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Abstract

Google recently announced plans to phase out third-party
cookies and is currently in the process of rolling out the Chrome
Privacy Sandbox, a collection of APIs and web standards that
offer privacy-preserving alternatives to existing technologies,
particularly for the digital advertising ecosystem. This includes
FLEDGE, also referred to as the Protected Audience, which
provides the necessary mechanisms for effectively conduct-
ing real-time bidding and ad auctions directly within users’
browsers. FLEDGE is designed to eliminate the invasive data
collection and pervasive tracking practices used for remarket-
ing and targeted advertising. In this paper, we provide a study
of the FLEDGE ecosystem both before and after its official
deployment in Chrome. We find that even though multiple
prominent ad platforms have entered the space, Google ran
99.8% of the auctions we observed, highlighting its dominant
role. Subsequently, we provide the first in-depth empirical anal-
ysis of FLEDGE, and uncover a series of severe design and
implementation flaws. We leverage those for conducting 12
novel attacks, including tracking, cross-site leakage, service
disruption, and pollution attacks. While FLEDGE aims to en-
hance user privacy,our research demonstrates that it is currently
exposing users to significant risks, and we outline mitigations
for addressing the issues that we have uncovered. We have also
responsibly disclosed our findings to Google so as to kickstart
remediation efforts. We believe that our research highlights the
dire need for more in-depth investigations of the entire Privacy
Sandbox, due to the massive impact it will have on user privacy.

1 Introduction

The digital advertisement industry has grown to massive
proportions since the first incarnations of web advertisement
banners in the early 1990s, and is expected to surpass the
trillion dollar mark within the next five years [1]. Online ads
not only constitute a major revenue stream for smaller or
independent content publishers and developers (e.g., mobile
app developers), but are also the main revenue stream of tech

giants like Google and Facebook. Ad strategies have also
evolved over time, as advertisers aim to improve conversion
through behavioral advertising, where users are targeted based
on their demographics, preferences and interests. As a result,
the ad ecosystem is powered by widespread data collection
(typically performed by third-party tracking scripts) for gen-
erating user profiles based on their browsing habits. Personal
user data is amassed by a limited number of companies that
have a digital presence on a large number of websites [2, 3],
leading to major privacy concerns due to the nature of the
data [4–7] as well as the inferences they enable [8, 9].

This has resulted in the commodification of personal
data [3], advertisers employing privacy-invasive practices, and
ads enabling harmful or problematic behaviors [10–12]. At the
same time, users have become increasingly concerned about
their online privacy, leading to anti-tracking and ad-blocking
capabilities that aim to curtail privacy-invasive behaviors
being deployed by privacy-oriented browsers and tools [13,14].
This has resulted in an arms race, where advertisers and
trackers employ new techniques for bypassing anti-tracking
defenses deployed by browsers and extensions [15–18].

Recently, Google announced their plans to completely phase
out third-party cookies (which enable cross-site tracking) and
deploy a series of systems that provide privacy-preserving
alternatives to existing advertising mechanisms so as to allow
advertisers to maintain their revenue stream while respecting
users’ privacy. Given Google’s role and positioning within
the web ecosystem, the Google Chrome Privacy Sandbox
initiative may prove to be the most impactful development
of recent years in the ad ecosystem, and various privacy
organizations and browser vendors have voiced concerns
about this further strengthening Google’s monopoly and
undermining users’ privacy [19–21].

In this paper, we present the first comprehensive exploration
of the FLEDGE API,1 which provides the mechanisms and
infrastructure needed for running real-time ad auctions with-
out compromising user privacy [22, 23]. The main idea behind

1While FLEDGE was recently renamed as the Protected Audience API,
we will refer to it as FLEDGE for conciseness.



FLEDGE is to directly execute auctions in the browser, instead
of running them on remote servers. By shifting computation
to the client side, the need for sharing personal data with third
parties can be eliminated. To accomplish that, Chrome has
deployed a new type of browser storage called Interest Groups,
which can be used to store the information about user prefer-
ences that is necessary for successfully running ad auctions.
Initially, we provide a series of snapshots capturing the op-
erational status of the FLEDGE API over a period of four
months, capturing advertisers experimentation with the system
prior to its release as well as after its official deployment in
Chrome. Our study reveals a large number of services that have
incorporated FLEDGE into their workflow, as well as Google’s
dominant role within the ecosystem. Subsequently, we conduct
an in-depth investigation and empirical analysis of FLEDGE,
culminating in twelve novel attacks. We present a series of tech-
niques that target design or implementation flaws in FLEDGE’s
operation and enable four different classes of attacks: (i) track-
ing, (ii) cross-site information leakage, (iii) service disruption,
and (iv) pollution attacks. In a nutshell, we demonstrate how
websites can misuse FLEDGE to re-identify and track users
across domains without any cost, partially infer a user’s brows-
ing history, prevent other sites from showing the user ads, crash
the user’s browser, and pollute a user’s interest groups so as to
manipulate the ads that they will ultimately be shown.

Due to the severe implications of our findings we have
disclosed our research to Google. While they patched the
issue that allowed us to crash a user’s browser, our other
attacks still affect Chrome’s official deployment of FLEDGE.
While some of our attacks may be mitigated by pending
changes that Google has announced (e.g., deploying a private
aggregation server), others will not be affected. Overall, we
strongly believe that additional scrutiny of all Privacy Sandbox
proposals is necessary for ensuring that users’ privacy is not
irreversibly undermined by Google’s ongoing efforts.

In summary, our work presents the following contributions:
• We present a large-scale longitudinal measurement of the

emerging FLEDGE ecosystem, shedding light on its inner
workings and key market shareholders.

• We present the first, to our knowledge, comprehensive em-
pirical analysis of Google’s FLEDGE API, and demonstrate
novel attacks with severe security and privacy implications.

• We have disclosed our findings to Google, and also propose
a series of mitigations against our attacks. We have released
our code and data to facilitate additional research [24].

2 Background

The advertising ecosystem plays a pivotal role in facilitating
the interaction between publishers and advertisers, ensuring
the efficient sale and purchase of ad space. This section
provides an overview of the current advertising landscape,
focusing on the underlying technologies and platforms
involved in the process, and how they will be influenced by the

introduction of the FLEDGE API. To understand the process
of selecting relevant ads for users, it is essential to first briefly
introduce the key parties involved.

Publishers are websites seeking to monetize their platform
by offering ad space to advertisers, and advertisers are web-
sites aiming to promote their products or services through ads.

Ad Networks. To streamline the complex process of
managing delivering ads, various intermediaries that are
collectively referred to as ad networks have emerged. These
serve as distributed systems that connect publishers and
advertisers, and are comprised of several components:

DSPs are services for advertisers to automate the purchasing
of ad impressions across multiple publisher sites.

SSPs automate the selling of ad inventory for publishers,
enabling them to offer their available ad space to various ad
exchanges, DSPs, and networks.

Ad Exchanges function as platforms that automate the
buying and selling of ad inventory from multiple ad networks.
They act as intermediaries between SSPs and DSPs.

DMPs are data management platforms that store user
information. Websites subscribe to DMP platforms to benefit
from centralized data organization, while DMPs gather and
sell user data, e.g., for real-time bidding.

