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Abstract

In 1-bit compressed sensing, the aim is to estimate a k-sparse unit vector x ∈ Sn−1 within an ϵ error (in ℓ2)
from minimal number of linear measurements that are quantized to just their signs, i.e., from measurements
of the form y = sign(ïa, xð). In this paper, we study a noisy version where a fraction of the measurements
can be flipped, potentially by an adversary. In particular, we analyze the Binary Iterative Hard Thresholding
(BIHT) algorithm, a proximal gradient descent on a properly defined loss function used for 1-bit compressed

sensing, in this noisy setting. It is known from recent results that, with Õ( k
ϵ
) noiseless measurements, BIHT

provides an estimate within ϵ error. This result is optimal and universal, meaning one set of measurements
work for all sparse vectors. In this paper, we show that BIHT also provides better results than all known
methods for the noisy setting. We show that when up to Ä -fraction of the sign measurements are incorrect
(adversarial error), with the same number of measurements as before, BIHT agnostically provides an estimate

of x within an Õ(ϵ + Ä) error, maintaining the universality of measurements. This establishes stability of
iterative hard thresholding in the presence of measurement error. To obtain the result, we use the restricted
approximate invertibility of Gaussian matrices, as well as a tight analysis of the high-dimensional geometry of
the adversarially corrupted measurements.

1 Introduction

Compressed sensing is a framework in signal processing that exploits the inherent sparsity or compressibility
of signals to efficiently acquire and reconstruct them with a sampling rate that is significantly lower than the
dimensionality of the signal [8, 16]. By using a small number of non-adaptive measurements, often obtained
through random projections, compressed sensing enables the recovery of the original signal with high accuracy.

In real-world signal acquisitions and storage, signals are often digitized. This led to introduction to 1-bit
compressed sensing (1bCS) by [6]. In this model, a unit-norm sparse signal x ∈ Sn−1, ∥x∥0 f k, is acquired
through the operation y = sign(Ax), where A is an m × n real matrix and y ∈ {1,−1}m is a binary vector
containing the coordinate-wise signs of Ax. The primary objective is to design a measurement matrix A with
minimal number of rows m, such that for any x ∈ Sn−1, ∥x∥0 f k, an estimate x̂ from y and A via an efficient
algorithm can be provided such that ∥x− x̂∥2 f ϵ, for a given 0 f ϵ f 1. We will refer to ϵ as the parameter error.

It is known that m = Ω(kϵ ) measurements are necessary [25] for this. Also, if the entries of the matrix A are
chosen to be standard normal random random variables then recovery is possible with high probability for all
k-sparse unit norm vectors with m = O(kϵ log

n
ϵ ) measurements [25]. Hereafter, there has been a series of work

that tries to achieve this baseline number of measurements Õ(kϵ ) with a computationally tractable algorithm,

such as convex relaxations [32, 7, 33]. In particular, the linear estimator of [33] shows that Õ( k
ϵ2 ) measurements

are sufficient, which is suboptimal in its dependency on the parameter error.
In this paper, we study a very natural iterative estimation method proposed in [25], called binary iterative

hard thresholding (BIHT). Iterative hard thresholding is a well-known algorithm for compressed sensing, where
estimations of x are projected back to the “top-k” coordinates in each step to maintain sparsity of the solution [5].
The description of BIHT is provided in Algorithm 1, and will be formally discussed later. In short, it is a
proximal gradient descent algorithm where an estimate of x is updated iteratively followed by the aforementioned
projection. BIHT was empirically observed to have excellent performance which was analyzed in several papers
such as [24, 7, 27, 20]. Ultimately, in [28], it was shown that Õ(kϵ ) measurements are sufficient for BIHT to
produce an estimate with at most ϵ error, i.e., the optimal dependence on sparsity and error.

In this paper, we show that iterative hard thresholding is in fact even more powerful: it is robust to adversarial
noise. Noisy one-bit compressed sensing has also been quite well-studied in the last few years [2, 11, 3, 22, 10].
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In particular, we assume that any up to Äm, 0 f Ä f 1, coordinates of the measurement vector sign(Ax) are
flipped by an adversary. In this model, [31] showed that their linear estimator can provide an estimate x̂ of x such
that ∥x̂− x∥22 f Õ(ϵ2 + Ä) with O( k

ϵ12 log
2n
k ) measurements (Thm. 1.3 in [31]). In the same model, [2] provided

an algorithm that returns an estimate x̂ of x such that ∥x̂ − x∥2 f ϵ + cÄ, c > 0 being a constant, with Õ( k
ϵ3 )

measurements.
To mitigate such sign-flips in measurements, an algorithm called adaptive outlier pursuit was proposed in [36]

that shows superior performance over BIHT empirically. However the algorithm requires precise knowledge of Ä ,
and performance deteriorates rapidly without this knowledge. On the other hand, BIHT is agnostic to the number
of sign-flips. Another algorithm based on MAP estimation was proposed in [11], relying on a stable embedding
property of the measurement matrix which is known to take at least Ω( k

ϵ2 ) rows. With Ω( k
ϵ2 ) measurements a

least-square decoding algorithm was also shown to be effective in [22] in the presence of sign-flips. More recently,
the noisy 1-bit compressed sensing problem was also studied from both the perspective of parameter error, and
prediction error; in particular the performance of the AdaBoost ([19]) algorithm was analyzed in [10]. The number
of required measurements here scales as Õ( k

ϵ3 ). We have omitted the dependence on Ä in the last few results for the
sake of clarity, and also to point out suboptimal dependence on parameter error even in the absence of adversarial
sign-flips.

