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Abstract

To capture the inherent geometric features of many community detection problems, we propose

to use a new random graph model of communities that we call a Geometric Block Model. The

geometric block model builds on the random geometric graphs (Gilbert, 1961), one of the basic

models of random graphs for spatial networks, in the same way that the well-studied stochastic

block model builds on the Erdős-Rényi random graphs. It is also a natural extension of random

community models inspired by the recent theoretical and practical advancements in community

detection. To analyze the geometric block model, we first provide new connectivity results for

random annulus graphs which are generalizations of random geometric graphs. The connectivity

properties of geometric graphs have been studied since their introduction, and analyzing them has

been more difficult than their Erdős-Rényi counterparts due to correlated edge formation.

We then use the connectivity results of random annulus graphs to provide necessary and

sufficient conditions for efficient recovery of communities for the geometric block model. We show

that a simple triangle-counting algorithm to detect communities in the geometric block model is

near-optimal. For this we consider the following two regimes of graph density.

In the regime where the average degree of the graph grows logarithmically with the number of

vertices, we show that our algorithm performs extremely well, both theoretically and practically. In

contrast, the triangle-counting algorithm is far from being optimum for the stochastic block model in

the logarithmic degree regime. We simulate our results on both real and synthetic datasets to show

superior performance of both the new model as well as our algorithm.
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1. Introduction

Clustering of graphs is a ubiquitous problem where the objective is to partition the vertices of a

graph into disjoint clusters such that each cluster is more densely connected internally than across

clusters. Many real-world datasets can be represented in the form of graphs where the vertices (nodes)

represent data elements and the edges represent (noisy) interaction between the elements. It is of

primary interest to recover latent clusters in the graph either as an end goal or as a means to some

other learning problem. As an example, consider the graph induced by the collection of political

blogs in internet where each vertex corresponds to a blog website, and an edge exists between two

vertices if one of the corresponding blogs hyperlinks to the other. From this graph, it might be of

interest to partition the blogs into two clusters. Achieving this objective allows a recommendation

engine to recommend each blog to the correct audience or suggest correct political advertisements

and thereby garner more views.

A very simple algorithm to perform this task is the well-known min-cut algorithm which intends

to partition the graph into clusters such that minimum number of edges go across the clusters. The

min-cut algorithm runs in polynomial time but it does not have any guarantee on the sizes of the

clusters returned. If we constrain the output clusters to be equally sized, then this problem, also

known as the min-bisection problem becomes NP-hard. However, most real-world datasets are

not pathological and there exist many properties which are satisfied by the graph, for example,

sparsity and transitivity. Hence, an approach to resolve this problem is to devise a simple and elegant

modeling assumption according to which the observed real-world graphs are generated. Under this

assumption, we can design efficient algorithms that can recover the latent clusters. Such modeling

assumptions not only allow a rigorous theoretical treatment, but also allow us to benchmark and

compare different heuristics for graph partitioning. Finally, note that these models must capture the

inherent properties of real world graphs so that the algorithms designed under the corresponding

assumption work well on real world datasets as well.

The planted-partition model or the stochastic block model (SBM) is an example of such a random

graph model for community detection that generalizes the well-known Erdős-Rényi graphs (Holland

et al., 1983; Dyer and Frieze, 1989; Decelle et al., 2011; Abbe and Sandon, 2015a; Abbe et al.,

2016; Hajek et al., 2015; Chin et al., 2015; Mossel et al., 2015). Consider a graph G(V,E), where

V = V1tV2t· · ·tVk is a disjoint union of k clusters denoted by V1, . . . , Vk. The edges of the graph

are drawn randomly: there is an edge between u ∈ Vi and v ∈ Vj with probability qi,j , 1 ≤ i, j ≤ k.
This model has been popular both in theoretical and practical domains of community detection,

and the aforementioned references are just a small sample. Recent theoretical works focus on

characterizing sharp threshold of recovering the partition in the SBM. For example, when there are

only two communities of exactly equal size, and the inter-cluster edge probability qi,j =
b logn

n , i 6= j

and intra-cluster edge probability is qi,i =
a logn

n , it is known that perfect recovery is possible if and

only if
√
a −
√
b >
√
2 (Abbe et al., 2016; Mossel et al., 2015). The regime of the probabilities

being Θ
(

logn
n

)

has been put forward as one of most interesting ones, because in an Erdős-Rényi

random graph, this is the threshold for graph connectivity (Bollobás, 1998). This result has been

subsequently generalized for k communities (Abbe and Sandon, 2015a,b; Hajek et al., 2016) (for

constant k or when k = o(log n)), and under the assumption that the communities are generated

according to a probabilistic generative model (there is a prior probability pi of an element being

in the ith community) (Abbe and Sandon, 2015a). Note that, the results are not only of theoretical
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interest, many real-world networks exhibit a “sparsely connected” community feature (Leskovec

et al., 2008), and any efficient recovery algorithm for SBM has many potential applications.

One aspect that the SBM does not account for is a “transitivity rule” (‘friends having common

friends’) inherent to many social and other community structures. To be precise, consider any three

vertices x, y and z. If x and y are connected by an edge, and y and z are connected by an edge,

then it is more likely than not that x and z are connected by an edge. This phenomenon can be

seen in many network structures - predominantly in social networks, blog-networks and advertising.

SBM, primarily a generalization of Erdős-Rényi random graph, does not take into account this

characteristic, and in particular, the event that an edge exists between x and z is independent of the

events that there exist edges between x and y and y and z. However, one needs to be careful such

that by allowing such “transitivity”, the simplicity and elegance of the SBM is not lost.

Further, from an algorithmic point of view, it is well known that triangle based heuristic algorithms

work really well for graph clustering tasks (see (Tsourakakis et al., 2009), (Tsourakakis et al., 2017),

(Kolountzakis et al., 2012)). In particular, in (Tsourakakis et al., 2017), the authors proposed a

triangle counting based heuristic algorithm TECTONIC that has better performance on Amazon,

DBLP and YouTube datasets for graph partitioning than many popular competitors including Spectral

Clustering, Girvan-Newman algorithm, Louvain method and the Clauset-Newman-Moore (CNM)

to name a few. Triangle (and motifs in general) based analytics has been extensively useful in

different areas including social networks (Newman et al., 2002), metabolic networks (Milo et al.,

2002), protein networks (Alon, 2007; Vinayagam et al., 2016), transportation networks (Rosvall et al.,

2014), neural networks (Park and Friston, 2013), and food webs (Stouffer et al., 2012). Specifically,

clustering methods that use triangles capture different interaction patterns. For example, optimizing

to minimize the number of triangles across the cut returns similar energy flow patterns across species

in the food web data (Benson et al., 2016). Further, it was shown in (Watts and Strogatz, 1998) that

triangles are stronger signals of community structure than edges alone. This begs the following

question: “Is it possible to provide a theoretical justification of why simple triangle based heuristics

perform well on real-world data?”. It turns out that triangle counting can not recover the latent

clusters in SBM in the logarithmic degree regime, which is one of the interesting regimes. This

further limits the applicability of algorithms designed using the SBM assumption thus raising the

possibility of a different random graph model that captures significantly more properties of real-world

graphs.

Inspired by the above questions, we propose a novel random graph community detection model

analogous to the stochastic block model, that we call the geometric block model (GBM). The GBM

depends on the basic definition of the well-known class of random graphs called random geometric

graph (RGG) (Gilbert, 1961) that has found a lot of practical use in wireless networking because of

its inclusion of the notion of proximity between nodes (Penrose, 2003). The GBM satisfies several

desiderata of real networks, such as the degree associativity property (high degree nodes tend to

connect). However, analyzing the GBM is significantly challenging due to the presence of correlated

edges and in particular, the techniques developed for the SBM do not extend to this setting.

More precisely, the GBM is defined as follows. Let V ≡ V1 t V2 t · · · t Vk be the set of

vertices that is a disjoint union of k clusters, denoted by V1, . . . , Vk. Let, βi,j , i, j ∈ {1, . . . , k} be

unknown latent variables. Given an integer t ≥ 1, for each vertex u ∈ V , define a random vector

Zu ∈ R
t+1 that is uniformly distributed in St ⊂ R

t+1, the t-dimensional sphere. In this random

graph, an edge exists between v ∈ Vi and u ∈ Vj if and only if 〈Zu, Zv〉 ≥ βi,j . In this special case

of t = 1, the above definition is equivalent to choosing random variable θu uniformly distributed in
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[0, 2π], for all u ∈ V . Then there will be an edge between two vertices u ∈ Vi, v ∈ Vj if and only if

cos θu cos θv +sin θu sin θv = cos(θu− θv) ≥ βi,j or min{|θu− θv|, 2π− |θu− θv|} ≤ arccosβi,j .

This in turn, is equivalent to choosing a random variable Xu uniformly distributed in [0, 1] for all

u ∈ V , and there exists an edge between two vertices u ∈ Vi, v ∈ Vj if and only if

dL(Xu, Xv) ≡ min{|Xu −Xv|, 1− |Xu −Xv|} ≤ ri,j ,

where ri,j ∈ [0, 12 ], 0 ≤ i, j ≤ k, are a set of real numbers. This corresponds to the Geometric block

model in 1-dimension which will be referred to as GBM1.

For the rest of this paper, we concentrate on the case when ri,i = rs for all i ∈ {1, . . . , k}, which

we call the “intra-cluster distance” and ri,j = rd for all i, j ∈ {1, . . . , k}, i 6= j, which we call the

“inter-cluster distance,” to simply the analysis. To allow for edge density to be higher inside the

clusters than across the clusters, assume rs ≥ rd.

1.1 Validation of GBM

We next give two examples of datasets that motivate the geometric block model. In particular, this

datasets validate our hypothesis about geometric block model and the role of distance in the formation

of edges. The first one is a product purchase metadata from Amazon, and the second one is a dataset

with academic collaboration.

AMAZON METADATA

The first dataset that we use in our experiments is the Amazon product metadata on SNAP (https:

//snap.stanford.edu/data/amazon-meta.html), that has 548552 products and each

product is one of the following types {Books, Music CD’s, DVD’s, Videos}. Moreover, each

product has a list of attributes, for example, a book may have attributes like 〈“General”, “Sermon”,

“Preaching”〉. We consider the co-purchase network over these products. We make two observations

here: (1) edges get formed (that is items are co-purchased) more frequently if they are similar, where

we measure similarity by the number of common attributes between products, and (2) two products

that share an edge have more common neighbors (number of items that are bought along with both

those products) than two products with no edge in between.

Figure 1: Histogram: similarity of prod-

ucts bought together (mean ≈ 6)

Figure 2: Histogram: similarity of prod-

ucts not bought together (mean≈ 2)

Figures 1 and 2 show respectively average similarity of products that were bought together, and

not bought together. From the distribution, it is quite evident that edges in a co-purchase network

gets formed according to distance, a salient feature of random geometric graphs, and the GBM.
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Figure 3: Histogram of common neighbors of edges and non-edges in the co-purchase network, from

left to right: Book-DVD, Book-Book, DVD-DVD

We next take equal number of product pairs inside Book (also inside DVD, and across Book

and DVD) that have an edge in-between and do not have an edge respectively. Figure 3 shows that

the number of common neighbors when two products share an edge is much higher than when they

do not. In fact, almost all product pairs that do not have an edge in between also do not share any

common neighbor. This can be explainable in sparse graphs if we imagine the latent features to

follow the rules of GBM. On the other hand, this also suggests that SBM is not a good model for this

network, as in sparse SBM, two nodes having common neighbors is extremely rare, irrespective of

whether they share an edge or not. Note that, in practice, additional covariate features like product

metadata, reviews etc. are also observed, which could be used for community detection.

ACADEMIC COLLABORATION

We consider the collaboration network of academicians in Computer Science since 2016 (data

obtained from csrankings.org)1. According to area of expertise of the authors, we consider

five different communities: Data Management (MOD), Machine Learning and Data Mining (ML),

Artificial Intelligence (AI), Robotics (ROB), Architecture (ARCH). If two authors share the same

affiliation, or shared affiliation in the past, we assume that they are geographically close. We would

like to hypothesize that, two authors in the same communities might collaborate even when they are

geographically far. However, two authors in different communities are more likely to collaborate

only if they share the same affiliation (or are geographically close). Table 1 describes the number

of edges across the communities. It is evident that the authors from same community are likely to

collaborate irrespective of the affiliations and the authors of different communities collaborate much

frequently when they share affiliations or are close geographically. This clearly indicates that the

inter cluster edges are likely to form if the distance between the nodes is quite small, motivating the

fact rd < rs in the GBM.

2. Description of Our Results

In Section 2.1, we describe a new random graph model that we call the Random Annulus Graphs

(RAG) that we study in this paper. The RAG is a variant of the RGG and interestingly, the connectivity

properties of the RAG will allow us to design algorithms with provable guarantees for community

detection in the GBM. Subsequently, in section 2.2, we introduce the Geometric Block Model more

1. We use author affiliations from the paper available at https://www.aminer.org/citation
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Area 1 Area 2 same different

ML AI 65 43

AI ROB 21 8

ML MOD 22 14

ARCH MOD 7 1

ROB ARCH 5 1

Area same different

MOD 88 91

ARCH 51 45

ROB 63 30

AI 194 110

ML 152 141

Table 1: On the left we count the number of inter-cluster edges when authors shared same affiliation

and different affiliations. On the right, we count the same for intra-cluster edges.

formally. In section 2.3, we provide a brief discussion on the algorithms that we design for recovery

of clusters in a random graph sampled according to GBM.

2.1 Random graph models

Models of random graphs are ubiquitous with Erdős-Rényi graphs (Erdős and Rényi, 1959; Gilbert,

1959) at the forefront. Studies of the properties of random graphs have led to many fundamen-

tal theoretical observations as well as many engineering applications. In an Erdős-Rényi graph

G(n, p), n ∈ Z+, p ∈ [0, 1], the randomness lies in how the edges are chosen: each possible pair of

vertices forms an edge independently with probability p. It is also possible to consider models of

graphs where randomness lies in the vertices.

Keeping up with the simplicity of the Erdős-Rényi model, let us define a random annulus graph

in one dimension (RAG1) in the following way.

Definition 1 (Random annulus graph). Let the t-dimensional unit sphere be denoted by St ≡ {x ∈
R
t+1 | ‖x‖2 = 1} where ‖ · ‖2 denote the `2 norm. For t ≥ 1, a t-dimensional random annulus

graph RAGt(n, [r1, r2]) on n vertices has parameters n, t ∈ Z+, and r1, r2 ∈ [0, 2], r1 ≤ r2. It

is defined by assigning Xi ∈ St to vertex i, 1 ≤ i ≤ n, where Xi’s are independent and identical

random vectors uniformly distributed in St. There will be an edge between vertices i and j, i 6= j, if

and only if r1 ≤ ‖Xi −Xj‖2 ≤ r2.

When from the context if it is clear that we are in high dimensions (t > 1), we use d(u, v) to

denote ‖Xu −Xv‖2 or just the `2 distance between the arguments.

We give the name random annulus graph (RAG) because two vertices are connected if one is

within an ‘annulus’ centered at the other. One can think of the random variables Xi, 1 ≤ i ≤ n,

to be uniformly distributed on the perimeter of a circle with radius 1
2π and the distance dL(·, ·) to

be the geodesic distance (the length of the smaller arc between the two points). For clarity in the

calculations, it will be helpful to consider the vertices as just random points on [0, 1]. Note that

every point has a natural left direction (if we think of them as points on a circle then this is the

counterclockwise direction) and a right direction.

This definition is by no means new. For the case of r1 = 0, t = 1, this is the random geometric

graphs (RGG) in one dimension. Random Geometric graphs were defined first by (Gilbert, 1961)

and constitute the first and simplest model of spatial networks. The definition of RAG1 has been pre-

viously mentioned in (Dettmann and Georgiou, 2016). The interval [r1, r2] is called the connectivity

interval in RAG1. Random geometric graphs have several desirable properties that model real human

social networks, such as vertices with the degree associativity property (high degree nodes tend to
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connect). This has led RGGs to be used as models of disease outbreak in social network (Eubank

et al., 2004) and flow of opinions (Zhang et al., 2014). RGGs are an excellent model for wireless

(ad-hoc) communication networks (Dettmann and Georgiou, 2016; Haenggi et al., 2009). From a

more mathematical stand-point, RGGs act as a bridge between the theory of classical random graphs

and that of percolation (Bollobás, 2001, 2006). Recent works on RGGs also include hypothesis

testing between an Erdős-Rényi graph and a random geometric graph (Bubeck et al., 2016).

Threshold properties of Erdős-Rényi graphs have been at the center of much theoretical interest,

and in particular it is known that many graph properties exhibit sharp phase transition phenomena

(Friedgut and Kalai, 1996). Random geometric graphs also exhibit similar threshold properties

(Penrose, 2003).

Random Annulus Graphs in one dimension We describe the case of t = 1 separately from t > 1
because in the former case we have exact connectivity result. The base of the logarithm is e here and

everywhere else in the paper unless otherwise mentioned.

