine cities in the Guangdong-Hong Kong-Macao Greater

Bay Area. It can be seen that: 1) except for Zhaoqing,

the electricity consumption in the area has recovered

to 84.3%–93.3% during the epidemic mitigation period;

2) Dongguan and Zhongshan have the greatest reduction

in electricity consumption due to the presence of more

small and medium-sized enterprises; and 3) the electricity

ratio in Zhaoqing is higher during the epidemic’s peak

phase than it is during the remission period. One expla-

nation for this phenomenon is the slower return to work.

Another factor is that Zhaoqing is in a population outflow

region, and the epidemic surges during the spring festival

when people return home. As a result of the disease iso-

lating these people in their houses, the region’s electricity

consumption has increased.

Five cities in eastern Guangdong are represented by the

small pictures in the third row.

1) The power ratios of the cities in eastern Guangdong

were all greater than the province average during

the epidemic’s peak. The fundamental reason is that

the eastern part of Guangdong is a population inflow

area during the spring festival, and regional customs

prevent local inhabitants from temporarily relocating

during the epidemic’s peak before the 15th day of the

first month.

2) The load curves in Heyuan and Meizhou during

the epidemic mitigation period have changed signif-

icantly compared to the same period in 2019, with
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Fig. 10. Daily load profiles of cities in Guangdong during four periods: 1) red solid line represents epidemic peak period; 2) blue solid

represents epidemic mitigation period; 3) gray dashed line represents previous year’s same period of epidemic peak period; and 4) black

dashed line represents previous year’s same period of epidemic mitigation period.

a similar load during the daytime peak hours but a

significantly lower load in the evening hours, which

is expected to be since some local enterprises have

not yet resumed work and fewer enterprises consume

electricity in the low valley.

Another five cities in western Guangdong are repre-

sented by the small pictures in the fourth row. We found

that the Qingyuan area has more small- and medium-sized

firms that have recently relocated to the Pearl River Delta

region, and it is not a population-moving region, resulting

in a slower rate of work resumption.

2) Impacts on Energy Insecurity and Energy Medical Needs:

Rising residential energy demand overall and during

new peak hours may pose severe burdens for LIHs and

exacerbate energy insecurity and burdens during the pan-

demic [207], [208]. LIHs and socially disadvantaged com-

munities have faced long-standing energy insecurity (i.e.,

the lack of equal access to energy resources) and energy

burdens (i.e., the inability to pay utility bills). Energy

insecurity and burdens in the United States are expected

to rise due to increased electricity prices, inefficient homes

or appliances, and extreme weather events. On average,

the median household energy burden, measured by the

percentage of a household’s income spent on energy bills,

is approximately 3.1% across United States cities; in con-

trast, for LIHs, this figure is more than 2.5 times as high,

at 8.1% [209]. During the early pandemic of 2020, a

study showed that higher income households contributed

higher electricity bills due to their larger homes or more

household size. However, lower income families in New

York had higher energy burdens than other higher income

groups [208]. Specifically, the average monthly energy

burdens were 4.01% for LIHs, 3.57% for lower medium,

2.54% for upper medium, and 1.85% for high-income

households.

Extreme events have intensified energy insecurity for

LIHs in many ways. For example, during the pandemic,

LIHs tend to experience layoffs that challenge their ability

to keep their home warm or afford the utilities. Race,

age, and gender inequalities have also confounded these

effects. Some LIHs who are struggling with utilities have

to make tradeoffs between utility services, food, medicine,

and other necessities by adopting certain unsafe behaviors,

such as using ovens or burning charcoal for heat [210].

LIHs are also more likely to live in less efficient and poorer

quality housing and use older, less energy-efficient appli-

ances, and HVAC systems than higher income populations.
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The energy insecurity among LIHs is exacerbated by the

private rental sector, leaving renters less able to, or owners

of rental properties, have little incentives to invest in

efficiency improvements [197]. More importantly, a lack of

quality energy infrastructure and utility services typically

happens in low-income communities [211].