1.1 Our Contributions Under the adversarial sign-flip model described above, we show that BIHT
still produces a good estimate of the sparse vector x with the same number of Õ(kϵ ) measurements. BIHT is
also agnostic to the number of sign-flips: indeed, as long as there is sufficient number of measurements, a good
estimate with small parameter error is produced. To be precise, we show that with m = O(kϵ log

n
kϵ ) measurements

of which up to Äm can be corrupted, BIHT converges to an estimate x̂ of x, such that

∥x̂− x∥ f ϵ+O(
√
ϵÄ + Ä

√

log
1

Ä
) ≍ max{ϵ, Ä

√

log
1

Ä
}.

With only Õ(kϵ ) measurements, this result provides the best sample complexity guarantee, i.e., a number of
measurements with better dependence on parameter error than [31, 2, 11, 22, 10] mentioned above.

While our work builds on [28], our analysis requires new insights as well as new technical tools. One of the key
steps in [28] is to establish a property of Gaussian matrices called restricted approximate invertibility condition
(RAIC). This condition ensures that the estimation error remains controlled throughout the iterations of BIHT
by approximately preserving the discrepancy between two vectors and the average of the measurements (rows of
matrix A) that yield distinct outcomes for those vectors.

In this paper, we aim to prove a similar condition but account for the possibility of flipped measurements. To
achieve this, we introduce a new definition of RAIC with measurement error. Our main technical achievement
is demonstrating that Gaussian matrices possess this property. For this, in addition to validating the results
obtained by [28] for Gaussian measurements, we also need to establish a (roughly) linear relationship between
the expected norm of the sum of up to Äm-many measurements and the expected error resulting from adversarial
corruption of up to Äm-many responses. Consequently, given that the norm of the sum of any set of up to
Äm-many measurements can be consistently bounded and not exceed a certain threshold with a high probability,
we can establish an upper bound on the error introduced by adversarial noise with a high probability. With the
goal of upper bounding the norm of the sum of the up to Äm-many measurements, the vector sum is orthogonally
decomposed into two components: (a) its projection onto a particular vector u (determined later), and (b) its
projection into the kernel of u, each of which will be bounded separately. The norm of the two components can
be recombined via triangle inequality. Repeating this over a collection of vectors, u, leads to a uniform result.
Crucially, it turns out that the number of vectors, u, which need to be considered in this collection is finite and
quantifiable: it does not exceed the number of ways to choose up to Äm-many responses to corrupt. This is
related to the tracking of “mismatches,” which was a key element in previous analysis.

1.2 Other Related Works Without the sparsity constraint, the problem we consider is closely related to
the noisy half-space learning problem. However, most of the time the focus of such works is to provide guarantee
on prediction error, rather than parameter error [18, 26]. The objective of this line of work is to come up with
distribution-agnostic efficient algorithms, and then to provide guarantees on their zero-one loss (probability of
mismatch). This problem is also studied with different noise models, for example, Massart noise [12], instance-
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dependent noise [30, 9], random sign-flip noise [13]. In particular, the latter work shows that with standard
Gaussian covariates, and with probability of sign-flip being ¸, one can come up with a classifier to guarantee
probability of mismatch O(¸), with n

¸2 samples. Since for Gaussian covariates, parameter error and prediction
error could be related - this will lead to a suboptimal sample complexity with respect to the error rate, if a
“sparse” version could be made available. Active learning under this model was also considered in [37].

Interestingly, learning k-sparse half-spaces where labels can be corrupted has been considered in [38, 34], with
guarantee on the prediction error. Note that these papers study the problem in an “active PAC learning” setting,
which is different from even the adaptive version of 1-bit compressed sensing. We point the reader to [38] for
a detailed discussion on this difference. Furthermore, if the covariates/measurements were Gaussian, prediction
error could be related to parameter error, but that is not the case in general. While in the active learning set up
the number of label queries are small, the total sample complexity in [34] scales quadratically with k, which is
suboptimal in 1-bit compressed sensing.

In [31] a more general sparse signal recovery problem was studied where the binary observations yi ∈ {+1,−1}
are random: i.e., yi = 1 with probability f(ïai, xð), i = 1, . . . ,m, where f is a potentially nonlinear function, such
as the logistic function.