Theorem 2 (Connectivity threshold of one dimensional random annulus graphs). The

RAG1(n, [2 sin
πb logn

n , 2 sin πa logn
n ]) is i) connected with probability 1 − o(1) if a > 1 and

a− b > 0.5 ii) disconnected with probability 1− o(1) if a < 1 or a− b < 0.5

For the 1-dimensional case, the definition of random annulus graphs can be simpli-

fied, and that simplification explains the parameterization in the above theorem. The

RAG1(n, [2 sin
πb logn

n , 2 sin πa logn
n ]) is equivalent to RAG∗

1(n, [
b logn

n , a lognn ]) (i.e., the two ran-

dom graphs follow the same distribution), where the later graph is defined below.

Definition 3. A random annulus graph RAG∗
1(n, [r1, r2]) on n vertices has parameters n, and a

pair of real numbers r1, r2 ∈ [0, 1/2], r1 ≤ r2. It is defined by assigning a number Xi ∈ R to vertex

i, 1 ≤ i ≤ n, where Xis are independent and identical random variables uniformly distributed in

[0, 1]. There will be an edge between vertices i and j, i 6= j, if and only if r1 ≤ dL(Xi, Xj) ≤ r2
where dL(Xi, Xj) ≡ min{|Xi −Xj |, 1− |Xi −Xj |}.

For the 1-dimensional case, for any two vertices u, v, let d(u, v) denote dL(Xu, Xv) where

Xu, Xv are corresponding random values to the vertices respectively. We can extend this notion

to denote the distance d(u, v) between a vertex u (or the embedding of that vertex in [0, 1]) and a

number v ∈ [0, 1] naturally.

Remark 4. For the analysis and proofs of the 1-dimensional case, we will use the definition of

RAG∗
1 (instead of RAG1). However, due to the equivalence between the two random graph models,

our results for RAG∗
1 also hold for RAG1 with appropriately modified parameters. This is because

we can think of the vertices in RAG∗
1(n, [r1, r2]) being distributed randomly on the circumference of

circle of radius 1/2π and distance between two vertices in RAG∗
1(n, [r1, r2]) is geodesic (measured

along the circumference of the circle). It is easier to reason about the geodesic distance over

Euclidean distance in 1-dimension; however, the advantage is no longer there in higher dimensions.

Since handling geodesic distances is more cumbersome in the higher dimensions, we resorted to

Euclidean distance for t > 1 in order to retain simplicity.

Consider a RAG∗
1(n, [0, r]) defined above with r = a logn

n . It is known that RAG∗
1(n, [0, r]) is

connected with high probability if and only if a > 12 ((Muthukrishnan and Pandurangan, 2005; Pen-

2. That is, RAG∗

1(n, [0,
(1+ε) logn

n
]) is connected for any ε > 0. We will ignore this ε and just mention connectivity

threshold as logn
n

.
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rose, 2003) See also (Penrose, 2016)). Now let us consider the graph RAG∗
1(n, [

δ logn
n , lognn ]), δ > 0.

Clearly this graph has less edges than RAG∗
1(n, [0,

logn
n ]). Is this graph still connected? Surpris-

ingly, we show that the above modified graph remains connected as long as δ ≤ 0.5. Note that, on

the other hand, RAG∗
1(n, [0,

(1−ε) logn
n ]) is not connected for any ε > 0.

This means the graphs RAG∗
1(n, [0,

0.99 logn
n ]) and RAG∗

1(n, [
0.49 logn

n , 0.99 lognn ]) are not con-

nected with high probability, whereas RAG∗
1(n, [

0.50 logn
n , lognn ]) is connected. For a depiction of

the connectivity regime for the random annulus graph RAG∗
1(n, [

b logn
n , a lognn ]) see Figure 4.

a

b

10.5

0.5

Figure 4: The shaded area in the a-b plot shows the regime where an RAG∗
1(n, [

b logn
n , a lognn ]) is

connected with high probability.

Can we explain this seemingly curious shift in connectivity interval, when one goes from b = 0
to b > 0? Compare the RAG∗

1(n, [
0.50 logn

n , lognn ]) with the RAG∗
1(n, [0,

logn
n ]). The former one can

be thought of being obtained by deleting all the ‘short-distance’ edges from the latter. It turns out the

‘long-distance’ edges are sufficient to maintain connectivity, because they can connect points over

multiple hops in the graph. Another possible explanation is that connectivity threshold for RAG∗
1

is not dictated by isolated nodes as is the case in Erdős-Rényi graphs. Thus, after the connectivity

threshold has been achieved, removing certain short edges still retains connectivity.

Random Annulus Graphs in Higher Dimension It is natural to ask similar question of connec-

tivity for random annulus graphs in higher dimension. In a random annulus graph at dimension t, we

may assign t-dimensional random vectors to each of the vertices, and use a standard metric such as

the Euclidean distance to decide whether there should be an edge between two vertices.

The RAGt(n, [0, r]) gives the standard definition of random geometric graphs in t dimensions

(for example, see (Bubeck et al., 2016) or (Penrose, 2003)). Our main result here gives a condition

that guarantees connectivity.

Theorem 5. Let t > 1 and

ψ(t) ≡
√
π(t+ 1)Γ( t+2

2 )

Γ( t+3
2 )

,

where Γ(x) =
∫∞
0 yx−1e−ydy is the gamma function. If (a/2)t − bt ≥ 8(t+ 1)ψ(t) and a > 2b,

then a t−dimensional random annulus graph RAGt(n, [b
(

logn
n

)1/t
, a
(

logn
n

)1/t
]) is connected with

probability 1− o(1).
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Computing the connectivity threshold of RAG in high dimensions exactly is highly challenging,

and we have to use several approximations of high dimensional geometry. Our arguments crucially

rely on VC dimensions of sets of geometric objects such as intersections of high dimensional

annuluses and hyperplanes.

In the process, we also derived the following results about the existence of isolated vertices in

random annulus graphs.

Theorem 6 (Zero-One law for Isolated Vertices in RAGt). Let t > 1. For a t-dimensional random

annulus graph RAGt(n, [r1, r2]) where r2 = a
(

logn
n

)
1
t

and r1 = b
(

logn
n

)
1
t
, i) there exists isolated

nodes with probability 1− o(1) if at − bt < ψ(t), and ii) the graph is connected with probability

1− o(1) if at − bt > ψ(t).

An obvious deduction from this theorem is that an RAGt(n, [b
(

logn
n

)
1
t
, a
(

logn
n

)
1
t
]) is not

connected with probability 1− o(1) if at − bt < ψ(t).
All these connectivity results find immediate application in analyzing the algorithm that we

propose for the geometric block model (GBM). A GBM is a generative model for networks (graphs)

with underlying community structure.

2.2 Geometric Block Model

Since for random geometric graphs in 1-dimensional case the distance dL(·, ·) defined in Def. 3 gives

a simpler expression, we use this for the 1-dimensional case. For higher dimensions we resort back

to the Euclidean distance.

Definition 7 (Geometric Block Model in 1-dimension). Given V = V1 t V2, |V1| = |V2| = n
2 ,

choose a random variable Xu uniformly distributed in [0, 1] for all u ∈ V . The geometric block

model GBM1(rs, rd) with parameters rs > rd is a random graph where an edge exists between

vertices u and v if and only if,

dL(Xu, Xv) ≤ rs when u, v ∈ V1 or u, v ∈ V2
dL(Xu, Xv) ≤ rd when u ∈ V1, v ∈ V2 or u ∈ V2, v ∈ V1.

As a consequence of the connectivity lower bound on RAG∗
1, we are able to show that recovery

of the partition in GBM1(
a logn

n , b lognn ) is not possible with high probability by any means whenever

a− b < 0.5 or a < 1 (see, Theorem 2). Another consequence of the random annulus graph results is

that we show that if in addition to a GBM1 graph, all the locations of the vertices are also provided,

then recovery is possible if and only if a− b > 0.5 or a > 1 (formal statement in Theorem 19).

Coming back to the actual recovery problem, our main contribution for GBM1 is to provide a

simple and efficient algorithm that performs well in the sparse regime (see, Algorithm 1).

Theorem 8 (Recovery algorithm for GBM1). Suppose we have the graph G(V,E) generated

according to GBM1(rs ≡ a logn
n , rd ≡ b logn

n ), a ≥ 2b. Define

f1 = min{f : (2b+ f) log
2b+ f

2b
− f > 1}, f2 = min{f : (2b− f) log 2b− f

2b
+ f > 1}

θ1 = max{θ : 1
2

(

(4b+ 2f1) log
4b+ 2f1
2a− θ + 2a− θ − 4b− 2f1

)

> 1 and 0 ≤ θ ≤ 2a− 4b− 2f1}

9
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Lower Bound

Figure 5: Comparison of a and b in GBM1(
a logn

n , b lognn ). Red region denotes the values where the

graph is disconnected, green region is recoverable by Algorithm 1 and yellow region denotes values

of a and b for which there is no algorithm to recover the clusters.

θ2 = min{θ : 1
2

(

(4b− 2f2 log
4b− 2f2
2a− θ + 2a− θ − 4b+ 2f2

)

> 1 and a ≥ θ ≥ max{2b, 2a− 4b+ 2f2}}.

Then, if a− θ2+ θ1 > 2 or a > max(1+ θ2, 2), there exists an efficient algorithm which will recover

the correct partition in G with probability 1−o(1). Moreover, if a− b < 0.5 or a < 1, any algorithm

to recover the partition in GBM1(
a logn

n , b lognn ) will give incorrect output with probability 1− o(1) .

Some examples of the parameters when the proposed algorithm (Algorithm 1) can successfully

recover are given in Table 2 and Figure 5 compares them with the lower bound.

b 0.01 1 2 3 4 5 6 7

Minimum value of a 3.18 8.96 12.63 15.9 18.98 21.93 24.78 27.57

Table 2: Minimum value of a, given b for which Algorithm 1 resolves clusters correctly in

GBM1(
a logn

n , b lognn ).

As can be anticipated, the connectivity results for RAG applies to the ‘high dimensional’ geo-

metric block model. In many applications, the latent feature space of nodes are high-dimensional.

For example, road networks are two-dimensional whereas the number of features used in a social

network may have much higher dimensions.

Definition 9 (The GBM in High Dimensions). Let t > 1. Given V = V1 t V2, |V1| = |V2| = n
2 ,

choose a random vector Xu independently uniformly distributed in St ⊂ R
t+1 for all u ∈ V . The

geometric block model GBMt(rs, rd) with parameters rs > rd is a random graph where an edge

exists between vertices u and v if and only if,

||Xu −Xv||2 ≤ rs when u, v ∈ V1 or u, v ∈ V2
||Xu −Xv||2 ≤ rd when u ∈ V1, v ∈ V2 or u ∈ V2, v ∈ V1.

We extend the algorithmic results to high dimensions (details in Section 6).

Theorem 10. Let t > 1. If rs = Θ(( lognn )
1
t ) and rs − rd = Θ(( lognn )

1
t ), there exists a polynomial

time efficient algorithm that recovers the partition from GBMt(rs, rd) with probability 1 − o(1) .

10
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Moreover, if rs − rd = o(( lognn )
1
t ) or rs = o(( lognn )

1
t ), any algorithm fails to recover the partition

with probability at least 1/2.

In the following section, we present the high level ideas of our algorithms to recover the clusters

with sub-quadratic running time.

2.3 Clustering Algorithm

As we have mentioned already, it is well known that triangle based heuristics have good performance

on real world graphs for cluster recovery. It turns out that for random graphs generated according to

the GBM, simple triangle based algorithms are order optimal. A very simple and intuitive algorithm

to cluster the vertices of a graph is as follows:

1. For a particular edge say (u, v), count the number of triangles that contain the edge (u, v) and

from this observed statistics, infer based on a threshold if the endpoints u and v belong to the

same cluster or different cluster.

2. We perform this inference step on all edges of the graph and using the results, we can partition

the nodes into their respective clusters. The analysis of the first step guarantees that our

algorithm labels an edge as intra-cluster or inter-cluster with a probability of 1−O( 1
n log2 n

).

On applying union bound, it guarantees that all edges are labelled correctly with probability

1−O( 1
logn).

This algorithm was analyzed in a preliminary conference version of this paper (Galhotra et al., 2018)

and although the algorithm was order optimal, the guarantees for cluster recovery in the sparse

logarithmic regime i.e. rs, rd = Θ( lognn ) hold only when rs ≥ 4rd. When rs ≤ 4rd, it is not

possible to infer if the nodes forming an edge belong to the same cluster or not, based on a single

threshold on the number of triangles the edge is part of. Therefore, we proceed to devise an improved

algorithm whose main ingredient is still based on triangle counting but uses two thresholds on the

triangle count instead of one. At a high level, if the number of triangles formed by an edge is between

these two thresholds, we delete the edge because it is not possible to infer correctly whether the

endpoints belong to the same or different cluster. We then show that all the remaining edges belong

to same cluster and identify the condition when the surviving edges suffice to recover the clusters

correctly. The connectivity of surviving edges is shown with the help of corresponding results for the

Random Annulus graphs. A preliminary version of these results were published in (Galhotra et al.,

2019).

Remark 11. When the degree of a graph is logarithmic in the number of vertices (i.e., about n log n
edges), a stochastic block model implies the existence of about log3 n triangles, whereas in GBM

there will be about n log2 n triangles. As a result, in that regime, most vertices in SBM are not part

of any triangles, and the above triangle counting algorithm will fail. However, in the same regime,

the algorithm provably recover the communities in GBM, and also in practice.

It is possible to generalize the GBM to include different distributions and different metric spaces.

It is also possible to construct other type of spatial block models such as the one put forward in

a parallel work (Sankararaman and Baccelli, 2018) which rely on the random dot product graphs

(Young and Scheinerman, 2007). In (Sankararaman and Baccelli, 2018), edges are drawn between

vertices randomly and independently as a function of the distance between the corresponding vertex

11
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random variables. (Sankararaman and Baccelli, 2018) also considers the recovery scenario where in

addition to the graph, values of the vertex random variables are provided. In GBM, we only observe

the graph.

The rest of the paper is organized as follows. First, in Section 3, the sharp connectivity phase

transition results for random annulus graphs are proven (details in Appendix A). In Section 4, the

connectivity results are proven for high dimensional random annulus graphs (details in Appendix B).

In Section 5, a lower bound for the geometric block model as well as the main recovery algorithm

are presented. In Section 6, we present the extension of our recovery algorithm to high dimensional

GBM. Finally, Section 7 empirically evaluates our techniques on various real world and synthetic

datasets.

3. Connectivity of random annulus Graphs

In this section we give a sketch of the proof of sufficient condition for connectivity of RAG∗
1

(as part of proving Theorem 2) since connectivity guarantees in RAG∗
1 can be mapped to con-

nectivity properties in RAG1 (recall that the RAG1(n, [2 sin
πb logn

n , 2 sin πa logn
n ]) is equivalent

to RAG∗
1(n, [

b logn
n , a lognn ])). The full details along with the proof of the necessary condition in

Theorem 2 are given in Appendix A.

3.1 Sufficient condition for connectivity of RAG∗
1

Theorem. (Sufficient Condition in Theorem 2 for RAG∗
1) If a > 1 and a − b > 0.5, the random

annulus graph RAG∗
1(n, [

b logn
n , a lognn ]) is connected with probability 1− o(1) .

To prove this theorem we use two main technical lemmas that show two different events happen

with high probability simultaneously.

1
2π

Figure 6: Each vertex having two neighbors on either direction implies the graph is a union of cycles.

The cycles can be interleaving in [0, 1].

Lemma 12. A set of vertices C ⊆ V is called a cover of [0, 1], if for any point y in [0, 1] there

exists a vertex v ∈ C such that d(v, y) ≤ a logn
2n . If a − b > 0.5 and a > 1, the random annulus

graph RAG∗
1(n, [

b logn
n , a lognn ]) is a union of cycles such that every cycle forms a cover of [0, 1] (see

Figure 6) with probability 1− o(1).

12
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This lemma also shows effectively the fact that ‘long-edges’ are able to connect vertices over

multiple hops. Note that, the statement of Lemma 12 would be easier to prove if the condition were

a − b > 1. In that case what we prove is that every vertex has neighbors (in the RAG∗
1) on both

of the left and right directions. To see this for each vertex u , assign two indicator {0, 1}-random

variables Al
u and Ar

u, with Al
u = 1 if and only if there is no node x to the left of node u such that

d(u, x) ∈ [ b lognn , a lognn ]. Similarly, let Ar
u = 1 if and only if there is no node x to the right of node

u such that d(u, x) ∈ [ b lognn , a lognn ]. Now define A =
∑

u(A
l
u +Ar

u). We have,

Pr(Al
u = 1) = Pr(Ar

u = 1) = (1− (a− b) log n
n

)n−1,

and,

E[A] = 2n(1− (a− b) log n
n

)n−1 ≤ 2n1−(a−b).

If a − b > 1 then E[A] = o(1) which implies, by invoking Markov inequality, that with high

probability every node will have neighbors (connected by an edge in the RAG∗
1) on either side. This

results in the interesting conclusion that every vertex will lie in a cycle that covers [0, 1]. This is true

for every vertex, hence the graph is simply a union of cycles each of which is a cover of [0, 1]. The

main technical challenge is to show that this conclusion remains valid even when a− b > 0.5, which

is proved in Lemma 12 in Appendix A.

