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Abstract

Many machine learning problems lack strong convexity properties. Fortunately, recent studies have
revealed that first-order algorithms also enjoy linear convergences under various weaker regularity
conditions. While the relationship among different conditions for convex and smooth functions is
well understood, it is not the case for the nonsmooth setting. In this paper, we go beyond convex-
ity and smoothness, and clarify the connections among common regularity conditions (including
strong convexity, restricted secant inequality, subdifferential error bound, Polyak-Lojasiewicz in-
equality, and quadratic growth) in the class of weakly convex functions. In addition, we present a
simple and modular proof for the linear convergence of the proximal point method (PPM) for con-
vex (possibly nonsmooth) optimization using these regularity conditions. The linear convergence
also holds when the subproblems of PPM are solved inexactly with a proper control of inexactness.
Keywords: Error bound, Polyak-t.ojasiewicz inequality, quadratic growth, proximal point method.

1. Introduction

Machine learning has shown impressive performance on a wide range of applications. Behind these
successes, (sub)gradient-based methods and their variants are the workhorse algorithms. Many stud-
ies have investigated the theoretical foundations of these first-order iterative algorithms. For smooth
and/or convex cases, (sub)gradient methods are most well-understood (Nesterov, 2018). It is well-
known that the basic gradient descent algorithm achieves linear convergence for minimizing smooth
and strongly convex functions. However, strong convexity is a very strong assumption, and many
fundamental models in machine learning lack this good property (Agarwal et al., 2010).
Alternative regularity conditions that are weaker than strong convexity have been revealed in the
past. For example, gradient descent also converges linearly under Polyak-£ojasiewicz inequality or
restricted secant inequality (Polyak, 1963; Zhang and Yin, 2013; Guille-Escuret et al., 2022). These
two conditions can even hold for nonconvex functions. The classical bundle method converges lin-
early under quadratic growth for smooth convex functions (Diaz and Grimmer, 2023). This linear
convergence result has recently been extended for general semidefinite optimization (a very broad
class of conic programs) in Ding and Grimmer (2023); Liao et al. (2023b). While smooth and con-
vex (but not strongly convex) problems cover a variety of applications, modern machine learning
practice routinely deals with problems lacking both qualities (e.g., training nonsmooth and non-
convex deep networks). Recent studies have further identified one amenable problem class: weakly
convex (Davis and Drusvyatskiy, 2019). This class of problems includes all convex functions, L-
smooth functions, certain compositions of convex functions with smooth functions, and many cost
functions in modern machine learning (Drusvyatskiy and Davis, 2020; Atenas et al., 2023). For
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nonsmooth problems, it is known that subdifferential error bound (or metrically subregularity) or
error bound for proximal gradient mapping is sufficient to ensure linear convergence of proximal
algorithms (Ye et al., 2021; Drusvyatskiy and Lewis, 2018). Very recently, Atenas et al. (2023) also
uses error bound properties to establish linear convergence for proximal-type methods.

While a couple of weaker conditions ensure linear convergence of many first-order algorithms,
their relationship remains unclear, especially in the class of weakly convex functions. Recently, it
has been revealed that some regularity conditions (such as PL, error bound, and quadratic growth)
are equivalent (Drusvyatskiy and Lewis, 2018; Drusvyatskiy et al., 2021; Bolte et al., 2017; Karimi
etal., 2016; Ye et al., 2021; Zhu et al., 2023). However, many existing results require smooth and/or
convex settings; we postpone a detailed discussion of these results in Remark 1 after introducing
relevant notations and our main results. In this paper, we have two main contributions: 1) we first
clarify the relationship among common regularity conditions in the class of weakly convex func-
tions (Theorem 3.1); 2) we present a simple and modular proof for linear convergence of the clas-
sical proximal point method (PPM) (Rockafellar, 1976b) under these regularity conditions (Theo-
rem 4.2). These linear convergence results hold for inexact PPM when controlling stopping criteria
properly (Theorem 5.3). We remark that our convergence results require weaker conditions with
simpler proofs. We expect their applications to sparse and large-scale conic optimization (Zheng
et al., 2021).

