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Abstract

Mixed linear regression is a well-studied problem

in parametric statistics and machine learning.

Given a set of samples, tuples of covariates and

labels, the task of mixed linear regression is to

find a small list of linear relationships that best fit

the samples. Usually it is assumed that the label

is generated stochastically by randomly selecting

one of two or more linear functions, applying this

chosen function to the covariates, and potentially

introducing noise to the result. In that situation,

the objective is to estimate the ground-truth

linear functions up to some parameter error. The

popular expectation maximization (EM) and

alternating minimization (AM) algorithms have

been previously analyzed for this.

In this paper, we consider the more general

problem of agnostic learning of mixed linear

regression from samples, without such generative

models. In particular, we show that the AM

and EM algorithms, under standard conditions

of separability and good initialization, lead to

agnostic learning in mixed linear regression by

converging to the population loss minimizers, for

suitably defined loss functions. In some sense,

this shows the strength of AM and EM algorithms

that converges to “optimal solutions” even in the

absence of realizable generative models.

1. Introduction

Suppose we obtain samples from a data distribution D on

R
d+1, i.e., {xi,yi}∼D, xi∈R

d,yi∈R,i=1,...,n. We con-

sider the problem of learning a list of k Rd→R linear func-
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tions y=¹Tj x,¹j ∈R
d,j=1,...,k, that best fits the samples.

This problem is well-studies as the mixed linear regression,

when there are ground-truth ¹̃j ,j=1,...,k, that generate the

samples. For example, the setting where

xi∼N (0,Id),¹∼Unif{¹̃1,...,¹̃k},yi|¹∼N (xT ¹,Ã2), (1)

for i = 1, ... ,n has been analyzed thoroughly. Bounds on

sample complexity are provided in terms of d,Ã2 and error

in estimating parameters ¹̃j ,j=1,...,k ((Chaganty & Liang,

2013; Faria & Soromenho, 2010; Städler et al., 2010; Li &

Liang, 2018; Kwon & Caramanis, 2018; Viele & Tong, 2002;

Yi et al., 2014; 2016; Balakrishnan et al., 2017; Klusowski

et al., 2019)).

In this paper, we consider an agnostic and general learning

theoretic setup to study the mixed linear regression problem

first studied in (Pal et al., 2022). In particular, we do not

assume a generative model on the samples. Instead we focus

on finding the optimal set of lines that minimize a certain loss.

Suppose, we denote a loss function ℓ :Rd×k→R evaluated

on a sample as ℓ(¹1,¹2,...,¹k;x,y). The population loss is

L(¹1,¹2,...,¹k)≡E(x,y)∼Dℓ(¹1,¹2,...,¹k;x,y),

and the population loss minimizers

(¹∗1 ,...,¹
∗
k)≡argmin L(¹1,¹2,...,¹k).

Learning in this setting makes sense if we are allowed to

predict a list (of size k) of labels for an input, as pointed out in

(Pal et al., 2022). We may set some goodness criteria, such as

an weighted average of prediction error over all elements in

the list. In (Pal et al., 2022), it was called a ‘good’ prediction if

at least one of the labels in the list is good, in particular, the fol-

lowing loss function was proposed, that we will call min-loss:

ℓmin(¹1,¹2,...,¹k;x,y)=min
j∈[k]

{
(y−ïx,¹jð)2

}
. (2)

The intuition behind min-loss is simple. Each sample is

assigned to a best-fit line, which define a partition of the

samples. This is analogous to the popular k-means clustering

objective. In addition to the min-loss function, we will also
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consider the following soft-min loss function:

ℓsoftmin(¹1,¹2,...,¹k;x,y)=
k∑

j=1

p¹1,..,¹k(x,y;¹j)[y−ïx,¹jð]2,

(3)

where p¹1,..,¹k(x,y;¹j)=
e−´(y−ïx,¹jð)2

∑k
l=1e

−´(y−ïx,¹lð)2

with ´g0 as the inverse temperature parameter. Note that, at

´→∞, this loss function correspond to the min-loss defined

above. On the other hand, at ´=0, this is simply an average

of the squared errors, if a label is uniformly chosen from the

list. Depending on how the prediction would occur, the loss

function, and therefore the best-fit lines ¹∗1 ,...,¹
∗
k will change.

As is the usual case in machine learning, a learner has

access to the distribution D only through the samples

{xi,yi},i=1,...,n. Therefore instead of the population loss,

one may attempt to minimize the empirical loss:

L(¹1,...,¹k)≡
1

n

n∑

i=1

ℓ(¹1,¹2,...,¹k;xi,yi).

Usual learning theoretic generalization bounds on excess

risk should hold provided the loss function satisfies some

properties1. However, there are certain caveats in solving

the empirical loss minimization problem. For example, even

the presumably simple case of squared error (Eq.(2)), the

minimization problem is NP-hard, by reduction to the subset

sum problem (Yi et al., 2014).

An intuitive and generic iterative method that is widely-

applicable for problems with latent variables (in our case,

which line is best fit for a sample) is the alternating minimiza-

tion (AM) algorithm. At a very high level, starting from some

initial estimate of the parameters, the AM algorithm first tries

to find a partition of samples according to the current estimate,

and then finds the best fit lines within each part. Again under

the generative model of (1), AM can approach the original

parameters assuming suitable initialization (Yi et al., 2014).

Another popular method of solving mixed regression

problems (or in general mixture models) is the well-known

expectation maximization (EM) algorithm. EM is an iterative

algorithm that, starting from an initial estimate of parameters,

iteratively update the estimates based on data, by taking an

expectation-step and maximization-step repeatedly. For ex-

ample, it was shown in (Balakrishnan et al., 2017) that, under

the assumption of the generative model that was defined in

Eq. (1), one can give guarantees on recovering the ground-

truth parameters ¹̃1,...,¹̃k assuming a suitable initialization.

1Some discussions on generalization with soft-min loss can be
found in Section 5.

In this paper, we show that the AM and the EM algorithms

are in fact more powerful in the sense that even in the absence

of a generative model, they lead to agnostic learning of

parameters. It turns out, under standard assumptions on

data-samples and D, these iterative methods can output

the minimizers of the population loss ¹∗1 , ... , ¹
∗
k with

appropriately defined loss functions. In particular, starting

from reasonable initial points, the estimates of the AM

algorithm approach ¹∗1 ,...,¹
∗
k under the min-loss (Eq. 2), and

the estimates of the EM algorithm approach the minimizers

of the population loss under the soft-min loss (Eq. 3).

Instead of the standard AM (or EM), a version that has been

referred to as gradient EM (and gradient AM) is also popular

and has been analyzed in (Balakrishnan et al., 2017; Zhu

et al., 2017; Wang et al., 2020; Pal et al., 2022) to name a few.

Here, in lieu of the maximization step involved in EM (min-

imization for AM), a gradient step with appropriately chosen

step size is taken. This version is amenable to analysis and is

strictly worse than the actual EM (or AM) in their generative

setting. In this paper as well, we analyze the gradient EM

algorithm, and the analogous gradient AM algorithm.

Recently (Pal et al., 2022) proposed a gradient AM algorithm

for the agnostic mixed linear regression problem. However,

they require a strong assumption on initialization of {¹i}ki=1

within a radius of O( 1√
d
) of the corresponding {¹∗i }ki=1.As

we can see, in high dimension, the initialization condition

is prohibitive. The dimension dependence initialization

in (Pal et al., 2022) comes from a discretization (ϵ-net)

argument, which was crucially used to remove inter-iteration

dependence of the gradient AM algorithm.

In this paper, we show that a dimension independent

initialization is sufficient for gradient AM. In particular, we

showed that the initialization needed for {¹i}ki=1 is Θ(1),
which is a significant improvement over the past work (Pal

et al., 2022). Instead of an ϵ-net argument, we use fresh

samples every round. Moreover, we thoroughly analyze the

behavior of restricted covariates on a (problem defined) set,

in the agnostic setup, which turns out to be non-trivial. In

particular, we observe that the restricted covariates are sub

Gaussian with a shifted mean and variance, and we need to

control the minimum singular value of the covariance matrix

of such restricted covariates (which dictates the convergence

rate). We leverage some properties of restricted distributions

(Tallis, 1961), and were able to analyze such covariates

rigorously, obtain bounds and show convergence of AM.

In this paper we also propose and analyze the soft variant

of gradient AM, namely gradient EM. As discussed above,

the associated loss function is the soft-min loss. We show

that gradient EM also requires dimension independent O(1)
initialization, and also converges in an exponential rate.

While the performance of both the gradient AM and gradient
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EM algorithms are similar, AM minimizes a min-loss

whereas EM minimizes the optimal soft-min loss (maximum

likelihood loss in the generative setup). As shown in the

subsequent sections, AM requires a separation condition

(appropriately defined in Theorem 2.1) whereas EM does not.

On the other hand, EM requires the initialization parameter

to satisfy certain condition, albeit mild (exact condition in

Theorem 3.1).