Lemma 13. Set two real numbers k ≡ db/(a − b)e + 1 and ε < 1
2k . In

an RAG∗
1(n, [

b logn
n , a lognn ]), 0 < b < a, with probability 1 − o(1) there exists a

vertex u0 and k nodes {u1, u2, . . . , uk} to the right of u0 such that d(u0, ui) ∈
[ (i(a−b)−2iε) logn

n , (i(a−b)−(2i−1)ε) logn
n ] and k nodes {v1, v2, . . . , vk} to the right of u0 such that

d(u0, vi) ∈ [ ((i(a−b)+b−(2i−1)ε) logn
n , (i(a−b)+b−(2i−2)ε) logn

n ], for i = 1, 2, . . . , k. The arrangement

of the vertices is shown in Figure 13 (pg. 18).

With the help of these two lemmas, we are in a position to prove the sufficient condition in

Theorem 2. The proofs of the two lemmas are given in Appendix A and contain the technical essence

of this section.

Proof [Proof of Sufficient condition in Theorem 2] We have shown that the two events mentioned

in Lemmas 12 and 13 happen with high probability. Therefore they simultaneously happen under

the condition a > 1 and a− b > 0.5. Now we will show that these events together imply that the

graph is connected. To see this, consider the vertices u0, {u1, u2, . . . , uk} and {v1, v2, . . . , vk} that

satisfy the conditions of Lemma 13. We can observe that each vertex vi has an edge with ui and

ui−1, i = 1, . . . , k. This is because (see Figure 13 for a depiction)

d(ui, vi) ≥
((i(a− b) + b− (2i− 1)ε) log n

n
− i(a− b)− (2i− 1)ε) log n

n
=
b log n

n
and

d(ui, vi) ≤
i(a− b) + b− (2i− 2)ε log n

n
− (i(a− b)− 2iε) log n

n
=

(b+ 2ε) log n

n
.

Similarly,

d(ui−1, vi) ≥
((i(a− b) + b− (2i− 1)ε) log n

n
− (i− 1)(a− b)− (2i− 3)ε) log n

n

13



GALHOTRA, MAZUMDAR, PAL AND SAHA

=
(a− 2ε) log n

n
and

d(ui−1, vi) ≤
i(a− b) + b− (2i− 2)ε log n

n
− ((i− 1)(a− b)− 2(i− 1)ε) log n

n
=
a log n

n
.

This implies that u0 is connected to ui and vi for all i = 1, . . . , k. Using Lemma 12, the first event

implies that the connected components are cycles spanning the entire line [0, 1]. Now consider

two such disconnected components, one of which consists of the nodes u0, {u1, u2, . . . , uk} and

{v1, v2, . . . , vk}. There must exist a node t in the other component (cycle) such that t is on the right

of u0 and d(u0, t) ≡ x logn
n ≤ a logn

n . If x ≤ b, ∃i | i ≤ k and i(a− b) + b− a− (2i− 2)ε ≤ x ≤
i(a− b)− (2i− 1)ε (see Figure 14). When x ≤ b, we can calculate the distance between t and vi as

d(t, vi) ≥
(i(a− b) + b− (2i− 1)ε) log n

n
− (i(a− b)− (2i− 1)ε) log n

n
=
b log n

n

and

d(t, vi) ≤
(i(a− b) + b− (2i− 2)ε) log n

n
− (i(a− b) + b− a− (2i− 2)ε) log n

n
=
a log n

n
.

Therefore t is connected to vi when x ≤ b. If x > b then t is already connected to u0. Therefore the

two components (cycles) in question are connected.This is true for all cycles and hence there is only

a single component in the entire graph. Indeed, if we consider the cycles to be disjoint super-nodes,

then we have shown that there must be a star configuration.

The following result is an immediate corollary of the connectivity upper bound.

Corollary 14. Consider a random graphG(V,E) is being generated as a variant of the RAG∗
1 where

each u, v ∈ V forms an edge if and only if d(u, v) ∈
[

0, c lognn

]

∪
[

b lognn , a logn
n

]

, 0 < c < b < a.

If a− b+ c > 1 or if a− b > 0.5, a > 1, the graph G is connected with probability 1− o(1).

The above corollary can be further improved for some regimes of a, b, c. In particular, we can

get the following result (proof delegated to the appendix).

Corollary 15. Consider a random graphG(V,E) is being generated as a variant of the RAG∗
1 where

each u, v ∈ V forms an edge if and only if d(u, v) ∈
[

0, c lognn

]

∪
[

b lognn , a logn
n

]

, 0 < c < b < a.

If any of the following conditions are true:

1. 2(a− b) + c/2 > 1 when a− b < c and b > 3c/2

2. b− c > 1 when a− b < c and b ≤ 3c/2

3. a > 1 when a− b ≥ c and b ≤ 3c/2

4. (a− b) + 3c/2 > 1 when a− b ≥ c and b > 3c/2,

the graph G is connected with probability 1− o(1).
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4. Connectivity of High Dimensional Random Annulus Graphs: Proof of Theorem 5

In this section we show a proof sketch of Theorem 5 to establish the sufficient condition of connec-

tivity of random annulus graphs. The details of the proof and the necessary conditions are provided

in Appendix B.

Note, here r1 ≡ b
(

logn
n

)1/t
and r2 ≡ a

(

logn
n

)1/t
. We show the upper bound for connectivity

of a Random Annulus Graphs in t dimension as shown in Theorem 5. For this we first define a pole

as a vertex which is connected to all vertices within a distance of r2 from itself. In order to prove

Theorem 5, we first show the existence of a pole with high probability in Lemma 16.

Lemma 16. In a RAGt

(

n,

[

b
(

logn
n

)1/t
, a
(

logn
n

)1/t
])

, 0 < b < a, with probability 1 − o(1)
there exists a pole.

Next, Lemma 17 shows that for every vertex u and every hyperplane L passing through u and

not too close to the tangent hyperplane at u, there will be a neighbor of u on either side of the plane.

Therefore, there should be a neighbor towards the direction of the pole. In order to formalize this, let

us define a few regions associated with a node u and a hyperplane L : wTx = β passing through u.

R1
L ≡ {x ∈ St | r1 ≤ d(u, x) ≤ r2, wTx ≤ β}
R2

L ≡ {x ∈ St | r1 ≤ d(u, x) ≤ r2, wTx ≥ β}
AL ≡ {x | x ∈ St, wTx = β}.

Informally,R1
L andR2

L represent the partition of the annulus on either side of the hyperplane L and

AL represents the region on the sphere lying on L.

Lemma 17. If we sample n nodes from St according to RAGt

(

n,

[

b
(

logn
n

)1/t
, a
(

logn
n

)1/t
])

,

then for every node u and every hyperplane L passing through u such that AL is not all within

distance r2 of u, node u has a neighbor on both sides of the hyperplane L with probability at least

1− 1
n provided (a/2)t − bt ≥ 8

√
π(t+1)2Γ( t+2

2
)

Γ( t+3
2

)
and a > 2b.

We found the proof of this lemma to be challenging. Since, we do not know the location of the

pole, we need to show that every point has a neighbor on both sides of the plane L no matter what

the orientation of the plane. Since the number of possible orientations is uncountably infinite, we

cannot use a union-bound type argument. To show this we have to rely on the VC Dimension of

the family of sets {x ∈ St | r1 ≤ ‖u − x‖2 ≤ r2, w
Tx ≥ β,AL:wT x=β not all within r2 of u} for

all hyperplanes L (which can be shown to be less than t + 1). We rely on the celebrated result of

(Haussler and Welzl, 1987) (we derived a continuous version of it), see Theorem 41, to deduce our

conclusion.

For a node u and its corresponding location Xu = (u1, u2, . . . , ut+1), define the particular

hyperplane L∗
u : x1 = u1 which is normal to the line joining u0 ≡ (1, 0, . . . , 0) and the origin and

passes through u. We now need one more lemma that will help us prove Theorem 5.

Lemma 18. For a particular node u and corresponding hyperplane L∗
u, if every point in AL∗

u
is

within distance r2 from u, then u must be within r2 of u0.

15



GALHOTRA, MAZUMDAR, PAL AND SAHA

For now, we assume that the Lemmas 16, 17 and 18 are true and show why these lemmas together

imply the proof of Theorem 5.

Proof [Proof of Theorem 5] We consider an alternate (rotated but not shifted) coordinate system

by multiplying every vector by an orthonormal matrix such that the new position of the pole is the

t + 1-dimensional vector (1, 0, . . . , 0) where only the first co-ordinate is non-zero. Let the t + 1
dimensional vector describing any node u in this new coordinate system be û = (û1, û2, . . . , ût+1).
Now consider the hyperplane L : x1 = û1 and if u is not connected to the pole already, then

by Lemma 17 and Lemma 18, the node u has a neighbor u2 which has a higher first coordinate

(û2 > û1). The same analysis applies for u2 and hence we have a path where the first coordinate of

every node is higher than the previous node. Since the number of nodes is finite, this path cannot go

on indefinitely and at some point, one of the nodes is going to be within r2 of the pole and will be

connected to the pole. Therefore every node is going to be connected to the pole and hence our

theorem is proved.

5. The Geometric Block Model in one dimension (GBM1)

In this section, we prove the necessary condition for exact cluster recovery of GBM1 and give an

efficient algorithm that matches that within a constant factor.

5.1 Immediate consequence of RAG∗
1 connectivity

The following lower bound for GBM1 can be obtained as a consequence of Theorem 2.

Theorem (Impossibility in GBM1 in Theorem 8). If a− b < 0.5 or a < 1, then any algorithm to

recover the partition in GBM1(
a logn

n , b lognn ) will give incorrect output with probability 1− o(1).

Proof Consider the scenario that not only the geometric block model graph GBM1(
a logn

n , b lognn )
was provided to us, but also the random values Xu ∈ [0, 1] for all vertex u in the graph were

provided. We will show that we will still not be able to recover the correct partition of the vertex set

V with probability at least 0.5 (with respect to choices of Xu, u, v ∈ V and any randomness in the

algorithm).

In this situation, the edge (u, v) where dL(Xu, Xv) ≤ b logn
n does not give any new information

than Xu, Xv. However the edges (u, v) where b logn
n ≤ dL(Xu, Xv) ≤ a logn

n are informative, as

existence of such an edge will imply that u and v are in the same part. These edges constitute a

one-dimensional random annulus graph RAG∗
1(n, [

b logn
n , a lognn ]). But if there are more than two

components in this random annulus graph, then it is impossible to separate out the vertices into the

correct two parts, as the connected components can be assigned to any of the two parts and the RAG∗
1

along with the location values (Xu, u ∈ V ) will still be consistent.

What remains to be seen that RAG∗
1(n, [

b logn
n , a lognn ]) will have ω(1) components with high

probability if a − b < 0.5 or a < 1. This is certainly true when a − b < 0.5 as we have seen in

Theorem 8, there can indeed be ω(1) isolated nodes with high probability. On the other hand, when

a < 1, just by using an analogous argument it is possible to show that there are ω(1) vertices that

do not have any neighbors on the left direction (counterclockwise). We delegate the proof of this

claim as Lemma 43 in the appendix. If there are k such vertices, there must be at least k − 1 disjoint

candidates. This completes the proof.
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Indeed, when the locations Xu associated with every vertex u is provided, it is also possible to

recover the partition exactly when a− b > 0.5 and a > 1, matching the above lower bound exactly

(see Theorem 19).

Corollary 19 (GBM1 with known vertex locations). Suppose a geometric block model graph

GBM1(
a logn

n , b lognn ) is provided along with the associated values of the locations Xu for every

vertex u. Any algorithm to recover the partition in GBM1(
a logn

n , b lognn ) will give i) incorrect output

with probability 1 − o(1) if a − b < 0.5 or a < 1 and ii) correct output probability 1 − o(1) if

a− b > 0.5 and a > 1.

Proof We need to only prove that it is possible to recover the partition exactly with probability

1 − o(1) when a − b > 0.5 and a > 1, since the other part is immediate from the impossibility

guarantee in GBM1 in Theorem 8 (When a− b < 0.5 or a < 1, there will be an isolated node with

high probability. It is impossible to identify the cluster for this node.). For any pair of vertices u, v,

we can verify if d(u, v) ∈ [ b lognn , a lognn ]. If that is the case then by just checking in the GBM1

graph whether they are connected by an edge or not we can decide whether they belong to the

same cluster or not respectively. What remains to be shown that all vertices can be covered by this

procedure. However that will certainly be the case since RAG∗
1(n, [

b logn
n , a lognn ]) is connected with

high probability.

5.2 A recovery algorithm for GBM1

We now turn our attention to an efficient recovery algorithm for GBM1. Intriguingly, we show a

simple triangle counting algorithm works well for GBM1 and recovers the clusters in the sparsity

regime. Triangle counting algorithms are popular heuristics applied to social networks for clustering

(Easley et al., 2012), however they fail in SBM. Hence, this serves as another validation why GBM1

are well-suited to model community structures in social networks.

The algorithm is as follows. Suppose we are given a graph G = (V : |V | = n,E) with two

disjoint parts, V1, V2 ⊆ V generated according to GBM1(rs, rd). The algorithm (Algorithm 1) goes

over all edges (u, v) ∈ E. It counts the number of triangles containing the edge (u, v) by calling the

process function that counts the number of common neighbors of u and v.

process outputs ‘true’ if it is confident that the nodes u and v belong to the same cluster

and ‘false’ otherwise. More precisely, if the count is within some prescribed values ES and ED, it

returns ‘false’3.The algorithm removes the edge on getting a ‘false’ from process function. After

processing all the edges of the network, the algorithm is left with a reduced graphs (with certain

edges deleted from the original). It then finds the connected components in the graph and returns

them as the parts V1 and V2.

Remark 20. The algorithm can iteratively maintain the connected components over the processed

edges (the pairs for which process function has been called and it returned true) like the union-find

algorithm. This reduces the number of queries as the algorithm does not need to call the process

function for the edges which are present in the same connected component.

3. Note that, the thresholds ES and ED refer to the maximum and minimum value of triangle-count for an ‘inter cluster’

edge.
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Algorithm 1: Cluster recovery in GBM1

Require: GBM1 G = (V,E), rs, rd
1: for (u, v) ∈ E do

2: if process(u, v, rs, rd) then

3: continue

4: else

5: E.remove((u, v))
6: end if

7: end for

8: return connectedComponent(V,E)

Algorithm 2: process

Require: u,v, rs, rd
Ensure: true/false

{Comment: When a > 2b, f1 = min{f : (2b + f) log 2b+f
2b − f > 1}, f2 = min{f :

(2b− f) log 2b−f
2b + f > 1 and ES = (2b+ f1)

logn
n and ED = (2b− f2) lognn }

1: count← |{z : (z, u) ∈ E, (z, v) ∈ E}|
2: if count

n ≥ ES(rd, rs) or count
n ≤ ED(rd, rs) then

3: return true

4: end if

5: return false

5.3 Analysis of Algorithm 1

Given a GBM1 graph G(V,E) with two clusters V = V1 t V2, and a pair of vertices u, v ∈ V ,

the events Eu,vz , z ∈ V of any other vertex z being a common neighbor of both u and v given

(u, v) ∈ E are dependent ; however given the distance between the corresponding random variables

dL(Xu, Xv) = x, the events are independent. This is a crucial observation which helps us to

overcome the difficulty of handling correlated edge formation.

Moreover, given the distance between two nodes u and v are the same, the probabilities of Eu,vz |
(u, v) ∈ E are different when u and v are in the same cluster and when they are in different clusters.

Therefore the count of the common neighbors are going to be different, and substantially separated

with high probability for two vertices in cases when they are from the same cluster or from different

clusters. However, this may not be the case, if we do not restrict the distance to be the same and look

at the entire range of possible distances.

First, we quote two simple lemmas about the expected value of the commons neighbors.

Lemma 21. For any two vertices u, v ∈ Vi : (u, v) ∈ E, i = 1, 2 belonging to the same cluster

with dL(Xu, Xv) = x, the count of common neighbors Cu,v ≡ |{z ∈ V : (z, u), (z, v) ∈ E}| is a

random variable distributed according to Bin(n2 − 2, 2rs − x) when rs ≥ x > 2rd and according

to Bin(n2 − 2, 2rs − x) + Bin(n2 , 2rd − x) when x ≤ min(2rd, rs), where Bin(n, p) is a binomial

random variable with mean np.
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Proof Without loss of generality, assume u, v ∈ V1. For any vertex z ∈ V , let Eu,vz ≡
{(u, z), (v, z) ∈ E} be the event that z is a common neighbor. For z ∈ V1,

Pr(Eu,vz ) = Pr((z, u) ∈ E, (z, v) ∈ E)

= 2rs − x,
since dL(Xu, Xv) = x. For z ∈ V2, we have,

Pr(Eu,vz ) = Pr((z, u), (z, v) ∈ E)

=

{

2rd − x if x < 2rd

0 otherwise
.

Now since there are n
2 − 2 points in V1 \ {u, v} and n

2 points in V2, we have the statement of the

lemma.

In a similar way, we can prove.

Lemma 22. For any two vertices u ∈ V1, v ∈ V2 : (u, v) ∈ E belonging to different clusters

with dL(Xu, Xv) = x , the count of common neighbors Cu,v ≡ |{z ∈ V : (z, u), (z, v) ∈ E}|
is a random variable distributed according to Bin(n − 2, 2rd) when rs > 2rd and according to

Bin(n− 2,min(rs + rd − x, 2rd)) when rs ≤ 2rd and x ≤ rd.