The rest of this paper is structured as follows. Section 2 presents a motivation and revisits linear
convergence of gradient descent. Section 3 presents the relationship among different regularity con-
ditions. Sections 4 and 5 focus on the (inexact) PPM and establish the sublinear and linear conver-
gences. Section 6 presents three numerical experiments, and Section 7 concludes this paper. Some
extra discussions and technical proofs are provided in our technical report (Liao et al., 2023a).
Notation. We use R” to denote n-dimensional Euclidean space and R to denote the extended real
line, i.e., R := RU{+o00}. The notations (-, -) and || - || stand for standard inner product and £5 norm
in R™. For a closed set S C R", the distance of a point z € R" to S is defined as dist(z, S) :=
minyes ||z — y|| and the projection of x onto S is denoted as [Ig(r) = argmin, g ||z — yl|. The
symbol [f < v]:={x € R" | f(z) < v} denotes the v-sublevel set of f.

2. Motivation: Linear convergence of gradient descent algorithms

To motivate our discussion, consider a smooth convex optimization problem min, f(x), where
f:R™ — Risaconvex and L-smooth function, i.e., its gradient is L-Lipschitz satisfying ||V f(z)—
Vil <L|z—yl|, Ve,y € R". Let S := argmin f(z) be the set of optimal solutions. Assume
S # () and denote f* = min,, f(z). The standard gradient descent (GD) follows the update

Tpy1 = o — tV f(2k), ()

where 5, > 0 is the step size. A textbook result says that when choosing a constant step size t;, = %,
the GD iterates converge to f* with a sublinear rate (precisely, f(x}) — f* < Ldist?(zo, S)/(2k));
see e.g., Corollary 2.1.2 of Nesterov (2018). If the function f is strongly convex, GD achieves a
global linear convergence (Nesterov, 2018, Theorem 2.1.15).

However, the assumption of strong convexity is often not satisfied in practice. It is known that
some alternative weaker assumptions are sufficient for linear convergences. We here introduce two
notions: restricted secant inequality (RSI) (Zhang and Yin, 2013), and Polyak-tojasiewicz (PL)
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inequality (Polyak, 1963). A differentiable function f satisfies RSI if there exists p, > 0 such that
(Vf(x),z —Tg(z)) > )|z — Mg(x)||? = u, - dist?(z, S), Vo € R" (2)
and it satisfies the PL inequality if there exists i, > 0 such that

IVF@)I? = 20p(f(2) = f*), Yz € R™. 3)

Note that both RSI (2) and PL (3) imply that any stationary point of f is a global minimum.
However, they do not imply the uniqueness of stationary points or the convexity of the function.
One can think that RSI (2) (resp. PL (3)) requires that the gradient V f(z) grows faster than a
quadratic function when moving away from the solution set .S (resp. the optimal value f*). Linear
convergence of GD under the PL inequality was first proved in Polyak (1963), and linear conver-
gence under RSI was discussed in Proposition 1 of Guille-Escuret et al. (2022) and Proposition 1 of
Zhang (2020). We summarize a simple version below.

Theorem 2.1 (Linear convergence of GD) Consider the problem min, f(x), where f is an L-
smooth (possibly nonconvex) function. Suppose its solution set S is nonempty. If RSI (2) holds with
pr > 0 and PL inequality (3) holds with i, > 0, then the GD algorithm (1) with a constant stepsize
tr = % has a global linear convergence rate for iterates and function values, i.e.,

dist(zg41,5) < w; - dist(zk, S), where w; =+/1—p2/L? € (0,1), (4a)
Flaka) — 1" Sws - (flow) = 1), where ws = (I3 — 2 Ly + pp)/ L € (0,1). (4b)

Thanks to RSI (2) and PL inequality (3), the proof of Theorem 2.1 is very elegant and only
takes a few lines. We provide a simple proof and some additional discussions in Appendix B in
Liao et al. (2023a). In particular, the RSI (2) leads to a quick proof of (4a), and the PL (3) allows
for a simple proof of (4b). It is known that for L-smooth convex functions, the two conditions RSI
(2) and PL (3) are equivalent (cf. Karimi et al., 2016, Theorem 2). Some recent studies, such as
Bolte et al. (2017); Necoara et al. (2019); Zhang (2017), have explored the relationships among
different regularity conditions for linear convergences. A nice summary appeared in Theorem 2 of
Karimi et al. (2016), but it only works in the context of L-smooth functions. In this paper, we aim to
characterize the relationships among different regularity conditions for nonsmooth and nonconvex
functions (Section 3), and apply them to derive simple and clean proofs for linear convergences of
(inexact) proximal point methods for convex (possibly nonsmooth) optimization (Sections 4 and 5).