1.1. Setup and Geometric Parameters

Recall that the parameters ¹∗1 ,...,¹
∗
k are the minimizers of

the population loss function, and we consider both min-loss

(ℓmin(.)) as well as soft-min loss (ℓsoftmin(.)) as defined in

the previous section. We define

S∗
j ={(x∈R

d,y∈R) : (y−ïx,¹∗j ð)2<(y−ïx,¹∗l ð)2,
for all l∈ [k]\j} as the possible set of observations where

¹∗j is a better (linear) predictor (in ℓ2 norm) compared to

¹∗1 , ... ,¹
∗
k. Furthermore, in order to avoid degeneracy, we

assume, for any j∈ [k]

Pr
D
(x : (x,y)∈S∗

j )gÃmin,

for some Ãmin > 0. We are interested in the probability

measure corresponding to the random vector x only, and

we integrate (average-out) with respect to y to achieve this.

We emphasize that, in the realizable setup, the distribution

of y is governed by that of x (and possibly some noise

independent of x), and in that setting our definition of S∗
j and

Ãmin becomes analogous to that of (Yi et al., 2014; 2016)2.

Since we are interested in recovering ¹∗j ,j = 1,...,k, a few

geometric quantities naturally arises in our setup. We define

the misspecification parameter ¼ as a smallest non-negative

number satisfying

|yi−ïxi,¹∗j ð|f¼ for all (xi,yi)∈S∗
j and j∈ [k].

Moreover, we also define the separation parameter ∆ as the

largest non-negative number satisfying

min
l∈[k]\j

|yi−ïxi,¹∗l ð|g∆ for all (xi,yi)∈S∗
j .

Let us comment on these geometric quantities. Note that in

the case of a realizable setup, the parameter¼=0 in the noise-

less case or proportional to the noise in the noisy case. In

words,¼ captures the level of misspecification from the linear

model. On the other hand, the parameter ∆ denotes the sepa-

ration or margin in the problem. In classical mixture of linear

regression framework, with realizable structure, similar as-

sumptions are present in terms of the (generative) parameters.

Moreover, with the realizable setup, our assumption can be

shown to be exactly same as the usual separation assumption.

2In (Yi et al., 2014; 2016), the authors denote {S∗

j }
k
j=1 as set

of indices, but that can be thought of as an analogue to a subset of
R

d+1 as shown above.

1.2. Summary of Contributions

Let us now describe the main results of the paper. To simplify

exposition, we state the results here informally and the

rigorous statements may be found in Sections 3 and 2.

Our main contribution is analysis of the gradient AM and

gradient EM algorithms. The gradient AM algorithm works

in the following way. At iteration t, based on the current

parameter estimates {¹(t)j }kj=1, the gradient AM algorithm

constructs estimates of {S∗
j }kj=1, namely {S(t)

j }kj=1. The

next iteration is then obtained by taking a gradient (with µ
as step size) over the quadratic loss over all such data points

{i : (xi,yi)∈S(t)
j } for all j∈ [k].

On the other hand, in the t-th iteration, the gradient EM algo-

rithm uses the current estimate of{¹∗j }kj=1, namely{¹(t)j }kj=1

to compute the soft-min probabilities p
¹
(t)
1 ,...,¹

(t)
k

(xi,yi;¹
(t)
j )

for all j∈ [k] and i∈ [n]. Then, using these probabilities, the

algorithm takes a gradient of the soft-min loss function with

step size µ to obtain the next iteration.

We begin by assuming the covariates xi
i.i.d∼ N (0,Id). Note

that this assumption serves as a natural starting point of

analyzing several EM and AM algorithms ((Balakrishnan

et al., 2017; Yi et al., 2014; 2016; Netrapalli et al., 2015;

Ghosh & Kannan, 2020)). Furthermore, as stated earlier,

we emphasize that in order to obtain convergence, we need

to understand the behavior of restricted covariates in the

agnostic setting. We require Gaussians, because the behavior

of restricted Gaussians are well studied in statistics (Tallis,

1961) and we use several such classical results.

We first consider the min-loss and employ the gradient AM

algorithm, similar to (Pal et al., 2022). In particular, we show

that the iterates returned by the gradient AM algorithm after

T iterations, {¹(T )
j }kj=1 satisfy

∥¹(T )
j −¹∗j ∥fÄT ∥¹(0)j −¹∗j ∥+¶,

with high probability (where Ä < 1) provided n is large

enough and ∥¹(0)j −¹∗j ∥fcini∥¹∗j ∥. Here cini is the initializa-

tion parameter and ¶ is the error floor that stems from the

agnostic setting and the gradient AM update (see (Balakrish-

nan et al., 2017) where, even with generative setup, an error

floor is shown to be unavoidable). Here ¶ depends on the

step size of the gradient AM algorithm as well as the several

geometric properties of the problem like misspecification

and separation. However, the result of (Pal et al., 2022) in this

regard requires an initialization of {¹i}ki=1 within a radius of

O( 1√
d
) of the corresponding {¹∗i }ki=1 which we improve on.

In this paper, we show that it suffices for the initial parameters

to be within a (constant) Θ(1) radius for convergence,

provided the geometric parameter ∆− ¼ is large enough.

The Θ(1) initialization matches the standard (non agnostic,
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generative) initialization for mixed linear regression (see

(Yi et al., 2014; 2016)). In order to analyze the gradient

AM algorithm we need to characterize the behavior of

covariates {xi}ni=1 restricted to sets {S∗
j }kj=1. In particular

we need to control the norm of such restricted Gaussians

as well as control the minimum singular value of a random

matrix whose rows are made of such random variables.

Specifically, we require (i) a lower bound on the minimum

singular value of 1
n

∑

xi∈Sxix
T
i , where the set S is problem

dependent, (ii) an upper bound on ∥xi∥where xi∈S and (iii)

a concentration on ïxi,uð where u is some vector and xi∈S.

In order to obtain the above, we leverage the properties of

restricted Gaussians ((Tallis, 1961; Ghosh et al., 2019)) on

a (generic) set with Gaussian volume bounded away from

zero and show that the resulting distribution of the covariates

is sub Gaussian with non-zero mean and constant parameter.

We obtain upper bounds on the shift and the sub Gaussian

parameter. We would like to emphasize that in the realizable

setup of mixed linear regressions, as shown in (Yi et al.,

2014; 2016) such a characterization may be obtained with

lesser complication. However, in the agnostic setup, it turns

out to be quite non-trivial.

Moreover, in gradient AM, the setup is complex since the sets

are formed by the current iterates of the algorithm (and hence

random), unlike {S∗
j }kj=1, which are fixed. In order to handle

this, we employ re-sampling in each iteration to remove the

inter-iteration dependency. We would like to emphasize that

sample splitting is a standard technique in the analysis of AM

type algorithms and several papers (e.g. (Yi et al., 2014; 2016;

Ghosh & Kannan, 2020) for mixed linear regression, (Netra-

palli et al., 2015) for phase retrieval and (Ghosh et al., 2020)

for distributed optimization) employ such a technique. While

this is not desirable, this is a way to remove the inter iteration

dependence that comes through data points. Finer techniques

like leave-one-out analysis (LOO) is also used ((Chen et al.,

2019)) but for simpler problems (like phase retrieval) since

the LOO updates are quite non-trivial. This problem exag-

gerates further in the agnostic setup. Hence, as a first step, in

this paper we assume a simpler sample split based framework

and keep finer techniques like LOO as future direction.

We would also like to take this opportunity to correct an

error in (Pal et al., 2022, Theorem 4.2). In particular, that

theorem should hold only for Gaussian covariates, not for

general bounded covariates as stated. It was incorrectly

assumed in that paper that the lower bound on the singular

value mentioned above holds for general covariates.

We then move on to analyze the soft-min loss and analyze the

gradient EM algorithm. Here, we show similar contraction

guarantees in the parameter space as in gradient EM. There

are several technical difficulties that arise in the analysis

of the gradient EM algorithm for agnostic mixed linear

regressions– (i) First, we show that if (xi,yi)∈S∗
j , then the

soft-min probability p¹∗

1 ,...,¹
∗

k
(xi,yi;¹

∗
j ) g 1− ¸, where ¸

is small. (ii) Moreover, using the initialization condition,

and the properties of the soft-max function ((Gao & Pavel,

2017)) we argue that p
¹
(t)
1 ,...,¹

(t)
k

(xi, yi; ¹
(t)
j ) is close to

p¹∗

1 ,...,¹
∗

k
(xi,yi;¹

∗
j ), where {¹(t)j }Tt=1 are the updated of the

gradient EM algorithm.

Our results for agnostic gradient AM and EM consist some

extra challenge over the existing results in literature ((Balakr-

ishnan et al., 2017; Waldspurger, 2018)). Usually, the popula-

tion operator with Gaussian covariates are analyzed (mainly

in EM, see (Balakrishnan et al., 2017)), and then a finite

sample guarantee is obtained using concentration arguments.