Energy security and affordability are also crucial for

residents with complex health conditions during the pan-

demic, which potentially increases their need for elec-

tronic medical devices or their health that is affected

by heating and cooling [210], [212]. For example, low-

income populations generally are people over 65 and those

with disabilities or medical needs that affect heating and

cooling. A recent study found that 13% of low-income

residents in New York reported that their medical condi-

tions were affected by heating and cooling equipment use

during the early COVID pandemic. In contrast, only 3%

of medium- and 3% of high-income households had this

situation [208]. These disadvantaged groups with medical

needs are also normally suffering from high energy bur-

dens due to the conditions of housing inefficiencies, low

wages, or prioritization of other necessities [213]. Based

on an epidemiological model, researchers reported that

households’ inability to adopt social distancing because

their constraints in utility and healthcare expenditures

can drastically affect the course of COVID disease out-

breaks in five urban United States counties, including

Allegheny, Hidalgo, Los Angeles, Philadelphia, and Oak-

land [214]. Health interventions combining social distanc-

ing and resource protection strategies for LIHs, such as

providing sufficient utility and healthcare access, are the

most effective way to limit the COVID virus spread to low-,

medium-, and high-income levels. Therefore, it is critical

for policymakers to pay attention to the multidimension-

ality of energy, housing, and healthcare access for future

disasters or extreme event management.

Consequently, the bundled challenges of energy

insecurity and burdens increase the likelihood of LIHs

experiencing physical and mental health challenges, par-

ticularly during the COVID pandemic or other extreme

events [212]. Households that experience energy inse-

curity and burden situations could face many poten-

tial immediate or long-term negative impacts on their

housing quality, psychological stress, and overall well-

being. These COVID-related challenges highlight the crit-

ical need to develop a long-term plan for reliable,

equitable, and resilient energy systems to protect under-

served communities.

V. C Y B E R – S O C I A L C O U P L I N G I N

D I S T R I B U T I O N S Y S T E M S

Fig. 11 shows the cyber–social coupling in distribution

systems with a focus on electricity consumers, where the

social system contains a massive number of consumers,

and the cyber systems contain different networks (i.e.,

traditional communication networks and social networks)

Fig. 11. Cyber–social coupling in distribution systems.

and distribution systems’ control center. Consumers in

distribution systems can generate different kinds of data in

real time. These data generated from the social system can

be further processed and translated into actual information

in the cyber system. For example, the consumption behav-

ior can be analyzed, and sociodemographic information

of consumers can be inferred based on how much elec-

tricity they consume in different time periods. The works

about behavior analysis and sociodemographics informa-

tion identification were summarized in [171]. For another

example, what the consumers say in social networks, called

social sensors, can also be used for distribution systems

management, such as outage detection. In addition, the

privacy of the generated data from consumers is a signif-

icant concern that should be fully addressed. Thus, this

section discusses two topics, i.e., social sensors and data

privacy and pricing, which couples the social and cyber

systems.

A. Social Sensors for Distribution Systems

It has been proven that the reliability of grid systems

can be guaranteed by installing physical sensors. However,

due to the high time costs and economic investments, it is

difficult for countries or public utilities to achieve the wide-

spread placement of physical sensors. In addition, physical

sensors may be affected by cyber–physical attacks and may

even be destroyed during disasters. Due to these limita-

tions of physical sensors and the large amount of data

that people generate on social media, social sensors have

been regarded as another candidate method for utilities

or researchers to improve the dependability of distribution

systems. From the perspective of the application fields, the

social-sensors-based method can be mainly classified into

power outage detection and other applications.

Extremely natural disasters, such as hurricanes, earth-

quakes, and civil unrest, may cause a lot of damage to

the city, leading to a power outage in a large area. Con-

sumers who frequently use social media (such as Twitter,

Facebook, and Instagram) may post important information

related to this event during a power outage. This kind
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of data can be used to identify the outage first and then

help utility companies or the government to take measures

to tackle this problem. In [215], by using latent Dirichlet

allocation, a dataset containing keywords of the outage

was generated to detect four types of outages (e.g., power

outages, communication outages, power-communication

outages, and others). The support vector machine (SVM)