3. Relationships between regularity conditions

In this section, we move away from convex and smooth functions and expand our view to the class
of weakly convex (potentially nonsmooth) functions. A function f : R® — R is called p-weakly
convex if the function f + £|| - ||? is convex. The class of weakly convex functions is very rich: it
includes all convex functions, L-smooth functions, certain compositions of convex functions with
smooth functions, and many cost functions in modern machine learning applications; we refer in-
terested readers to Drusvyatskiy and Davis (2020); Atenas et al. (2023) for more details.

Let f : R® — R be a proper, closed, p-weakly convex function. For this function class, gradients
may not always exist. We define the Fréchet subdifferential (see e.g., Page 27 in Li et al. (2020)):

Of (z) = {3 € R" | lim inf fy) = f”(?__xﬁs’ y-o) 0} .
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If f is convex, Fréchet subdifferential d f is the same as the usual convex subdifferential, i.e.,
Of(x) = af(x) = {s € R" | f(y) > f(z) + (s,y —x),Vy € R"},Vx € R if f is differ-
entiable, Fréchet subdifferential reduces to the usual gradient, i.e., f(z) = {V f(x)},Vz € R".

Let S the optimal solution set of f, i.e., S = argmin, g~ f(x), and we assume S # (). Let
f* = mingern f(x) and v > 0. Consider the following five regularity conditions:

1. Local Strong Convexity (SC): there exists a positive constant pg > 0 such that
F@)+ gy =)+ 52y —al? < f), Yo,y e lf < 17+ v]and g € df(x). (SO

2. Restricted Secant Inequality (RSI): there exists a positive constant u, > 0 such that

pr - dist*(z,8) < (g,@ — &), Ve e[f <[ +v], g€ df(x), & €lls(z). (RSD

3. Error bound (EB)': there exists a constant /i, > 0 such that
dist(z, S) < pe - dist(0,8f(2)), Vz e [f < f*+v]. (EB)
4. Polyak-Lojasiewicz (PL) inequality’: there exists a constant fp > 0 such that
2pp - (F(x) = f*) < dist?(0,0f(x)), Yx € [f < f"+v). (PL)
5. Quadratic Growth (QG): there exists a constant z1q > 0 such that

%.distQ(x,S) < flz)—f*, Vzelf<f+u (QG)

All the regularity conditions above are defined over a sublevel set [f < f* 4+ v]. If v = 400, then
they are global. In particular, (SC) imposes a quadratic lower bound for every point in the sublevel
set. On the other hand, (RSI), (EB) and (PL) all require a certain growth of the subdifferential ) f(x)
when moving away from its solution set S or optimal value f*. It is easy to see that (RSI), (EB)
and (PL) all imply that every stationary point 0 € d f(z) in the sublevel set [f < f*+ 1] is a global
minimum (but they do not imply the uniqueness of stationary points). Finally, (QG) shows that f ()
grows at least quadratically when moving away from the solution set S.
Our first technical result summarizes the relationships among the five regularity conditions.

Theorem 3.1 Let f : R" — R be a proper closed p-weakly convex function with f* = min, f(z)
and S = argmin,cpn f(z). Suppose S # () and let v > 0 be the same constant throughout (SC),
(RSI), (EB), (PL), and (QG). The following relationship holds

(SC) — (RSI) — (EB) = (PL) — (QG). 5)

Furthermore, if the coefficient of (QG) satisfies j1q > p (including the function f is convex), then
the following equivalence holds

(RSI) = (EB) = (PL) = (QQG). (6)

1. Error bound is closely related to metric subregularity at x* for 0 (Artacho and Geoffroy, 2008, Def. 2.3): there exist
a constant @ > 0 and a set U containing =* such that dist(z, (3f)~*(0)) < a - dist(0, df(x)),Vz € U.