However, in our setup, with the soft-min probabilities and the

min function, it is not immediately clear how to analyze the

population operator. Second, in the gradient EM algorithm,

we do not split the samples over iterations, and necessarily

handle the inter-iteration dependency of covariates.

Furthermore, to understand the soft-min and min loss better,

in Section 5, we obtain generalization guarantees that involve

computing the Rademacher complexity of such function

classes. Agreeing with intuition, the complexity of soft-min

and min loss class is at most k times the complexity of the

learning problem of simple linear regression with quadratic

loss.

1.3. Related works

As discussed earlier, most works on the mixture of linear

regressions are in the realizable setting, and aim to do

parameter estimation. Algorithms like EM and AM are

most popularly used to achieve this task. For instance, in

(Balakrishnan et al., 2017), it was proved that a suitable

initialized EM algorithm is able to find the correct parameters

of the mixed linear regressions. Although (Balakrishnan

et al., 2017) obtains the convergence results within an ℓ2
ball, it is then extended to an appropriately defined cone by

(Klusowski et al., 2019). On the AM side, (Yi et al., 2014)

introduced the AM algorithm for the mixture of 2 regressions,

where the initialization is done by the spectral methods.

Then, (Yi et al., 2016) extends that to a mixture of k linear

regressions. Perhaps surprisingly, for the case of 2 lines,

(Kwon & Caramanis, 2018) shows that any random initial-

ization suffices for EM algorithm to converge. In the above

mentioned works, the covariates are assumed to be standard

Gaussians, which was relaxed in (Li & Liang, 2018), allow-

ing Gaussian covariates to have different covariances. Here,

near optimal sample as well as computational complexities

were achieved albeit not via EM or AM type algorithm.

In another line of work, the convergence rates of AM or

its close variants are investigated. In particular, in (Ghosh

& Kannan, 2020; Shen & Sanghavi, 2019), it is shown

that AM (or its variants) converge at a double-exponential
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(super-linear) rate. Recent work, (Chandrasekher et al.,

2021) shows similar results for larger class of problems.

We emphasize that apart from mixture of linear regressions,

EM or AM type algorithms are used to address other prob-

lems as well. Classically parameter estimation in the mixture

of Gaussians is done by EM mixture of Gaussians (see

(Balakrishnan et al., 2017; Daskalakis & Kamath, 2014) and

the references therein). The seminal paper by (Balakrishnan

et al., 2017) addresses the problem of Gaussian mean esti-

mation as well as linear regression with missing covariates.

Moreover, AM type algorithms are used in phase retrieval

((Netrapalli et al., 2015; Waldspurger, 2018)), parameter

estimation in max-affine regression ((Ghosh et al., 2019)),

clustering in distributed optimization ((Ghosh et al., 2020)).

In all of the above mentioned works, the covariates are given

to the learner. However, there is another line of research that

focuses on analyzing AM type algorithms when the learner

has the freedom to design the covariates ((Yin et al., 2019;

Krishnamurthy et al., 2019; Mazumdar & Pal, 2020; 2022;

Pal et al., 2021)).

However, none of these works is directly comparable to our

setting. All these works assume a realizable model where the

parameters come with the problem setup. However, ours is

an agnostic setup, and here there are no optimal parameters

associated with the setup, rather solutions of (naturally

emerging) loss functions.

Our work is a direct follow up of (Pal et al., 2022), who intro-

duced the agnostic learning framework for mixed linear re-

gression, and also used the AM algorithm in lieu of empirical

risk minimization. Also, (Pal et al., 2022) only considered the

min-loss, and neither the soft-min loss nor the EM algorithm,

whereas we consider both EM and AM. Moreover, the AM

guarantees we obtain are sharper than that of (Pal et al., 2022).

1.4. Organization

We start with the soft-min loss function and the gradient EM

algorithm in Section 3. In Section 3.2, we obtain the theoreti-

cal results of gradient EM. We then move to min loss function

in Section 2, where we analyze the gradient AM algorithm,

with theoretical guarantees given in Section 2.2. We present a

rough overview of the proof techniques in Section 4. Finally,

in Section 5, we provide some generalization guarantees

using Rademacher complexity. We conclude in Section 6

with a few open problems and future direction. We collection

all the proofs (both EM and AM) in Appendix B and A.

1.5. Notation

Throughout this paper, we use ∥.∥ to denote the ℓ2 norm of a d
dimensional vector unless otherwise specified. Also for a pos-

itive integer r, we use [r] to denote the set {1,...,r}. We use

C,C1,C2,...,c,c1,c2... to denote positive universal constants,

the value of which may differ from instance to instance.

2. Agnostic Mixed Linear Regression-Min-Loss

In this section, we analyze the min-loss function and analyze

gradient AM algorithm. First, recall the definition of ℓmin(.)
from Eq. 2. Similar to the section above, we are given a set of

n data-points {xi,yi}ni=1, where xi ∈R
d and yi ∈R drawn

from an unknown distribution D. We want to obtain

(¹∗1 ,...,¹
∗
k)=argminE(x,y)∼Dℓmin(¹1,...,¹k;x,y).

With the given n datapoints, we aim to learn these k
hyperplanes via the AM algorithm (Algorithm 1), which

tries to minimize the empirical optimization version instead.

2.1. Gradient AM Algorithm

In this section we use the gradient AM algorithm for

minimizing L(¹1, ... ,¹k). The details of our algorithm is

given in Algorithm 1.

First note that here, we split the n samples {xi, yi}ni=1

into 2T disjoint samples where we run Algorithm 1 for T
iterations. We would like to remind that sample splitting

is a standard in AM type algorithms ((Yi et al., 2014; 2016;

Ghosh & Kannan, 2020; Netrapalli et al., 2015; Ghosh et al.,

2020)). While this is not desirable, this is a way to remove the

inter iteration dependence that comes through data points.

Hence, at each iteration of gradient AM we are given

n′=n/2T samples. Each iteration consists of 2 stages (see

Algorithm 1). In the first stage of the t-th iteration, we use n′

samples to construct the index sets I
(t)
j in the following way

I
(t)
j ={i∈ [n′] : (y(t)i −ïx(t)i ,¹

(t)
j ð)2<(y

(t)
i −ïx(t)i ,¹

(t)
j′ ð)2}

∀j′∈ [k]\j. Here, we collect the data points for which the cur-

rent estimate of ¹∗j , namely ¹
(t)
j is a better (linear) estimator

than {¹(t)j′ } where j′ ̸=j. Notw that {I(t)j }kj=1 partitions [n′].

At the second stage of gradient AM, we use another set

of fresh n′ data points to run the gradient update on the

set {I(t)j }kj=1 with step size µ to obtain the next iterate

{¹(t+1)
j }kj=1. The details is given in Algorithm 1.

2.2. Theoretical Guarantees

In this section, we obtain theoretical guarantees for Algo-

rithm 1. Similar to the previous section, we assume |yi|fb
for all i ∈ [n]. In the following, we consider one iteration

of Algorithm 1, and show a contraction in parameter space.

Let the current parameter estimates are {¹j}kj=1 and the

corresponding to the index {Ij}kj=1. Moreover, let the next
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Algorithm 1 Gradient AM for Mixture of Linear Regressions

1: Input: {xi,yi}ni=1, Step size µ

2: Initialization: Initial iterate {¹(0)j }kj=1

3: Split all samples into 2T disjoint datasets {x(t)i ,y
(t)
i }n′

i=1

with n′=n/2T for all t=0,1,...,T−1
4: for t=0,1,...,T−1 do

5: Partition:

6: For all j∈ [k], use n′ samples to construct index sets

{I(t)j }kj=1 such that ∀j′∈ [k]\j,

I
(t)
j ={i : (y(t)i −ïx(t)i ,¹

(t)
j ð)2<(y

(t)
i −ïx(t)i ,¹

(t)
j′ ð)2}

7: Gradient Step:

8: Use fresh set of n′ samples to run gradient update

¹
(t+1)
j =¹

(t)
j − µ

n

∑

i∈[n′]

∇Fi(¹
(t)
j )1{i∈I(t)j },∀j∈ [k]

9: where Fi(¹
(t)
j )=(y

(t)
i −ïx(t)i ,¹

(t)
j ð)2

10: end for

11: Output: {¹(T )
j }kj=1

iterates are {¹+j }kj=1. Unpacking, the next iterate is given by

¹+j =¹j−
2µ

n

∑

i∈Ij

[xix
T
i ¹j−yixi] (4)

for all j∈ [k]. We now present our main results of this section.

Theorem 2.1 (Gradient AM). Suppose xi
i.i.d∼ N (0,Id) and

that n′gC dlog(1/Ãmin)
Ã3
min

. Furthermore,

∥¹j−¹∗j ∥fcini∥¹∗j ∥

for all j ∈ [k] where cini is a small positive constant

(initialization parameter). Moreover, let the separation

parameter satisfy

∆>¼+C1[cini
√

log(1/Ãmin)max
j∈[k]

∥¹∗j ∥+
√

1+log(1/Ãmin)].