Real-time bidding (RTB) is a process that aims to show
users relevant ads that are tailored to their actual interests,
which will be displayed on an publisher’s page from a pool
of available advertisers. In a nutshell, as outlined in Figure 1,
this operates as follows: when a user’s browser sends a GET
request to a publisher’s website, the returned page includes
an ad slot. For simplicity, we assume a single ad slot, although
multiple slots can exist in practice. The publisher embeds the
URL of the SSP to retrieve the ad within the ad slot, and this
URL contains crucial bidding-related data, such as the user
ID and publisher URL. Upon receiving the request, the SSP
processes it to comply with the ad exchange API standards
and forwards it to the ad exchange server, which then routes
the request to the most suitable DSP based on user preferences
and ad type. The DSP will generate a bid request using the
user ID and received data, subsequently returning the bid
and associated ad URL to the ad exchange. The ad exchange
will compute the winning bid and provide the SSP with the
corresponding ad URL, and the SSP will deliver the ad URL
back to the user’s browser, which will fetch and display the ad.
Even though this process involves multiple steps, it typically
occurs within an short amount of time (e.g., average of 300ms
for 24 bidders [25]). Additionally, DMPs and DSPs/SSPs
exchange information about user preferences asynchronously
with respect to the real-time bidding process. The specifics of
this exchange may vary based on individual agreements, and
are commonly implemented using APIs exposed by DMPs.
DSPs and SSPs are responsible for storing relevant information
regarding user preferences asynchronously, thereby enhancing
the targeting capabilities of the advertising ecosystem.



Privacy concerns. The effective operation of the advertis-
ing process relies on the user IDs, which are typically obtained
through third-party cookies, and stored within DMPs that
employ various tracking techniques and JavaScript APIs to
collect data and create comprehensive user profiles, each asso-
ciated with a unique user identifier. However, the reliance on
third-party cookies raises significant privacy concerns. Users
often lack awareness and control over the sharing of their infor-
mation, including the transmission of sensitive data exploited
by DMPs to create detailed and accurate user profiles.

2.1 Privacy Sandbox Proposals

Google’s Privacy Sandbox initiative constitutes a concerted
effort to gradually phase-out third-party cookie support
from the Chrome browser while offering privacy-preserving
systems that will fill that void, thus allowing the advertising
ecosystem to continue to operate in an effective manner.

FLEDGE (First Locally-Executed Decision over Groups
Experiment) focuses on interest-based advertising. It
introduces the novel interestgroups browser storage and
provides a comprehensive set of browser API methods. These
methods facilitate the creation and management of interest
groups within the user’s browser, allowing interest-based ad
auctions to occur locally while preserving user privacy.

The core principle behind FLEDGE is to securely store
user information within the browser itself, avoiding the
transmission of data over the internet. This approach enables
real-time bidding to take place within the browser, bypassing
the need for ad exchanges. Importantly, FLEDGE’s browser
API can be leveraged by both publishers and advertisers,
granting the flexibility to delegate ad management to SSPs
and DSPs while maintaining privacy-enhancing measures.

It is essential to note that during the majority of the time in
which this study was conducted, the FLEDGE API remained
an experimental feature. This was a deliberate decision on
our part, as our goal was to conduct a security and privacy
analysis of FLEDGE in an effort to allow Google to address
any flaws uncovered by our investigation prior to FLEDGE
being officially released and potentially affecting billions
of users. Informally, FLEDGE became available for testing
purposes as of version 101.0.4951.26 in April 2022, and
was officially released to the public and integrated into the
stable Chrome browser as of version 117.0.5938.89 in mid
September 2023. Despite being officially released, the current
implementation still relies on mechanisms that Google has
labeled as “temporary”, with the plan of substituting them
once third-party cookie deprecation is completed.

Interest Groups. The FLEDGE API introduces the concept
of interest groups as a cross-context information storage mech-
anism (replacing third-party cookies) specifically intended for
holding information for in-browser ad auctions. Essentially,
interest groups contain advertisements and specific informa-
tion about user interests based on their browsing activity. Each

interest group is associated with a specific owner (the origin of
the advertiser or DSP), and contains a set of fields, including the
name of the group, the bidding logic (links to JavaScript code
used to score the bid value), along with ads (renderUrl) and ad
components. Unlike third-party cookies which are limited to
180 per-site in Chrome [26], interest groups are comprised of
large JSON objects with a current limit of 2,000 interest groups
(previously 1,000) associated with a single origin, and have a
10MB size limit. Interest groups are stored in the browser and
are initially populated by the owner (advertiser or DSP) that
created it. Thereafter, the browser refers to the updateURL
field to make daily fetch requests to the advertiser’s server for
new versions. All interest group fields can be overwritten by
an update, except for the name and owner.

Workflow. The functionality needed by FLEDGE is mainly
implemented through four browser API calls.
navigator.joinAdInterestGroup(): This adds a new

entry to the browser’s storage in JSON format, with multiple
fields and a specified lifetime (up to 30 days). It allows adver-
tisers and DSPs to associate interest groups with the browser.
navigator.leaveAdInterestGroup(): By providing

the relevant JSON format, this call removes an existing entry
from the browser’s storage. Advertisers and DSPs can utilize
this call to remove interest groups when necessary.
navigator.updateAdInterestGroups(): This call

updates the fields of all interest groups associated with the
interest group owner in the user’s browser. The updates are
fetched from a trusted server, enabling advertisers and DSPs
to keep the interest group information up-to-date.
navigator.runAdAuction(): This call initiates an

auction process to determine the best ad, based on the auction
input data provided as a JSON object. Publishers and SSPs
use this call to run the auction and select the winning ad.
Differently from the other API calls, this function returns the
winning ad as an opaqueURL, a URL which hides the origin
and path, while maintaining the website reference it points to.

FLEDGE’s workflow can be summarized in two phases; first,
when a user visits advertiser pages, either the page or a DSP on
its behalf stores an interest group in the browser using joinAd-
InterestGroup(). The stored interest group contains infor-
mation such as the owner (origin of the advertiser or DSP), the
name of the group, its bidding logic (URL with code used by the
advertiser/DSP to score the bid value), and a set of ads (URLs).
Second, when the user visits a publisher’s page where an ad
needs to be displayed, the publisher or an SSP runs an auction
using runAdAuction(). The auction specifies the seller (ori-
gin of the auction runner), the interest group buyers (an array
of URLs representing the advertisers/owners), and the decision
logic (URL with code used by the publisher/SSP to determine
the winning bid and the ad to be displayed) in its most basic
form. If an advertiser owns at least one interest group in the
browser, it participates in the auction with its associated groups.

During the auction conducted by the publisher or SSP,
biddingLogicUrl and decisionLogicUrl play a crucial
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Figure 2: Publishers using FLEDGE, ranked by popularity.

on requests received from hidden browser IPs (routed through
Oblivious HTTP [33]). We further discuss this in §5.

Privacy guarantees. FLEDGE aims to offer a privacy-
preserving solution by shifting computation and bidding
processes to the user’s browser, eliminating the need for data
sharing through third-party cookies. Users can gain better
control over their data with interest groups managed directly
in the browser. In their original framework explainer, the
developers highlighted three key privacy advancements that
the proposal is designed to achieve [34]:
• PA1: The browser, not the advertiser, holds the information

about what the advertiser thinks a person is interested in.
• PA2: Advertisers can serve ads based on an interest, but

cannot combine that interest with other information about
the person — in particular, with who they are or what page
they are visiting.

• PA3: The websites that the person visits, and the ad networks
those sites use, cannot learn about their visitors’ ad interests.

While FLEDGE aims to provide a privacy-conscious approach
to targeted advertising, an in-depth investigation is necessary
for assessing whether it meets those privacy advancements.
As we show in §4, the current design and implementation of
FLEDGE are vulnerable to numerous attacks that violate its
fundamental privacy goals, exposing users to significant risk.

3 Measurements

In this section, we provide the first large-scale measurement
of FLEDGE being deployed across the web ecosystem.

Methodology. To automate the process of identifying
websites that use the FLEDGE API, we used Puppeteer to
orchestrate Chrome. We visit each domain using a fresh
browser instance to ensure that we correctly attribute our
observations to individual publishers. Once each homepage
is fully loaded, our crawler parses the DOM to gather a list
of up-to twenty first-party links to visit, to increase coverage
and the possibility of observing and capturing the use of
relevant functionality. We detect the use of the FLEDGE API
by developing function wrappers for calls made to naviga-
tor.runAdAuction, navigator.joinAdInterestGroup,
and navigator.leaveAdInterestGroup. The Puppeteer
script injects wrapper functions into the page and logs all

Table 1: Overview of sellers over time.