2. To be consistent with the smooth case in Karimi et al. (2016), we call the property (PL) Polyak-tojasiewicz, which is
usually used for smooth functions. The property (PL) is actually a special case of the Kurdyka-Lojasiewicz inequality
@' (f(z) — f*)dist(0,df (x)) > 1 with (s) = cs'/? and ¢ > 0.
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Note that if f is a convex function and also satisfies (QG) with p1q > 0, then (6) holds naturally
(since f is O-weakly convex). Theorem 3.1 includes Theorem 2 of Karimi et al. (2016) and Theorem
1 of Zhang (2020) as a special case, in which only L-smooth functions are considered. It is easy
to see that all L-smooth functions are also L-weakly convex. Even for differentiable functions,
Theorem 3.1 is more general than Theorem 2 of Karimi et al. (2016) in the sense that 1) we require
no Lipschitz constant L for gradients to ensure the equivalency among (EB), (PL), and (QG) in the
convex case; 2) the condition 114 > p is new and does not mean that f is convex (see Appendix C.2
in Liao et al. (2023a) for an example).

The associated coefficients for different conditions and the proof details for Theorem 3.1 are
provided in Table 1 and Appendix C.1 of Liao et al. (2023a) respectively. The proof of Theorem 3.1
relies heavily on the notion of slope defined in Drusvyatskiy et al. (2021), Ekeland’s variational
principle (Ekeland, 1974), and a technical result in Lemma 2.5 of Drusvyatskiy et al. (2015). Alter-
native proofs based on subgradient flows (Bolte et al., 2017) are also possible. Indeed, one key step
in the proof of Theorem 2 in Karimi et al. (2016) is based on gradient flows for smooth functions,
which is as a special case of subgradient flows for nonsmooth cases.

Remark 1 The regularity conditions (EB), (QG) and (PL) have been discussed for different func-
tion classes in the literature. For the smooth case, we refer to Theorem 2 of Karimi et al. (2016)
for a nice summary; also see Guille-Escuret et al. (2021) for related discussions. For nonsmooth
convex functions, the equivalence between (EB) and (QG) has been recognized in Theorem 3.3 in
Drusvyatskiy and Lewis (2018) and Theorem 3.3 in Artacho and Geoffroy (2008), and the equiva-
lence between (PL) and (QGQG) is established in Theorem 5 of Bolte et al. (2017). Thus, (EB), (PL),
and (QG) are equivalent for the class of nonsmooth convex functions (Ye et al., 2021, Proposition
2); see also Zhu et al. (2023) for a recent discussion. Our Theorem 3.1 extends these results to p-
weakly convex functions. The most closely related work is Drusvyatskiy et al. (2021) which focuses
on nonsmooth optimization using Taylor-like models. Indeed, we specialize the proof in Theorem
3.7, Proposition 3.8, and Corollary 5.7 of Drusvyatskiy et al. (2021) in our setting and prove the
relationship in (5) and (6) directly using the slope technique. We note that the implication from
(QG) to (EB)/PL) is not true in general. Yet, with the condition pq > p in Theorem 3.1, all four
regularity conditions (RSI), (EB), (PL) and (QG) are equivalent. ]

We conclude this section with a few simple instances. In principle, all the five properties in
Theorem 3.1 are generalizations of quadratic functions to non-quadratic, nonconvex, and even non-
smooth cases. For illustration, let us first consider the simplest quadratic function f(z) = 22, which
is convex and differentiable. It is clear that O f (z) = {2z} and S = {0}. It is also immediate to
verify that (SC) holds with 0 < ps < 2, (RSI) holds with 0 < u, < 2, (EB) holds with e > 1/2,