The distribution of the number of common neighbors given (u, v) ∈ E and d(u, v) = x is given in

Table 3. As throughout this paper, we have assumed that there are only two clusters of equal size.

The functions change when the cluster sizes are different. In the table, u ∼ v means u and v are in

the same cluster.

(u, v) ∈ E Distribution of count (rs > 2rd) Distribution of count (rs ≤ 2rd)

d(u, v) = x u ∼ v, x ≤ rs u � v, x ≤ rd u ∼ v, x ≤ rs u � v, x ≤ rd
z | (z, u) ∈ E, (z, v) ∈ E Bin(n2 − 2, 2rs −

x) + 1{x ≤
2rd}Bin(n2 , 2rd−x)

Bin(n− 2, 2rd) Bin(n2 − 2, 2rs −
x) + Bin(n2 , 2rd −
x)

Bin(n − 2,min(rs +
rd − x, 2rd))

Table 3: Distribution of triangle count for an edge (u, v) conditioned on the distance between them

d(u, v) = dL(Xu, Xv) = x, when there are two equal sized clusters. Here Bin(n, p) denotes a

binomial random variable with mean np.

At this point note that, in a GBM1(rs, rd) for any edge u, v that do not belong to the same part, the

expected total number of common neighbors of u and v does not depend on their distance. We will

next show that in this case the normalized total number of common neighbors is concentrated around

2rd. Therefore, when Algorithm 1 finished removing all the edges, with high probability all the

‘inter-cluster’ edges are removed. However, some of the ‘in-cluster’ edges will also be removed in

the process. This is similar to the case when from an RAG∗
1(n, [0, rs]), all the edges that correspond

to a distance close to 2rd has been removed. This situation is shown for the case when rs ≥ 2rd in

Figure 7. Finally we show that the edge-reduced RAG∗
1(n, [0, rs]) is still connected under certain

condition. In what follows we will assume the GBM1(rs, rd) with rs ≥ 2rd. .The other case of

rs < 2rd is similar.

In the next lemma, we show a concentration result for the count made in process.
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rd 2rd rs

2rd

x

rs + rd

rd

rs

Intra-cluster edge:

{

rs + rd − x, x ≤ 2rd

rs − x/2, 2rd < x ≤ rs
Inter-cluster edge: 2rd, 0 ≤ x ≤ rd

Figure 7: Average number of common neighbors of (u, v) ∈ E for varying values of d(u, v) = x
when rs ≥ 2rd.

Lemma 23. Suppose we are given the graph G(V,E) generated according to GBM1(rs ≡
a logn

n , rd ≡ b logn
n ), a ≥ 2b. Our algorithm with ES = (2b + f1)

logn
n and ED = (2b − f2) lognn ,

removes all the edges (u, v) ∈ E such that u and v are in different parts with probability at least

1− o(1), where

f1 = min{f : (2b+ f) log
2b+ f

2b
− f > 1}

f2 = min{f : (2b− f) log 2b− f
2b

+ f > 1}.

Proof Here we will use the fact that for a ≥ 1, the number of edges in GBM1(rs ≡ a logn
n , rd ≡

b logn
n ) is O(n log n) with probability 1 − 1

nΘ(1) . Consider any vertex u ∈ V1 (symmetrically for

u ∈ V2), since the vertices are thrown uniformly at random in [0, 1], the probability that a v ∈ V1,

v 6= u, is a neighbor of u is a logn
n , and for v ∈ V2, the corresponding probability is b logn

n . Therefore,

the expected degree of u is
(a+b)

2 log n. By a simple Chernoff bound argument, the degree of u is

therefore O(log n) with probability 1− 1
nc for c ≥ 2. By union bound over all the vertices, the total

number of edges is O(n log n) with probability 1− 1
n .

Let Z denote the random variable that equals the number of common neighbors of two nodes

u, v ∈ V : (u, v) ∈ E such that u, v are from different parts of the GBM. Using Lemma 22, we

know that Z is sampled from the distribution Bin(n− 2, 2rd), where rd = b logn
n . Therefore,

Pr(Z ≥ nES) ≤
n
∑

i=nES

(

n

i

)

(2rd)
i(n− 2rd)

n−i ≤ exp
(

− nD
(

(2b+ f1)
log n

n
‖2b log n

n

))

,

whereD(p‖q) ≡ p log p
q+(1−p) log 1−p

1−q is the KL divergence between Bernoulli(p) and Bernoulli(q)

distributions. It is easy to see that,

nD(
α log n

n
||β log n

n
) =

(

α log
α

β
+ (α− β)

)

log n− o(log n).
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Therefore Pr(Z ≥ nES) ≤ 1
n(logn)2

because (2b+ f1) log
2b+f1
2b − f1 > 1. Similarly, we have that

Pr(Z ≤ nED) ≤
nED
∑

i=0

(

n

i

)

(2rd)
i(n− 2rd)

n−i ≤ exp(−nD((2b− t) log n
n
‖2b log n

n
)) ≤ 1

n(log n)2
.

So all of the inter-cluster edges will be removed by Algorithm 1 with probability

1 − O( n logn
n(logn)2

) = 1 − o(1), as with probability 1 − o(1) the total number of edges in the

graph is O(n log n).

After Algorithm 1 finishes, in the edge-reduced GBM1(
a logn

n , b lognn ), all the edges are ‘in-cluster’

edges with high probability. However some of the ‘in-cluster’ edges are also deleted, namely, those

that has a count of common neighbors between ES and ED. In the next two lemmas, we show the

necessary condition on the ‘in-cluster’ edges such that they do not get removed by Algorithm 1.

Lemma 24. Suppose we have the graph G(V,E) generated according to GBM1(rs ≡ a logn
n , rd ≡

b logn
n ), a ≥ 2b. Define f1, f2, ED, ES as in Lemma 23. Consider an edge (u, v) ∈ E where u, v

belong to the same part of the GBM and let d(u, v) ≡ x ≡ θ logn
n . Suppose θ satisfies either of the

following conditions:

1. 1
2

(

(4b+ 2f1) log
4b+2f1
2a−θ + 2a− θ − 4b− 2f1

)

> 1 and θ ≤ 2a− 4b− 2f1

2. 1
2

(

(4b−2f2) log
4b−2f2
2a−θ +2a−θ−4b+2f2

)

> 1 and a ≥ θ ≥ max{2b, 2a−4b+2f2}.

Then Algorithm 1 with ES = (2b+ f1)
logn
n and ED = (2b− f2) lognn will not remove this edge with

probability at least 1−O( 1
n(logn)2

).

Proof Let Z be the number of common neighbors of u, v. Recall that, u and v are in the same cluster.

We know from Lemma 22 thatZ is sampled from the distribution Bin(n2−2, 2rs−x)+Bin(n2 , 2rd−x)
when x ≤ 2rd, and from the distribution Bin(n2 − 2, 2rs − x) when x ≥ 2rd. We have,

Pr(Z ≤ nES)

=

{

∑nES
i=0

(n
2
−2
i

)

(2rs − x)i(1− 2rs + x)
n
2
−i−2∑nES−i

j=0

(n
2
j

)

(2rd − x)j(1− 2rd + x)
n
2
−j if x ≤ 2rd

∑nEs
i=0

(n
2
−2
i

)

(2rs − x)i(1− 2rs + x)
n
2
−i otherwise

≤ e−n
2
D(2ES || (2a−θ) logn

n
) since 2a− θ ≥ 4b+ 2f1

≤ e−n
2
D(

(4b+2f1) logn
n

|| (2a−θ) logn
n

) ≤ 1

n log2 n
,

because of condition 1 of this lemma. Therefore, this edge will not be deleted with high probability.

Similarly, let us find the probability of Z ≥ nED = (2b− f2) log n. Let us just assume the worst

case when θ ≤ 2b: that the edge is being deleted (see condition 2, this is prohibited if that condition

is satisfied). Otherwise, θ > 2b and,

Pr(Z ≥ nED) =
n
∑

i=nED

(n
2 − 2

i

)

(2rs − x)i(1− 2rs + x)
n
2
−i−2
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≤ e−n
2
D(2ED‖ (2a−θ) logn

n
) if 2a− θ ≤ 4b− 2f2

= e−
n
2
D(

(4b−2f2) logn
n

‖ (2a−θ) logn
n

) ≤ 1

n log2 n
,

because of condition 2 of this lemma.

Now we are in a position to prove our main theorem from this part. Let us restate this theorem.

Theorem. (Sufficient Condition in Theorem 8) Suppose we have the graph G(V,E) generated

according to GBM1(rs ≡ a logn
n , rd ≡ b logn

n ), a ≥ 2b. Define,

f1 = min{f : (2b+ f) log
2b+ f

2b
− f > 1}

f2 = min{f : (2b− f) log 2b− f
2b

+ f > 1}

θ1 = max{θ : 1
2

(

(4b+ 2f1) log
4b+ 2f1
2a− θ + 2a− θ − 4b− 2f1

)

> 1 and 0 ≤ θ ≤ 2a− 4b− 2f1}

θ2 = min{θ : 1
2

(

(4b− 2f2 log
4b− 2f2
2a− θ + 2a− θ − 4b+ 2f2

)

> 1 and a ≥ θ ≥ max{2b, 2a− 4b+ 2f2}}.

Then, if a − θ2 + θ1 > 2 or a − θ2 > 1, a > 2, Algorithm 1 with ES = (2b + f1)
logn
n and

ED = (2b− f2) lognn will recover the correct partition in the GBM with probability 1− o(1) .

Proof From Lemma 23, we know that after Algorithm 1 goes over all the edges, the edges with

end-points being in different parts of the GBM are all removed with probability 1− o(1). There are

O(n log n) edges in the GBM with probability 1− o(1). From Lemma 24, we can say that no edge

with both ends at the same part is deleted with probability at least 1− o(1) (by simply applying a

union bound).

After Algorithm 1 goes over all the edges, the remaining edges from a disjoint union of two random

annulus graphs of n
2 vertices each. For any two vertices u, v in the same part, there will be an edge if

d(u, v) ∈ [0, θ1] ∪ [θ2, a]. From Corollary 14, it is evident that each of these two parts (each part is

of size n
2 ) will be connected if either a− θ2 + θ1 > 2 or a− θ2 > 1, a > 2.

It is also possible to incorporate the result of Corollary 15 as well to get somewhat stronger recovery

guarantee for our algorithm.

6. High Dimensional GBM: Proof of Sufficient Condition in Theorem 10

In this section, we show that our algorithm for recovery of clusters in GBM, i.e., Algorithm 1 extends

to higher dimensions. Recall the precise definition of the high-dimensional GBM:

Definition 25 (The GBM in High Dimensions). Given V = V1 t V2, |V1| = |V2| = n
2 , choose a

random vector Xu independently uniformly distributed in St for all u ∈ V . The geometric block

model GBMt(rs, rd) with parameters rs > rd is a random graph where an edge exists between

vertices u and v if and only if,

||Xu −Xv||2 ≤ rs when u, v ∈ V1 or u, v ∈ V2
||Xu −Xv||2 ≤ rd when u ∈ V1, v ∈ V2 or u ∈ V2, v ∈ V1.
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Indeed, for the higher dimensional case the algorithm remains exactly the same, except the value of

ED and ES in the subroutine process needs to be changed. Recall that the algorithm proceeds by

checking each edge and counting the number of triangle the edge is part of. If the count is between

ED and ES the edge is removed. In this process we claim to remove all inter-cluster edges with high

probability. The main difficulty lies in proving that the original communities remain connected in the

redacted graph. For that we crucially use the connectivity results of the high dimensional random

annulus graphs (from Section 4) in somewhat different way that what we do for the one dimensional

case.

6.1 Analysis of Algorithm 1 in High Dimension

Let us define a few more terminologies to simplify the expressions for high dimensional space. The

volume of a t-sphere with unit radius is at =
2πt+1/2

Γ( t+1
2

)
. Let the spherical cap Bt(O, r) ⊂ St define a

region on the surface of this t-sphere St such that every point u ∈ Bt(O, r) satisfies ‖u−O‖2 ≤ r.

Let us denote the volume of the spherical cap Bt(O, r) normalized with at by Bt(r). Similarly

Bt(O, [r1, r2]) refers to a region on the t-sphere such that every point u ∈ Bt(O, [r1, r2]) satisfies

r1 ≤ ‖u−O‖2 ≤ r2 and Bt(r1, r2) refers to the volume normalized by at. Now consider two such

spherical caps Bt(O1, r1) and Bt(O2, r2) such that d(O1, O2) = `. In that case let us define the

volume of the intersection of the two aforementioned spherical caps (again normalized by at) by

Vt(r1, r2, `).
Let us use u ∼ v (u � v) to denote u and v belong to the same cluster (different clusters). Let Eu,vz

denote the event that z is a common neighbor of u and v and e(u, v) denote the event that there is an

edge between u and v. Following are some simple observations.

Observation 26. Pr(e(u, v) | u ∼ v) = Bt(rs) and Pr(e(u, v) | u � v) = Bt(rd).

Observation 27. Pr(Eu,vz | z ∼ u, u ∼ v and ‖u − v‖2 = `) = Vt(rs, rs, `) and Pr(Eu,vz | z �

u, u ∼ v and ‖u− v‖2 = `) = Vt(rd, rd, `).

In the following proof, we assume rs ≤ 2rd. The other situation where the gap between rs and rd is

higher is only easier to handle.

Lemma 28. For any two vertices u, v ∈ Vi : (u, v) ∈ E, i = 1, 2 such that d(u, v) = ` belonging to

the same cluster, the count of common neighbors Cu,v ≡ |{z ∈ V : (z, u), (z, v) ∈ E}| is a random

variable distributed according to Bin(n2 − 2,Vt(rs, rs, `)) when rs ≥ ` > 2rd and according to

Bin(n2 − 2,Vt(rs, rs, `)) + Bin(n2 ,Vt(rd, rd, `) when ` ≤ 2rd.

Lemma 29. For any two vertices u ∈ V1, v ∈ V2 : (u, v) ∈ E such that ‖u − v‖2 = ` belonging

to different clusters, the count of common neighbors Cu,v ≡ |{z ∈ V : (z, u), (z, v) ∈ E}| is a

random variable distributed according to Bin(n − 2, Bt(rd)) when rs > 2rd and according to

Bin(n− 2,min(Vt(rs, rd, `), Bt(rd))) when rs ≤ 2rd and ` ≤ rd.

Proof [Proof of Lemma 28] Without loss of generality, assume u, v ∈ V1. In order for (u, v) ∈ E,

we must have rs ≥ `. Now there are two cases to consider, ` > 2rd and ` ≤ 2rd. In case

1, for z to be a common neighbor of u and v, z must be in V1 by triangle inequality. Since,

there are n
2 − 2 points in V1 \ {u, v}, from Observation 27, Eu,vz ) ∼ Bin(n2 − 2,Vt(rs, rs, `)). In

case 2, z can also be part of V2 and there are n
2 points in V2, thus again from Observation 27,

Eu,vz ) ∼ Bin(n2 − 2,Vt(rs, rs, `)) + Bin(n2 ,Vt(rd, rd, `).
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The proof of Lemma 29 is similar. We now use the following version of the Chernoff bound to

estimate the deviation on the number of common neighbors in the two cases: u ∼ v and u � v.

Lemma 30 (Chernoff Bound). Let X1, . . . , Xn be iid random variables in {0, 1}. Let X denote the

sum of these n random variables. Then for any δ > 0,







Pr(X > (1 + δ)E(X)) ≤ e−δ2E(X)/3 = 1
n log2 n

, when δ =
√

3(logn+2 log logn)
E(X) ,

Pr(X < (1− δ)E(X)) ≤ e−δ2E(X)/2 = 1
n log2 n

, when δ =
√

2(logn+2 log logn)
E(X) .

We take ES = c
(t)
s · (Bt(rd)n +

√

6Bt(rd)n log n) and ED = c
(t)
d · (nVt(rs, rd, rd) −

√

2nBt(rd) log n) where c
(t)
s ≥ 1 and c

(t)
d ≤ 1 are suitable constants that depend on t.

Lemma 31. For any pair of nodes (u, v) = e ∈ E, u � v, the process algorithm removes

the edge e with a probability of 1 − O
(

1
n log2 n

)

when ES ≥ Bt(rd)n +
√

6Bt(rd)n log n and

ED ≤ nVt(rs, rd, rd)−
√

2nBt(rd) log n.

Proof Let Z denote the random variable for the number of common neighbors of two nodes

u, v ∈ V : (u, v) ∈ E, ‖u− v‖2 = `, u � v. From Lemma 29, E[Z] ≤ (n− 2)Bt(rd). Using the

Chernoff bound we know that with a probability of at least 1− 1
n log2 n

Z ≤ F� = (n− 2)Bt(rd) +
√

3(log n+ 2 log log n)(n− 2)Bt(rd)

= Bt(rd)n+
√

3Bt(rd)n log n+ o(1)

≤ ES .

Moreover again from Lemma 29, E[Z] = (n−2)min(Vt(rs, rd, `), Bt(rd)) as we assume rs ≤ 2rd.