was used to detect outage-related tweets. After then, a

transfer learning model, bidirectional encoder represen-

tations from Transformers (BERT), was used to classify

the tweets into four types above. By using social media

to reinforce the capabilities and reliabilities of the smart

sensor in the power grid, Baidya et al. [216] discussed how

to use images, keywords, and geotags to identify the power

outage. In [217], a novel probabilistic model with the con-

sideration of the text, time, and posting location was pro-

posed to detect power outages. Specifically, to improve the

detection accuracy, a supervised topic model was utilized

to improve the detection accuracy. Based on the keywords

from tweets, Bauman et al. [218] focused on detecting

power outages in a local area based on a few sets of rele-

vant tweets reporting emergency events. Most importantly,

Bauman et al. [218] gave the relationship table between

the number of tweets posted and the frequency of events

that occurred. Correa et al. [219] showed the relationship

between the outage hours reported by companies and

outage hours reported by users. In addition, a novel mobile

application, Grid-Watch, was used to capture the data

and to help people automatically detect electricity outages

in [219]. In order to investigate how many phones are

needed to ensure satisfying outages detection, a stochastic

model was used to approximate the devices with the

installation of Grid-Watch. Apart from algorithm applica-

tion, in [220], hardware named GridAlert was created to

monitor the outages and power consumption in Kenyan

households by using local data from households. The

multilayer perception (MLP) neural network and natural

language processing (NLP) techniques were used in [221]

to detect power outages in real time. In [222], taking the

2019 Manhattan outage as an example, quantifications

of mental and behavioral responses were given by using

NLP to classify the sentiment into positive, negative, and

neutral and to identify six types of behavioral responses.

In fact, social sensors have many other applications that

can provide inspiration in distribution systems. The first

one is the disaster area location. As mentioned before,

extremely natural disasters may cause a lot of damage to

the city. How to locate the disaster area fast and accurately

is another vital problem since the disaster will bring the

opportunity to the government to rescue injured people

and restore the infrastructure, especially for minimizing

power outage durations and costs. In [223], an exact

power outage location was detected based on the Twitter

data without geotagged by using a two steps learning-

based framework. The first step was to find actual outage

tweets by using a probabilistic classification model. Then,

in the second step, the actual outage tweets were used

to extract the exact outage locations using a bidirectional

LSTM deep learning neural network. A real-time natural

disaster mapping was proposed in [224] without using

geotags from Twitter. In order to avoid preprocessing of the

tweets, available street maps and geographic information

are loaded before mapping.

The second one is sentiment detection. The aim of

sentiment detection is to detect the emotion of the user

from the text, image, and video that they post on social

media. Identifying their emotion correctly can be used to

determine whether he needs help or not, especially for

people who are in depression or low emotion during a

power outage. This could help rescue workers provide

suitable services to depressed people. The traditional sen-

timent detection method aims to classify the tweets into

positive, negative, and neutral by only using the informa-

tion of text [225]. Maynard et al. [226] proposed a novel

sentiment detection method with the combination of text

information and image information. The NLP method was

used to classify the sentiment first, and locality-sensitive

hashing (LSH) was used to extract emotional features

from images. The sentiment detection can also be used

for electricity consumers so that the retailer can figure

out whether the consumers are satisfied with the current

service.

The third one is air quality monitoring. Air quality

plays an essential role in people’s daily life. A fast and

accurate air quality monitoring can allow people to prepare

in advance, for example, prepare N95 masks to prevent

PM2.5. In [227], an air quality trend monitor was con-

structed by using 93 million messages from Weibo. It was

concluded that the social media-based method could pro-

vide a faster and more accurate trend than the traditional

method. What is more, messages posted by Chinese people

contain a large amount of firsthand information that has

not been discovered. In [228], social media data from

Weibo were used to construct a dynamic population map.

Then, a well-developed satellite-ground-hybrid model was

used to estimate population exposure to PM2.5 based on

the map. Also, this kind of idea could be used in power

consumption monitoring. An accurate and real-time power

consumption monitoring can act as an aid in building

smart city services to manage power allocation [229].