Then, running one iteration of Gradient AM with step size

µ, yields {¹+j }kj=1 satisfying

∥¹+j −¹∗j ∥fÄ∥¹j−¹∗j ∥+ε, with probability exceeding

1−C1exp(−C2Ã
4
minn

′)− c1exp(−Pen
′)− n′

poly(d) , where

Ä=(1−cµÃ3
min), and the error floor

εfCµ¼
√

dlogdlog(1/Ãmin)+C1µ(k−1)Pe

×
[

dlogdlog(1/Ãmin)∥¹∗1∥+Cb
√

dlogdlog(1/Ãmin)
]

,

and Pef4exp

(

− 1

cini2maxj∈[k]∥¹∗j ∥2
[
∆−¼
2

]2
)

.

The proof of Theorem 2.1 is deferred to Appendix A. We

make a few remarks here.

Remark 2.2 (Contraction factor Ä). We observe that if Ä<1,

the above result implies a contraction in parameter space

with a slack of ε, which we call the error-floor. Note that

by choosing µ< c0
(1−¸)Ã3

min
, where c0 is a small constant, we

can always make Ä<1.

Remark 2.3 (Error floor ε). Observe that the error floor ε
depends linearly on the step size µ, similar to any standard

stochastic optimization problem. The error floor also decays

linearly with the misspecification parameter ¼, which may be

thought as an agnostic bias. In previous works (Yi et al., 2016;

2014), even in the realizable setting, either the authors assume

¼=0 or very small. In a related field of online learning (multi

armed bandits and reinforcement learning in linear frame-

work), this model misspecification also impacts the regret in

a linear fashion as seen by (Jin et al., 2020, Theorem 5). Even

in these realizable setting, is it unknown how to tackle large¼.

Remark 2.4 (Re-sampling). Note that the gradient AM algo-

rithm of ours requires re-sampling fresh data points in every

iteration. Similar to the analysis of the gradient EM, here also

we need to control the lower spectrum of a random matrix con-

sisting Gaussians restricted to a set. From the structure of gra-

dient AM, this set here is given by S
(t)
j ={(xi,yi) : i∈I(t)j }.

Note that without re-sampling of data points, analyzing the

behavior of Gaussians on the sets {S(t)
j }kj=1 turns out to

be quite non-trivial since {S(t)
j }kj=1 depends on {¹(t)j }kj=1

which depends on all the data point {xi,yi}ni=1.

Remark 2.5 (Probability of errorPe). One major part in show-

ing the convergence guarantee is to show that provided good

initialization, the probability of a datapoint lying in an incor-

rect index set is at mostPe. With a closer look, it turns out that

if the problem is separated enough (∆ large) and the initial-

ization is suitable (cini is small),Pe decays exponentially fast.

Hence, in such a setup, the second term in ε is quite small.

Remark 2.6 (Sample complexity). Note that we re-

quire the number of samples satisfying the following:

n g C dlog(1/Ãmin)
Ã3
min

, where the dependence on k comes

through Ãmin (and from definition, we have Ãmin f 1/k).

Note that information theoretically, we only require Ω(kd)
samples, since there are kd unknown parameters to learn.

Hence, our sample complexity is optimal in d. However, it

is sub-optimal in k compared to the standard (non-agnostic)

AM guarantees ((Yi et al., 2014; 2016)). The sub-optimality

comes from the proof techniques we use for the agnostic

setting. In particular, we use spectral properties of a restricted

Gaussian vectors on a set with (Gaussian) volume at least

Ãmin. As shown in (Ghosh et al., 2019), this gives rise to a

dependence of 1/Ã3
min in sample complexity. Moreover, in

(Ghosh et al., 2019), it is argued (albeit in a different problem),

that when spectral properties of such restricted Gaussians are

employed, a 1/Ã3
min dependency is in general unavoidable.
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Algorithm 2 Gradient EM for Mixture of Linear Regressions

1: Input: {xi,yi}ni=1, Step size µ

2: Initialization: Initial iterate {¹(0)j }kj=1

3: for t=0,1,...,T−1 do

4: Compute Probabilities:

5: Compute p
¹
(t)
1 ,..,¹

(t)
k

(xi, yi;¹
(t)
j ) for all j ∈ [k] and

i∈ [n]
6: Gradient Step: (for all j∈ [k])

¹
(t+1)
j =¹

(t)
j − µ

n

n∑

i=1

p
¹
(t)
1 ,..,¹

(t)
k

(xi,yi;¹
(t)
j )∇Fi(¹

(t)
j ),

7: where Fi(¹
(t)
j )=(yi−ïxi,¹(t)j ð)2

8: end for

9: Output: {¹(T )
j }kj=1

3. EM algorithm for Soft-Min Loss

In this section we analyze the soft-min loss function and

propose gradient EM algorithm to address this. Recall the

definition of ℓsoftmin(.) from Eq. 3. Moreover, recall that we

are given a set of n data-points {xi,yi}ni=1, where xi ∈R
d

and yi∈R drawn from an unknown distribution D. Our goal

here is to obtain

(¹∗1 ,...,¹
∗
k)=argminE(x,y)∼Dℓsoftmin(¹1,...,¹k;x,y).

We aim to learn these k hyperplanes through the given

data. The EM algorithm (Algorithm 2) tries to minimize the

empirical version of the problem.

3.1. Gradient EM Algorithm

We propose EM based algorithm for minimizing the

empirical loss functionL(¹1,..,¹k). In particular we propose

a variant of EM, popularly known as gradient EM for this.

The steps are given in Algorithm 2. Each iteration of gradient

EM consists of two steps. First, in the compute probability

step, based on the current estimates of {¹∗j }kj=1, namely

{¹(t)}kj=1, Algorithm 2 computes the soft-min probabilities

computed using the current iterates {¹(t)}kj=1, which is

p
¹
(t)
1 ,...,¹

(t)
k

(xi, yi;¹
(t)
j ) for all j ∈ [k] and i ∈ [n]. In the

subsequent step, using these probabilities, the algorithm

takes a gradient step with step size µ. In particular, for

the j-th iterate ¹
(t)
j , gradient EM weights the standard

quadratic loss computed on the i-th data point, given by

(yi − ïxi, ¹(t)j ð)2 and takes the gradient to obtain the next

iterate {¹(t+1)
j }kj=1. We truncate Algorithm 2 after T steps.

We split the n samples {xi,yi}ni=1 into 2T disjoint samples

where we run Algorithm 2 for T iterations. Again sample

splitting is a standard in EM type algorithms ((Balakrishnan

et al., 2017; Kwon & Caramanis, 2018)). Hence, at each

iteration of gradient EM we are given n′ = n/2T samples.

Each iteration consists of 2 stages (see Algorithm 2). The

first n′ samples are used to compute the probabilities, and

the next set of samples are used to take the gradient step.

3.2. Theoretical Guarantees

We now look at the convergence guarantees of Algorithm 2.

In particular, here we consider one iterate of the gradient EM

algorithm with current estimate (¹1,...,¹k). Also, assume

that the next iterate with these current estimates is given by

(¹+1 ,...,¹
+
k ). Unrolling the iterate, we have

¹+j =¹j−
2µ

n′

n′

∑

i=1

p¹1,...,¹k(xi,yi;¹j)
(
xix

T
i ¹j−yixi

)
. (5)

for all j∈ [k]. Furthermore, we assume |yi|fb for all i∈ [n′]
for a non-negative b. With this, we are now ready to present

the main result of this section.

Theorem 3.1 (Gradient EM). Suppose that xi
i.i.d∼ N (0,Id)

and that n′gC dlog(1/Ãmin)
Ã3
min

. Moreover,

∥¹j−¹∗j ∥fcini∥¹∗j ∥

for all j ∈ [k], where cini is a small positive constant (ini-

tialization parameter) satisfying cini< c2
¼√

log(1/Ãmin)∥¹∗

1∥
.

Then running one iteration of gradient EM algorithm with

step size µ yields {¹+j }kj=1 satisfying

∥¹+j −¹∗j ∥fÄ∥¹j−¹∗j ∥+ε,

with probability at least 1 − C1 exp(−c1Ã4
minn

′) −
C2exp(−c2d)−n′/poly(d)−n′C3exp(− ¼2

c
ini2∥¹∗

1∥2 ), where

εfCµ¼
√

dlogdlog(1/Ãmin)

+C1µ¸
′(b+

√

dlogdlog(1/Ãmin))
2(cini+1))∥¹∗1∥,

Ä = (1 − 2µc(1 − ¸)Ã3
min), ¸

′ = e−((∆−C¼)2−C2¼
2) and

¸ =

(

1−e−C2¼2
+(k−1)e−(∆−C¼)2

1+(k−1)e−(∆−C¼)2

)

, with C,C1,..,c,c1,.. as

universal positive constants.

We defer the proof of the theorem in Appendix B. The

remarks we made after the AM algorithm continues to hold

here as well.