Month Seller #Publishers #Auctions

June securepubads.g.doubleclick.net 1,761 5,738

July
securepubads.g.doubleclick.net 1,038 2,960
cdn.mediago.io 1 1

September
securepubads.g.doubleclick.net 565 3,243
cdn.mediago.io 9 17

corresponding accesses. After visiting all links under a
domain, we close the browser and collect the SQLite Database
where Chrome stores information about the Interest Groups
of each browsing profile. Finally, we clear the state and all
relevant files associated with the browsing session.

Dataset. Using our automated approach, we perform a
crawl of the top 70K domains from the Tranco list [35]. We
opted for this set based on the hypothesis that popular domains
are more likely to expeditiously develop the infrastructure
necessary for using new features introduced by the Privacy
Sandbox. Our framework collected the API calls on these
sites in June and July 2023, thereby capturing snapshots of
FLEDGE usage while it was an experimental feature, and
again in September 2023 when it was publicly released.

Publishers. We detected the use of FLEDGE APIs in
9.5% (n= 6,682) of the 70K sites that we visited during the
measurement period. Figure 2 presents an overview of the
sites ranked by popularity. Indeed, we observe a correlation
between websites’ popularity and the usage of FLEDGE, as it
was most prevalent in domains from the top 10K. Interestingly,
over the three measurement snapshots we observe a decline
in the number of sites using FLEDGE. While 4,628 sites used
FLEDGE in June, this number decreased to 3,903 sites in
July, and further dropped to 3,585 sites in September. Since
our measurements also covered a transitionary period for
FLEDGE, wherein it evolved from a set of experimental
features to a public release, the reduction in the number
of sites using the system could indicate that sites are still
experimenting with how to fully and effectively take advantage
of FLEDGE features prior to its official release. We expect the
number of sites to significantly increase as the system matures
and grows more stable, with advertisers and sellers scaling
support and updating their infrastructure. Importantly, while
we captured FLEDGE calls within multiple top-level publisher
domains, all the actions we observed were performed by
third-party advertisers and sellers. Our observations indicate
that Privacy Sandbox proposals may likely end up primarily
being adopted by larger, ecosystem-wide entities instead of
benefiting smaller, independent domains intending to remarket
their products to their visitors and customers.

Sellers. We observed a total of 11,959 auctions for ad
spaces during our measurement period, almost all of which
(n=11,941) were run by Google Ad Manager. Table 1 shows
the number of auctions and the corresponding publishers



Table 2: Interest groups’ join and leave actions.

Owner #Publishers
Interest Groups

#Joined #Left

td.doubleclick.net 2,924 12,190 2,533
fledge.as.criteo.com 370 880 -
fledge.teads.tv 229 1 -
fledge.eu.criteo.com 327 918 -
fledge.us.criteo.com 655 1411 -
fledge-eu.creativecdn.com 95 261 52
fledge-usa.creativecdn.com 65 133 37
fledge-asia.creativecdn.com 56 129 17
f.creativecdn.com 9 9 -
googleads.g.doubleclick.net 5 5 -
cdn.mediago.io 5 1 -
at-us-east.amazon-adsystem.com 1 1 -
adthrive.com 4 4 -

within which they were ran. Our findings about the dominance
of Google Ad Manager are in-line with prior observations of
the ad ecosystem [36]. Additionally, since the Privacy Sandbox
initiatives are led by Google and are geared towards Chrome
browsers, it is expected that their ad ecosystem will integrate
the latest functionality into their operations. Finally, Google
Ad Manager has been running FLEDGE operations on a small
set of publishers, planned to scale to 10% of auctions by the end
of 2023 [37, 38]. While most auctions that we observed were
run by Google, these auctions also included a large number
of component auctions, i.e., separate auctions from multiple
sellers, the results of which were passed to the top-level
auction. We report on these auctions later in this section.
Nonetheless, other popular sellers including Xandr, Teads,
RTBHouse, OpenX, PubMatic, and Criteo [39–42] have been
working on integrating FLEDGE auctions into their workflows.
We expect that future measurements of the ecosystem will
include additional sellers once the ecosystem matures further.

Advertisers. We observed 7 advertisers (that map to 13
different domains) adding users to interest groups and partic-
ipating in FLEDGE auctions. Table 2 provides an overview
of the advertisers that we observed during our measurements.
We observed three large advertising companies, Google
(DoubleClick), Criteo, and RTB House (CreativeCDN), using
the APIs from multiple domains. Since FLEDGE actions are
restricted based on origin (i.e., protocol, domain, and port),
using multiple origins enables advertisers to act as multiple
individual participants in creating interest groups and placing
bids. While this approach restricts interest group access to
individual origins, advertisers can expand the size of their
interest group set and bypass the current restriction of 2,000
groups per-origin [43]. Additionally, they can access multiple
origin-based dedicated worklets to run bidding logic and also
place multiple bids in a single auction [44].

Since FLEDGE allows advertisers to use personal data for
ad personalization and access storage through interest groups,
the EU User Consent Policy requires advertisers to gather user
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Figure 3: Publishers associated with each interest group.

consent before performing such actions [45]. Interestingly,
we observed Criteo and RTB House creating region-based
subdomains and adding browsers to multiple interest group
sets under subdomains dedicated to EU, US, and Asia-based
users. While all the measurements were performed through
US-based IP addresses, we observed the browser joining
interest groups from other regions as well. Advertisers may
choose to create multiple interest group sets in an attempt to
comply with varying consent and data handling regulations.

Interest Groups. We observed a total of 15,935 interest
groups; Figure 3 shows the number of publishers within which
the browser was added to each interest group. We found that
92% of the observed interest groups were only added upon
a visit to a single top-level domain. Our observation is in-line
with the intended use of interest groups, i.e., storing user
interests based on their browsing activity. Additionally, due
to the granular nature of this information it is crucial that the
data held within these groups is protected, preventing leaks
and misuse for privacy-invasive user tracking.

FLEDGE caps interest groups lifetime to 30 days,
but it can be extended by repeating a call to naviga-

tor.joinAdInterestGroup() [44]. We observed 18.28%
(n = 2, 913) of the interest groups across all three dataset
snapshots. Interestingly, while we observed 306,407 calls to
join an interest group, 30.90% (n=94,673) attempted to create
an interest group with an expiration time greater than 30 days.
While the browser enforces the 30-day expiration limit of
interest groups, this indicates advertisers’ attempts at making
interest groups persist longer within browsers, which also ex-
plains the limited removal of interest groups shown in Table 2.

While joining and updating groups, advertisers can include
arbitrary information within bidding signals that help inform
bidding logic when the interest group is included in an auction.
They can specify a list of keys in the trustedBiddingSig-
nalsKeys field, for which values will be fetched in real-time
from a key-value service that the advertiser hosts. We observed
limited use of this approach with advertisers adding only 1
key to an interest group on average. Additionally, they may
also include information through key-value pairs within the
userBiddingSignals field. The values stored in this field
will remain in the user’s browser and be made available to the
advertiser within on-device auctions. Given that advertisers



Table 3: Summary of our attacks, the mechanism they misuse, privacy advancements they violate, and planned mitigations.