To sum up, from the research above areas, the social-

sensors-based method can improve the reliability and

effectiveness of system operators’ decision-making, espe-

cially for the area that needs a fast and accurate response.

Meanwhile, it also requires high-quality data and trustwor-

thy information sources.

B. Data Privacy and Pricing

Governments or organizations worldwide are increas-

ingly committed to data privacy protection. Privacy has

become an emerging social concern. For example, different

countries have different consumer data privacy regulations

for energy consumption. The United Kingdom launched

two policies in 2018, the Smart Meter Bill [230] and The
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Fig. 12. Data barrier among data owners in distribution systems.

Data Protection Act [231], respectively, authorizing half-

hourly electricity consumption data collection and imple-

menting general data protection regulation (GDPR) [232]

to utilize consumers’ data and protect data privacy at the

same time. To address privacy concerns with smart grid

technology, the Office of Electricity Delivery and Energy

Reliability and the Federal Smart Grid Task Force have pub-

lished a Voluntary Code of Conduct (VCC) for utilities and

third parties in the United States [233]. Data Security Law

of the Peoples’ Republic of China was passed on June 10,

2021, which strictly regularizes data collection, storage,

use, processing, transport, provision, and disclosure [234].

A comparative analysis of residential SM data privacy in

different countries can be found in [235]. Fig. 12 shows

that there is a data barrier between each two data owners.

They cannot or are not willing to directly share their data

with others because of the data privacy regulation, busi-

ness competition, and so on. Thus, it is of vital importance

to figure out how to preserve the privacy of consumers

and promote secure data sharing among each other in

distribution systems.

1) Data Privacy: Thanks to the widespread use of sen-

sors such as SMs indicated above, a considerable amount of

data regarding renewable energy generation, demand-side

power usage, and environmental factors can be captured

and transferred to data centers via the built communica-

tion network. Advanced machine learning technologies can

be used to conduct optimal energy management and accu-

rate forecasting using this aggregated copious data [236].

However, such a data-centralized method may no longer

be practicable or feasible for two key reasons. The first

reason is that, as urbanization accelerates and sensors,

such as SMs, become more widespread, the amount of

data collected will explode. The tremendous amount of

raw data that must be delivered to the data center necessi-

tates a big transmission bandwidth and high transmission

speed, which could be a major difficulty for the com-

munication network. The second factor has to do with

concerns about privacy. Take SM data as an example;

different retailers control SM data, and data analysis helps

them better understand users’ usage patterns and offer

customized services [237]. These data owners may be

hesitant to disclose their valuable data for fear of los-

ing their competitiveness in the retail sector. Federated

learning is offered as a possible way to address the two

issues mentioned above. Multiple participants collaborate

to construct a model while maintaining the data in situ

using the federated learning framework. Instead of directly

sending raw data, each participant uses local data to

train models separately and transfers model parameters

over secure protocols [238]. Even though raw data from

many districts will not be transferred to a data center

during federated learning, it is necessary to aggregate

data received by sensors in the local area. To tackle this

challenge, a high energy-efficient and privacy-preserving

strategy for safe data aggregation was presented in [239].

The distributed federated learning approach allows for

collaboration between different data owners and parallel

computation while maintaining privacy. Because of the

appealing qualities of federated learning, a growing num-

ber of studies are focusing on how to apply this method

to the power system. For example, Wang et al. [240]

proposed using privacy-preserving principal components

analysis to extract key features from SM data and a feder-

ated learning-based neural network to identify electricity
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consumer characteristics. Gonçalves et al. [241] examined

privacy-preserving collaborative forecasting methods using

a federated learning system that comprises data trans-

formation techniques, safe multiparty computation, and

decomposition-based methodologies. By combining data

transformation methods with the alternating direction

approach of multipliers, a federated learning model was

developed to increase renewable energy forecasting skills.

They also addressed the asynchronous communication

problem in both peer-to-peer and server–client federated

learning schemes [242]. For generating renewable energy

scenarios, Li et al. [243] combined least-squares generative

adversarial networks with federated learning, and their

method was shown to outperform state-of-the-art central-

ized systems.