(PL) holds with 0 < pup, < 2, and (QG) holds with 0 < pgq < 2. Consider another simple convex
1

function f(z) = 22,if |2| < 1, and f(z) = 2% + § otherwise. All the five properties hold for this
function, but it is not L-smooth globally. Let us move away from convex functions, and consider
f(z) = 2% + 6sin?(x). It is clear that this function satisfies (QG) globally, however, there exist
suboptimal stationary points and consequently (EB) and (PL) do not hold globally. Thus, in this
case (v = +0o0), the relationship (5) is strict, and (QG) is more general than the other conditions.
Finally, we consider a p-weakly convex function with a QG constant yiq > p: f(z) = —x? + 1if
—1 <z < —0.5,and f(x) = 3(z + 1)? otherwise. The function is not convex but 2-weakly convex
with the QG constant yiq = 6 > 2 = p. In this case, Theorem 3.1 guarantees that (RSI), (EB) and

(PL) also hold (see Appendix C.2 in Liao et al. (2023a) for more details).
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4. Proximal point method for convex optimization

In this section, we will utilize the regularity conditions in Section 3 to derive linear convergence of
the classical proximal point method (PPM) (Rockafellar, 1976a) for convex (potentially nonsmooth)
optimization. PPM is a conceptually simple algorithm, which has been historically used for guiding
algorithm design and analysis, such as proximal bundle methods (Lemarechal et al., 1981) and
augmented Lagrangian methods (Rockafellar, 1976a). It has recently found increasing applications
in modern machine learning; see Drusvyatskiy (2017).

4.1. Proximal point method

Consider the optimization problem

f*=min f(z), (7

where f : R™ — R is a proper closed convex function. Note that (7) is also an abstract model for
constrained optimization, since given a closed convex set X, we can define f(z) = f(z)if z € X,
and f(z) = oo otherwise. Let S = argmin, f(x). We define the proximal mapping as

. 1
proxaf(xk) = argmin f(z) + — ||z — xk\|2 , (8)
z€R™ 2

where o > (. Starting with any initial point x(, the PPM generates a sequence of points as follows
Tpy1 = prox,, p(vg), k=0,1,2,... 9

where {cy, } >0 is a sequence of positive real numbers. The quadratic term in (8) makes the objective
function strongly convex and always admits a unique solution. The iterates (9) are thus well-defined.
The convergence of PPM (9) for (nonsmooth) convex optimization has been studied since the
1970s (Rockafellar, 1976b). The sublinear convergence is relatively easy to establish, and many
different assumptions exist for linear convergences of (9); see Rockafellar (1976b); Luque (1984);
Leventhal (2009); Cui et al. (2016); Drusvyatskiy and Lewis (2018). However, as we will highlight
later, some assumptions are restrictive and the corresponding proofs are sophisticated and nontrans-
parent. We aim to provide simple proofs under the general regularity conditions in Section 3.

4.2. (Sub)linear convergences of PPM

Under a very general setup, the PPM (9) converges at a sublinear rate for cost value gaps, and the
iterates converge asymptotically, as summarized in Theorem 4.1. This result is classical (Giiler,
1991, Theorem 2.1), and a new bound with a constant 4 is available in Theorem 4.1 in Taylor et al.
(2017) using the performance estimation technique.

Theorem 4.1 (Sublinear convergence (Giiler, 1991, Theorem 2.1)) Let f : R™ — R be a proper
closed convex function and S # (). Then, the iterates (9) with a positive sequence {cj }1>0 satisfy

flag) — f* < dist?(z0,5) /(232175 c).- (10)

If we further have limy_, o Zf:_ol ¢t = 00, then the iterates converge to an optimal solution T
asymptotically, i.e., limy_, ) = T, where T € S.
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The proof of (10) is immediate from a telescope sum via the following one-step improvement:
2ek(f(xr41) = f(2*)) < Jlog —a*|)? = |agga — 2%, Vep > 0,27 € S. (1D

This fact is not difficult to establish. For completeness, we provide proof details in Appendix D.1
in Liao et al. (2023a). Note that choosing any constant step size ¢, = ¢ > 0 in (10) directly implies
the common sublinear rate O(1/k). In Theorem 4.1, f does not need to be L-smooth, and it can
also be non-differentiable. Thus, the guarantees in Theorem 4.1 are much stronger than those by
(sub)gradient methods. This is because the proximal mapping (8) is a stronger oracle than simple
(sub)gradient updates.

Similar to GD in Section 2, when f satisfies additional regularity conditions, the PPM enjoys
linear convergence. With the convexity assumption, our next main technical result establishes linear
convergences of the PPM under the general regularity conditions in Theorem 3.1.