Type Mechanism Field Attacker Role Future Mitigation Violation

Tracking Bidding Helpers biddingWasmHelperUrl Advertiser & Seller Not Planned PA2
Tracking Real-time Rendering of Winning Bids biddingLogicUrl Advertiser & Seller Fenced Frames PA2
Tracking Bidding Logic ads Advertiser & Seller Not Planned PA2, PA3
Tracking Trusted Bidding Signals trustedBiddingSignals Advertiser & Seller Trusted Server PA1, PA2
Tracking Non-aggregated Win Reporting reportWin Advertiser & Seller Private Aggregation PA2, PA3
Tracking Non-aggregated Win Reporting sendReportTo Advertiser & Seller Private Aggregation PA2
Tracking Non-aggregated Event-level Reporting reportEvent Advertiser & Seller Fenced Frames PA2, PA3
Cross-site Leak Gathering Interest Group Owners decisionLogicUrl Advertiser (Run Auctions) Not Planned PA2, PA3
Cross-site Leak Interest Group Leaks trustedScoringSignal Advertiser (Run Auctions) Trusted Server PA1, PA2, PA3
DoS Browser Crash trustedBiddingSignals Advertiser & Seller Fixed Other
DoS Blocking Ad Auctions interestGroups.sqlite3 Advertiser (Join Groups) Not Planned Other
Pollution Polluting Doubleclick Interest Groups Interest Group size limit Other (Add iframes) Not Planned Other

do not need to set up a server-side service to userBid-

dingSignals, we found that they used the field in 92.59%
(n=283,714) to join interest groups and included 3 key-value
pairs on average within an interest group (SD=0.59).

Each interest group can store and bid on multiple ads. We
observed that advertisers populated interest groups with 18 ads
on average (SD=32, M=7). Additionally, ads can be further
supplemented by ad components, intended to hold pieces (e.g.,
individual products) that can be associated with ad campaigns.
While we found that only 1.4% (n=4,306) of calls to join an
interest group populated the adComponents field, they stored
extensive information, populating it with 132 components
on average (SD=96.5, M=100), Our observations highlight
that interest groups are complex objects that contain data in
ways that could not be previously captured within third-party
cookies. With an extensive limit of 2,000 groups per-origin,
coupled with a lax k-anonymity requirement on this infor-
mation, our findings further motivate the importance of an
in-depth analysis of FLEDGE’s privacy implications.

Auctions. We observed a total of 11,959 auctions, wherein
we observed 4 auctions on average (SD = 6.4,M = 2) for
each publisher across 3 visits. FLEDGE includes support for
component auctions, and their results are passed to the top-
level auction. Out of 11,959 top-level auctions, we observed
a total of 11,994 component auctions (Avg. = 1, SD = 0.6,
M=1). These included a limited number of participants, with
2.14 advertisers on average (SD = 1.49, M = 2). Moreover,
sellers can include arbitrary information for assisting them
in scoring bids. We found sellers making extensive use of this
field, passing 20.88 signals on average (SD= 3.95, M = 21)
for use in scoring bids gathered within component auctions.
Additionally, FLEDGE allows sellers to pass arbitrary signals
to individual buyers by using the perBuyerSignals field. We
observed sellers passing extensive information to each buyer
within individual component auctions, with seller passing 9.96
signals on average (SD=6.28, M=6) to each buyer. Since the
values within these signals can be arbitrary, we observed that
all signals were either passed as an array or an object. While the
values contained were themselves obfuscated, the data struc-

tures were extensive, including additional arrays and objects,
resulting in an average depth of 7.6 (SD=4.27, M=6).

Summary. Overall, we observed that FLEDGE interest
groups and auctions include a large number of components
that store granular user information and share arbitrary objects
between multiple third-party entities. The inclusion of on-
device logic execution, coupled with fetching real-time data
from servers, and support for multiple sub-auctions creates
a large ecosystem that needs to ensure proper handling of data,
especially within fields that can hold arbitrary values. Our mea-
surements highlight the adoption of the system across multiple
publishers and its on-going use by prominent advertisers. Since
Google has enabled the system by default for Chrome users, an
empirical analysis of FLEDGE is necessary for understanding
the inner workings of the ecosystem and to evaluate the
system’s effectiveness in preventing privacy-invasive misuse.

4 Empirical Analysis of FLEDGE

In this section, we present a series of novel attacks that misuse
FLEDGE, and detail the functionality that we leverage to
achieve them. Table 3 provides an overview of our attacks and
highlights the privacy goals that each attack violates.

Threat model. Our attacks are performed by a web attacker
that uses the FLEDGE API as an advertiser and/or seller. We
assume that the user visits a website where the attacker has the
ability to add the browser to interest groups, and to participate
as a seller by running auctions. To that end, the attacker needs
to own a domain with the server having been setup to handle
FLEDGE requests, including support for key/value services
and file responses for individual fields used by interest groups
and auctions. Beyond the infrastructure setup, the threat model
assumes a weak attacker with limited privileges since our
attacks can be carried out by attackers embedded as third-party
resources, and do not require the user to visit the attacker’s
domain. As FLEDGE APIs are enabled by default in Chrome,
users do not need to enable any experimental flags.

Experimental setup and auditing process. The attacks
we present in this section were designed and performed using



Write

https://www.example1.com

navigator.joinAdInterestGroup({
owner: "https://attacker.com",
name: "name",
biddingWasmHelperUrl:
"https://attacker.com/wasm/"
+ ID,
...
}, 200)

Read

https://www.example2.com

navigator.runAdAuction ({
interestGroupBuyers
: ["https://attacker.com "]
...

})

Interest
Groups

attacker
Interest
Groups

GET https://attacker.com/wasm/ID

Figure 4: User tracking with bidding helpers.

our own infrastructure, and were guided by our detailed study
of the FLEDGE documentation, code review, and empirical
experimentation. This included creating test pages that use the
FLEDGE APIs, understanding the purpose of each parameter,
analyzing the flow of information across different entities,
and identifying potential privacy violations and attack vectors.
We then created custom exploits using controlled web pages
to evaluate the attacks’ practicality and feasibility. We did
not perform any attacks on live users or websites. We used
our own domains, hosted at an institutional IP address, and
accessed these domains using Chromium browsers on our
own machines. For the attacks described in §4.1 and §4.2, the
scripts simulated both victim and attacker scenarios. Finally,
for the attack describing pollution of Doubleclick interest
groups, we made calls to Doubleclick from a website under
our control and within browsing sessions on our own devices.

4.1 User Tracking

Bidding Helpers. FLEDGE allows advertisers to populate
interest groups with multiple fields that describe the name
and contents of the group but also determine how the group
will participate in ad auctions. Advertisers can configure cus-
tom bidding logic using JavaScript through the biddingLog-
icUrl. In addition to the JavaScript code, advertisers can ex-
ecute computationally-expensive subroutines by directing the
browser to fetch WebAssembly code from a link provided
under the biddingWasmHelperUrl. The API enforces restric-
tions on this field; first, the provided link should return a We-
bAsssembly binary with an application/wasmMIME type,
and the browser will make the returned code available while

generating bids. Second, the link must share its origin (i.e.,
protocol, domain, and port) with that of the owner of the interest
group. However, the API does not enforce k-anonymity restric-
tions on this field. Therefore, each instance of the interest group
can set a unique biddingWasmHelperUrl for identifying a
specific browser. Figure 4 presents an overview of this attack.

Writing an identifier. An attacker can add the browser
to a specific group by passing the interest group object
as an argument to navigator.joinAdInterestGroup().
The attacker can embed a unique 32-bit identifier corre-
sponding to a specific browser instance into the path of the
biddingWasmHelperUrl field of the interest group object.

Reading an identifier. In subsequent browsing sessions, the
attacker can participate in auctions as both a seller and a buyer.
As a seller, the attacker can create a unique, single-buyer auc-
tion with its own origin as the only participant. Upon running
the auction, the browser will trigger a fetch request to the bid-
dingWasmHelperUrl, thereby passing the identifier to the at-
tacker’s server, enabling it to re-identify the browser instance.