The support recovery problem in 1-bit compressed sensing and constructions of structured measurement
matrices are well-studied, though not directly related to this work, e.g., [21, 1, 17, 29]. Other lines of work on
1-bit compressed sensing include adaptive sensing for faster error-decay [4, 23], dithering to allow for magnitude
recovery and robustness [14, 15], and 1-bit sensing with generative priors [27].

Organization. The rest of the paper is organized as follows. In Section 2 we introduced the notations used
in the paper, and also the BIHT algorithm. Section 3 contains the main result (Theorem 3.1) and a technical
overview of the proofs. Subsequently, proofs of the main results appear in Section 4 and 5. Intermediate, and
longer proofs are delegated to the appendix.

2 Preliminaries

2.1 Notations Throughout this work, the parameters k, n ∈ Z+ are taken to satisfy n g 2k, where k
denotes sparsity (i.e., the maximum number of nonzero entries in a vector), and where n is the dimension of the
signal vectors and measurements. The number of measurements (and rows in the measurement matrix) is denoted
by m ∈ Z+. For notational simplicity, the parameter Ä ∈ (0, 1]—the largest allowable fraction of responses that
can be corrupted—is assumed to satisfy Äm ∈ Z+. This does not forgo generality since Äm can be replaced by
+Äm, throughout the analysis in this manuscript. Note that this work does not consider Ä = 0 since [28] already
established the result under noiseless conditions.

For the purposes of this discussion, let ℓ, d ∈ Z+, where d ∈ Z+ specifies an arbitrary dimension.
Let D be an arbitrary distribution. Then, X ∼ D denotes a random variable which follows the distribution

D. Similarly, let S be an arbitrary set. Then, X ∼ S denotes a random variable which follows the uniform
distribution over S. The univariate normal distribution with mean µ ∈ R and variance Ã2 ∈ Rg0 is denoted by
N (µ, Ã2), while the d-variate normal distribution with mean vector µ ∈ R

d and covariance matrix Σ ∈ R
d×d is

denoted by N (µ,Σ).
The d-dimensional identity matrix is denoted by Id ∈ R

d×d. More generally, matrices are written as capital
letters in boldface, upright typeface, e.g., A ∈ R

ℓ×d, with the ith rows denoted by, e.g., Ai ∈ R
d, i ∈ [ℓ], such

that A = (A1 · · ·Aℓ)
T, and with the (i, j)-entries written in italic typeface, e.g., Ai,j ∈ R. Nonrandom vectors

are written as lowercase letters in boldface, upright typeface, e.g., u ∈ R
d with the jth entries, j ∈ [d], written

in italic typeface, e.g., uj ∈ R, such that u = (u1, . . . , ud). Random vectors follow the same convention as
nonrandom vectors but with uppercase letters, e.g., Z = (Z1, . . . , Zd) ∼ N (0, Id). For J ¦ [d], the restriction of
u ∈ R

d to the entries indexed by J is denoted by u|J ∈ R
|J|. The support of a vector, u ∈ R

d, is denoted by
supp(u) ≜ {j ∈ [d] : uj ̸= 0} ¦ [d], and the number of nonzero entries in u—the ℓ0-“norm” of u—is written as

∥u∥0 ≜ |supp(u)|.
The ℓ2-unit sphere in R

d is denoted by Sd−1 ≜ {u ∈ R
d : ∥u∥2 = 1}, and the set of k-sparse d-dimensional

vectors is written as Σd
k ≜ {u ∈ R

d : ∥u∥0 f k}. Hence, the set of all d-dimensional, k-sparse, real-valued unit
vectors is denote by Sd−1 ∩ Σd

k ≜ {u ∈ Sd−1 : ∥u∥0 f k}. The distance between two points projected onto the
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ℓ2-unit sphere is specified by the function dSd−1 : Rd × R
d → Rg0, where

dSd−1(u,v) =















∥

∥

∥

u
∥u∥2

− v
∥v∥2

∥

∥

∥

2
, if u,v ̸= 0,

0, if u = v = 0,

1, otherwise,

for u,v ∈ R
d. The Hamming distance between a pair of vectors, u,v ∈ R

d, is denoted by dH(u,v) = |{j ∈ [d] :
uj ̸= vj}|. The sign function, sign : R→ {−1, 1}, follows the convention:

sign(a) =

{

−1, if a < 0,

1, if a g 0,

where a ∈ R. This notation extends to vectors as sign : Rd → {−1, 1}d by taking the ±-signs of each entry of a
d-dimensional vector.

2.2 Hard Thresholding and the BIHT Algorithm This work considers two notions of hard thresholding
as means to project points into the subspace of ℓ-sparse vectors, Σd

ℓ : top-ℓ and subset hard thresholding. These
are formalized in the following definitions.