Remark 3.2 (Error floor ε). Observe that the error floor ε
depends linearly on the step size µ. The error floor also

decays linearly with the misspecification parameter ¼ and

an exponentially decaying term dependent on the gap.

Discussion and Comparison between gradient EM

and AM: Note that both the algorithms require initial-

ization and provides exponential convergence with error

7
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floor. However, gradient AM minimizes an intuitive

min-loss while gradient EM minimizes optimal (maximum

likelihood in the generative setup) soft-min loss. More-

over, the gradient AM algorithm requires the separation

∆ = Ω(¼ +
√
logk(1 + cini)) (exact condition in Theo-

rem 2.1), whereas we do not have any such requirement for

gradient EM. On the flip side, the convergence of gradient

EM requires a condition on the initialization parameter cini
that depends on misspecification ¼, whereas for gradient

AM algorithm, no such restriction is imposed.

4. Proof Sketches

In this section, we present a rough sketch of the proof of

Theorems 2.1 and 3.1.

4.1. Gradient AM (Theorem 2.1)

For gradient AM algorithm, based on the current iterates

{¹j}kj=1, we first construct the index sets {Ij}kj=1 using n′

fresh samples, where Ij consists of all such indices such

that ¹j is a better predictor compared to the other parameters.

Similarly, one can construct {I∗j }kj=1 based on {¹∗j }kj=1.

Unrolling gradient AM update (Eq. 4), using another set of

n′ samples we have

∥¹+1 −¹∗1∥=∥¹1−¹∗1−
2µ

n′

∑

i∈I1

(
xix

T
i ¹1−yixi

)
∥.

Similar to the gradient EM setup, it turns out that we need to

lower boundÃmin(
1
n′

∑

i∈Ij
xix

T
i ). Note that since we usen′

fresh samples to construct Ij , the set can be considered fixed

with respect to the samples used in the gradient step and we

can leverage Lemma B.2. We use Ãmin(
1
n′

∑

i∈I1
xix

T
i )g

Ãmin(
1
n′

∑

i∈I1∩I∗

1
xix

T
i ). Thanks to the suitable initializa-

tion and Lemma A.1, we show that |I1∩I∗1 | is big enough,

yielding a singular value lower bound of ≈Ã3
min. The control

of other terms are done similar to the gradient EM setup, and

upon combining, we get the final theorem.

4.2. Gradient EM (Theorem 3.1)

Recall that we consider one iteration of Algorithm 2

with current and next iterates as {¹j}kj=1 and {¹+j }kj=1

respectively. Recall the update given by Eq. 5. Without loss

of generality, we focus on j=1 and use shorthand p(¹1) to

denote p¹1,...,¹k(xi,yi;¹1). With this we have

∥¹+1 −¹∗1∥=∥¹1−¹∗1−
2µ

n′

n′

∑

i=1

p(¹1)
(
xix

T
i ¹1−yixi

)
∥.

We now break the sum to indices i : (xi, yi) ∈ S∗
1 and

otherwise. When we look at indices such that (xi,yi)∈S∗
1 ,

after a few algebraic manipulation, it turns out we need

to lower bound Ãmin[
1
n′

∑

i:(xi,yi)∈S∗

1
xix

T
i ]. Since

Pr(xi : (xi, yi) ∈ S∗
1 ) g Ãmin by definition, leveraging

properties of restricted Gaussians (Lemma B.2), we

obtain Ãmin[
1
n′

∑

i:(xi,yi)∈S∗

1
(1− ¸)xix

T
i ] g (1− ¸)Ã3

min.

Furthermore, leveraging the fact that if (xi,yi)∈S∗
1 , we have

p(¹∗1)g1−¸ (Lemma B.1), and using the norm upper bound

on restricted Gaussians (Lemma B.3) we control such indices.

Finally, combining all the terms and using the geometric

parameters succinctly, we obtain the desired result.

5. Generalization Guarantees

In this section, we obtain generalization guarantees for the

soft-min loss functions. Note that similar generalization

guarantee for the min loss function has appeared in (Pal et al.,

2022).

We learn a mixture of functions from X →Y for X ¦ R
d

fitting data distribution D over (X ,Y). A learner has access

to samples {xi,yi}ni=1. There is a base class H : X → Y .

Here, we work with the setup of list decoding where the

learner outputs a list while testing. In (Pal et al., 2022) the

list decodable function class has been defined. We rewrite

here for completeness.

Definition 5.1. Let H be the base function class H. We

construct a vector valued k-list-decodable function class,

namely H̄k such that any h̄∈H̄k is defined as

h̄=(h1(·),···,hk(·))

such that hj ∈Hj for all j∈ [k]. Thus h̄’s map X →Yk and

form the new function class H̄k.

To ease notation, we omit the k in H̄ when clear from context.

In our setting, the base function class is linear, i.e., for all

j∈ [k]

Hj=H={ï¹,·ð :∀¹∈R
d s.t ∥¹∥2fR},

and the base loss function ℓ :Y×Y→R
+ is given by

ℓ(hj(x),y))=(y−ïx,¹jð)2.

In what follows, we obtain generalization guarantees for

bounded covariates and response, i.e., |y|f1 and ∥x∥f1.

Claim 5.2. For bounded regression problem, the loss

function ℓ(hj(x),y)) is Lipschitz with parameter 2(1+R)
with respect to the first argument.

The proof is deferred to Appendix C. We are interested in

the soft loss function, which is a function of the k-base loss

8
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functions:

L(h̄(x),y)=L(x,y;¹1,...,¹k)

=

k∑

j=1

p¹1,..,¹k(x,y;¹j)[y−ïx,¹jð]2

=

k∑

j=1

p¹1,..,¹k(x,y;¹j)ℓ(hj(x),y),

where

p¹1,..,¹k(x,y;¹j)=
e−(y−ïx,¹jð)2

∑k
ℓ=1e

−(y−ïx,¹ℓð)2
.

We have n datapoints {xi,yi}ni=1 drawn from D and we want

to understand how well this soft-min loss generalizes. In

order to do that, a standard metric one studies in statistical

learning theory is (emprirical) Rademacher Complexity

((Mohri et al., 2018)). In our setup, the loss class is defined by

{(x,y) 7→
k∑

j=1

p¹1,..,¹k(x,y;¹j)ℓ(hj(x),y);{¹j :∥¹j∥fR}kj=1}.

Let us define this class as Φ. The Rademacher complexity
of the loss class is given by

R̂n(Φ)=Eσ

[

sup
h̄∈H̄k

∣

∣

∣

∣

1

n

n
∑

i=1

ÃiL(h̄(xi),yi)

∣

∣

∣

∣

]

=Eσ



 sup
{θj :∥θj∥fR}k

j=1

∣

∣

∣

∣

1

n

n
∑

i=1

Ãi

k
∑

j=1

pθ1,..,θk (x,y;¹j)ℓ(hj(x),y)

∣

∣

∣

∣



,

where σ is a set of Rademacher RV’s {Ãi}ni=1. We have the

following result:

Lemma 5.3. The Rademacher complexity of Φ satisfies

R̂(Φ)f4k(1+R)R̂(H)f 4kR(1+R)√
n

.

We observe that the (empirical) Rademacher complexity

of the soft-min loss class does not blow-up provided the

complexity of the base class H is controlled. Moreover,

since the base class is a linear hypothesis class (with bounded

ℓ2 norm), the Rademacher complexity scales as O(1/
√
n),

resulting in the above bound. The proof is deferred in

Appendix C. In a nutshell, we consider a bigger class of all

possible convex combination of the base losses, and connect

Φ to that bigger function class.

6. Conclusion and Open Problems

In this work, we have studied the agnostic setup for mixed

linear regression, and show that EM and AM algorithms

are strong enough to provide provable guarantees even in

this setup. However we believe such algorithms may be used

in a broader context of agnostic learning. We conclude the

paper with a few interesting problems. Beyond mixture of

linear regressions, can this agnostic setup be used for other

problems such as mixture of classifiers, mixture of experts, to

name a few? What is the role of Gaussian covariates in such

an agnostic setting? Can we relax this to some extent? In

(Ghosh et al., 2019) it is explained how restricted Gaussian

analysis can be extended to sub-Gaussians satisfying a

small ball condition for the particular problem of max-affine

regression. Another interesting direction is to analyze the

AM based algorithms without resampling in the agnostic

setup, leveraging techniques like Leave One Out (LOO) as

an example. We keep these as our future endevors.
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A. Proof of Theorem 2.1

Without loss of generality, let us focus on ¹+1 . We have

∥¹+1 −¹∗1∥=∥¹1−¹∗1−
µ

n′

∑

i∈I1

∇Fi(¹1)∥

=∥(¹1−¹∗1)−
µ

n′

∑

i∈I1

(∇Fi(¹1)−∇Fi(¹
∗
1))−

µ

n′

∑

i∈I1

∇Fi(¹
∗
1)∥

f∥(¹1−¹∗1)−
µ

n′

∑

i∈I1

(∇Fi(¹1)−∇Fi(¹
∗
1))∥

︸ ︷︷ ︸

T1

+
µ

n′ ∥
∑

i∈I1

∇Fi(¹
∗
1)∥

︸ ︷︷ ︸

T2

.