In addition to preventing malevolent adversaries from

stealing data, protecting private information from being

inferred is another important challenge in achieving the

goal of privacy preservation. Differential privacy-based

approaches have been presented and are popular due to

their ease of implementation [244]. Differential privacy

attempts to thwart an inference attack when a single sam-

ple enters or exits a database by introducing random noise

to the input data. Based on differential privacy, a privacy-

preserving optimal power flow technique for distribution

grids was proposed in [245]. Gai et al. [246] improved

standard differential privacy approaches and presented a

noise-based approach for a consortia blockchain-enabled

neighboring energy trading system that protects members’

privacy from data-mining attacks. Even while differential

privacy-based approaches are useful in some situations,

input data with noise may deviate from the real value,

lowering the effectiveness of the model that uses these

inputs. Another viable solution for privacy preservation

in SMing systems is to employ renewable energy and

rechargeable batteries to directly adjust consumers’ actual

energy consumption profiles. The use of rechargeable bat-

teries in conjunction with renewable energy sources was

studied in [247] to limit information leakage and came

up with single-letter information-theoretic expressions for

the least information leakage rate, while using energy

storage to improve privacy will raise energy costs, which is

contrary to the original purpose of storage investment, i.e.,

saving costs. As a result, the tradeoff between maintaining

privacy and cutting costs should be carefully evaluated.

Giaconi et al. [248] discussed the characteristics of the

privacy–cost tradeoff in three scenarios: the short-horizon

model, the long-horizon model, and the practical energy

management strategy. The problem of determining the best

privacy–cost tradeoff method was abstracted as a Markov

decision process in [249] and [250], and reinforcement

learning-based algorithms were used to solve it.

2) Data Pricing: The massive number of distributed data

in the grids can be utilized to optimize the operation

and planning of power systems with data-driven methods.

For example, Bessa et al. [251] and Tastu et al. [252]

have proved that distributed data can improve forecasting

quality for wind and solar energy, respectively. However,

as stated above, data owners are reluctant to share their

data. Despite some privacy-preserving methods, such as

data manipulation (such as additive noise) and federated

learning, which can protect the privacy of distributed data,

data owners may still be unwilling to disclose their data

unless their datasets are fairly valued and paid [253].

Consequently, data markets, where data owners are incen-

tivized to share their data through monetary compensa-

tion [254], are called for efficient data exchange as another

means. In the context of smart grids, data are usually

traded for improving energy forecasting accuracy, reducing

uncertainty, and, thus, lowering the imbalanced costs in

the energy market [255]. Consequently, data pricing in

the current stage in the context of smart grids tends to

be forecasting-based. For example, Gonçalves et al. [256]

proposed an energy forecasting data market where wind

agents submitted measurement data to market operators

(market intermediates responsible for calculating pay-

ments, allocating payoffs, and return prediction results)

and got the forecasting results instead of data from other

agents. In this market, market operators made predictions

based on the ordinary least-squares (OLS) regression. Buy-

ers’ payment depended on the improvement of regression

accuracy. On this basis, regression markets for energy

forecasting were further proposed in [257]. In regression

markets, agents post regression tasks, and other agents

who are willing to share their data will be monetarily

rewarded based on Shapley values and related alloca-

tion [257]. Another method of payoff allocation in the

regression market is based on the least absolute shrinkage

and selection operator (lasso), which regularizes the use-

less features and selects useful ones for prediction [258].

Similarly, in [259], the economic value of PV-related data

was measured as the operational cost reduction induced

by forecasting improvement. Wang et al. [260] further

defined the value of data in terms of the role of data

in eliminating the impact of uncertainty on the economic

interests of the data buyers. For example, the acquisition

of data on electricity consumption by renewable energy

providers leads to a reduction in the length of the pre-

diction interval for probabilistic load forecasts, and this

reduction can correspond to an increase in revenue for the

data buyer coming to the energy market.

It has to be mentioned that data pricing models beyond

the context of smart grids can also be referred to in

future research, which can be divided into two categories:

economics-based models and data-driven-based models.