Definition 2.1. (Top-ℓ hard thresholding) The top-ℓ hard thresholding operation, denoted by Tℓ : Rd →
R

d, projects a vector u ∈ R
d into Σd

ℓ by retaining only the ℓ largest (in absolute value) entries in u and setting
all other entries to 0. Note that “ties” can be broken arbitrarily. More formally, writing Uℓ = {u′ ∈ R

d : ∥u′∥0 =
ℓ, u′

j ∈ {uj , 0} ∀j ∈ [d]}, the top-ℓ hard thresholding operation maps: u 7→ Tℓ(u) ∈ argmaxu′∈Uℓ
∥u′∥1.

Definition 2.2. (Subset hard thresholding) The subset hard thresholding operation associated with a
coordinate subset J ¦ [d], denoted by TJ : Rd → R

d, takes a vector, u ∈ R
d, into Σd

|J| by setting all entries

in u indexed by [d] \ J to 0. More formally, TJ(u) is the vector whose jth entries, j ∈ [d], are given by
TJ(u)j = uj · I(j ∈ J).

The measurement matrix is denoted by A ∈ R
m×n, with the measurements, i.e., its rows, written as

A1, . . . ,Am ∈ R
n, such thatA = (A1 · · · Am)T. For a given unknown k-sparse unit signal vector, x ∈ Sn−1 ∩ Σn

k ,
we call sign(Ax) the true responses. Now, suppose, y ∈ {−1, 1}m denotes an arbitrary vector that satisfies
dH(y, sign(Ax)) f Äm. This vector, y, can be viewed as introducing adversarial noise into the true responses.
At this point we can formally define the normalized BIHT algorithm. It is given as Algorithm 1 below.

Algorithm 1 Binary iterative hard thresholding (BIHT) algorithm: Input y,A

Set ¸ =
√
2Ã

x̂(0) ∼ Sn−1 ∩ Σn
k

for t = 1, 2, 3, . . . do

x̃(t) ← x̂(t−1) + ¸
mAT · 12

(

y − sign
(

Ax̂(t−1)
)

)

x̂(t) ← Tk(x̃
(t))

∥Tk(x̃(t))∥2

end for

2.3 Some Universal Constants None of the universal constants appearing in this work are very large.
These constants, a, b, c1, c2, c3, c4, c > 0, appear throughout the results and analysis in this work. These universal
constants are fixed as follows:

a = 16, b ≲ 379.1038,(2.1a)

c1 =

√

3Ã

b

(

1 +
16
√
2

3

)

∈ (1.3469, 1.3470), c2 =
3

b

(

1 +
4Ã

3
+

8
√
3Ã

3
+ 8
√
6Ã

)

∈ (0.3806, 0.3807),(2.1b)
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c3 =
(12 +

√
3)
√
Ã√

b
∈ (1.2500, 1.2501), c4 = 2 + 4

√
Ã ∈ (9.0898, 9.0899),(2.1c)

c = 4

(

c1 +
√

c21 + c2

)2

∈ (31.9999, 32).(2.1d)

3 Main Result and Technical Overview

Theorem 3.1, below, states the main result of this work, which establishes the convergence of BIHT when an
arbitrary but bounded number of responses are corrupted. Note that it is a universal result in the sense that the
measurement matrix, A, is fixed across the recovery of all k-sparse, real-valued unit vectors.

Theorem 3.1. Let ϵ, ϵ0, Ä, Ä ∈ (0, 1], r > 0, k,m, n ∈ Z+, where

r ≜
c

c2

(

c3
√
ϵÄ + c4Ä

√

log

(

2e

Ä

)

)

,(3.2)

ϵ0 ≜ ϵ+ r,(3.3)

and where

m g 4bc

ϵ
log

(

(

n

k

)2(
n

2k

)(

12b

ϵ

)2k(
3a

Ä

)

)

= O

(

k

ϵ
log
( n

ϵk

)

+
1

ϵ
log

(

1

Ä

))

.(3.4)

Fix an m× n measurement matrix, A ∈ R
m×n, whose rows, A1, . . . ,Am ∼ N (0, In), are i.i.d. Gaussian random

vectors. Uniformly with probability at least 1− Ä, for all k-sparse, real-valued unit vectors, x ∈ Sn−1 ∩ Σn
k , when

given m noisy responses, y ∈ {−1, 1}m (i.e., with any choice of up to Äm corrupted),

dH(y, sign(Ax)) f Äm,(3.5)

the sequence of approximations, {x̂(t) ∈ Sn−1 ∩ Σn
k}t∈Zg0

, produced by the normalized BIHT algorithm converges
as

dSn−1(x, x̂(t)) f 22
−t

ϵ1−2−t

0(3.6a)

with an approximation error asymptotically bounded from above by

lim
t→∞

dSn−1(x, x̂(t)) f ϵ0.(3.6b)

3.1 The Restricted Approximate Invertibility Condition (RAIC) under Adversarial Noise As
we have discussed in the introduction, the key step of proving our result is to establish a property of Gaussian
matrices called restricted approximate invertibility in the presence of adversarial sign-flips. Before we give a
technical overview of our proof, here we define the notion of RAIC and formally present the result regarding
Gaussian matrices.