Hence, with probability of at least 1− 1
n log2 n

Z ≥ f� = min
`:`≤rd,rs≤2rd

((n− 2)min(Vt(rs, rd, `), Bt(rd))−
√

2(log n+ 2 log log n)(n− 2)min(Vt(rs, rd, `), Bt(rd)))

≥ min
`:`≤rd,rs≤2rd

((n− 2)min(Vt(rs, rd, `), Bt(rd))−
√

2(log n+ 2 log log n)(n− 2)Bt(rd)) since Vt(rs, rd, `) ⊆ Bt(rd)

> nVt(rs, rd, rd)−
√

2nBt(rd) log n since Vt(rs, rd, `) is a decreasing function of `

≥ ED.

Hence, ES ≤ Z ≤ ED with a probability of 1 − 2
n log2 n

for (u, v) ∈ E, u � v. Hence (u, v) gets

removed with high probability by the algorithm.

Applying a union bound, we therefore can assume all inter-cluster edges are removed with probability

1− o(1) as there is O(n log n) edges.

In the next two lemmas, we provide two different conditions on ‖u − v‖2 when u ∼ v such that

our algorithm does not remove the edge (u, v). Then we obtain a sufficient condition for the two

communities to remain connected by the edges that are not removed.
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Lemma 32. Given a pair of nodes u, v belonging to the same cluster such that (u, v) ∈ E, the

process algorithm does not remove the edge e with probability of 1−O
(

1
n log2 n

)

when ‖u−v‖2 =
` (say) satisfies the following:

n

2

(

Vt(rs, rs, `) + Vt(rd, rd, `)
)

−
√

2n log n
(

√

Bt(rs) +
√

Bt(rd)
)

> ES .

Proof Let Z denote the random variable corresponding to the number of common neighbors of

u, v. Let µs(`) = E(Z|u ∼ v, d(u, v) = `). From Lemma 28, µs(`) = (n2 − 2)Vt(rs, rs, l) +
n
2Vt(rd, rd, l).
Using the Chernoff bound, with a probability of 1−O

(

1
n log2 n

)

Z > (n/2− 2)Vt(rs, rs, `) + n/2Vt(rd, rd, `)−
√

2(log n+ 2 log log n)Vt(rs, rs, `)n/2
−
√

2(log n+ 2 log log n)Vt(rd, rd, `)n/2

≥ n/2Vt(rs, rs, `) + n/2Vt(rd, rd, `)−
(

√

Bt(rs) +
√

Bt(rd)
)

√

2n log n

=
n

2

(

Vt(rs, rs, `) + Vt(rd, rd, `)
)

−
√

2n log n
(

√

Bt(rs) +
√

Bt(rd)
)

.

Therefore, Algorithm 1 will not delete e if

n

2

(

Vt(rs, rs, `) + Vt(rd, rd, `)
)

−
√

2n log n
(

√

Bt(rs) +
√

Bt(rd)
)

> ES .

Note that there exists a maximum value of distance (referred to as `1) such that whenever

‖u− v‖ ≤ `1, the condition will be satisfied.

Lemma 33. Given a pair of nodes u, v belonging to the same cluster such that (u, v) ∈ E, the

process algorithm does not remove the edge e with probability of 1 − O
(

1
n log2 n

)

when ` ≡
‖u− v‖2 (say) satisfies the following:

n

2

(

Vt(rs, rs, `+ Vt(rd, rd, `)
)

) +
√

n log n
√

[Vt(rs, rs, `) + Vt(rd, rd, `)] ≤ ED.

Proof

Let Z denote the random variable corresponding to the number of common neighbors of u, v. Let

µs(`) = E(Z|u ∼ v, ‖u− v‖2 = `). From Lemma 28, µs(`) = (n2 − 2)Vt(rs, rs, l)+ n
2Vt(rd, rd, l).

Using the Chernoff bound, with a probability of 1−O
(

1
n log2 n

)

Z < n/2Vt(rs, rs, `) + n/2Vt(rd, rd, `) +
√

2(log n+ 2 log log n)[Vt(rs, rs, `) + Vt(rd, rd, `)](n/2)

≤ n

2

(

Vt(rs, rs, `+ Vt(rd, rd, `)
)

) +
√

n log n
√

[Vt(rs, rs, `) + Vt(rd, rd, `)].

The process algorithm will not remove e if

n

2

(

Vt(rs, rs, `+ Vt(rd, rd, `)
)

) +
√

n log n
√

[Vt(rs, rs, `) + Vt(rd, rd, `)] ≤ ED.

Note that there exists a minimum value of distance (referred to as `2) such that whenever

‖u− v‖2 ≥ `2, the condition will be satisfied.
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Lemma 34. Algorithm 1 can identify all edges (u, v) correctly for which ` ≡ ‖u − v‖2 satisfies

either of the following:

Cond.1 :
n

2

(

Vt(rs, rs, `) + Vt(rd, rd, `)
)

−
√

2n log n
(

√

Bt(rs) +
√

Bt(rd)
)

> ES

or

Cond.2 :
n

2

(

Vt(rs, rs, `+ Vt(rd, rd, `)
)

) +
√

n log n
√

[Vt(rs, rs, `) + Vt(rd, rd, `)] ≤ ED.

with probability at least 1−O
(

1
logn

)

.

Proof Follows from combining Lemma 32 and Lemma 33, and noting that in the connectivity

regime, the number of edges is O(n log n).

Let `1 be the maximum value of ‖u− v‖2 such that Cond 1 is satisfied and `2 is the minimum value

of ‖u− v‖2 such that Cond 2 is satisfied. Also note that `1 ≤ `2. We now give a condition on `1 and

`2 such the two communities are each connected by the edges (u, v) that satisfy either ‖u− v‖2 ≤ `1
or `2 ≤ ‖u− v‖2 ≤ rs.

Lemma 35. If (`1/2)
t > 8(t+ 1)ψ(t) lognn then the edges e that satisfy ‖u − v‖2 ≤ `1 constitute

two disjoint connected components corresponding to the two original communities.

Proof Proof of this lemma follows from the result of connectivity of random annulus graphs (RAG)

in dimension t, i.e., Theorem 5.

We now find out the values of rs and rd such that `1 and `2 satisfy the condition of Lemma 35 as

well as Cond. 1 and Cond 2. respectively.

Theorem. (Sufficient Condition in Theorem 10) If rs = Θ(( lognn )
1
t ) and rs − rd = Ω(( lognn )

1
t ),

Algorithm 1 recovers the clusters with probability 1− o(1).

Proof Let us take rs = at

(

logn
n

)
1
t
, rd ≤ bt

(

logn
n

)
1
t

for some large constants at and bt that depends

on t. Then to satisfy Lemma 35, we can take `1 = a′t
(

logn
n

)
1
t

and `2 = b′t
(

logn
n

)
1
t

again for suitable

constants a′t and b′t. While it is possible to concisely compute Bt(r) and Vt(r1, r2, x) (Li, 2011;

Ellis et al., 2007), for the purpose of analysis it is sufficient to know Bt(r) = Θ(rt) for fixed t.
Moreover, Vt(r1, r2, x) = Θ((r1 + r2 − x)t) if r1 + r2 ≥ x ≥ max(r1, r2), Θ(min{r1, r2}t) if

x ≤ max(r1, r2) and 0 otherwise.

Then, Cond 1. requires

n

2

(

Vt(rs, rs, `1) + Vt(rd, rd, `1)
)

−
√

2n log n
(

√

Bt(rs) +
√

Bt(rd)
)

> ES

and Cond 2. requires

n

2

(

Vt(rs, rs, `2 + Vt(rd, rd, `2)
)

) +
√

n log n
√

[Vt(rs, rs, `) + Vt(rd, rd, `)] ≤ ED.

By selecting the constants c
(t)
s and ctd involving ES and ED suitably, both the conditions are satisfied.
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7. Experimental Results

In addition to validation experiments in Section 1.1, we also conducted an in-depth experimentation

of our proposed model and techniques over a set of synthetic and real world networks. Additionally,

we compared the efficacy and efficiency of our triangle-counting algorithm with the popular spectral

clustering algorithm using normalized cuts4 and the correlation clustering algorithm (Bansal et al.,

2004).

Dataset Total no. T1 T2 T3 Accuracy Running Time (sec)

of nodes Triangle-Counting Spectral clustering Triangle-Counting Spectral clustering

Political Blogs 1222 20 2 1 0.788 0.53 1.62 0.29

DBLP 12138 10 1 2 0.675 0.63 3.93 18.077

LiveJournal 2366 20 1 1 0.7768 0.64 0.49 1.54

Table 4: Performance on real world networks

Real Datasets. We use three real datasets described below.

• Political Blogs. (Adamic and Glance, 2005) It contains a list of political blogs from 2004 US

Election classified as liberal or conservative, and links between the blogs. The clusters are of

roughly the same size with a total of 1200 nodes and 20K edges.

• DBLP. (Yang and Leskovec, 2015) The DBLP dataset is a collaboration network where the ground

truth communities are defined by the research community. The original graph consists of roughly

0.3 million nodes. We process it to extract the top two communities of size ∼ 4500 and 7500

respectively. This is given as input to our algorithm.

• LiveJournal. (Leskovec et al., 2007) The LiveJournal dataset is a free online blogging social

network of around 4 million users. Similar to DBLP, we extract the top two clusters of sizes 930

and 1400 which consist of around 11.5K edges.

We have not used the academic collaboration (Section 1.1) dataset here because it is quite sparse and

below the connectivity threshold regime of both GBM and SBM.

Synthetic Datasets. We generate synthetic datasets of different sizes according to the GBM with

t = 2, k = 2 and for a wide spectrum of values of rs and rd, specifically we focus on the sparse

region where rs =
a logn

n and rd = b logn
n with variable values of a and b.

Experimental Setting. For real networks, it is difficult to calculate an exact threshold as the exact

values of rs and rd are not known. Hence, we follow a three step approach. Using a somewhat large

threshold T1 we sample a subgraph S such that u, v will be in S if there is an edge between u and v,

and they have at least T1 common neighbors. We now attempt to recover the subclusters inside this

subgraph by following our algorithm with a small threshold T2. Finally, for nodes that are not part of

S, say x ∈ V \ S, we select each u ∈ S that x has an edge with and use a threshold of T3 to decide

if u and x should be in the same cluster. The final decision is made by taking a majority vote. We

can employ sophisticated methods over this algorithm to improve the results further, which is beyond

the scope of this work.

We use the popular f-score metric which is the harmonic mean of precision (fraction of number

of pairs correctly classified to total number of pairs classified into clusters) and recall (fraction of

number of pairs correctly classified to the total number of pairs in the same cluster for ground truth),

4. http://scikit-learn.org/stable/modules/clustering.html#spectral-clustering

27



GALHOTRA, MAZUMDAR, PAL AND SAHA

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20  40  60  80  100
f-

s
c
o
re

a

f-score vs a

b=1

b=2

b=5

b=10

(a) f-score with varying a, fixing

b.
(b) Fraction of nodes misclassi-

fied.

Figure 8: Results of the triangle-counting algorithm on a synthetic dataset with 5000 nodes.

as well as the node error rate for performance evaluation. A node is said to be misclassified if it

belongs to a cluster where the majority comes from a different ground truth cluster (breaking ties

arbitrarily). Following this, we use the above described metrics to compare the performance of

different techniques on various datasets.

Results. We compared our algorithm with the spectral clustering algorithm where we extracted two

eigenvectors in order to extract two communities. Table 4 shows that our algorithm gives an accuracy

as high as 78%. The spectral clustering performed worse compared to our algorithm for all real

world datasets. It obtained the worst accuracy of 53% on political blogs dataset. The correlation

clustering algorithm generates various small sized clusters leading to a very low recall, performing

much worse than the triangle-counting algorithm for the whole spectrum of parameter values.

We can observe in Table 4 that our algorithm is much faster than the spectral clustering algorithm

for larger datasets (LiveJournal and DBLP). This confirms that triangle-counting algorithm is more

scalable than the spectral clustering algorithm. The spectral clustering algorithm also works very

well on synthetically generated SBM networks even in the sparse regime (Lei et al., 2015; Rohe et al.,

2011). The superior performance of the simple triangle clustering algorithm over the real networks

provide a further validation of GBM over SBM. Correlation clustering takes 8-10 times longer as

compared to triangle-counting algorithm for the various range of its parameters. We also compared

our algorithm with the Newman algorithm (Girvan and Newman, 2002) that performs really well for

the LiveJournal dataset (98% accuracy). But it is extremely slow and performs much worse on other

datasets. This is because the LiveJournal dataset has two well defined subsets of vertices with very

few intercluster edges. The reason for the worse performance of our algorithm is the sparseness of

the graph. If we create a subgraph by removing all nodes of degrees 1 and 2, we get 100% accuracy

with our algorithm. Finally, our algorithm is easily parallelizable to achieve better improvements.

This clearly establishes the efficiency and effectiveness of triangle-counting.

We observe similar gains on synthetic datasets. Figures 8a and 8b report results on the synthetic

datasets with 5000 nodes. Empirically, our results demonstrate much superior performance of our

algorithm as compared to theoretical guarantees. The empirical results are much better than the

theoretical bounds because the concentration inequalities assume the worst value of the distance

between the pair of vertices that are under consideration. We also see a clear threshold behavior on

both f-score and node error rate in Figures 8a and 8b. We have also performed spectral clustering on
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Figure 9: Results of the spectral clustering on a synthetic dataset with 5000 nodes.
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Figure 10: Fraction of triangles (intra-cluster and inter-cluster) in the ground truth of a graph

generated according to GBM1 and the clusters returned by spectral clustering for varying rd = b logn
n .

The number of nodes is 1000 and rs = 10 log n/n is fixed. Since rs is fixed, the fraction of

intra-cluster triangles in the ground truth remains unchanged.

this 5000-node synthetic dataset (Figures 9a and 9b). Compared to the plots of figures 8a and 8b,

they show suboptimal performance, indicating the relative ineffectiveness of spectral clustering in

GBM compared to the triangle counting algorithm.

We ran another experiment to test whether spectral clustering techniques capture varied number of

intra-cluster and inter-cluster triangles and if it can be used for datasets where higher order structures

are more prevalent. We tested the fraction of intra-cluster triangles returned by spectral clustering

for datasets generated by GBM with varying inter-cluster connectivity threshold (rd) and compared

it against the fraction of intra-cluster triangles in the ground truth clustering. Figure 10 shows that

the clusters returned by spectral clustering have a very low fraction of intra-cluster triangles and

thus it is not designed for clustering based on triangles (or higher-order structures in general). In

fact the clusters returned by spectral clustering have similar fraction of intra-cluster and itner-cluster

triangles. This evaluation also shows that GBM indeed has a large disparity between inter and intra

cluster triangles and it may be useful to model datasets that contain higher order structures.

Acknowledgements: This work is supported by NSF CCF awards 2133484, 2217058, 2223282.

29



GALHOTRA, MAZUMDAR, PAL AND SAHA

References

Emmanuel Abbe and Colin Sandon. Community detection in general stochastic block models: Fun-

damental limits and efficient algorithms for recovery. In 56th Annual Symposium on Foundations

of Computer Science (FOCS), pages 670–688. IEEE, 2015a.

Emmanuel Abbe and Colin Sandon. Recovering communities in the general stochastic block model

without knowing the parameters. In Advances in Neural Information Processing Systems, pages

676–684, 2015b.

Emmanuel Abbe, Afonso S. Bandeira, and Georgina Hall. Exact recovery in the stochastic block

model. IEEE Trans. Information Theory, 62(1):471–487, 2016.

Lada A Adamic and Natalie Glance. The political blogosphere and the 2004 us election: divided they

blog. In Proceedings of the 3rd international workshop on Link discovery, pages 36–43. ACM,

2005.

Uri Alon. Network motifs: theory and experimental approaches. Nature Reviews Genetics, 8(6):

450–461, 2007.

Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine learning, 56(1-3):

89–113, 2004.

Austin R Benson, David F Gleich, and Jure Leskovec. Higher-order organization of complex

networks. Science, 353(6295):163–166, 2016.
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Appendix A. Connectivity of one dimensional Random Annulus graphs: Details

In this section, we prove the necessary and sufficient condition for connectivity of RAG∗
1 in full

details. We provide the necessary conditions for connectivity in Theorem 2 for RAG∗
1 because of the

equivalence between RAG∗
1 and RAG1.

A.1 Necessary condition for connectivity of RAG∗
1

Theorem (RAG∗
1 connectivity lower bound in Theorem 2). If a < 1 or a − b < 0.5, then with

probability 1− o(1) the random annulus graph RAG∗
1(n, [

b logn
n , a lognn ]) is not connected.

Proof First of all, it is known that RAG∗
1(n, [0,

a logn
n ]) is not connected with high probability when

a < 1 (Muthukrishnan and Pandurangan, 2005; Penrose, 2003). Therefore RAG∗
1(n, [

b logn
n , a lognn ])

must not be connected with high probability when a < 1 as the connectivity interval is a strict subset

of the previous case, and RAG∗
1(n, [

b logn
n , a lognn ]) can be obtained from RAG∗

1(n, [0,
a logn

n ]) by

deleting all the edges that has the two corresponding random variables separated by distance less

than b logn
n .