Let us first consider T1. Substituting the gradients, we obtain

T1=∥(I− 2µ

n

∑

i∈I1

xix
¦
i )(¹1−¹∗1)∥=∥(I− 2µ

n′

∑

i:(xi,yi)∈S1

xix
¦
i )(¹1−¹∗1)∥.

We require a lower bound on

Ãmin(
1

n

∑

i∈I1

xix
¦
i )gÃmin(

1

n′

∑

i:(xi,yi)∈S1∩S∗

1

xix
¦
i )

Similar to the EM framework, in order to bound the above, we need to look at the behavior of the covariates (which are

standard Gaussian) over the restricted set given by S1∩S∗
1 . Note that since we are resampling at each step, and using fresh

set of samples to construct Sj and another fresh set of samples to run the Gradient AM algorithm, we can directly use

Lemma B.2 here. Moreover, we use the fact that |i : (xi,yi)∈S1∩S∗
1 |gC|i : (xi,yi)∈S∗

1 |gC ′Ãminn with probability at

least 1−Cexp(−Ãminn) where we use the initialization Lemma A.1. Thus, we have

Ãmin(
1

n′

∑

i:(xi,yi)∈S1

xix
¦
i )gcÃ3

min

with probability at least 1−C1exp(−C2Ã
4
minn

′)−C3exp(−Ãminn
′) provided n′gC dlog(1/Ãmin)

Ã3
min

. As a result,

T1f(1−cµÃ3
min)∥¹1−¹∗1∥,

with probability at least 1−C1exp(−C2Ã
4
minn

′).

Let us now consider the term T2. We have

T2=
µ

n
∥

∑

i:(xi,yi)∈S1

∇Fi(¹
∗
1)∥

f µ

n

∑

i:(xi,yi)∈S1

∥∇Fi(¹
∗
1)∥

=
µ

n

∑

i:(xi,yi)∈S1∩S∗

1

∥∇Fi(¹
∗
1)∥+

µ

n

k∑

j=2

∑

i:(xi,yi)∈S1∩S∗

j

∥∇Fi(¹
∗
1)∥

When {i : (xi,yi)∈S∗
1}, we have

∥∇Fi(¹
∗
1)∥=2|yi−ïxi,¹∗1ð|∥xi∥

f2¼∥xi∥fC¼
√

dlogdlog(1/Ãmin)

12
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with probability at least 1−n′/poly(d), where in the first inequality, we have used the misspecification assumption, and in

the second inequality, we use Lemma B.3. Let us now compute an upper bound on ∥∇Fi(¹
∗
1)∥, which we use to bound the

second part. We have

∥∇Fi(¹
∗
1)∥f∥xi∥2∥¹∗1∥+∥xi∥|yi|

fC1dlogdlog(1/Ãmin)∥¹∗1∥+Cb
√

dlogdlog(1/Ãmin)

with probability at least 1−1/poly(d).

With this, we have

T2f
µ

n
|I1∩I∗1 |C¼

√

dlogdlog(1/Ãmin)+
µ

n

k∑

j=2

|I1∩I∗j |
(

C1dlogdlog(1/Ãmin)∥¹∗1∥

+Cb
√

dlogdlog(1/Ãmin)

)

fµC¼
√

dlogdlog(1/Ãmin)+C1µ(k−1)Pe

[

dlogdlog(1/Ãmin)∥¹∗1∥+Cb
√

dlogdlog(1/Ãmin)
]

,

with probability at least 1− exp(−cPen)− n′

poly(d) − Pen
poly(d) , where Pe is defined in Lemma A.1. In this case, we use

|I1∩I∗1 |fn′ (trivially holds) as well as the standard binomial concentration on |I1∩I∗j |with mean at mostn′Pe with probability

at least 1−exp(−cPen
′). Moreover we take the union bound. Here, we use Lemma B.3 along with the fact that |yi|fb.

Combining T1 and T2, we have

∥¹+1 −¹∗1∥f(1−cµÃ3
min)∥¹1−¹∗1∥+Cµ¼

√

dlogdlog(1/Ãmin)

+C1µ(k−1)Pe

[

dlogdlog(1/Ãmin)∥¹∗1∥+Cb
√

dlogdlog(1/Ãmin)
]

,

with probability at least 1−C1exp(−C2Ã
4
minn

′)−exp(−cPen
′)− n′

poly(d) .

A.1. Good Initialization

We stick to analyzing ¹+1 . In the following lemma, we only consider ¹2. In general, the same argument holds for {¹3,...,¹k}.

Lemma A.1. We have

Pe=P

(

Fi(¹1)>Fi(¹2)|i∈I∗1
)

f4exp

(

− 1

cini2maxj∈[k]∥¹∗j ∥2
[
∆−¼
2

]2)

Let us consider the event

Fi(¹1)>Fi(¹2),

which is equivalent to

|yi−ïxi,¹1ð|> |yi−ïxi,¹2ð|.

Let us look at the left hand side of the above inequality. We have

|yi−ïxi,¹∗1ð+ïxi,¹1−¹∗1ð|
f|yi−ïxi,¹∗1ð|+|ïxi,¹1−¹∗1ð|
f¼+|ïxi,¹1−¹∗1ð|,

where we have used the fact that if i∈I∗1 , the first term is at most ¼.

13
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Similarly, for the right hand side, we have

|yi−ïxi,¹∗2ð−ïxi,¹2−¹∗2ð|
g|yi−ïxi,¹∗2ð|−|ïxi,¹2−¹∗2ð|
g∆−|ïxi,¹2−¹∗2ð|

where we use the fact that if i∈I∗1 , the first term is lower bounded by ∆.

Combining these, we have

P

(

Fi(¹1)>Fi(¹2)|i∈I∗1
)

fP

(

|ïxi,¹1−¹∗1ð|+|ïxi,¹2−¹∗2ð|g∆−¼
)

fP

(

|ïxi,¹1−¹∗1ð|g
∆−¼
2

)

+P

(

|ïxi,¹2−¹∗2ð|g
∆−¼
2

)

Let us look at the first term. Lemma B.2 shows that if i ∈ I∗1 (accordingly (xi,yi) ∈ S∗
1 ), the distribution of xi − µÄ is

subGaussian with (squared) parameter at most C(1 + log(1/Ãmin)), where µÄ is the mean of xi (under the restriction

(xi,yi)∈S∗
1 ). With this we have

P

(

|ïxi,¹1−¹∗1ð|g
∆−¼
2

)

fP

(

|ïxi−µÄ ,¹1−¹∗1ð|+∥µÄ∥∥¹1−¹∗1∥g
∆−¼
2

)

fP

(

|ïxi−µÄ ,¹1−¹∗1ð|g
∆−¼
2

−ciniC
√

log(1/Ãmin)∥¹∗1∥
)

where we use the initialization condition ∥¹1−¹∗1∥fcini∥¹∗1∥, and from Lemma B.2, we have ∥µÄ∥2fClog(1/Ãmin).

Now, provided ∆−¼>C(cini
√

log(1/Ãmin)∥¹∗1∥)+C1

√

1+log(1/Ãmin), using sub-Gaussian concentration, we obtain

P

(

|ïxi,¹1−¹∗1ð|g
∆−¼
2

)

f2exp

(

− 1

cini2∥¹∗1∥2
[
∆−¼
2

]2)

.

Similarly, for the second term, similar calculation yields

P

(

|ïxi,¹2−¹∗2ð|g
∆−¼
2

)

f2exp

(

− 1

cini2∥¹∗2∥2
[
∆−¼
2

]2)

,

and hence

P

(

Fi(¹1)>Fi(¹2)|i∈I∗1
)

f4exp

(

− 1

cini2maxj∈[k]∥¹∗j ∥2
[
∆−¼
2

]2)

which proves the lemma.