Mitigation. This attack leverages two aspects of bid-
dingWasmHelperUrl’s functionality. First, the API does
not impose anonymity restrictions on the uniqueness of the
link for each browser instance. Second, the logic is fetched
through a network request at runtime. In order to restrict
the field from being misused, the FLEDGE API should first
extend its enforcement of k-anonymity restrictions to include
biddingWasmHelperUrl so as to prevent unique identifiers
from being set for each browser. Furthermore, the browser
should trigger a single fetch for WebAssembly code upon
joining an interest group, which should be cached and reused
for all future auctions involving that specific interest group.

Real-time Rendering of Winning Bids. When an interest
group wins an auction, the browser refers to the link specified
in the interest group’s renderUrl field, gathers the necessary
components, and renders the ad within an embedded frame.
As part of the privacy protections introduced by the Privacy
Sandbox proposals, Google is implementing a new HTML
Element called Fenced Frame. This element is similar in
design to an iframe, but is restricted in its ability to interact
with other frames in the page (including the top-level frame)
and also has restrictions to network access. The FLEDGE API
proposes rendering winning ads within fenced frames. This
way, the winning bid is rendered in a restricted environment
with limited ability to perform privacy-invasive actions while
embedded in a third-party site. Moreover, given the restrictions
on network requests within fenced frames, the browser will
fetch ads from the renderUrl in an asynchronous manner,
independent of the execution of specific auctions. However, the
Fenced Frame proposal is experimental, and its use remains op-
tional in the current public release of the FLEDGE API, which
allows winning bids to trigger real-time network requests to
the renderUrl. Figure 5 presents an overview of this attack.

Writing an identifier. An attacker can create and maintain
32 unique strings, each mapping to one bit of a 32-bit





tom implementations through their support for a Bring Your

Own Server (BYOS) model. While this is a temporary solution
to help with eventual migration to a TEE infrastructure, the
BYOS model was made available by default in the public re-
lease of the FLEDGE API. To support the BYOS model, when
running an auction the browser automatically passes the names
of all stored interest groups that share the same key/value ser-
vice defined by the trustedBiddingSignalsUrl field. An
attacker can currently exploit this mechanism to embed and re-
generate a unique identifier to track users across different sites.

Writing an identifier. The attacker generates the identifier
and creates the unique interest group objects for each bit that
corresponds to a value of 1. All groups share the same owner
domain and the same trustedBiddingSignalsUrl, and the
corresponding string for each bit is embedded in the name of
the interest group fields. The attacker makes the browser join
all created interest groups.

Reading an identifier. The attacker runs an auction with
their own domain participating as the only buyer. The browser
triggers a GET request to the trustedBiddingSignalsUrl
and includes the names of all interest groups in the parameters.
The attacker’s server can then reconstruct the identifier by
mapping the names of observed interest groups to a value
of 1 and filling all other bits with a value of 0. This attack
functions in a similar manner to the one presented in Figure 5,
but reading an identifier only requires a single auction, and
the identifier is read by the attacker’s BYOS server.

Optimization. This attack can be optimized by storing the
entire 32-bit identifier in a single interest group, by appending
it in the trustedBiddingSignalsUrl. Thereafter, the
identifier can be read when the browser initiates a GET request
to the endpoint specified in the trustedBiddingSignalsUrl
field, and does not need to be reconstructed from the names of
multiple interest groups. This optimization is possible because
of the trivial cost on the attacker to create new, untrusted
key/value services on existing servers in the BYOS model.

Mitigation. Adding support for the BYOS model in its
public release opens the API to misuse with new tracking
vectors. The current infrastructure enables untrusted servers
to log event-level data, i.e., the services can store and share
details of individual requests with their servers to enable user
tracking. When a requirement for the TEE-based key-value
services is enforced, browsers will only send bidding signals
to trusted servers. These servers will be required to not log
event-level data or share details about individual requests they
receive from browsers to any external servers.

Non-aggregated Win Reporting. The Privacy Sandbox
includes functionality implemented by the Private Aggregation
API, which ensures that events from bids and ad impressions
are aggregated and anonymized before they are shared with
advertisers. However, since the Private Aggregation API and
its corresponding infrastructure are under development, the
public release of the FLEDGE API adopts granular reporting.
The triggers a network request that reports the winner of each

auction back to the advertiser and includes the name of the
winning interest group in these requests. An attacker can
exploit this mechanism to track users by curating multiple
auctions, with each one revealing one bit of information.

Writing an Identifier. The attacker can create a 32-bit
identifier by generating 32 unique strings and creating interest
group objects that share the same owner domain for strings
that map to a value of 1. Additionally, within the bidding
logic (made available at the link under biddingLogicUrl),
the attacker exposes two functions: generateBid() which
includes logic to create a bid, and reportWin()which can re-
ceive details about the bid upon winning an auction. Note that
the reportWin() function is invoked by additionally calling
sendReportTo()within the generateBid() function.

Reading an Identifier. The attacker runs multiple single-
buyer auctions. With each auction, the browser reports the
winner by calling the interest group’s reportWin() function,
which in turn triggers the sendReportTo() function and
provides it with the name of the winning interest group. The
attacker can ensure that each auction is won by a different in-
terest group by keeping track of previous winners and passing
their names in seller-provided auction signals. Once all stored
interest groups have won at least one auction, the attacker’s
bidding logic returns a null value. Thereafter, all interest
groups that won an auction can be considered to correspond to
a bit value of 1 and the user’s identifier can be recreated. This
attack is designed in a similar manner to the one presented
in Figure 5. However, each bit is read based on FLEDGE’s
current reporting mechanism instead of its ad rendering setup.

Mitigation. The attack relies on a measure that currently
bypasses aggregation of ad impressions and allows advertisers
to receive granular information about individual auctions. This
can be limited by introducing the Private Aggregation API
which will anonymize auction events before reporting them to
the advertiser, thereby limiting their ability to synchronously
gather and construct identifiers across multiple auctions.

Non-aggregated Event-level Reporting. FLEDGE also
allows advertisers to gather events within rendered ads,
including ad impressions and clicks. Fenced frames include
functionality to support event-level reporting through the
new window.fence.reportEvent() API call that is only
triggered within the frame’s context and handled by the
browser. While events reported from fenced frames are
intended to be anonymized with the Private Aggregation API,
FLEDGE currently allows advertisers to gather information
from individual ads.

Writing an identifier. The attacker can embed a unique,
32-bit identifier in the interest group’s userBiddingSingals
field. This field is made available to the advertiser’s bidding
logic when the interest group participates in an auction.

Reading an identifier. In subsequent sessions, the attacker
runs an auction with itself as the only participating adver-
tiser. The browser executes the advertiser’s bidding logic,
making the identifier from the previously defined user-
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Figure 6: Cross-site leaks of owners (left) and interest group contents (right).

BiddingSignals available to the generateBid() function.
The advertiser can place an infinitesimal positive bid value
(FLEDGE limits bid precision values to an 8-bit mantissa and
8-bit exponent [44]) and specify an adcost of 0 to avoid costs.
The identifier is returned to the seller as part of the adMeta-
data. Once the seller receives bids, the browser executes its
scoreAd() function, within which it extracts the identifier
from the metadata and designates it as a desirability

score. The identifier embedded in the desirability score
is available to the reportResult() function, from which
the seller can pass it back to the server as a network request
by using one of the following methods. First, it can create a
custom event, say track, which is then reported as an event
from within the fenced frame using reportEvent(), which
generates a network request to the attacker’s domain with
the identifier embedded as a query. Alternatively, the attacker
can use a temporary reporting mechanism, sendReportTo(),
which passes similar reports to a URL specified by the seller
without relying on the fenced frame’s functionality. In addition
to its design similarity to the win reporting attack described
above, this attack additionally relies on code being shared
between an advertiser and a seller, i.e., it assumes that the two
parties either collude or a single entity participates as both.
This assumption is reasonable, as we further discuss in §5.