Next we will show that if a − b < 0.5 then there exists an isolated vertex with high probability.

It would be easier to think of each vertex as a uniform random point in [0, 1]. Define an indicator
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variable Au for every node u which is 1 when node u is isolated and 0 otherwise. We have,

Pr(Au = 1) =

(

1− 2(a− b) log n
n

)n−1

.

Define A =
∑

uAu, and hence

E[A] = n
(

1− 2(a− b) log n
n

)n−1
= n1−2(a−b)−o(1).

Therefore, when a− b < 0.5, E[A] = Ω(1). To prove this statement with high probability we can

show that the variance of A is bounded. Since A is a sum of indicator random variables, we have that

Var(A) ≤ E[A]+
∑

u 6=v

Cov(Au, Av) = E[A]+
∑

u 6=v

(Pr(Au = 1∩Av = 1)−Pr(Au = 1)Pr(Av = 1)).

Now, consider the scenario when the vertices u and v are at a distance more than 2a logn
n apart

(happens with probability 1− 4a logn
n ). Then the region in [0, 1] that is between distances b logn

n and

a logn
n from both of the vertices is empty and therefore Pr(Au = 1∩Av = 1) =

(

1− 4(a−b) logn
n

)n−2
.

When the vertices are within distance 2a logn
n of one another, then Pr(Au = 1∩Av = 1) ≤ Pr(Au =

1). Therefore,

Pr(Au = 1 ∩Av = 1) ≤(1− 4a log n

n
)
(

1− 4(a− b) log n
n

)n−2
+

4a log n

n
Pr(Au = 1)

≤ (1− 4a log n

n
)n−4(a−b)+o(1) +

4a log n

n
n−2(a−b)+o(1).

Consequently for large enough n,

Pr(Au = 1 ∩Av = 1)− Pr(Au = 1)Pr(Av = 1) ≤ (1− 4a log n

n
)n−4(a−b)+o(1)

+
4a log n

n
n−2(a−b)+o(1)−n−4(a−b)+o(1) ≤ 8a log n

n
Pr(Au = 1).

Now,

Var(A) ≤ E[A] +

(

n

2

)

8a log n

n
Pr(Au = 1) ≤ E[A](1 + 4a log n).

By using Chebyshev bound, with probability at least 1− 1
logn ,

A > n1−2(a−b) −
√

n1−2(a−b)(1 + 4a log n) log n,

which implies for a− b < 0.5, there will exist isolated nodes with high probability.
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A.2 Proof of Lemma 12 and Lemma 13

Lemma (Restatement of Lemma 12). A set of vertices C ⊆ V is called a cover of [0, 1], if for any

point y in [0, 1] there exists a vertex v ∈ C such that d(v, y) ≤ a logn
2n . If a− b > 0.5 and a > 1, then

a random annulus graph RAG∗
1(n, [

b logn
n , a lognn ]) is a union of cycles such that every cycle forms a

cover of [0, 1] (see Figure 6) with probability 1− o(1).

Proof [Proof of Lemma 12] The proof of this lemma is somewhat easily explained if we consider a

weaker result (a stronger condition) with a− b > 2/3. Let us first briefly describe this case.

Consider a node u and assume without loss of generality that the position of u is 0 (i.e. Xu = 0).

Associate four indicator {0, 1}-random variables Ai
u, i = 1, 2, 3, 4 which take the value of 1 if and

only if there does not exist any node x such that

1. d(u, x) ∈ [b lognn , a logn
n ] ∪ [0, a−b

2
logn
n ]} for i = 1

2. d(u, x) ∈ [b lognn , a logn
n ] ∪ [−a−b

2
logn
n ,−b lognn ]} for i = 2

3. d(u, x) ∈ [−a logn
n ,−b lognn ] ∪ [−a+b

2
logn
n , 0]} for i = 3

4. d(u, x) ∈ [−a logn
n ,−b lognn ] ∪ [b lognn , a+b

2
logn
n ]} for i = 4.

The intervals representing these random variables are shown in Figure 11.

Notice that Pr(Ai
u = 1) = max{

(

1 − 1.5(a − b) lognn

)n−1
,
(

1 − a logn
n

)n−1
} and therefore

∑

i,u EAi
u ≈ 4max{n1−1.5(a−b), n1−a}. This means that for a− b ≥ 0.67 and a ≥ 1,

∑

i,u EAi
u =

o(1). Hence there exist vertices in all the regions described above for every node u with high

probability.

Now, A1
u and A2

u being zero implies that either there is a vertex in [b lognn , a logn
n ] or there exists two

vertices v1, v2 in [0, a−b
2

logn
n ] and [−a−b

2
logn
n ,−b lognn ] respectively (see, Figure 11). In the second

case, u is connected to v2 and v2 is connected to v1. Therefore u has nodes on left (v2) and right (v1)

and u is connected to both of them through one hop in the graph.

Similarly, A3
u and A4

u being zero implies that either there exists a vertex in [−a logn
n ,−b lognn ] or

again u will have vertices on left and right and will be connected to them. So, when all the four

Ai
u, i = 1, 2, 3, 4 are zero together:

• A1
u = A2

u = 0 implies there is a neighbor of u on either sides or there is a single node in

[b lognn , a logn
n ]

• A3
u = A4

u = 0 implies there is a neighbor of u on either sides or there is a single node in

[−a logn
n ,−b lognn ]

This shows that when A1
u = A2

u = 0 and A3
u = A4

u = 0 guarantee a node on only one side of u,

there are nodes in [b lognn , a logn
n ] and [−a logn

n ,−b lognn ]. But in that case u has direct neighbors on

both its left and right. We can conclude that every vertex u is connected to a vertex v on its right

and a vertex w on its left such that d(u, v) ∈ [0, a logn
n ] and d(u,w) ∈ [−a logn

n , 0]; therefore every

vertex is part of a cycle that covers [0, 1].
We can now extend this proof to the case when a− b > 0.5.
Let c be large number to be chosen specifically later. Consider a node u and assume that the position

of u is 0. Now consider the four different regions [−a logn
n ,−b lognn ], [−(a−b) lognn , 0], [b lognn , a logn

n ]
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a−b
2

A3
u

A4
u

A1
u

A2
u

b a−b−a u

Figure 11: Representation of four different random variables for Lemma 12.

u

a− b a− b
b

a
b
a

θ

Ki
uJ i

u M i
uIiu

Figure 12: Pictorial representation of Iiu, J
i
u,K

i
u,M

i
u and their connectivity as described in Lemma

12. The colored lines show the regions that are connected to each other.

and [0, a − b lognn ] around u each divided into L ≡ 2c patches (intervals) of size θ = a−b
2c in the

following way:

1. Iiu = [ (−a+(i−1)θ) logn
n , (−a+iθ) logn

n ]

2. J i
u = [ (−(a−b)+(i−1)θ) logn

n , (−(a−b)+iθ) logn
n ]

3. Ki
u = [ (b+(i−1)θ) logn

n , (b+iθ) logn
n ]

4. M i
u = [ ((i−1)θ) logn

n , iθ lognn ]

where i = 1, 2, 3, . . . , L. Note that any vertex in ∪Iiu ∪Ki
u is connected to u. See, Figure 12 for a

depiction.

Consider a {0, 1}-indicator random variable Xu that is 1 if and only if there does not exist any node

in a region formed by union of any 2L− 1 patches amongst the ones described above. Notice that

when a < 2b, the patches do not overlap and the total size of 2L− 1 patches is 2c+1−1
2c

(a−b) logn
n and

when a ≥ 2b, the patches can overlap and the total size of the 2L− 1 patches is going to be more

than min{2c+1−1
2c

(a−b) logn
n , a lognn }. Since there are

(

4L
2L−1

)

≤ n
4L

logn possible regions that consists

of 2L− 1 patches,

∑

u

EXu ≤ n
(

4L

2L− 1

)

(

1−min{2
c+1 − 1

2c
(a− b) log n

n
,
a log n

n
}
)n−1

≤ max{n1−
2c+1−1

2c
(a−b)+ 4L

logn , n
1−a+ 4L

logn }.
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At this point we can choose c = cn = o(log n) such that limn cn = ∞. Hence when a − b > 1
2

and a > 1, for every vertex u there exists at least one patch amongst every 2L − 1 patches in

∪Iiu ∪ J j
u ∪Kk

u , i, j, k = 1, 2, . . . , L that contains a vertex.

Consider a collection of patches ∪iIiu ∪j J j
u, i, j = 1, 2, . . . , L. We know that there exist two patches

amongst these Iius and Kj
us that contain at least one vertices. If one of Iius and one of Kj

us contain

two vertices, we found one neighbor of u on both left and right directions (see, Figure 12).

We consider the other case now. Without loss of generality assume that there are no vertex in all Iius

and there exist at least two patches in Ki
us that contain at least one vertex each. Hence, there exists at

least one of {Ki
u | i ∈ {1, 2, . . . , L− 1}} that contains a vertex. Similarly, we can also conclude in

this case that there exists at least one of {J i
u | i ∈ {2, 3 . . . , L}} which contain a node. Assume Jφ

u

to be the left most patch in ∪J i
u | i ∈ {1, 2, . . . , L} that contains a vertex (see, Figure 12) . From our

previous observation, we can conclude that φ ≥ 2.

We can observe that any vertex in J j
u is connected to the vertices in patches Kk

u , ∀k < j. This is

because for two vertices v ∈ J j
u and w ∈ Kk

u , we have

d(v, w) ≥ (b+ (k − 1)θ) log n

n
− (−(a− b) + jθ) log n

n
=

(a+ (k − j − 1)θ) log n

n
;

d(v, w) ≤ (b+ kθ) log n

n
− (−(a− b) + (j − 1)θ) log n

n
=

(a+ (k − j + 1)θ) log n

n
.

Consider a collection of 2L− 1 patches {∪Iiu ∪ J j
u ∪Kk

u | i, j, k ∈ {1, . . . , L}, j > φ, k ≤ φ− 1}
where φ ≥ 2. This is a collection of 2L− 1 patches out of which one must have a vertex and since

none of {J j
u | j > φ} and Iiu can contain a vertex, one of {Kk

u | k ≤ φ− 1} must contain the vertex.

Recall that the vertex in Jφ
u is connected to any node in Kk

u for any k ≤ φ− 1 and therefore u has a

node to the right direction and left direction that are connected to u. Therefore every vertex is part of

a cycle and each of the circles covers [0, 1].

Lemma (Restatement of Lemma 13). Set two real numbers k ≡ db/(a − b)e + 1 and

ε < 1
2k . In an RAG∗

1(n, [
b logn

n , a lognn ]), 0 < b < a, with probability 1 − o(1) there

exists a vertex u0 and k nodes {u1, u2, . . . , uk} to the right of u0 such that d(u0, ui) ∈
[ (i(a−b)−2iε) logn

n , (i(a−b)−(2i−1)ε) logn
n ] and k nodes {v1, v2, . . . , vk} to the right of u0 such that

d(u0, vi) ∈ [ ((i(a−b)+b−(2i−1)ε) logn
n , (i(a−b)+b−(2i−2)ε) logn

n ], for i = 1, 2, . . . , k. The arrangement

of the vertices is shown in Figure 13.

Proof [Proof of Lemma 13] Recall that we want to show that there exists a node u0 and k nodes

{u1, u2, . . . , uk} to the right of u0 such that d(u0, ui) ∈ [ (i(a−b)−2iε) logn
n , (i(a−b)−(2i−1)ε) logn

n ]
and exactly k nodes {v1, v2, . . . , vk} to the right of u0 such that d(u0, vi) ∈
[ ((i(a−b)+b−(2i−1)ε) logn

n , (i(a−b)+b−(2i−2)ε) logn
n ], for i = 1, 2, . . . , k and ε is a constant less

than 1
2k (see Figure 13 for a depiction). Let Au be an indicator {0, 1}-random variable for every

node u which is 1 if u satisfies the above conditions and 0 otherwise. We will show
∑

uAu ≥ 1
with high probability.

We have,

Pr(Au = 1) = n(n− 1) . . . (n− (2k − 1))
(ε log n

n

)2k(

1− 2kε
log n

n

)n−2k
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v1 v2 v3u1 u2 u3

a
b

ε

a− b− 2ε

u0

Figure 13: The location of ui and vi relative to u scaled by logn
n in Lemma 13. Edges stemming put

of v1, v2, v3 are shown as blue, red and violet respectively.

= c0n
−2kε(ε log n)2k

2k−1
∏

i=0

(1− i/n)

= c1n
−2kε(ε log n)2k

where c0, c1 are just absolute constants independent of n (recall k is a constant). Hence,

∑

u

EAu = c1n
1−2kε(ε log n)2k ≥ 1

as long as ε ≤ 1
2k . Now, in order to prove

∑

uAu ≥ 1 with high probability, we will show that the

variance of
∑

uAu is bounded from above. This calculation is very similar to the one in the proof of

the connectivity lower bound in Theorem 2. Recall that if A =
∑

uAu is a sum of indicator random

variables, we must have

Var(A) ≤ E[A]+
∑

u 6=v

Cov(Au, Av) = E[A]+
∑

u 6=v

Pr(Au = 1∩Av = 1)−Pr(Au = 1)Pr(Av = 1).

Now first consider the case when vertices u and v are at a distance of at least
2(a+b) logn

n apart

(happens with probability 1− 4(a+b) logn
n ). Then the region in [0, 1] that is within distance

(a+b) logn
n

from both u and v is the empty-set. In this case, Pr(Au = 1 ∩Av = 1) = n(n− 1) . . . (n− (4k −
1))
(

ε logn
n

)4k(

1− 4kε lognn

)n−4k
= c2n

−4kε(ε log n)4k, where c2 is a constant.

In all other cases, Pr(Au = 1 ∩Av = 1) ≤ Pr(Au = 1). Therefore,

Pr(Au = 1 ∩Av = 1) ≤
(

1− 4(a+ b) log n

n

)

c2n
−4kε(ε log n)4k +

4(a+ b) log n

n
c1n

−2kε(ε log n)2k

and

Var(A) ≤ c1n1−2kε(ε log n)2k +

(

n

2

)

(

Pr(Au = 1 ∩Av = 1)− Pr(Au = 1)Pr(Av = 1)
)

≤ c1n1−2kε(ε log n)2k + c3n
1−2kε(log n)2k+1
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v1 v2 v3

a
b

ε

a− b− 2ε

u

Figure 14: The line segments where v1, v2, v3 can have neighbors (scaled by logn
n ) in the proof of

Lemma 13. The point t has to lie in one of these regions.

≤ c4n1−2kε(log n)2k+1

where c3, c4 are constants. Again invoking Chebyshev’s inequality, with probability at least 1− 1
logn

A > c1n
1−2kε(ε log n)2k −

√

c4n1−2kε(log n)2k+2.

Proof [Proof of Corollary 15] Consider a node u and assume that the position of u is 0. Associate

a random variable Ai
u for i ∈ {1, 2, 3, 4} which takes the value of 1 when there does not exist any

node x such that

a− b− c
2

c
2

A3
u

A4
u

A1
u

A2
u

b a−b−a −c cu

Figure 15: The representation of different intervals corresponding to each random variable as

described in Corollary 15

1. d(u, x) ∈ [b lognn , a logn
n ] ∪ [0, c lognn ] ∪ [−c logn

n , −c/2 logn
n ]} for i = 1

2. d(u, x) ∈ [b lognn , a logn
n ] ∪ [0, c lognn ] ∪ [ b−c/2 logn

n , (a−c) logn
n ]} for i = 2

3. d(u, x) ∈ [−a logn
n ,−b lognn ] ∪ [−c lognn , 0] ∪ [ c/2 lognn , c lognn ]} for i = 3

4. d(u, x) ∈ [−a logn
n ,−b lognn ] ∪ [−c lognn , 0] ∪ [ (c−a) logn

n , (c/2−b) logn
n ]} for i = 4
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Pr(Ai
u = 1) =































(

1− (c+ a− b+ (a− b− c/2)) lognn

)n
when a− c < b and b− c/2 > c

(

1− (b− c) lognn

)n
when a− c < b and b− c/2 < c

(

1− (a) lognn

)n
when a− c ≥ b and b− c/2 < c

(

1− (c+ a− b+ c/2) lognn

)n
when a− c ≥ b and b− c/2 ≥ c

Notice that A1
u and A2

u being zero implies that either there is a node in {x | d(u, x) ∈
[b lognn , a logn

n ] ∪ [0, c lognn ]} or there exists nodes (v1, v2) in {x | d(u, x) ∈ [−c logn
n , −c/2 logn

n ]}
and {x | d(u, x) ∈ [ b−c/2 logn

n , (a−c) logn
n ]}. In the second case, u is connected to v1 and v1

is connected to v2. Therefore u has nodes on left and right and u is connected to both of

them although not directly. Similarly A3
u and A4

u being zero implies that there exist nodes

in {x | d(u, x) ∈ [−a logn
n ,−b lognn ] ∪ [−c lognn , 0]} or again u will have nodes on left and

right and will be connected to them. So , when all the 4 events happen together, the only

exceptional case is when there are nodes in {x | d(u, x) ∈ [b lognn , a logn
n ] ∪ [0, c lognn ]} and

{x | d(u, x) ∈ [−a logn
n , b lognn ] ∪ [−c lognn , 0]}. But in that case u has direct neighbors on both

its left and right. So, we can conclude that for every node u, there exists a node v such that

d(u, v) ∈ [0, a lognn ] and a node w such that d(u,w) ∈ [−a logn
n , 0] such that u is connected to both v

and w. This implies that every node u has neighbors on both its left and right and therefore every

node is part of a cycle that covers [0, 1].