The economics-based models usually draw on traditional

economics thoughts for pricing data. A classic approach

for pricing goods is cost-based pricing, which considers

the complete cost of a commodity (including collecting,

managing, and so on) and calculates the profit as a per-

centage of the total cost. On account of the extremely

high variety of data products, standalone cost-based pric-

ing usually fails to measure the value of data [261].
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Consequently, in data markets, the economic approach of

differential pricing (i.e., setting different prices for the

data of different quality/quantity) is frequently applied to

price data. For example, the completeness of XML docu-

ment data is used to describe its quality, and the price is

determined accordingly [262]. Similarly, Shen et al. [263]

proposed a pricing mechanism for personal data according

to the measurement of information entropy. Beyond pric-

ing data from single-dimension data quality measurement,

Yu and Zhang [264] proposed a model for pricing data

according to multidimension data quality measurement.

In addition to the variety of data products, the demands

of data consumers can be also various, and thus, data

pricing can also be affected by data consumers’ demands.

Zheng et al. [265] priced mobile data considering both the

accuracy of the dataset and the tolerance level of data

consumers to inaccuracy. To avoid purchasing the whole

dataset with probable useless parts, Koutris et al. [266]

developed query-based data pricing, which can automat-

ically calculate the query price according to consumers’

queries and the view price set beforehand by data ven-

dors. Willingness To Buy and Willingness To Sell from the

perspective of both data consumers and data sellers are

modeled in [267], bridging supply and demand during

pricing data. Economics-based models usually provide gen-

eral ideas for pricing data, which means that they are not

limited to specific contexts and can be referred to in further

research.

In comparison to traditional commodities, data-driven

research can be used to investigate the potential value

of data commodities and provide economic benefits. How

to evaluate the value of data and determine a suitable

price should examine the following two aspects from

the standpoint of data-driven techniques: 1) data pricing

according to its contribution to the model and 2) profit

sharing. On the one hand, data are at the heart of data-

driven approaches, such as machine learning, and its worth

can be measured in terms of model improvement. Value-

of-Information (VoI) and influence functions can be used

to quantify the contribution, and reverse auctions can be

used to achieve it. The VoI is defined as the extent to

which provided data can aid in the elimination of uncer-

tainty during the decision-making process [268] or the

facilitation of model inference. VoI is used in healthcare

systems for decision-making [269] and pricing [270]. Koh

and Liang [271] investigated influence functions that can

explain the contribution of individual training data, and

Richardson et al. [272] proposed using influence func-

tions to reward high-quality data in a crowdsourcing data

gathering situation. When model owners are aware of the

exact types of data required to develop the model, they

can use reverse auctions to attract data contributors, such

as Singla and Krause [273] proposed regret minimization

techniques and reverse auctions for sensor data to create

truthful incentives in crowdsourcing jobs. On the other

hand, data can be valued through fair profit sharing after

the economic benefits of data donation have been realized.

Table 3 Collection of Data Market-Related Literature

Gollapudi et al. [274] looked at utility game theory in the

context of reasonable profit-sharing schemes. One profit-

sharing scheme adheres to egalitarian principles, which

means that all participants share the benefit equally. Other

profit-sharing schemes involve a labor union game where

profit is shared according to the marginal gain or marginal

loss when a participant enters or exits. Ghorbani and

Zou [275] presented data Shapley for establishing equi-

table data valuation in a machine learning context, and

Jia et al. [276] proposed efficient algorithms for approx-

imating the Shapley value during data pricing. Despite

the fact that data-driven approaches for pricing data often

need specific data-related tasks, these approaches mine

and evaluate the potential value of big data.

Table 3 collates the relevant literature on different pric-

ing methods in different contexts mentioned above. To

conclude, studies on data pricing in the context of smart

grids tend to be data-driven approaches, often related to

forecasting tasks, while works in the context of nonsmart-

grid context applied various pricing approaches, including

economics-based approaches and data-driven approaches.

These previous works can be further referred to and com-

bined and, thus, design a more suitable market mechanism

for smart grid data markets.