Fixing the measurement matrix, A ∈ R
m×n, let f : Rn → {−1, 1}m denote an arbitrary map that satisfies

dH(f(u), sign(Au)) f Äm for all u ∈ R
n. This map, f , can be viewed as introducing one particular adversarial

error pattern into the true responses, sign(Au) 7→ f(u). The set of all such functions, f , is denoted by
FA ≜ {f : Rn → {−1, 1}m : dH(f(u), sign(Au)) f Äm ∀u ∈ R

n}. This is essentially the set of all possible ways
to adversarially corrupt the true responses.

Additionally, define the functions hA, hf ;A : Rn×Rn → R
n, at arbitrary ordered pairs points, (u,v) ∈ R

n×Rn,
by

hA(u,v) =

√
2Ã

m
AT · 1

2

(

sign(Au)− sign(Av)
)

=

√
2Ã

m

m
∑

i=1

Ai ·
1

2

(

sign(ïAi,uð)− sign(ïAi,vð)
)

,(3.7a)

hf ;A(u,v) =

√
2Ã

m
AT · 1

2

(

f(u)− sign(Av)
)

=

√
2Ã

m

m
∑

i=1

Ai ·
1

2

(

f(u)i − sign(ïAi,vð)
)

,(3.7b)
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and for J ¦ [n], let hA;J , hf ;A;J : Rn × R
n → R

n denote the functions given at (u,v) ∈ R
n × R

n by

hA;J(u,v) = Tsupp(u)∪supp(v)∪J(hA(u,v))

=

√
2Ã

m

m
∑

i=1

Tsupp(u)∪supp(v)∪J

(

Ai ·
1

2

(

sign(ïAi,uð)− sign(ïAi,vð)
)

)

(3.8a)

and

hf ;A;J(u,v) = Tsupp(u)∪supp(v)∪J(hf ;A(u,v))

=

√
2Ã

m

m
∑

i=1

Tsupp(u)∪supp(v)∪J

(

Ai ·
1

2

(

f(u)i − sign(ïAi,vð)
)

)

.(3.8b)

Note that

1

2

(

f(u)i − sign(ïAi,vð)
)

= − sign(ïAi,vð) · I(f(u)i ̸= sign(ïAi,vð)).

and hence, hf ;A, hf ;A;J are equivalently given by

hf ;A(u,v) = −
√
2Ã

m

m
∑

i=1

Ai sign(ïAi,vð) · I(f(u)i ̸= sign(ïAi,vð)),(3.9a)

hf ;A;J(u,v) = −
√
2Ã

m

m
∑

i=1

Tsupp(u)∪supp(v)∪J(Ai sign(ïAi,vð)) · I(f(u)i ̸= sign(ïAi,vð)).(3.9b)

For any two sparse vectors u and v, hf ;A;J(u,v) is a “distance-vector” measuring their closeness through the the
one-bit measurements. When u = v, it is simply the weighted sum of the measurements where the adversarial
flips have occurred, restricted to the coordinates supp(u) ∪ supp(v) ∪ J .

The main technical theorem is stated next. Its proof is deferred to Section 5.

Theorem 3.2. (RAIC under adversarial noise for Gaussian measurements) Fix Ä ∈ (0, 1], ¶, Ä ∈
(0, 1], k,m, n ∈ Z+, where

m g b

¶
log

(

(

n

k

)2(
n

2k

)(

12b

¶

)2k(
3a

Ä

)

)

= O

(

k

¶
log
( n

¶k

)

+
1

¶
log

(

1

Ä

))

.(3.10)

Let A = {A1, . . . ,Am ∼ N (0, In)} be a set of m i.i.d. standard multivariate normal random vectors, and define
the matrix, A ∈ R

m×n, which stacks them up: A = (A1 · · · Am)T. Then, with probability at least 1−Ä, uniformly
for all f ∈ FA, x,y ∈ Sn−1 ∩ Σn

k , J ¦ [n], |J | f k,

∥

∥(x− y)− hf ;A;J(x,y)
∥

∥

2
f c1

√

¶dSn−1(x,y) + c2¶ + c3
√
¶Ä + c4Ä

√

log

(

2e

Ä

)

.(3.11)

3.2 Technical Overview The proof of the main theorem, Theorem 3.1, is broadly divided into three steps,
each considered under (bounded) adversarial noise: (3.I) establish a stochastic result for Gaussian measurements,
(3.II) establish a deterministic result for the iterative approximation errors of BIHT with arbitrary measurements,
and (3.III) combine (3.I) and (3.II) to characterize the convergence of BIHT under adversarial noise. The result
obtained in Step (3.I) establishes the RAIC for Gaussian measurements under adversarial noise (see, Theorem 3.2)
by upper bounding:

∥

∥(x− y)− hf ;A;J(x,y)
∥

∥

2
f Õ

(

√

¶dSn−1(x,y) + ¶ + Ä
)

(3.12)

uniformly with high probability for all x,y ∈ Sn−1 ∩ Σn
k and all J ¦ [n], |J | f k. The result derived in Step (3.II)

upper bounds the error of the tth BIHT approximations deterministically by an expression similar to that in the
definition of the RAIC (see, Lemma 4.1):

dSn−1(x, x̂(t)) f O
(

∥

∥(x− x̂(t−1))− hf ;A;J(x, x̂
(t−1))

∥

∥

2

)

.(3.13)
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Lastly, for Step (3.III), upon the establishment of Equations (3.12) and (3.13), the two equations taken together
will bound the tth approximation errors by:

dSn−1(x, x̂(t)) f







2, if t = 0,

Õ

(

√

¶dSn−1(x, x̂(t−1)) + ¶ + Ä

)

, if t > 0.
(3.14)

Note, however, that the above expression states the upper bound on the approximation error as a recurrence
relation, rather than a closed-form result. Hence, Step (3.III) will also derive a closed-form expression for
Equation (3.14) (see, Lemma 4.2), where much of the technical work here has already been accomplished by
[28].

The majority of the analysis focuses on the stochastic result in Step (3.I), which is the main technical
contribution of this work, while the analyses for the deterministic bound in Step (3.II) and the final step,
Step (3.III), are less involved but allow the RAIC established in Step (3.I) to be related to the error of the
approximations produced by the BIHT algorithm with corrupted responses. The arguments for Step (3.I) are
briefly outlined below. On the other hand, Steps (3.II) and (3.III) are less technically demanding and hence
omitted from this overview (see, Lemmas 4.1 and 4.2 and their proofs).

Overview of the Argument for Step (3.I). The idea behind the approach to Theorem 3.2 is the following.
There is a (roughly) linear relationship between the expected norm of the sum of up to Äm-many measurements
and the expected error from adversarially corrupting up to Äm-many responses. Hence, since the norm of the
sum of every choice of up to Äm-many measurements can be uniformly bounded as not “too large” with high
probability, the error induced by the adversarial noise is similarly upper bounded with high probability.

More precisely, the argument for Theorem 3.2 is broken down into a few steps: (a) First, applying the triangle
inequality, it can be shown that

∥

∥(x− y)− hf ;A;J(x,y)
∥

∥

2
f
∥

∥(x− y)− hA;J(x,y)
∥

∥

2
+
∥

∥hf ;A;supp(y)∪J(x,x)
∥

∥

2
.(3.15)

Then, the focus of the subsequent two steps is upper bounding the two terms on the right-hand-side of the above
inequality. Note that Equation (3.15) gives a roughly linear dependence of the approximation error on the amount
of adversarial noise. (b) The first term on the right-hand-side of Equation (3.15) can be upper bounded by directly
applying [28, Theorem 3.3]. (c) On the other hand, the rightmost term in Equation (3.15)—which (roughly)
quantifies the amount of error caused by adversarial noise—requires new analysis. As the first step towards
bounding this term, it will be argued that it suffices to bound each element in the image of hf ;A;supp(y)∪J , where
hf ;A;supp(y)∪J [{(w,w) : w ∈ Sn−1 ∩ Σn

k}] has a finite and easily quantifiable size. Note that this approach will lead
to a uniform bound on the norm of the image of hf ;A;supp(y)∪J at every real-valued point, (x,x), x ∈ Sn−1 ∩ Σn

k .
(d) Finally, such a uniform bound is obtained by bounding the norm of the image of hf ;A;supp(y)∪J at an arbitrary
point (u,u), and subsequently union bounding over a specifically constructed set of such points. Worth noting,
this step will orthogonally decompose hf ;A;supp(y)∪J(u,u) into two components, ïu, hf ;A;supp(y)∪J(u,u)ðu and
hf ;A;supp(y)∪J(u,u)− ïu, hf ;A;supp(y)∪J(u,u)ðu, such that

hf ;A;supp(y)∪J(u,u) = ïu, hf ;A;supp(y)∪J(u,u)ðu+
(

hf ;A;supp(y)∪J(u,u)− ïu, hf ;A;supp(y)∪J(u,u)ðu
)

.

The norm of each of the two components will be individually upper bounded using concentration inequalities for
functions of Gaussians, and subsequently, these bounds will be combined via the triangle inequality,

∥

∥hf ;A;supp(y)∪J(u,u)
∥

∥

2
f
∣

∣ïu, hf ;A;supp(y)∪J(u,u)ð
∣

∣+
∥

∥hf ;A;supp(y)∪J(u,u)− ïu, hf ;A;supp(y)∪J(u,u)ðu
∥

∥

2
,(3.16)

and a union bound.