Theorem 4.2 (Linear convergence) Let f : R™ — R be a proper closed convex function, S #
(), and v > 0. Suppose f satisfies (PL) (or (EB), (RSI), (QG)) over the sublevel set [f < f* + v].
Then, for all k > kq steps, the iterates (9) with a positive sequence {cy }>0 bounded away from
zero enjoy linear convergence rates, i.e.,

f@ier) = f* < wi - (F(e) = 1), (12a)
dist(zg41,5) < O - dist(xg, S), (12b)

where the constants are

1 1 1 dist?(zo, S
— T o n <1, 6 =min T <1, - 95 (:Bo, )
Choblp V/Crbq + \/ci/ug +1

Proof The sublinear convergence in Theorem 4.1 ensures that the iterate xj, reaches [f < f* 4 1]
after at most ky iterations. Once x, is within [f < f* + v/, all the properties (EB), (PL), (RSI), and
(QG) are equivalent by Theorem 3.1. For the analysis below, we assume x € [f < f* + v].

We next show that (PL) gives a simple proof of (12a), and (QG) together with (EB) leads to a
clean proof of (12b). Recall that the optimality condition of (9) directly implies

—(@p+1 — zp)/ck € Of (Tpt1). (13)
Then, the following inequalities hold

(@ 1 (®)

(c)
flxg) = f(zpg1) > HHMH — mpl|* > %kdiStQ(Oﬁf(wkH)) > cppip(f(xrgn) — f7), (14)

Wk

00— 5 - -
2v lnszo Ck

where (a) applies the fact that xy, is a suboptimal solution to (9), (b) comes from the optimality (13),
and (c) applies (PL). Re-arranging and subtracting f* from both sides of (14) lead to the desired
linear convergence result in (12a).

We next use (QG) to prove (12b) with coefficient 8, < 1/,/cipq + 1. By definition, we have
f(Ms(xy)) = f* and |[Ms(xx) — xx||* = dist®(zx, S). Since f + 5

2 .
o0 |l - —@kll* is 1/cy strongly
convex, its first-order lower bound at zj 1 is

1 ..
F o= Ms(an) = 2x)|* = f(Ms(2)) + 5 —dist® (s, S)
2¢y, 2cp (15)
1 1
> flzpsr) + %o k1 — 2l + (0, s () — @pp1) + e s (zk) — wpa

7
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where we also applied the fact that z;; minimizes (9) so O is a subgradient. From (15), we drop
the positive term ||z 1 — 7 ||* and use the fact that | TLs(xy,) — 71 1] > dist(xp41, S), leading to

= f(xps1) + dist? (xg,S)/(2ck) > dist? (xgt1,5)/(2¢k).

Combining this inequality with (QG) and simple re-arranging leads to the desired linear rate

dist?(xp11,S) < 1/y/crpiq + 1 - dist®(zy, S).

Simple arguments based on (EB) can establish (12b) with coefficient 6, < (c2/u2 + 1)71/2. We
provide some details in Appendix D.2 in Liao et al. (2023a). This completes the proof. |

It is possible to extend Theorem 4.2 to the class of weakly convex functions when a proper initializa-
tion is given. We provided this extension in Appendix D.3 of Liao et al. (2023a). Two nice features
of Theorem 4.2 are 1) the simplicity of its proofs and 2) the generality of its conditions. Indeed, the
proof of (12a) is simple via (PL), and the proof of (12b) is clean via (QG) and (EB), which are sim-
pler than typical proofs. In addition, the regularity conditions are weaker than Rockafellar (1976b)
and Luque (1984). Linear convergence for dist(zy, S) was first established in Rockafellar (1976b)
with one restrictive assumption: the inverse of the subdifferential (0 f) =" is locally Lipschitz at 0,
which implies a unique optimal solution, i.e., S is a singleton. The uniqueness assumption is lifted
in Luque (1984), which allows an unbounded solution set. More recently, this assumption is further
relaxed to J f being metrically subregular in Cui et al. (2016) and Leventhal (2009). It is known that
for convex functions, 0 f is metrically subregular if and only if f satisfies quadratic growth (cf. The-
orem 3.1). Indeed, our proof in Theorem 4.2 is based on quadratic growth, which is a more intuitive
geometrical property. Our main proof idea above is motivated by a result for the linear convergence
of the spectral bundle method in Ding and Grimmer (2023); also see Liao et al. (2023b).