Mitigation. This attack vector also relies on a measure that
currently bypasses aggregation of ad impressions and allows
advertisers to receive granular information about individual
auctions, and can be prevented by ensuring that ad impressions
are aggregated and anonymized with the Private Aggregation
API before sending them out of the browser.

4.2 Cross-site Data Leaks

Gathering Interest Group Owners. First, we describe a
technique that allows arbitrary sellers to learn the list of
domains that have added that specific browser to an interest

group. Our method exploits the default mechanisms with
which the FLEDGE API handles auctions.

Existing exploitable data. When a user visits a website, say
example.com, the website can add the user to an interest group
that captures specific user interests corresponding to the user’s
actions on the site. Note that both top-level domains and third-
party advertisers (embedded within frames or through script
tags) can add a user to an interest group. In either case, the entity
that created the interest group will be considered the owner.

Preparation. The attacker prepares a pre-defined list of
domains that it intends to test against users. If this list includes
“sensitive” domains, the presence of an interest group from spe-
cific domains can leak private or personal information about
the user. In general, knowledge of whether the user has visited
domains that are of interest to the attacker can be leveraged for
a variety of privacy-invasive attacks depending on the nature of
those domains (e.g., targeting users of competing businesses,
targeting users with specific interests, extortion [46]).

Observing the presence of an interest group owner. When a
user visits the attacker’s website, it can execute auctions so as
to infer the presence of an interest group owner. Specifically,
for each domain in the pre-defined list of target domains,
the website defines a new, single-buyer auction. The auction
configuration includes a decisionLogicUrl, which is an
attacker-controlled link that receives bid responses and decides
the winner of the auction. However, if none of the buyers
participating in an auction have an interest group stored in
the browser, the network request to the decisionLogicUrl
will not be triggered. This reveals the presence or absence
of interest groups from each targeted owner to the attacker.
Figure 6 (left) presents an overview of this attack.

Performance evaluation. The attack is scalable to a large list
of pre-defined domains. For our evaluation we gathered a list
of 500 domains and used Puppeteer to open a fresh browser
instance and join interest groups from a subset of owners.
Following the join operation, we navigated to a third-party
attacker domain which executed the sniffing attack against the
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Figure 7: Performance of interest group owner-sniffing.

500 domains. For each subset size we repeated the experiment
10 times and gathered the average observed time. As can be
seen in Figure 7, the attack duration depends on how many
of the interest group owners are present in the user’s browser.
When all 500 owners were present, the attack took approxi-
mately 4.2 seconds to complete. It is important to note that
the attack is transparent to the user since FLEDGE operations
are performed within dedicated worklets outside of the main
thread [44], and can be further scaled up based on the attacker’s
list of targeted owners. The attack was also fully accurate in all
of the experimental runs (i.e., no false positives or negatives).

Multiplexing. We performed this attack with HTTP/2
connections. Since the browser only allows 6 HTTP/1.1
connections to be opened simultaneously, we multiplexed
HTTP/2 connections to allow for a large number of concurrent
streams over a single connection [47–49].

Mitigation. The attack is made possible by the synchronous
approach and logic applied by the FLEDGE API before
triggering requests to the decisionLogicUrl. This attack
can be mitigated with a two-step approach; first, the browser
would need to asynchronously gather and cache the decision
logic code for a pre-approved list of sellers to prevent network
requests from being triggered for each auction. Second, the
decision logic needs to be restricted in its ability to trigger
network requests outside of the current auction’s context.

Interest Group Leaks. While the previous attack allows
an attacker to learn the presence of interest group owners, it
is unable to gather details about the contents of the interest
groups stored by each owner. Here we present an additional
attack that builds upon the previous attack for obtaining
links to ads stored within individual interest groups within
the renderUrl field. Gathering ads corresponding to the
field helps an attacker learn details about user interests and
browsing behavior towards which the specific ad is geared
towards. This is done by running an additional auction with
the list of previously identified owners as participants. When
a browser observes this auction, it gathers bid responses from
each of the interest group owners. Subsequently, along with the
positive bids it will pass the renderUrl for each positive bid to
the seller at the link defined in trustedScoringSignalsUrl
for that auction. This functionality aims to assist the seller in
deciding the winner of the auction.

Prerequisites. Within each interest group, the owner must
have specified a valid renderUrl. When participating in an
auction that is run by the attacker, we assume that the owner
places a positive bid towards at least one interest group.

Trusted Scoring Signals. Similar to the previously described
use of trusted bidding signals being passed to advertisers, the
FLEDGE API includes an equivalent mechanism to help sellers
gather information that can be factored in determining the
outcome of an auction. These signals are intended to be made
available through a secure key/value service and provided
to the decision logic within a TEE-environment. However, in
order to support BYOS models, the API provides the seller with
the renderUrl along with individual bid responses for each
advertiser that placed a positive bid within the auction, thereby
enabling a cross-site leak of the contents of individual interest
groups. Figure 6 (right) presents an overview of this attack.

Gathering Ad Links. Once the attacker has a list of domains
for which it intends to gather interest group information, it
creates an auction including the list of owners as participants. It
ensures that the auction configuration defines a trustedScor-
ingSignalsUrl that points to a service under the attacker’s
control. Upon running the auction, the browser collects the
renderUrl from every interest group owner that placed a
positive bid in the auction, and passes these links as parameters
to a GET request sent to the attacker’s trusted signal server.
As such, the attacker can gather the renderUrl corresponding
to one interest group per owner. Each renderUrl reveals the
specific interest towards which the interest group is targeting
the user. These links can leak specific information about a
user including products that they have interacted with (e.g.,
specific hotel and flights that they are attempting to book) or
even sensitive interests (e.g., products from sensitive sites that
the advertiser is remarketing).

Mitigation. Adding support for the BYOS model in the
public release of FLEDGE opens the API to misuse not only
from advertisers but also from sellers attempting to infer
details about a user’s browsing activity. This can be mitigated
through the use of an established TEE environment that would
operate without the need for an individual renderURL to be
passed to the seller, in an unsafe manner, for every bid.

4.3 Service Disruption

Browser Crash. Prior to its public release, we observed an
out-of-bounds error that could be triggered in FLEDGE APIs,
thereby causing the browser to abruptly terminate all on-going
sessions. The vulnerability was the result of incomplete error
handling in the event of a prioritized interest group exiting an
auction before producing a valid bid.

Preparation. The attacker adds the browser to two interest
groups with a specific composition of fields. The first group
contains values for name, biddingLogicUrl, and ads. In ad-
dition to these fields, the second group also defines trusted-
BiddingSignals and is prioritized by setting the enableBid-
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dingSignalsPrioritization field to True. Finally, the
biddingLogicUrl of the second group needs to return invalid
bidding logic, like an empty or non-JavaScript response.

Triggering the crash. After making the browser join the
two specially-crafted interest groups, the attacker can run
an auction that only involves those two groups. The crash
is triggered after an non-deterministic number of auction
invocations and, therefore, is executed multiple times in a loop.

Bidding pipeline details. When running an auction, the
FLEDGE API invokes and executes the bidding logic for both
interest groups. However, note that the second invocation does
not wait for the first invocation to complete, and only the order
is determined by prioritization. Since the second interest group
includes an invalid URL in the biddingLogicUrl field, the
corresponding worklet crashes and is filtered out of the auction.
However, upon doing so it fails to update an auction variable
that tracks the expected number of bid responses. Thereafter,
once the first interest group completes its bid, the browser
attempts to read the result of an additional, non-existent bid,
which results in an unhandled out-of-bounds exception that
eventually crashes the browser.

Mitigation. we reported our findings to the Chromium team
and they promptly fixed the bug prior to the public release of
FLEDGE, by including a test case for the reported scenario
to ensure that the error is promptly handled.