4 Proof of Theorem 3.1

As discussed in the technical overview (see, Section 3.2), the proof of the main theorem, Theorem 3.1, follows
largely from three intermediate results, which are formalized as Theorem 3.2 —the stochastic result sought in
Step (3.I)—and as Lemmas 4.1 and 4.2 in Section 4.1—the deterministic results sought in Steps (3.II) and (3.III),
respectively. Recall that Theorem 3.2, the main technical contribution, establishes that with high probability
Gaussian measurements satisfy the RAIC under adversarial noise, while Lemmas 4.1 and 4.2 provide a means
to relate the RAIC under adversarial noise to a contraction inequality for the sequence of BIHT approximation
errors, first as a recurrence relation and subsequently in closed-form.
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4.1 Intermediate Results As already mentioned, the following lemmas will facilitate the proof of
Theorem 3.1. The proof of Lemmas 4.1 and Lemma 4.2, can be found in Section D. respectively.

Lemma 4.1. For all x ∈ Sn−1 ∩ Σn
k and t ∈ Z+, the error of the tth BIHT approximation, x̂(t) ∈ Sn−1 ∩ Σn

k , is
bounded from above by

dSn−1(x, x̂(t)) f 4
∥

∥(x− x̂(t−1))− hf ;A;supp(x̂(t))(x, x̂
(t−1))

∥

∥

2
.(4.17)

Lemma 4.2. (cf. [28, Lemma 4.2]) Let c, c1, c2, c3 > 0 be defined as in Equation (2.1), and fix Ä ∈ [0, 1]. Let
µ ∈ (0, 1], and define the function ε : Zg0 → R by the recurrence relation

ε(0) = 2,(4.18a)

ε(t) = 4c1

√

µ

c
ε(t− 1) +

4c2µ

c
, t ∈ Z+.(4.18b)

Then,

lim
t→∞

ε(t) f µ.(4.19)

Moreover, the sequence {ε(t)}t∈Zg0
is point-wise upper bounded by the sequence

{

22
−t

µ1−2−t
}

t∈Zg0

.(4.20)

4.2 Proof of Theorem 3.1

Proof. (Theorem 3.1). The theorem will follow from an argument analogous to that which appeared in [28, proof

of Theorem 3.1 and Corollary 3.2]. By Lemma 4.1, followed by Theorem 3.2, ifm g 4bc
ϵ log

(

(

n
k

)2( n
2k

)(

12b
ϵ

)2k
(

3a
Ä

))

,

then with probability at least 1−Ä, for each x ∈ Sn−1 ∩ Σn
k and t ∈ Zg0, the error of the t

th BIHT approximation
of x is bounded from above by:

dSn−1(x, x̂(t))

f 4
∥

∥(x− x̂(t−1))− hf ;A;supp(x̂(t))(x, x̂
(t−1))

∥

∥

2

▶ by Lemma 4.1

f 4

(

c1

√

ϵ

c
dSn−1(x, x̂(t−1)) +

c2ϵ

c
+ c3
√
ϵÄ + c4Ä

√

log

(

2e

Ä

)

)

▶ by Theorem 3.2

= 4

(

c1

√

ϵ

c
dSn−1(x, x̂(t−1)) +

c2ϵ

c
+

c2r

c

)

▶ by the choice of r =
c

c2

(

c3
√
ϵÄ + c4Ä

√

log

(

2e

Ä

)

)

= 4

(

c1

√

ϵ

c
dSn−1(x, x̂(t−1)) +

c2(ϵ+ r − r)

c
+

c2r

c

)

= 4

(

c1

√

ϵ

c
dSn−1(x, x̂(t−1)) +

c2(ϵ0 − r)

c
+

c2r

c

)

= 4

(

c1

√

ϵ

c
dSn−1(x, x̂(t−1)) +

c2ϵ0
c
− c2r

c
+

c2r

c

)

= 4

(

c1

√

ϵ

c
dSn−1(x, x̂(t−1)) +

c2ϵ0
c

)
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f 4

(

c1

√

ϵ0
c
dSn−1(x, x̂(t−1)) +

c2ϵ0
c

)

f 4c1

√

ϵ0
c
dSn−1(x, x̂(t−1)) +

4c2ϵ0
c

.

In summary, with probability at least 1 − Ä, uniformly for all k-sparse, real-valued unit vectors, x ∈ Sn−1 ∩ Σn
k ,

the following holds for all t ∈ Z+:

dSn−1(x, x̂(t)) f 4c1

√

ϵ0
c
dSn−1(x, x̂(t−1)) +

4c2ϵ0
c

(4.21)

Additionally, trivially, dSn−1(x, x̂(0)) f 2 since

dSn−1(x, x̂(0)) f dSn−1(x,−x) = 2.(4.22)

Next, arbitrarily fixing x ∈ Sn−1 ∩ Σn
k , it will be shown by induction that whenever Equations (4.21) and

(4.22) hold, the sequence of values {ε(t)}t∈Zg0
point-wise upper bounds the sequence {dSn−1(x, x̂(t))}t∈Zg0

. where
ε : Zg0 → R is defined as in Lemma 4.2.