Appendix B. Connectivity of High Dimensional Random Annulus Graphs: Detailed

Proofs of Theorems 6 and 5

In this section we first prove an impossibility result on the connectivity of random annulus graphs

in t dimensions by showing a sufficient condition of existence of isolated nodes. Next, we show

that if the gap between r1 and r2 is large enough then the RAG is fully connected. We will start by

introducing a few notations. Let us define the regions Bt(u, r) and Bt(u, [r1, r2]) for the any u ∈ St

in the following way:

Bt(u, r) = {x ∈ St | ‖u− x‖2 ≤ r}
Bt(u, [r1, r2]) = {x ∈ St | r1 ≤ ‖u− x‖2 ≤ r2}.

First, we calculate |Bt(u, r)| and show that it is proportional to rt.

Lemma 36. |Bt(u, r)| = ctr
t for r = o(1) where ct =

πt/2

Γ( t
2
+1)

.

Proof We use the following fact from (Larsen and Schmidt (2017); Li (2011)) for the proof. For a

t-dimensional unit sphere, the hyperspherical cap of angular radius θ = maxx∈Bt(u,r) arccos〈x, u〉
has a surface area Ct(θ) given by

Ct(θ) =

∫ tan θ

0

St−1(r)

(1 + r2)2
dr
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where St−1(θ) =
tπt/2

Γ( t
2
+1)

θt−1. Note that Ct(θ) is nothing but |Bt(u, r)| where cos θ = 1− r2

2 and

therefore tan θ = r
√
4−r2

2−r2
≈ r for small r. Now since r = o(1) and 1 + r2 is an increasing function

of r, we must have that

∫ r

0

tπt/2

(1 + o(1))Γ( t2 + 1)
θt−1dθ < Ct(θ) <

∫ r

0

tπt/2

Γ( t2 + 1)
θt−1dθ

and therefore Ct(θ) can be expressed as ctr
t where ct lies in

(

πt/2

(1+o(1))Γ( t
2
+1)

, πt/2

Γ( t
2
+1)

)

.

B.1 Impossibility Result

The following theorem proves the impossibility result for the connectivity of a random annulus graph

by proving a tight threshold for the presence of an isolated node with high probability.

Theorem. (Restatement of Theorem 6) For a random annulus graph RAGt(n, [r1, r2]) where r1 =

b
(

logn
n

)
1
t

and r2 = a
(

logn
n

)
1
t
, there exists isolated nodes with high probability if and only if

at − bt <
√
π(t+1)Γ( t+2

2
)

Γ( t+3
2

)
.

Proof Consider the random annulus graph RAGt(n, [r1, r2]) in t dimensions. In this graph, a node

u is isolated if there are no nodes v such that r1 ≤ ‖u− v‖2 ≤ r2. Since all nodes are uniformly and

randomly distributed on St, the probability of a node v being connected to a node u is the volume

of Bt(u, [r1, r2]). Define the indicator random variable Au ∈ {0, 1} which is 1 if and only if the

node u is isolated. Also define the random variable A =
∑

uAu which denotes the total number of

isolated nodes. Since |Bt(u, [r1, r2])| = ct(r
t
2 − rt1), we must have

Pr(Au = 1) =

(

1−
ct

(

rt2 − rt1
)

|St|

)n−1

.

Now, we know from (Coxeter (1973)) that |St| = (t+1)π
t+1
2

Γ( t+3
2

)
. Plugging in, we get that ct

|St| =

Γ( t+3
2

)√
π(t+1)Γ( t+2

2
)
. Hence, the expected number of isolated nodes EA is going to be

n

(

1−
(

at − bt
) ct
|St|

log n

n

)n−1

≈ n1−
ct(a

t−bt)

|St| .

Therefore E[A] ≥ 1 if at − bt < |St|
ct

. In order to show that A = ω(1) with high probability we are

going to show that the variance of A is bounded from above. Since A is a sum of indicator random

variables, we have that

Var(A) ≤ E[A]+
∑

u 6=v

Cov(Au, Av) = E[A]+
∑

u 6=v

(Pr(Au = 1∩Av = 1)−Pr(Au = 1)Pr(Av = 1)).
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Now, consider the scenario when the vertices u and v are at a distance more than 2r2 apart which

happens with probability 1− ct(2r2)t

|St| . Then the region in which every point is within a distance of r2

and r1 from both u, v is empty and therefore Pr(Au = 1∩Av = 1) =

(

1− 2ct
|St|

(

at−bt
)

logn
n

)n−2

.

When the vertices are within distance 2r2 of one another, then Pr(Au = 1∩Av = 1) ≤ Pr(Au = 1).
Therefore,

Pr(Au = 1 ∩Av = 1) ≤
(

1− ct(2r2)
t

|St|
)(

1− 2ct
|St|

(

at − bt
) log n

n

)n−2
+
ct(2r2)

t

|St| Pr(Au = 1)

≤ (1− ct(2r2)
t

|St| )n
− 2ct

|St|
(at−bt)+o(1)

+
ct(2r2)

t

|St| n
− ct(a

t−bt)

|St|
+o(1)

.

Consequently for large enough n,

Pr(Au = 1 ∩Av = 1)− Pr(Au = 1)Pr(Av = 1) ≤ (1− ct(2r2)
t

|St| )n
− 2ct(a

t−bt)

|St|
+o(1)

+
ct(2r2)

t

|St| n
− ct(a

t−bt)

|St|
+o(1)−n−

2ct(a
t−bt)

|St|
+o(1) ≤ 2ct(2r2)

t

|St| Pr(Au = 1).

Now,

Var(A) ≤ E[A] + 2

(

n

2

)

ct(2r2)
t

|St| Pr(Au = 1) ≤ E[A](1 +
ct(2a)

t

|St| log n).

By using Chebyshev bound, with probability at least 1−O
(

1
logn

)

,

A > n
1− ct(a

t−bt)

|St| −
√

n
1− ct(a

t−bt)

|St| (1 +
ct(2a)t

|St| log n) log n,

which implies that for at − bt < |St|
ct

, A > 1 and hence there will exist isolated nodes with high

probability.

B.2 Connectivity Bound

We show the upper bound for connectivity of a Random Annulus Graphs in t as per Theorem 5,

rewritten below.

Theorem. (Restatement of Theorem 5) For t dimensional random annulus graph RAGt(n, [r1, r2])

where r2 = a
(

logn
n

)t
and r1 = b

(

logn
n

)t
with a ≥ b and t is a constant, the graph is connected

with high probability if

at − bt ≥ 8|St|(t+ 1)

ct

(

1− 1
21+1/t−1

) and a > 21+
1
t b.
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Let us define a pole to be a vertex which is connected to all vertices within a distance of r2 from

itself. In order to prove Theorem 5, we first show the existence of a pole with high probability in

Lemma 16. Next, Lemma 17 shows that for every vertex u and every hyperplane L passing through

u and not too close to the tangential hyperplane at u, there will be a neighbor of u on either side

of the plane. In order to formalize this, let us define a few regions associated with a node u and a

hyperplane L : wTx = β passing through u.

R1
L ≡ {x ∈ St | b

( log n

n

)1/t
≤ ‖u− x‖2 ≤ a

( log n

n

)1/t
, wTx ≤ β}

R2
L ≡ {x ∈ St | b

( log n

n

)1/t
≤ ‖u− x‖2 ≤ a

( log n

n

)1/t
, wTx ≥ β}

AL ≡ {x | x ∈ St, wTx = β}.

Informally, R1
L and R2

L represents the partition of the region Bt(u, [r1, r2]) on either side of the

hyperplane L and AL represents the region on the sphere lying on L.

Lemma. (Restatement of Lemma 16) In RAGt

(

n,

[

b
(

logn
n

)1/t
, a
(

logn
n

)1/t
])

, 0 < b < a, with

probability 1− o(1) there exists a pole.

The proof of Lemma 16 is delegated to Appendix B.3.

Lemma. (Restatement of Lemma 17) If we sample n nodes from St according to

RAGt

(

n,

[

b
(

logn
n

)1/t
, a
(

logn
n

)1/t
])

, then for every node u and every hyperplane L passing

through u such thatAL 6⊂ Bt(u, a
(

logn
n

)1/t
), node u has a neighbor on both sides of the hyperplane

L with probability at least 1− 1
n provided

at − bt ≥ 8|St|(t+ 1)

ct

(

1− 1
21+1/t−1

)

and a > 21+
1
t b.

For a node u ≡ (u1, u2, . . . , ut+1), define the particular hyperplane L?
u : x1 = u1 which is normal to

the line joining u0 ≡ (1, 0, . . . , 0) and the origin and passes through u. We now have the following

lemma.

Lemma. (Restatement of Lemma 18) For a particular node u and corresponding hyperplane L?
u, if

AL?
u
⊆ Bt(u, r2) then u must be within r2 of u0.

For now, we assume that the Lemmas 16, 17 and 18 are true and show why these lemmas together

imply the proof of Theorem 5.

Proof [Proof of Theorem 5] We consider an alternate (rotated but not shifted) coordinate system by

multiplying every vector by a orthonormal matrix R such that the new position of the pole is the

t + 1-dimensional vector (1, 0, . . . , 0) where only the first co-ordinate is non-zero. Let the t + 1
dimensional vector describing a node u in this new coordinate system be û. Now consider the
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hyperplane L : x1 = û1 and if u is not connected to the pole already, then by Lemma 17 and Lemma

18 the node u has a neighbor u2 which has a higher first coordinate. The same analysis applies for u2
and hence we have a path where the first coordinate of every node is higher than the previous node.

Since the number of nodes is finite, this path cannot go on indefinitely and at some point, one of the

nodes is going to be within r2 of the pole and will be connected to the pole. Therefore every node is

going to be connected to the pole and hence our theorem is proved.

We show the proofs of Lemma 16, 17 and 18 in the following sections.

B.3 Proof of Lemma 16

Lemma 37 is a helper lemma that shows the region of connectivity for a small ball of radius ε( lognn )1/t.
Lemma 38 uses this lemma to show the existence of a point u0 which is connected to various balls of

radius ε( lognn )1/t.

Lemma 37. For a t dimensional random annulus graph RAGt(n, [r1, r2]) where r1 =

b
(

logn
n

)1/t
, r2 = a

(

logn
n

)1/t
and a ≥ b, consider the region Bt(O, θ) centered at O and radius

θ = ε
(

logn
n

)1/t
. Then, every vertex inBt(O, θ) is connected to all vertices present inBt(O, [θ1, θ2])

where θ1 = (b+ ε)
(

logn
n

)1/t
and θ2 = (a− ε)

(

logn
n

)1/t
.

Proof For any point A ∈ Bt(O, θ), we have 0 < ‖A − O‖2 ≤ θ and for any point

X ∈ Bt(O, [θ1, θ2]), we must have θ1 ≤ ‖X −O‖2 ≤ θ2. Hence

‖A−X‖2 ≤ ‖A−O‖2 + ‖X −O‖2
≤ θ + θ2

= a

(

log n

n

)1/t

,

‖A−X‖2 ≥ ‖X −O‖2 − ‖A−O‖2
≥ θ1 − θ

= b

(

log n

n

)1/t

,

and therefore the claim of the lemma is proved.

Lemma 38. Set two real numbers k ≡ db/(a − b)e + 1 and ε <
(

|St|
2kct

)1/t
. In an

RAGt

(

n,

[

b
(

logn
n

)1/t
, a
(

logn
n

]

)1/t
)

, 0 < b < a, with probability 1 − o(1) there exists a

vertex u0 ∈ St with the following property. Consider a homogeneous hyperplane L in R
t+1 that

pass through u0. There are k nodes A = {u1, u2, . . . , uk} with ui ∈ Bt

(

Oui , ε
(

logn
n

)1/t
)

for some Oui ∈ L ∩ St such that ‖Oui − u0‖2 = (i(a − b) − (4i − 1)ε)
(

logn
n

)1/t
and k
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O
ε

b+ ε

a− ε

Figure 16: Any node in the red region is connected to any node in the blue region.

nodes B = {v1, v2, . . . , vk} with vi ∈ Bt

(

Ovi , ε
(

logn
n

)1/t
)

for some Ovi ∈ L ∩ St such that

‖Ovi − u0‖2 = (i(a− b) + b− (4i− 3)ε)
(

logn
n

)1/t
, for i = 1, 2, . . . , k with A and B separated

by L.

Proof [Proof of Lemma 38] Let Au be an indicator {0, 1}-random variable for every node u which

is 1 if u satisfies the conditions stated in the lemma and 0 otherwise. We will show
∑

uAu ≥ 1 with

high probability.

We have,

Pr(Au = 1) =
1

2k!
n(n− 1) . . . (n− (2k − 1))

(εtct log n

n|St|
)2k(

1− 2kctε
t log n

n|St|
)n−2k

= c1n
−2kεtct/|St|(εt log n)2k

2k−1
∏

i=0

(1− i/n)

= c2n
−2kεtct/|St|(εt log n)2k

where c1 =
c2kt

2k!|St|2k , c2 are just absolute constants independent of n (recall k is a constant). Hence,

∑

u

EAu = c2n
1−2kεtct/|St|(εt log n)2k ≥ 1

as long as ε ≤
(

|St|
2kct

)1/t
. Now, in order to prove

∑

uAu ≥ 1 with high probability, we will show

that the variance of
∑

uAu is bounded from above. Recall that if A =
∑

uAu is a sum of indicator

random variables, we must have

Var(A) ≤ E[A]+
∑

u 6=v

Cov(Au, Av) = E[A]+
∑

u 6=v

Pr(Au = 1∩Av = 1)−Pr(Au = 1)Pr(Av = 1).

Now first consider the case when vertices u and v are at a distance of at least 2(a + b)
(

logn
n

)1/t

apart (happens with probability 1− 4t(a+ b)tct

(

logn
n|St|

)

). Then the region that is within distance

(a + b)
(

logn
n

)1/t
from both u and v is the empty-set. In that case, Pr(Au = 1 ∩ Av = 1) =
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b+ ε

a− ε

xOv1 Ov2 Ov3Ou1 Ou2O

Figure 17: Representation of ui and vi in the t+ 1-dimensional sphere with respect to u0.

n(n − 1) . . . (n − (4k − 1))c3

(

εtct logn
n|St|

)4k(

1 − 4kεt ct lognn|St|

)n−4k
= c4n

−4kεtct/|St|(εt log n)4k,

where c3, c4 are constants.

In all other cases, Pr(Au = 1 ∩Av = 1) ≤ Pr(Au = 1). Therefore,

Pr(Au = 1 ∩Av = 1) ≤
(

1− 4t(a+ b)tct

(

log n

n|St|

)

)

c4n
−4kεtct/|St|(εt log n)4k+

4t(a+ b)tct log n

n|St| c2n
−2kεtct/|St|(εt log n)2k

and

Var(A) ≤ c2n1−2kεtct/|St|(εt log n)2k +

(

n

2

)

(

Pr(Au = 1 ∩Av = 1)− Pr(Au = 1)Pr(Av = 1)
)

≤ c2n1−2kεtct/|St|(εt log n)2k + c5n
1−2kεtct/|St|(log n)2k+1

≤ c6n1−2kεtct/|St|(log n)2k+1

where c5, c6 are constants. Again invoking Chebyshev’s inequality, with probability at least 1 −
O
(

1
logn

)

A > c2n
1−2kεtct/|St|(εt log n)2k −

√

c6n1−2kεtct/|St|(log n)2k+2

which implies that A > 1 with high probability.

Lemma. (Restatement of Lemma 16) In a RAGt

(

n,

[

b
(

logn
n

)1/t
, a
(

logn
n

)1/t
])

, 0 < b < a,

with probability 1 − o(1) there exists a vertex u0 such that any node v that satisfies ‖u − v‖2 ≤
a
(

logn
n

)1/t
is connected to u0.

Proof Consider the vertices u0, {u1, u2, . . . , uk} and {v1, v2, . . . , vk} that satisfy the conditions of

Lemma 38 as shown in Fig 17. We can observe that each vertex vi has an edge with ui and ui−1,

i = 1, . . . , k.

‖ui − vi‖2 ≥ ‖ui −Ovi‖2 − ‖vi −Ovi‖2
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b+ ε

a− ε

xOv1 Ov2 Ov3Ou1 Ou2O

Figure 18: Shaded regions represent the region of connectivity with ui and vi (red for ui’s and gray

for vi’s).