S. Inexact proximal point method (iPPM) and its convergence

In Section 4, each subproblem (8) is solved exactly. This may not be practical since one still needs
an iterative solver to solve (8), where stopping criteria naturally introduce errors. We here discuss an
inexact version of PPM (iPPM, Rockafellar, 1976b) where the subproblem (9) is solved inexactly.
The regularity conditions in Theorem 3.1 also allow us to establish linear convergences of iPPM.

5.1. iPPM and stopping criteria
We replace the exact update (9) with an inexact update
Tpa1 & proxckf(mk). (16)
Two classical criteria suggested in Rockafellar’s seminal work (Rockafellar, 1976b) are
|2k1 — proxg, p(ze)l| < €k, Dopeger < 00, (A)
21 — proxe, p(z)ll < Okllzptr — zll,  2o5lg 0k < oo (B)
The inexact update (16) with (A) or (B) is called iPPM. The two criteria are not directly imple-
mentable as the value of prox,, f(xk) is unknown. As discussed in Proposition 3 of Rockafellar
(1976b), two implementable alternatives that imply (A) and (B), respectively, are
diSt(O,Hk($k+1)) < Ek/Ck, ZZO:O € < 00, (A/)
dist(0, Hg(z+1)) < (Or/cr)llzrrr — znll, 2okl 0k < 00, (B")



EB, PL AND QG FOR WEAKLY CONVEX FUNCTIONS

where Hy,(z) = 0f(x) + (z — xx)/ck is the subdifferential of f + || - —xx||?/(2¢k) at  (since f
is convex by assumption). Note that (A) and (B) only require the inexact update zy; to stay close
enough to prox,, f(xk) with respect to the Euclidean distance, but they do not require the inexact
update zj1 to be within the domain of f, i.e., f(zp41) might be infinity. However, the stopping
criteria (A”) and (B’) require that 1 is in the domain of f.

5.2. (Sub)linear convergence of iPPM

The seminal work (Rockafellar, 1976b) has established the asymptotic convergence of iterates for
iPPM under a general setup. We state the results below whose proof is very technical.

Theorem 5.1 (Asymptotic convergence of iterates (Rockafellar, 1976b, Theorem 1)) Consider
a proper closed convex function f : R™ — R. Let {x} } x>0 be any sequence generated by (16) under
(A) with a positive sequence {cy}i>0 bounded away from zero. Then, we have 1) the sequence
{xk}k>0 is bounded if and only if there exists a solution to 0 € Of (x), i.e., S # 0; 2) if S # 0, the

whole sequence {1} >0 converges to an optimal point xo, € S, i.e., limy_yo0 T = Too.

We next establish a sublinear convergence of iPPM for cost value gaps. Our simple proof is
based on the boundedness of the iterates from Theorem 5.1 and a recent idea in Theorem 3 in Lu
and Yang (2023). We provide some details in Appendix E of Liao et al. (2023a).

Theorem 5.2 (Sublinear convergence of iPPM) Let f :R" — R be a proper closed convex func-
tion, and S # (. The iterates (16) under (A") with a positive sequence {cy } >0 bounded away from
zero converge to x* € S asymptotically, and the cost value gaps converge as

minj—q,.x f(;) — f* < (dist®(zo, §) + 2D Y55 )/ (2305 ¢5),
where D is the diameter of the sequence {x } >0 which is bounded.

Note that Theorems 5.1 and 5.2 can be viewed as the convergence counterpart for iPPM of
Theorem 4.1 with two major differences: 1) Theorem 5.2 deals with the best iterate, unlike the last
iterate in Theorem 4.1 (the guarantee for the average &, = % Z?Zl x; or weighted average 7, =

(Z?;S cixit1)/ (Zf;é ¢j) is also straightforward; see Remark 2 in Liao et al. (2023a); 2) the
convergence of cost values in Theorem 5.2 relies on the boundedness of iterates in Theorem 5.1
whose proof is very technical (Rockafellar, 1976b, Theorem 1), while the convergence of iterates
of exact PPM is established from the sublinear convergence of cost values in Theorem 4.1.