VI. O P E N R E S E A R C H I S S U E S

Although a lot of work has been done on the intersection

of cyber, physical, and social aspects of distribution sys-

tems, cyber–physical–social distribution systems are still in

their infancy stage, and more work should be done for the

deep fusion of cyber–physical–social systems. This section

envisions three potential research directions in this area.

A. Cyber Systems Operation and Planning

1) Cyberattack Risk by Reducing Communications: As a

highly sensor-driven cyber–physical system with interde-

pendence between communication and power networks,

smart grids are inevitably exposed to cyberattacks. For

example, malicious attacks on sensor data transmissions

can mislead the power network control algorithms, leading

to catastrophic consequences, such as blackouts in a large

geographic area. Under the threats of adversaries, smart

grids need to maintain their functionality and availability.

In the context of cybersecurity, this can be achieved by

ensuring information confidentiality, integrity, and authen-

ticity. Among these different cybersecurity aspects, ensur-

ing communication confidentiality can keep sensor data

and control command a secret to ill-intentioned parties.
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This is important to prevent unauthorized profiling of the

intimate details of smart grid operation and consumer

lifestyle. Ensuring communication integrity can prevent

control commands from being illegitimately modified in

transit. Under the malicious insidious attack, the integrity

of control commands can be assured as long as they are

kept confidential. This is because an attacker must first

learn about the system behaviors and know the original

command before modifying it to gradually harm the system

without being easily detected. As such, communication

confidentiality is probably the most critical cybersecurity

aspect of smart grids.

The risk of leaking confidential information increases

with an increase in communication traffic and distance.

It is an open research challenge on how to minimize the

amount of information being communicated and commu-

nication distance while performing smart grid control. This

can probably be achieved by shifting from a centralized

control architecture to a distributed control architecture,

where multiple smaller control units are tasked to make

local control decisions for only a section of the smart

grid in a less frequent manner. These local control units

may indeed cut the risk of information eavesdropping, but

the challenge remains in closing the gap in performance

optimality between centralized and distributed controllers.

B. Human Behavior Modeling

1) Integrated Modeling of Cyber–Physical–Social Systems:

Individual modelings of cyber, physical, and social sys-

tems are the basis of integrated modeling of distribution

systems. The electromagnetic theory and the information

theory lay solid foundations for modeling physical and

cyber systems, respectively. Rigorous mathematical equa-

tions can be formulated, such as power flow equations

for power networks and data transmission equations for

wireless communication networks. However, there is no

universal modeling approach for human behavior. Humans

have a different way of cognition than computers, which

is hard to model. In addition, humans have lower pre-

dictability, i.e., they may not make the same decision in

the same situation but at different periods. It is hard to

mathematically formulate human behavior, such as cyber

and physical systems. Is there a way to define a behavior

model that can comprehensively reflect the complex cog-

nition and predictability of humans (such as consumers

and retailers)? On this basis, is it possible to develop data-

driven approaches (e.g., neural networks) to model their

behavior?

Another critical issue is integrating the models of the

three systems. Take DR as an example; many works in DR

establish optimization models to schedule different appli-

ances assuming that consumers are retinal. This is not the

case in the real world. Even though current research from

the social perspective can summarize the different influ-

encing factors and provide some explanations according to

survey data, these results cannot describe how consumers

react to different signals (whether, price, and so on) and

are hard to be integrated with the optimization model for

DR. We call for integrated models to reflect the interactions

among cyber, physical, and social systems so that the final

decisions based on the integrated model are closer to

the real world. There are several works on system-level

modeling of cyber–physical–social systems [277], [278].

These modeling methods should be more specified for

specific problems in distribution systems.

2) Human-in-the-Loop Simulation: In addition to mod-

eling, simulation is also crucial for evaluating a decision.

Since human is the most challenging part to be mod-

eled, putting humans into the loop for simulation may

better reflect humans’ cognition and predictability. In fact,

human-in-the-loop simulation has been widely studied

for the problems outside distribution systems [279]. The

design methods can be good references for designing sim-

ulations in distribution systems, such as putting consumers

into the loop for peer-to-peer market simulation and

putting system operators into the loop for the reliability

analysis and simulation.