Blocking Ad Auctions. FLEDGE attempts to limit the
impact that ad auction operations performed by one advertiser
can have on operations performed by others. Figure 8 presents
an overview of this attack.

Existing protections. The browser ensures that all FLEDGE
operations performed by a domain are executed within a
worklet dedicated to that domain. This restriction ensures that
the operations of one domain do not impact the actions of other
domains. Additionally, the browser ensures the timely comple-

tion of an auction by enforcing a 500ms timeout on the execu-
tion of the bidding logic for each buyer that is participating in
an auction. However, regardless of the dedicated worklets, all
FLEDGE-based operations interact with a global interest group
database, access to which is not thread-safe, and on-going op-
erations on the database can block access until the operations
complete [50]. We note that while there is existing support for
per-partition storage of interest groups [51], the official public
release is vulnerable to the attack that we describe next.

Prerequisites. We assume that the user has visited two
domains in different tabs within the same browsing window.
The attacker is embedded as an advertiser on both domains.
In the first tab, the attacker makes a large number of calls to
navigator.joinAdInterestGroup(). In the second tab, an
arbitrary seller runs an ad auction after the attacker has already
issued a large number of calls to join new interest groups.

Blocking. When the attacker makes a large number of calls
to navigator.joinAdInterestGroup(), each of these calls
are queued to execute within the attacker’s dedicated worklet.
However, these operations also access and update the global
interest group database associated with the browser’s profile.
When a seller starts an ad auction, the browser also queues a
call for the bidding and decision logic to execute within other
worklets, but their execution waits for access to the interest
groups database, thus delaying the completion of their auction.

Attack details. In our experiments we found that by invoking
10,000 calls to navigator.joinAdInterestGroup() the at-
tacker can prevent an ad from rendering for up to 25 seconds.
The ad ecosystem benefits from displaying relevant ads to users
in a timely manner that seamlessly integrates with their brows-
ing session. Depending on the placement of the ad on the page,
and the amount of time the user actually spends on that specific
page, the attack may result in the user not even seeing any ads.
Preventing the timely execution of ad auctions can prevent com-
petitor advertisers, sellers, and publishers from gathering mone-
tary gains from ad impressions or conversions. Performing this
attack at a larger scale across multiple users and devices can sig-
nificantly impact the revenue streams of participating entities.

Mitigation. The attack exploits the browser’s lack of checks
for locks placed on global resource pools. Implementing a
per-origin limit on access to the interest group database and
a use of caches for FLEDGE operations per-tab, can limit the
delay introduced by one domain’s operations on others.

4.4 Pollution Attacks

Polluting DoubleClick Interest Groups. Throughout 2023,
Google Ad Manager introduced FLEDGE-based auctions
to a small set of publishers, with the intention of scaling
these auctions to 10% of all ads that they serve [37, 38]. As
a result, during our measurement period, we observed the
creation and use of a large number of interest groups owned
by doubleclick.net.
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Specific URL Patterns. We noted that Google Ad Manager
added interest groups from pages with embedded JavaScript
code that, when loaded, automatically added the browser to in-
terest groups. The frames were loaded from a URL with a com-
mon pattern, i.e., td.doubleclick.net/td/rul/<NUMBER>,
where the <NUMBER> indicated a unique, 10-digit number corre-
sponding to a specific interest group. Upon visiting these links,
we observed that Google did not apply checks and authentica-
tion, and responded to all incoming requests without verifying
their origin. The value of the <NUMBER> corresponds to the
name of the Google-owned interest group that the browser
will be added to. Using this approach, the names and purpose
of the interest group is obfuscated, making it difficult to infer
the specific user interest to which the group corresponds.

Per-origin Interest Group Limits. In order to limit the
storage and compute resources taken by each advertiser, the
Privacy Sandbox team initially placed a limit on the number of
interest groups into which each interest group owner can place
a browser to a total of 1K at the time of our experimentation
(to accommodate negative interest groups, this was raised
to 2K [43]). Once an interest group owner reaches this limit,
joining a new interest group will result in the removal of the
oldest interest group for that owner present within the browser.

Pollution. When a user visits a site containing code from
the attacker’s domain, it can create 1K frames (currently,
2K) that load from Google Ad Manager, each with the src
attribute set to td.doubleclick.net/td/rul/<NUMBER>,
where <NUMBER> corresponds to a different interest group. We
compiled a list URLs captured during our measurement period.
Making calls to each of these links results in the browser
joining 1K new interest groups and removing pre-existing
interest groups owned by Google Ad Manager. Figure 9
presents an overview of this attack.

Caveats. Some interest groups may be deprecated or
invalidated over time; in practice, the attack may need to
embed more than 1K frames.

Implication. While our attack prototype is specific to Google
Ad Manager, it offers insight into potential pitfalls in the gen-
eral adoption of FLEDGE. Specifically, the onus of enforcing

access control to FLEDGE-related operations and preventing
accidental, unauthenticated triggers of such code currently lies
on the advertisers. In the absence of such protections, malicious
attackers can deploy such attacks to influence bids placed by
the advertiser, directing them to incorrectly target users and, as
a result, observe a decline in their ad revenues. While in the case
of Google Ad Manager the URL patterns corresponded to seem-
ingly arbitrary or obfuscated interest groups, as the <NUMBER>
does not directly reveal specific user interests, the attack can be
fully targeted in cases where that information can be inferred –
this could be achieved by employing a system like AdFisher [4]
and mapping specific user interests to specific interest groups.
The attacker can then pollute an advertiser’s interest group
set by adding the browser to interest groups corresponding
to incorrect user interests or large campaigns, thereby having
the advertiser serve irrelevant ads to users (including incorrect
political ads and misinformation campaigns) at a large scale.

Mitigation. The backend server managed by Google Ad
Manager (or any advertiser that stores interest groups in the
user’s browser) should implement authentication and verifica-
tion mechanisms for validating incoming requests triggered
from untrusted origins. Additionally, the browser can add
checks to ensure that loaded HTML does not automatically ex-
ecute code that adds users to a large number of interest groups.

5 Discussion and Limitations

Ethics and disclosure. Our analysis was conducted using test
devices, accounts and websites. We did not include any users in
our experiments. Moreover, due to the severe implications of
the flaws uncovered by our research, we responsibly disclosed
our findings to Google upon their discovery. In total, we have
submitted 12 reports to Google, detailing our techniques and
providing the necessary information to replicate and verify
our attacks. At the time of this writing, Google has patched
the issue that enabled the DoS attack that crashes the browser.
They have also awarded us through their vulnerability report
program for the pollution attack, which is being investigated.
Additionally, they are currently investigating one cross-site
leak and one tracking attack. We have not received feedback
about the remaining attacks.

Attack practicality. The current public-release versions of
Google Chrome are vulnerable to the attacks we present in §4
(apart from the “browser crash” attack that was patched after
our disclosure). The user tracking attacks require the attacker to
create single-buyer auctions and to participate as both an adver-
tiser and a seller. Based on our observations (see §3), such dual
participation in auctions is reasonable and found in the wild
(e.g., Doubleclick). Importantly, FLEDGE does not restrict en-
tities from participating in both roles, and also does not restrict
single-buyer auctions. We tested cross-site leak attacks against
public domains that we own, and in Figure 7, showed that 500
domains can be sniffed in 4.2 seconds. We also confirmed the
service disruption attacks with the Chromium team.



Severity. The attacks we present in §4 assume a weak
attacker, that can even be embedded as a third-party entity
on a website that a user visits. In §3, we show that popular
ad networks (e.g., Criteo, Teads, Amazon), i.e., third-party
entities, use the FLEDGE API instead of the top-level domains
themselves. As shown in Table 3, our attacks violate all the
key privacy advancements detailed in the FLEDGE proposal.
Additionally, our service disruption attacks present additional
risks to both users and the ecosystem at large.