B. Proof of Theorem 3.1

Let us look at the iterate of gradient EM after one step and without loss of generality, we focus on recovering ¹∗1 . We have

∥¹+1 −¹∗1∥=∥¹1−¹∗1−
2µ

n′

n′

∑

i=1

p¹1,...,¹k(xi,yi;¹1)
(
xix

T
i ¹1−yixi

)
∥

Let us use the shorthand p(¹1) to denote p¹1,...,¹k(xi,yi;¹1) and p(¹∗1) to denote p¹∗

1 ,...,¹
∗

k
(xi,yi;¹

∗
1) respectively. We have

∥¹+1 −¹∗1∥=∥¹1−¹∗1−
2µ

n′

∑

i:(xi,yi)∈S∗

1

p(¹1)
(
xix

T
i ¹1−yixi

)
− 2µ

n′

∑

i:(xi,yi)/∈S∗

1

p(¹1)
(
xix

T
i ¹1−yixi

)
∥

f∥¹1−¹∗1−
2µ

n′

∑

i:(xi,yi)∈S∗

1

p(¹1)
(
xix

T
i ¹1−yixi

)
− 2µ

n′

∑

i:(xi,yi)/∈S∗

1

p(¹1)
(
xix

T
i ¹1−yixi

)
∥

︸ ︷︷ ︸

T1

14
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First we argue from the separability and the closeness condition that, if (xi,yi)∈S∗
1 , the probability p(¹1) is bounded away

from 0. Lemma B.1 shows that conditioned on (xi,yi)∈S∗
j , we have p¹1,...,¹k(xi,yi;¹j)g1−¸, where

¸=

(

1−e−C2¼
2

+(k−1)e−(∆−C¼)2

1+(k−1)e−(∆−C¼)2

)

.

with probability at least 1−C3exp

(

−C1
¼2

c
ini2∥¹∗

1∥2

)

. With this, let us look at T1. We have

T1f∥¹1−¹∗1−
2µ

n′

∑

i:(xi,yi)∈S∗

1

p(¹1)
(
xix

T
i ¹1−yixi

)
∥

︸ ︷︷ ︸

T11

+
2µ

n′ ∥
∑

i:(xi,yi)/∈S∗

1

p(¹1)
(
xix

T
i −yixi

)
∥

︸ ︷︷ ︸

T12

.

We continue to upper bound T11:

T11f∥¹1−¹∗1−
2µ

n′

∑

i:(xi,yi)∈S∗

1

p(¹1)
(
xix

T
i ¹1−yixi

)
∥

f∥¹1−¹∗1−
2µ

n′

∑

i:(xi,yi)∈S∗

1

p(¹1)
(
xix

T
i ¹1−xixTi ¹∗1

)
∥+2µ

n′ ∥
∑

i:(xi,yi)∈S∗

1

p(¹1)
(
xix

T
i ¹

∗
1−yixi

)
∥

f∥
[

I− 2µ

n′

∑

i:(xi,yi)∈S∗

1

p(¹1)xix
T
i

]

(¹1−¹∗1)∥+
2µ

n′

∑

i:(xi,yi)∈S∗

1

p(¹1)|yi−ïxi,¹∗1ð|∥xi∥

f∥
[

I− 2µ

n′

∑

i:(xi,yi)∈S∗

1

p(¹1)xix
T
i

]

(¹1−¹∗1)∥+C¼µ
√

dlogdlog(1/Ãmin),

with probability at least 1 − C3n
′ exp

(

− C1
¼2

c
ini2∥¹∗

1∥2

)

− n′/poly(d), where we use the misspecification condition,

|yi−ïxi,¹∗1ð|f¼ for all (xi,yi)∈S∗
1 , along with the fact that the number of such indices is trivially upper bounded by the

total number of observations, n. Moreover, we also use Lemma B.3 to bound ∥xi∥.

Note that since (xi, yi) ∈ S∗
1 , we have p(¹1) g 1 − ¸. We need to look at Ãmin

(
1
n′

∑

i:(xi,yi)∈S∗

1
p(¹1)xix

T
i

)

, where

p(¹1)g1−¸. We use the fact that

Ãmin




1

n′

∑

i:(xi,yi)∈S∗

1

p(¹1)xix
T
i



gÃmin




1

n′

∑

i:(xi,yi)∈S∗

1

(1−¸)xixTi



.

Note that we need to analyze the behavior of the data restricted on the set S∗
1 . In particular we are interested in the second

moment estimation of such restricted Gaussian random variable. We show that, conditioned on S∗
1 , the distribution of

xi changes to a sub-Gaussian with a shifted mean. Lemma B.2 characterizes the behavior as well as the second moment

estimation for such variables.

We invoke the Lemma B.2 and use the standard binomial concentration to obtain |i : (xi,yi)∈S∗
1 |gCÃminnwith probability

at least 1−exp(−cÃminn). With this, we obtain

Ãmin




1

n′

∑

i:(xi,yi)∈S∗

1

(1−¸)xixTi



gc(1−¸)Ã3
min

with probability at least 1−C1exp(−C2Ã
4
minn

′), provided n′gC dlog(1/Ãmin)
Ã3
min

.

Using this, we obtain

T11f(1−2µc(1−¸)Ã3
min)∥¹1−¹∗1∥+Cµ¼

√

dlogdlog(1/Ãmin).
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with high probability. Let us now look at T12. We have

T12=
2µ

n′ ∥
∑

i:(xi,yi)/∈S∗

1

p(¹1)
(
xix

T
i ¹1−yixi

)
∥

f 2µ

n′

∑

i:(xi,yi)/∈S∗

1

p(¹1)∥xixTi ¹1−yixi∥

(i)

f 2µ¸′

n′

∑

i:(xi,yi)/∈S∗

1

|yi−xTi ¹1|∥xi∥

f 2µ¸′

n′

∑

i:(xi,yi)/∈S∗

1

(|yi|+∥xi∥∥¹1∥)∥xi∥

(ii)

f 2µ¸′

n′

∑

i:(xi,yi)/∈S∗

1

(b+C
√

dlogdlog(1/Ãmin))[∥¹1−¹∗1∥+∥¹∗1∥])
√

dlogdlog(1/Ãmin)

f2µ¸′(b+C
√

dlogdlog(1/Ãmin))
2(cini+1))∥¹∗1∥.

with probability at least 1−n′/poly(d)−C3n
′exp

(

−C1
¼2

c
ini2∥¹∗

1∥2

)

(using union bound). Here (i) follows from the fact

that p(¹∗1)f¸′ where ¸′=e−((∆−C¼)2−C2¼
2). (since (xi,yi) /∈S∗

1 , which follows from Lemma B.1), (ii) follows from the

fact that |yi|f b for all i. Moreover, since {S∗
j }dj=1 partitions Rd, (xi,yi) /∈S∗

1 implies that (xi,yi)∈S∗
ℓ where ℓ∈ [k]\{1},

and we can invoke Lemma B.3.

Collecting all the terms: We now collect the terms and combine them to obtain

∥¹+1 −¹∗1∥fT11+T12
f(1−2µc(1−¸)Ã3

min)∥¹1−¹∗1∥+Cµ¼
√

dlogdlog(1/Ãmin)

+2µ¸′(b+C
√

dlogdlog(1/Ãmin))
2(cini+1))∥¹∗1∥.

with probability at least 1−C1exp(−c1Ã4
minn

′)−C2exp(−c2d)−n′/poly(d)−n′C3exp

(

− ¼2

c
ini2∥¹∗

1∥2

)

.

Let Ä=(1−2µc(1−¸)Ã3
min) and we choose µ such that Ä<1. We obtain

∥¹+1 −¹∗1∥fÄ∥¹1−¹∗1∥+ε,

where

εfCµ¼
√

dlogdlog(1/Ãmin)+2µ¸′(b+C
√

dlogdlog(1/Ãmin))
2(cini+1))∥¹∗1∥,

with probability at least 1−C1exp(−c1Ã4
minn

′)−C2exp(−c2d)−n′/poly(d)−n′C3exp

(

− ¼2

c
ini2∥¹∗

1∥2

)

.

B.1. Proofs of Auxiliary Lemmas:

Lemma B.1. For any (xi,yi)∈S∗
j , we have p¹1,...,¹k(xi,yi;¹j)g1−¸, where

¸=

(

1−e−C2¼
2

+(k−1)e−(∆−C¼)2

1+(k−1)e−(∆−C¼)2

)

.

Moreover, for (xi,yi) /∈S∗
j we have

p¹1,...,¹k(xi,yi;¹j)fe−((∆−C¼)2−C2¼
2).
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Proof. Consider any (xi,yi)∈S∗
j and use the definition of p¹1,...,¹k(xi,yi;¹j). We obtain

p¹1,...,¹k(xi,yi;¹j)=
e−(yi−ïxi,¹jð)2

∑k
ℓ=1e

−(yi−ïxi,¹ℓð)2

Note that

|yi−ïxi,¹jð|= |yi−ïxi,¹∗j ð+ïxi,¹∗j −¹jð|
f|yi−ïxi,¹∗j ð|+|ïxi,¹∗j −¹jð|

Furthermore, using reverse triangle inequality, we also have

|yi−ïxi,¹jð|g|yi−ïxi,¹∗j ð|−|ïxi,¹∗j −¹jð|.

Since we are re-sampling at every step, and from the initialization condition, we handle the random variable ïxi,¹∗j −¹jð.
Using Lemma B.2 shows that if (xi,yi)∈S∗

1 , the distribution of xi−µÄ is subGaussian with (squared) parameter at most

C(1+log(1/Ãmin)), where µÄ is the mean of xi (under the restriction (xi,yi)∈S∗
1 ). With this we have

P

(

|ïxi,¹1−¹∗1ð|gC¼
)

fP

(

|ïxi−µÄ ,¹1−¹∗1ð|+∥µÄ∥∥¹1−¹∗1∥gC¼
)

fP

(

|ïxi−µÄ ,¹1−¹∗1ð|gC¼−ciniC1

√

log(1/Ãmin)∥¹∗1∥
)

where we use the initialization condition ∥¹1−¹∗1∥fcini∥¹∗1∥, and from Lemma B.2, we have ∥µÄ∥2fClog(1/Ãmin).