3) Backup Power Deployment for Cyber Systems: Due to

interdependence between communication and power net-

works, smart grids may experience internetwork cascading

failures when an initial failure propagates from one net-

work to another network through the dependent node of

a failed node. Such cascading failures may carry on for

a number of cycles and may result in a complete system

collapse. As such, internetwork cascading failure poses a

challenge to smart grid resiliency and robustness.

The impact of internetwork cascading failures can be

reduced by preventing the propagation of an initial failure.

This can be achieved by installing backup power at com-

munication nodes such that a communication node may

not fail merely due to the failure of the power node that it

depends on for its electricity supply. However, each backup

power unit incurs a cost, and it can be too costly to install

a backup power unit at each communication node. It is

an open research challenge on how to optimally deploy

backup power units for the smart grid communication

network while maximizing its robustness and resiliency.

C. Data Supply Chain

1) Data Supply Chain Management: Traditionally, the

factors of production can be divided into four main cat-

egories: land, labor, capital, and technology. In the era of

the digital economy, data will become another important

factor of production. Both physical and social systems in

the distribution systems are generating data, while the

cyber system is transmitting and analyzing data. Data

are the core of future cyber–physical–social distribution

systems, which involves data collection, data transmission,

data storage, data mining, data trading, and so on. Is

it possible to propose the concept of the data supply

chain to model the whole process from data collection to
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data-driven decisions? Each link of the data supply chain

involves various costs, such as sensor installation costs

for data collection and technology development costs for

data mining. Thus, each link should be carefully managed.

Supply chain management has been widely studied for

various commodities. Data, as a new factor of production,

have distinct characteristics compared with traditional

commodities. Effective modeling and fair management of

the data supply chain in the distribution systems will large

promote the digitalization of distribution systems.

2) Social and Technological Data Fusion: Integrating

social science and engineering concepts and methods

is critical to achieving effective interdisciplinary energy

research; however, it is often a challenge to integrate

human and physical measures and data. The first challenge

arises in the fundamental research direction design. The

potential of interdisciplinary and transdisciplinary research

design in energy and the cyber system is clear. Still, it

requires social scientists, computer scientists, and engi-

neers to incorporate social vulnerability or more social,

psychological, and behavioral measures into the broader

measurement and modeling of vulnerable community

resilience in the beginning stage of research design. Previ-

ous research in energy patterns, DR, and occupant behav-

ioral analysis has often focused on technoeconomic aspects

(e.g., building efficiency and electricity prices) without suf-

ficiently integrating particular demographic groups’ social,

psychological, and behavioral dimensions into engineer-

ing modeling. Second, the integrated measures and data

analysis are not designed fundamentally by including

social, psychological, and behavioral components in the

engineering’s physical data; instead, they often are adding-

on or post hoc analyses. However, the machine learning

methods in big data could potentially integrate social

science data. Third, human-interpretable results require

that machine learning methods are informed by physi-

cal, biological, and social science understandings. More

importantly, researchers should understand that big data

analytics contain potentially social bias and generalization

issues. For example, some forms of “big data” come from

social media, or the web is likely to exclude certain groups,

such as the elderly or LIHs’ opinions, because they are less

likely than others to participate in certain types of social

media (e.g., Twitter), so analyses based on these sources

have the population bias. Some applications of machine

learning methods have been critiqued for reproducing

certain social or ethical biases [280]. More importantly,

researchers must be cautious about using big data analysis

without theoretical understanding from the sciences or

human behaviors will favor ad hoc explanations based on

data that happened to be available rather than underlying

causality among variables.

VII. C O N C L U S I O N

This article provides a comprehensive review of cyber–

physical–social couplings in smart distribution systems,

including cyber–physical, physical–social, and cyber–social

couplings. The latest developments and emerging topics,

such as 5G communication, COVID-19, and data privacy,

in future smart distribution systems, have been summa-

rized and discussed. In addition, we have proposed future

research directions from three aspects: human behavior

modeling, cyber system operation and planning, and data

supply chain. We would like to emphasize that cyber–

physical–social distribution systems are an emerging and

promising research area. We hope that this review can

provide readers with a complete picture and deep insights

into this area. �
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