Similar to Theorem 4.2, the linear convergence of iPPM can also be established when suitable
regularity conditions are assumed. Note that (SC), (RSI), (EB), (PL), and (QG) in Section 3 are all
defined over a sublevel set [f < f* 4 v] with v > 0, which is convenient to estimate the number
of iterations to enter a certain region, such as the constant kg in Theorem 4.2; but this definition is
too restrictive in the analysis of iPPM. Indeed, as the stopping criteria (A) and (B) allow infeasible
points, it is possible that the sequence {z },>¢ might not be always feasible (i.e., f(x)) = +oo for
some k£ > 0) but the sequence {x },>0 is approaching to the optimal solution set. In this case, the
inequality /2 - dist(xy, S) < f(x) — f* with any pg > 0 still holds automatically. To state the
linear convergence result in a general case, we here modify the definition of (QG) from a sublevel
set to a neighborhood of the optimal solution. Precisely, we say f satisfies QG, if there is a constant
ftq > 0 and a neighborhood &/ C R™ containing the optimal solution set S such that

% ~dist?(z, S) < f(z) — f*, Vrel. a7
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Notice that we can also redefine RSI, EB, and PL using a neighborhood (similar to (17)) and show
the equivalence between them. However, the neighborhood ¢/ for different regularity conditions
may be different. For ease of presentation, we present our final technical result that shows the linear
convergence of iPPM under (17), which is the counterpart of Theorem 4.2.

Theorem 5.3 (Linear convergence of iPPM) Let f:R"™ — R be a proper closed convex function.
Suppose S # ) and f satisfies (17). Let {xy} be any sequence generated by iPPM (16) under (A)
and (B) with parameters {cy, } >0 bounded away from zero. Then, there exist a nonnegative ), < 1
and a large k > 0 such that for all k > k, we have the linear convergence

dist(zp11,9) < Opdist(xg, S), where 6 = w < 1.
— Ok

We provide the proof of Theorem 5.3 in Appendix E.2 of Liao et al. (2023a). In Theorem 5.3,
criterion (A) serves to guarantee that the iterates can reach the neighborhood I/ in (17) (cf. the
asymptotic convergence from Theorem 5.1). If (17) holds globally (i.e., / = R™), the same linear
convergence result holds with (B) only. Note that our convergence proof for Theorem 5.3 in Liao
et al. (2023a) is very modular, combining a key inequality in (Luque, 1984, Equation 2.7) with
Theorem 4.2. Indeed, thanks to the regularity conditions (i.e., (17)), our proof is simpler and less
conservative than typical proofs in the literature; see the discussions at the end of Section 4.

6. Applications

In this section, we consider three different applications of convex optimization in machine learning
and signal processing: linear support vector machine (SVM) (Zhang and Lin (2015)), lasso (Tibshi-
rani (1996)), and elastic-net (Zou and Hastie (2005)) respectively. For each application, we run the
PPM on three different data sets. These problems satisfy the regularity conditions in Theorem 4.2.
The numerical results, shown in Figure 1, confirm the linear convergence of the PPM. The details
of the data set and the choices of parameters can be found in Appendix F in Liao et al. (2023a).

10°
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N —o—LASS02 N —o—ELASTIC2
= — o LASSO3 Ny —o6—ELASTIC3
N 100
\ [
2107 2
= =
107
: )
0 10 0 5 10
Iteration Iteration Iteration

Figure 1: Linear convergences of cost value gaps for linear SVM, lasso, and elastic-net.

7. Conclusion

In this paper, we have established the relationship between different popular regularity conditions
under the class of p-weakly convex functions. This result is beneficial in the analysis and design
of various first-order algorithms. We have also presented simple and clear proofs for the (inexact)
PPM which makes the analysis of the (inexact) PPM more accessible to new readers. We believe
these results will facilitate algorithm developments in nonsmooth optimization. We are particularly
interested in further applications in large-scale conic optimization (Zheng et al., 2021).
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