Evolution and planned mitigations. FLEDGE was
officially released to the public in Chrome v117 in September
2023, even though its current implementation does not include
all of the components detailed in Google’s original designs.
As a result, certain features or capabilities previously reported
are not yet available in the stable release. Surprisingly, Google
opted to officially deploy FLEDGE without having imple-
mented components that are integral to some of the privacy
protections they have announced (e.g., k-anonymity which was
intended for late Q3 2023 but has yet to be released [52]). While
some of our novel attacks leverage components or function-
alities that are “temporary” until replacement components are
deployed, other attacks will remain unaffected (see Table 3).

Crucially, while most of our attacks were disclosed prior

to the public release of FLEDGE, Google opted to continue
with the public release without any appropriate mitigations
being put in place (apart from patching the issue that enabled
our browser crash). As a result, users are currently facing sig-
nificant additional privacy risks compared to the pre-FLEDGE
ad auction ecosystem (e.g., arbitrary websites being able to
infer part of the user’s browsing history, or pollute their ad
recommendations). We argue that mechanisms that aim to
completely reshape an entire ecosystem should not be publicly
deployed prior to implementing all announced safeguards or
addressing major flaws that have been disclosed to the vendor.

K-anonymity. According to documentation, FLEDGE will
employ k-anonymity to strengthen. For instance, a “crowd

of 50 users per creative over 7 days” will be required for
rendering the creative (i.e., ad). Moreover, requests will be
routed through Oblivious HTTP, which prevents the server
from linking requests to a specific client or identifying requests
as having come from the same client [33]. Since attackers
can trivially bypass that restriction by deploying numerous
browser instances, and currently no robust mechanism exists
for verifying that requests are from legitimate Chrome
instances [53], users will be required to be logged into their
Google accounts. In practice, however, this does not pose
a major obstacle to attackers; prior work has demonstrated
systems for automating the account creation process [54, 55],
and solving CAPTCHAs [56, 57], and has studied under-
ground markets that emerge for assisting attackers in passing
challenging account verification constraints (e.g., phone
verification [58]). As such, even if FLEDGE employs
k-anonymity, it will not be sufficient for fully protecting users’

privacy. Importantly, we also demonstrate tracking techniques
that leverage fields that will not be protected by k-anonymity.

6 Related Work

To the best of our knowledge, our work presents the first in-
depth investigation of FLEDGE, resulting in a series of novel
attacks with severe privacy implications. Next, we provide
an overview of prior research on web tracking and privacy-
invasive attacks, as well as explorations of the ad ecosystem.

Privacy Sandbox. Browser vendors and consumer pro-
tection organizations have raised concerns about the privacy
implications of Google’s Privacy Sandbox. Recently, Ali et
al. [59] presented an automated framework, CanITrack, for
testing browser mechanisms as potential tracking vectors, and
demonstrated various tracking techniques including two that
misuse Privacy Sandbox APIs (i.e., Trust Token API, FLEDGE
API). That study presents a tracking attack against FLEDGE
that is conceptually similar to some of the attacks we present
and to prior work in user tracking [60,61]. Their attack relied on
collusion between multiple advertiser domains and only ana-
lyzed a single aspect of FLEDGE auctions, i.e., responses to un-
successful auctions. Instead, our techniques leverage different
FLEDGE functionalities. However, CanITrack cannot identify
the 5 non-tracking attacks nor automatically design or find the
7 tracking attacks we present in §4. The framework requires the
manual development of the client-side and server-side script
snippets to identify the fields that we intend to target (e.g., bid-
dingLogicURL, biddingWasmHelperUrl, etc.). Nonetheless,
once those have been created it can identify the effectiveness
and extent of the tracking potential (e.g., across third-party
contexts, across regular and private browsing modes). Based
on our analysis which covers these dimensions, all of our track-
ing attacks function cross-site, using embedded third-parties.
Additionally, since FLEDGE APIs cannot be called in the
private browsing mode, our attacks only work during regular
browsing sessions. Finally, clearing all browsing data will also
result in interest groups being cleared from the browser.

Furthermore, we conduct an extensive, in-depth analysis
that uncovers a series of severe design and implementation
flaws that enable several different classes of attacks. Previously,
Berke and Calacci [62] studied Google’s FLoC (which has
been cancelled and replaced by “Topics”), a system intended to
group users with common browsing behaviors, and found that
the succession of FLoC’s k-anonymous cohort IDs over time
could lead to tracking. Beugin and McDaniel [63] analysed
the Topics API using statistical models of the distribution of
user behaviors, and reported weaknesses in the proposal’s
privacy guarantees that can leak user interests and also help
trackers re-identify individual users.

Tracking. Numerous prior studies have explored and
measured mechanisms and web practices that relate to
tracking. Lerner et al. [64] used the Internet Archive to provide
a retrospective analysis of third-party tracking over time,



while Englehardt and Narayanan [15] presented a large-scale
comprehensive measurement of online tracking practices.
Franken et al. [65] uncovered flaws in browsers’ and browser
extensions’ implementations of various third-party cookie
policies that enabled tracking and other cross-site attacks,
while Dimova et al. [16] studied how CNAME DNS records
were being used to bypass anti-tracking defenses. More
recently, studies have demonstrated cookieless techniques
for storing tracking identifiers [59], such as using HSTS
policies [60] and favicons [60]. In a different line of work,
numerous studies have explored various aspects of browser
fingerprinting [66–76] as it can allow websites to track users
based on unique characteristics of their devices.

Ad ecosystem. Tracking and advertising are inextricably
connected and prior work has extensively explored and mea-
sured the complexities of the advertising ecosystem [3,77–79].
Digital ad spaces are bought and sold through a real-time bid-
ding process that incentivizes advertisers to gather granular
user information to help them place competitive bids. Zeng et
al. [80] gathered evidence of the use of individual user profiles
in real-time bidding strategies. Papadopoulos et al. [81] pre-
sented a method to evaluate user profiles and their influence on
advertising bids. Pachilakis et al. [82] studied the adoption of
header bidding on the web and reported on the dominance of a
few advertisers. In another study, Pachilakis et al. [83] observed
that the availability of user demographics increased ad prices,
explaining the incentives behind user tracking. Alternatively,
Venkatadri et al. [84] demonstrated how Facebook’s “custom
audience” functionality could be misused for inferring users’
PII and activities, and Vines et al. [9] showed how ad targeting
could be used for tracking users’ location. Accordingly, a large
body of work has proposed techniques for detecting and block-
ing ads and trackers [85–89], while prior work has also pro-
posed various schemes for privacy-preserving ads [25, 90–93].

7 Conclusion

Google recently announced plans to phase out support for
third-party cookies in Chrome, with the goal of mitigating
cross-site tracking and strengthening user privacy. However,
Google’s revenue stream relies heavily on the online ad
ecosystem, thus introducing an obvious dilemma. Accordingly,
Google has started rolling our the Privacy Sandbox, a collec-
tion of new browser mechanisms and standards that aim to
provide privacy-preserving alternatives to existing processes
and workflows in the online ad ecosystem. Due to Google’s
pivotal role and positioning in the web ecosystem (i.e., running
the most prevalent browser, search engine, and ad display
network), these plans have massive implications for online
privacy. This has led to serious concerns being raised by other
browser vendors and user protection organizations. Putting
concerns about Google’s monopoly aside, our in-depth empiri-
cal analysis of the FLEDGE API demonstrates that the Privacy
Sandbox initiative is currently exposing users to significant

privacy risks. We have responsibly disclosed our findings in
an effort to assist Chrome in improving their system and better
protecting users, and hope that our research will enable and
motivate additional research into Chrome’s emerging APIs.
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