≥ ‖Ovi −Oui‖2 − ‖ui −Oui‖2 − ‖vi −Ovi‖2

≥ (b+ 2ε)

(

log n

n

)1/t

− 2ε

(

log n

n

)1/t

= b

(

log n

n

)1/t

and

‖ui − vi‖2 ≤ ‖Ovi −Oui‖2 + ‖ui −Oui‖2 + ‖vi −Ovi‖2

= (b+ 2ε)

(

log n

n

)1/t

+ 2ε

(

log n

n

)1/t

= (b+ 4ε)

(

log n

n

)1/t

Similarly,

‖ui−1 − vi‖2 ≥ ‖ui−1 −Ovi‖2 − ‖vi −Ovi‖2
≥ ‖Ovi −Oui−1‖2 − ‖ui−1 −Oui−1‖2 − ‖vi −Ovi‖2

≥ (a− 2ε)

(

log n

n

)1/t

− 2ε

(

log n

n

)1/t

= (a− 4ε)

(

log n

n

)1/t

and

‖ui−1 − vi‖2 ≤ ‖Ovi −Oui−1‖2 + ‖ui−1 −Oui−1‖2 + ‖vi −Ovi‖

≤ (a− 2ε)

(

log n

n

)1/t

− 2ε

(

log n

n

)1/t

= a

(

log n

n

)1/t

.

This implies that u0 is connected to ui and vi for all i = 1, . . . , k. Next, we show that any

point in the region Bt

(

u0, rs = a( lognn )1/t
)

is connected to u0. Now recall that any point in the

region Bt

(

x,

[

(b+ ε)
(

logn
n

)t
, (a− ε)

(

logn
n

)t
]

)

is connected to any point in the region Bt(x, ε).

We can observe that the nodes u1, . . . , uk, v1,. . . , vk form a cover of Bt

(

u0, rs = a( lognn )1/t
)

in the form of these annulus regions (A region corresponding to a particular node implies the
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portion of the hypersphere such that any other node in that region is connected to it) translated by

(a− b− 4ε)
(

logn
n

)1/t
. This is because any node in Bt

(

Oui ,

[

(b+ ε)
(

logn
n

)t
, (a− ε)

(

logn
n

)t
]

)

is connected to ui and any node in Bt

(

Ovi ,

[

(b+ ε)
(

logn
n

)t
, (a− ε)

(

logn
n

)t
]

)

is connected to

vi respectively (Figure18). Therefore any node falling in any of the aforementioned regions is

connected with u0. Since the width of each region is (a − b − 2ε)
(

logn
n

)1/t
, the regions overlap

with each other. Additionally, the inner radius of a particular region is (b+ ε)
(

logn
n

)1/t
which is

greater than b
(

logn
n

)1/t
. Hence, there can not exist any point in Bt

(

u0, r2 = a( lognn )1/t
)

which is

not covered by the union of these regions.

B.4 Proofs of Lemma 17 and Lemma 18

Assume that the (t+1)-dimensional space is described by a coordinate system whose center coincides

with the center of the sphere. In this coordinate system, let us denote the point (1, 0, 0, . . . , 0) by u0.

Lemma 39 shows that for any plane L with AL 6⊂ Bt(u, r2), the region of connectivity of u on both

sides differ by a constant fraction.

Lemma 39. For a particular node u in RAGt (n, [r1, r2]) where r1 = b
(

logn
n

)1/t
, r2 = a

(

logn
n

)1/t
,

consider a hyperplaneL passing through u such thatAL 6⊂ Bt(u, a
(

logn
n

)1/t
), then

min(|R1
L|,|R2

L|)
|R1

L|+|R2
L|
≥

δ if a > 2b, where δ is a constant.

Proof

First, for a node u and a given hyperplane L : wTx = β passing through u, we try to evaluate the

surface area of the region corresponding to

{x ∈ St | ‖u− x‖2 ≤ r2 = a
( log n

n

)1/t
, wTx ≥ β}

such that the farthest point from u on the plane L and St is at distance r2. This region is a spherical

cap corresponding to Bt(u
′, r′) where u′ is the intersection of St with the normal from the origin

to the plane and r′ = ‖u − u′‖2. Suppose h is the height of this cap (perpendicular distance

from u′ to the hyperplane L). Using pythagoras theorem, we can see that r′2 = h2 + (r2/2)
2

and

(1 − h)2 + r22/4 = 1. Simplifying this, we get h = r′2

2 and hence r′ ≈ r2
2 . Hence the area of this

region is ct (r2/2)
t
.

Without loss of generality, assume |R1
L| ≥ |R2

L|. Now,

|R1
L| = |{x ∈ St | b

( log n

n

)1/t
≤ ‖u− x‖2 ≤ a

( log n

n

)1/t
, wTx ≤ β}|

= |{x ∈ St | b
( log n

n

)1/t
≤ ‖u− x‖2 ≤ a

( log n

n

)1/t
}| − |R2

L|

= ct(r
t
2 − rt1)− |R2

L|.
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|R2
L| ≡ |{x ∈ St | b

( log n

n

)1/t
≤ ‖u− x‖2 ≤ a

( log n

n

)1/t
, wTx ≥ β}|

≡ |{x ∈ St | ‖u− x‖2 ≤ a
( log n

n

)1/t
, wTx ≥ β}| − |{x ∈ St | ‖u− x‖2 ≤ b

( log n

n

)1/t
, wTx ≥ β}|

≥ |{x ∈ St | ‖u− x‖2 ≤ a
( log n

n

)1/t
, wTx ≥ β}| −

[

|{x ∈ St | ‖u− x‖2 ≤ b
( log n

n

)1/t
, wTx < β}|+ |{x ∈ St | ‖u− x‖2 ≤ b

( log n

n

)1/t
, wTx ≥ β}|

]

≡ |{x ∈ St | ‖u− x‖2 ≤ a
( log n

n

)1/t
, wTx ≥ β}| − |{x ∈ St | ‖u− x‖2 ≤ b

( log n

n

)1/t
}|

≡ ct (r2/2)
t − ctrt1

If ct (r2/2)
t − ctrt1 > 0, then,

1 ≤ |R
1
L|

|R2
L|
≤ ct(r

t
2 − rt1)

ct (r2/2)
t − ctrt1

− 1

=
at − bt

(a/2)t − bt
− 1 = δ′

Hence,

2 ≤ |R
1
L|+ |R2

L|
|R2

L|
≤ 1 + δ′

This gives us that
min(|R1

L|,|R2
L|)

|R1
L|+|R2

L|
=

|R2
L|

|R1
L|+|R2

L|
≥ 1

1+δ′ = δ. Hence, the claim of the lemma is

satisfied if (a/2)t − bt > 0 i.e. a > 2b.

Corollary 40. For a particular node u in RAGt

(

n,

[

b
(

logn
n

)1/t
, a
(

logn
n

)1/t
])

, consider a hy-

perplane L passing through u such that AL 6⊂ Bt(u, a
(

logn
n

)1/t
), then

min(|R1
L|,|R2

L|)
|R1

L|+|R2
L|
≥ (a/2)t−bt

at−bt .

Proof Using Lemma 39,
min(|R1

L|,|R2
L|)

|R1
L|+|R2

L|
≥ δ = 1

1+δ′ where δ′ = (a)t−bt

(a/2)t−bt
− 1.

For a node u, recall that the hyperplane L?
u : x1 = u1 is normal to the line joining u0 and the origin

and passes through u. We now have the following lemma, which tries to show that if the plane

satisfies AL?
u
⊆ Bt(u, r2) then the node u must be within r2 distance of u0.

Lemma. (Restatement of Lemma 18) For a particular node u and corresponding hyperplane L?
u, if

AL?
u
⊆ Bt(u, r2) then u must be within r2 of u0.

Proof The reflection of u in x-axis (say v) is the farthest from u that lies on both AL?
u

and St. Now

we want to show that v = (u1,−u2, . . . ,−ut+1) has the following property: if ‖u− v‖2 ≤ r2 then

‖u− u0‖2 ≤ r2. We are given that

u21 + u22 + · · ·+ u2t+1 = 1
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d(u, v) =
√

4(u22 + . . .+ u2t+1) ≤ r2
4(1− u21) ≤ r22

We need to show that,

d(u, u0)
2 = (1− u1)2 + (u22 + . . .+ u2t+1)

= (1− u1)2 + (1− u21)
= 2− 2u1

≤ r22

which holds if

√

4−r22
4 ≥ 2−r22

2 . Notice that,

√

4−r22
4 ≥ 2−r22

2

=⇒ 4− r22 ≥ 4− 4r22 + r42
=⇒ r42 − 3r22 ≤ 0

=⇒ r22(r
2
2 − 3) ≤ 0

which is true since 0 ≤ r2 ≤ 1.

Since, we do not know the location of the pole, we need to show that every point has a neighbor

on both sides of the plane L no matter what the orientation of the plane given that AL 6⊂ Bt(u, r2).
For this we need to introduce the concept of VC Dimension. Define (X,R) to be a range space

if X is a set (possibly infinite) and R is a family of subsets of X . For any set A ⊆ X , we define

PR(A) = {r ∩A | r ∈ R} to be the projection of R on A. Finally we define the VC dimension d of

a range space (X,R) to be d = supA⊆X{|A| | |PR(A)| = 2A}. Next we give a modified version of

a well-known theorem about VC-dimension (Haussler and Welzl (1987)).

Lemma 41. Let (X,R) be a range space of VC dimension d and let U be a uniform probability

measure defined on X . In that case, if we sample a setM of m points according to U such that

m ≥ max
(8d

ε
log

8d

ε
,
4

ε
log

2

η

)

then with probability 1− η for any set r ∈ R such that Prx∼UX(x ∈ r) ≥ ε, we have |r ∩M| 6= Φ.

Proof Define a set r ∈ R to be heavy if Prx∼UX(x ∈ r) ≥ ε. We pick two random samples N
and T each of size m according to the uniform distribution defined on X . Consider the event E1

(bad event) for which there exists a heavy r ∈ R such that r ∩ N = Φ. Consider another event

E2 for which there exists a heavy r ∈ R such that r ∩N = Φ and |r ∩ T | ≥ εm
2 . Now, since r is

heavy, assume that Prx∼UX(x ∈ r) = α such that α > ε. In that case, |r ∩ T | is a Binomial random

variable with mean αm and variance at most αm as well. Hence, we have that

Pr(E2 | E1) = Pr(|r ∩ T | ≥ εm

2
) = 1− Pr(|r ∩ T | ≤ εm

2
)

≥ 1− Pr(|r ∩ T | ≤ αm

2
) ≥ 1− αm

(αm2 )2
≥ 1− 4

mα
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Now for m ≥ 8
ε ≥ 8

α , we conclude that Pr(E2 | E1) ≥ 1
2 . Now consider the same experiment in a

different way. Consider picking 2m samples according to the uniform distribution from X and then

equally partition them randomly between N and T . Consider the following event for a particular set

r.

Er : r ∩N = Φ and |r ∩ T | ≥ εm

2

and therefore

E2 =
⋃

r: heavy

Er

Let us fix N ∪ T and define p = |r ∩ (N ∪ T )|. In that case, we have

Pr(r ∩N = Φ | |r ∩ (N ∪ T )| ≥ εm

2
) =

(2m− p)(2m− p− 1) . . . (m− p+ 1)

2m(2m− 1) . . . (2m− p+ 1)
≤ 2−p ≤ 2−

εm
2

The last inequality holds since p ≥ εm
2 . Now, since the VC dimension of the range space (X,R) is d,

the cardinality of the set {r∩(N ∪T ) | r ∈ R} is at most
∑

i≤d

(

2m
i

)

≤ (2m)d ( see Shalev-Shwartz

and Ben-David (2014)). Notice that

Pr(Er) = Pr(r ∩N = Φ | |r ∩ (N ∪ T )| ≥ εm

2
)Pr(|r ∩ (N ∪ T )| ≥ εm

2
) ≤ 2−

εm
2

Therefore by using the union bound over the possible number of distinct events Er, we have

Pr(E2) ≤ (2m)d2−
εm
2

Since Pr(E2 | E1) ≥ 1
2 and Pr(E1 | E2) = 1, we must have

Pr(E1) ≤ 2(2m)d2−
εm
2 ≤ δ

which is ensured by the statement of the theorem.

In order to use this theorem consider the range space (X,Ru) where X is the set of points in St and

Ru be the family of sets {x ∈ St | b
(

logn
n

)1/t
≤ ‖u− x‖2 ≤ a

(

logn
n

)1/t
, wTx ≥ β,AL:wT x=β 6⊂

Bt(u, r2)}. We now have the following lemma about the VC Dimension of the above range space

which is a straightforward extension of VC dimension of half-spaces (Shalev-Shwartz and Ben-David

(2014)):

Lemma 42. VC dimension of the range space (X,Ru) ≤ t+ 1.

Proof In order to show this, consider a set S of t+2 points. Recall that the convex hull of a set S of

points {xi}ni=1 is the set

C(S) = {
∑

λixi |
∑

λi = 1, λi ≥ 0}.
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By Radon’s lemma (Shalev-Shwartz and Ben-David (2014)) we have that the set of points S can be

partitioned into two sets S1 and S2 such that their convex hulls intersect. Let p ∈ S1 be a point in

that intersection. Assume there exist a hyperplane such that

wTxi ≤ w0, ∀xi ∈ S1
wTxi ≥ w0, ∀xi ∈ S2.

Since p is in the convex hull of S1 we must have that wT p ≤ w0. But then,

wT p =
∑

i:xi∈S2

λiw
Txi > (

∑

i∈S2

λi) min
i:xi∈S2

wTxi = min(wTxi) > w0.

which is a contradiction. Hence it is not possible to shatter t + 2 elements and therefore the VC

dimension of this range space is at most t+ 1.

Using the results shown above, we are ready to prove the following Lemma.

Lemma. (Restatement of Lemma 17) If we sample n nodes from St according to RAGt(n, [r1, r2])

with r1 = b
(

logn
n

)1/t
, r2 = a

(

logn
n

)1/t
, then for every node u and every hyperplane L passing

through u such that AL 6⊂ B(u, r2), node u has a neighbor on both sides of the hyperplane L with

probability at least 1− 1
n provided

(a/2)t − bt ≥ 8|St|(t+ 1)

ct

and a > 2b.

Proof Recall that the volume ofB(u, r1, r2) is ct(r
t
2−rt1) = ct logn

n (at−bt). According to Corollary

40, whenever a > 2b,
min(|R1

L,R2
L|)

|R1
L|+|R2

L|
≥ δ where δ = (a/2)t−bt

at−bt when the hyperplane L satisfies the

conditions of the lemma. In that case, we have that for all r ∈ Ru,

Pr
x∼UX

(x ∈ r) ≥ δct log n

n|St| (at − bt).

Since VC Dimension of (X,Ru) ≤ t+1 and n points are sampled from X , the conditions of Lemma

41 is satisfied for η = 2
n2 if

n ≥ max
( 8n|St|(t+ 1)

δct log n(at − bt)
log

8n|St|(t+ 1)

δct log n(at − bt)
,

8n|St|
δct log n(at − bt)

log n
)

Since limn→∞ 1
logn log 8|St|n(t+1)

δct logn(at−bt) → 1 for constant t, hence we have that

at − bt ≥ 8|St|(t+ 1)

ctδ
.

By taking a union bound over all the n range spaces (X,Ru) corresponding to the n nodes and

applying the statement of Lemma 41, we have proved the lemma.

52



COMMUNITY RECOVERY IN THE GEOMETRIC BLOCK MODEL

Appendix C. Proof of Lemma 43

Lemma 43. A random geometric graph G(n, a lognn ) will have ω(1) disconnected components for

a < 1.

Proof Define an indicator random variable Au for a node u which is 1 if it does not have a neighbor

on its left. We must have that

Pr(Au) =
(

1− a log n

n

)n−1
.

Therefore we must have that
∑

u EAu = n1−a = Ω(1) if a < 1. This statement also holds true with

high probability. To show this we need to prove that the variance of
∑

u EAu is bounded. We have

that

Var(A) < E[A] +
∑

u 6=v

Cov(Au, Av) = E[A] +
∑

u 6=v

Pr(Au = 1 ∩Av = 1)− Pr(Au = 1)Pr(Av = 1)

Now, consider the scenario when the vertices u and v are at a distance more than 2a logn
n apart

(happens with probability at least 1− 4a logn
n ). Then the region in [0, 1] that is within distance a logn

n
from both of the vertices is empty and therefore Pr(Au = 1 ∩ Av = 1) = Pr(Au = 1)Pr(Av =
1|Au = 1) ≤ Pr(Au = 1)Pr(Av = 1) = (Pr(Au = 1))2. When the vertices are within distance
2a logn

n of one another, then Pr(Au = 1 ∩Av = 1) ≤ Pr(Au = 1). Therefore,

Pr(Au = 1 ∩Av = 1) ≤ (1− 4a log n

n
)(Pr(Au = 1))2 +

4a log n

n
Pr(Au = 1).

Consequently,

Pr(Au = 1 ∩Av = 1)− Pr(Au = 1)Pr(Av = 1) ≤ (1− 4a log n

n
)(Pr(Au = 1))2

+
4a log n

n
Pr(Au = 1)−(Pr(Au = 1))2 ≤ 4a log n

n
Pr(Au = 1).

Now,

Var(A) ≤ E[A] +

(

n

2

)

4a log n

n
Pr(Au = 1) ≤ E[A](1 + 2a log n).

By using Chebyshev bound, with probability at least 1− 1
logn ,

A > n1−a −
√

n1−a(1 + 2a log n) log n,

Now, observe that if there exists k nodes which do not have a neighbor on one side, then there

must exist k − 1 disconnected components. Hence the number of disconnected components in

G(n, a lognn ) is ω(1).
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