Now, provided cini<C2
¼√

log(1/Ãmin)∥¹∗

1∥
, using sub-Gaussian concentration, we obtain

(

|ïxi,¹1−¹∗1ð|gC¼
)

f2exp

(

−C1
1

cini2∥¹∗1∥2
¼2
)

.

Using the assumption, i,.e., the separability and the misspecification condition, we obtain

p¹1,...,¹k(xi,yi;¹j)g
e−C2¼

2

e−(yi−ïxi,¹jð)2+
∑

ℓ ̸=je
−(yi−ïxi,¹ℓð)2

g e−C2¼
2

e−(yi−ïxi,¹jð)2+(k−1)e−(∆−C¼)2

g e−C2¼
2

1+(k−1)e−(∆−C¼)2

=1−
(

1−e−C2¼
2

+(k−1)e−(∆−C¼)2

1+(k−1)e−(∆−C¼)2

)

.

Let us look at the condition (xi,yi) /∈S∗
j . Since {S∗

j }kj=1 partitions Rd, (xi,yi)∈S∗
j′ for j′∈ [k]. With this,

p¹1,...,¹k(xi,yi;¹j)f
e−(∆−C¼)2

e−(yi−ïxi,¹j′ ð)2+
∑

ℓ ̸=j′e
−(yi−ïxi,¹ℓð)2

f e−(∆−C¼)2

e−C2¼2+0
=e−((∆−C¼)2−C2¼

2).

The above events occur with probability at least 1−C3exp

(

−C1
¼2

c
ini2∥¹∗

1∥2

)

.
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Lemma B.2. Suppose x ∼ N (0,Id) and a fixed set S such that P(x ∈ S) g ¿. Let Ä denote the restriction of x onto S.

Moreover, suppose we have n draws from a standard Gaussian andm of them falls in S. Provided ng Clog(1/¿)
¿3 d, we have

Ãmin

(

1

m

m∑

i=1

ÄiÄ
T
i

)

g C

2
¿2,

with probability at least 1−2exp(−c1¿4n).

Proof. Consider a random vector Ä drawn from such restricted Gaussian distribution, and let µÄ and ΣÄ be the first and second

moment respectively. Using (Ghosh et al., 2019, Equation 38 (a-c)), we have

∥µÄ∥2fClog(1/¿),

C¿2Id≼ΣÄ ,

Moreover (Yi et al., 2016, Lemma 15 (a)) shows that Ä is subGaussian with È2 norm at most ·2 f C(1 + log(1/Ãmin).
Coupled with the definition of È2 norm, (Vershynin, 2018), we obtain that the centered random variable Ä −µÄ admits a

È2 norm squared of at mostC1(1+log(1/Ãmin).

Withm draws of such random variables, from (Ghosh et al., 2019, Equation 39), we have

Ãmin

(

1

m

m∑

i=1

ÄiÄ
T
i

)

gC¿2−·2
(

d

m
+

√

d

m
+¶

)

,

with probability at least 1−2exp(−c1mmin{¶,¶2})
If there are n samples from the unrestricted Gaussian distribution, the number of samples,m that fall in S is given bymg 1

2¿n
with high proibability. This can be seen directly from the binomial tail bounds. We have

P(mf ¿n

2
)fexp(−c¿n)

Combining the above, with ¿gcwhere c is a constant as well as ng Clog(1/¿)
¿3 d, we have

Ãmin

(

1

m

m∑

i=1

ÄiÄ
T
i

)

g C

2
¿2,

with probability at least 1−2exp(−c1mmin{¶,¶2}). Substituting ¶=C¿2 yields the result.

Lemma B.3. Suppose (xi,yi)∈S∗
j for some j∈ [k]. We have

∥xi∥fC(
√

dlogdlog(1/Ãmin)+
√

log(1/Ãmin))fC1

√

dlogdlog(1/Ãmin),

with probability at least 1−1/poly(d), where the degree of the polynomial depends on the constantC.

Proof. Note that Lemma B.2 shows that under (xi,yi) ∈ S∗
j for some j ∈ [k], the centered random variable Äi − µÄ is

sub-Gaussian with È2 norm squared of at most C(1+ log(1/Ãmin)). Note that since, Äi−µÄ is centered, the È2 norm is

(orderwise) same as the sub-Gaussian parameter.

We now use the standard norm concentration for sub-Gaussian random variables (Jin et al., 2019). We have, for a sub-Gaussian

random vector with parameter at mostC(1+log(1/Ãmin)), we have

P

(

∥X−EX∥g t
√
d
√

(1+log(1/Ãmin)
)

f2exp(−c1t2).

Using this with t=C
√
logd along with the fact that ∥µÄ∥2fClog(1/Ãmin), we obtain the lemma.
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C. Proof of Generalization

C.1. Proof of Claim 5.2

In order to see this, suppose h
(1)
j ∈ Hj and h

(2)
j ∈ Hj , and so we have h

(1)
j (x) =

〈

x,¹
(1)
j

〉

and h
(2)
j (x) =

〈

x,¹
(2)
j

〉

with

∥¹(1)j ∥fR as well as ∥¹(2)j ∥fR. With this, we have

|ℓ(h(1)j (x),y)−ℓ(h(2)j (x),y)|=
∣
∣
∣
∣

〈

xi,¹
(2)
j −¹(1)j

〉

[2y−
〈

x,¹
(2)
j +¹

(1)
j

〉

]

∣
∣
∣
∣

f|h(1)j (x)−h(2)j (x)|
[

2|y|+∥x∥(∥¹(1)j ∥+∥¹(2)j ∥)
]

f2(1+R)|h(1)j (x)−h(2)j (x)|,

which proves the claim.

C.2. Proof of Lemma 5.3

Proof. Note that the soft-min loss is a convex combination of the base losses, and the probabilities are computed by

p¹1,..,¹k(x, y; ¹j). Instead, if we consider the loss class with all possible convex combinations of the base losses, the

corresponding loss class will be a superset of the current loss class. From the definition of Rademacher complexity, if F1¦F2

for any two sets F1 and F2, we have R̂n(F1)fR̂n(F2). We define the following loss class

Φ̄=

{

(x,y) 7→
k∑

j=1

³jℓ(hj(x),y);¹j ∈R
d,∥¹j∥fR,³jg0∀j∈ [k],

k∑

j=1

³j=1

}

,

and hence from the definition of Rademacher complexity, we have R̂(Φ)fR̂(Φ̄). Continuing we have

R̂(Φ̄)=Eσ



 sup
{¹j :∥¹j∥fR,³jg0}k

j=1,
∑

k
j=1³j=1

∣
∣
∣
∣

1

n

n∑

i=1

Ãi

k∑

j=1

³jℓ(hj(x),y)

∣
∣
∣
∣





=Eσ



 sup
{¹j :∥¹j∥fR,³jg0}k

j=1,
∑

k
j=1³j=1

∣
∣
∣
∣

k∑

j=1

1

n

n∑

i=1

Ãi³jℓ(hj(x),y)

∣
∣
∣
∣





f
k∑

j=1

Eσ

[

sup
¹j :∥¹j∥fR,³jg0,|³j |f1

∣
∣
∣
∣

1

n

n∑

i=1

Ãi³jℓ(hj(x),y)

∣
∣
∣
∣

]

f
k∑

j=1

Eσ

[

sup
¹j :∥¹j∥fR,³jg0,|³j |f1

|³j |
∣
∣
∣
∣

1

n

n∑

i=1

Ãiℓ(hj(x),y)

∣
∣
∣
∣

]

f
k∑

j=1

Eσ

[

sup
¹j :∥¹j∥fR,³jg0,|³j |f1

∣
∣
∣
∣

1

n

n∑

i=1

Ãiℓ(hj(x),y)

∣
∣
∣
∣

]

f
k∑

j=1

Eσ

[

sup
¹j :∥¹j∥fR

∣
∣
∣
∣

1

n

n∑

i=1

Ãiℓ(hj(x),y)

∣
∣
∣
∣

]

=kR̂(ℓ◦H)

f4k(1+R)R̂(H)

f 4kR(1+R)√
n

where in the third line, we have used the sub-additivity property of the supremum function as well as the triangle inequality.

We also used the above claim regarding the Lipschitz constant of the loss function ℓ(.,.) and invoked the contraction result

for Rademacher averages by (Bartlett & Mendelson, 2002). Finally, for linear hypothesis class, we use (Mohri et al., 2018)
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to obtain the final result. Hence, we obtain

R̂(Φ)f 4kR(1+R)√
n

,

which proves the result.
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