The base case, when t = 0, is trivial since supu,v∈Rn dSn−1(u,v) = 2 = ε(0). Now, arbitrarily fixing t ∈ Z+,

suppose each t′th BIHT approximation, t′ < t, satisfies dSn−1(x, x̂(t′)) f ε(t′). Then, the aim is to show that

dSn−1(x, x̂(t)) f ε(t), where ε(t) = 4c1
√

µ
c ε(t− 1) + 4c2µ

c with the fixing of µ = ϵ0. Observe:

dSn−1(x, x̂(t)) f 4c1

√

ϵ0
c
dSn−1(x, x̂(t−1)) +

4c2ϵ0
c

▶ by Equation (4.21)

f 4c1

√

ϵ0
c
ε(t− 1) +

4c2ϵ0
c

▶ by the inductive assumption

= ε(t)

Said briefly, dSn−1(x, x̂(t)) f ε(t), as claimed. By induction, it follows that for all t ∈ Zg0, the error of the tth

BIHT approximation is bounded from above by dSn−1(x, x̂(t)) f ε(t). Extending this to all other x ∈ Sn−1 ∩ Σn
k

via the earlier discussion, every such sequence of BIHT approximations is point-wise upper bounded by ε with
high probability.

Having verified the above, the theorems follow immediately from Lemma 4.2:

dSn−1(x, x̂(t)) f ε(t) f 22
−t

ϵ1−2−t

0 ,

lim
t→∞

dSn−1(x, x̂(t)) f ϵ0.

This completes the proof of the main theorem, Theorem 3.1.

5 Proof of the Main Technical Theorem (Theorem 3.2)

5.1 Discussion and Preliminaries We begin by introducing and verifying some results that will set us
up for proving the main technical theorem, Theorem 3.2. Throughout Section 5, the function f : Rn → {−1, 1}m
is taken to be any function which upholds: dH(f(w), sign(Aw)) f Äm at every point, w ∈ R

n. Specification of
this condition will be henceforth omitted to avoid redundancy.

First off, the left-hand-side of Equation (3.11) in Theorem 3.2, ∥(x− y)− hf ;A;J(x,y)∥2, is split into two
components (with bounding).

Claim 5.1. For all x,y ∈ R
n and J ¦ [n], the following inequality (deterministically) holds:

∥(x− y)− hf ;A;J(x,y)∥2 f ∥(x− y)− hA;J(x,y)∥2 +
∥

∥hf ;A;supp(y)∪J(x,x)
∥

∥

2
.(5.23)
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Proof. (Claim 5.1). Fix x,y ∈ R
n and J ¦ [n], arbitrarily. Let J ′ ≜ supp(y) ∪ J . The (random) vector

(x− y)− hf ;A;J(x,y) can be rewritten as follows:

(x− y)− hf ;A;J(x,y) =
(

(x− y)− hA;J(x,y)
)

−
(

hf ;A;J(x,y)− hA;J(x,y)
)

,

where the second and fourth terms on the right-hand-side cancel. Additionally, observe:

hf ;A;J(x,y)− hA;J(x,y)

=

√
2Ã

m

m
∑

i=1

Tsupp(x)∪supp(y)∪J(Ai) ·
1

2

(

f(x)i − sign(ïy,Aið)
)

−
√
2Ã

m

m
∑

i=1

Tsupp(x)∪supp(y)∪J(Ai) ·
1

2

(

sign(ïx,Aið)− sign(ïy,Aið)
)

=

√
2Ã

m

m
∑

i=1

Tsupp(x)∪supp(y)∪J(Ai) ·
1

2

(

(

f(x)i − sign(ïy,Aið)
)

−
(

sign(ïx,Aið)− sign(ïy,Aið)
)

)

=

√
2Ã

m

m
∑

i=1

Tsupp(x)∪supp(y)∪J(Ai) ·
1

2

(

f(x)i − sign(ïx,Aið)
)

= hf ;A;J ′(x,x)

Thus, combining above work:

(x− y)− hf ;A;J(x,y) =
(

(x− y)− hA;J(x,y)
)

−
(

hf ;A;J(x,y)− hA;J(x,y)
)

=
(

(x− y)− hA;J(x,y)
)

− hf ;A;J ′(x,x).

Then, the norm is upper bounded as follows:

∥(x− y)− hf ;A;J(x,y)∥2 =
∥

∥

(

(x− y)− hA;J(x,y)
)

− hf ;A;J ′(x,x)
∥

∥

2

f ∥(x− y)− hA;J(x,y)∥2 + ∥hf ;A;J ′(x,x)∥2
where the bottom line applies the triangle inequality.

As in the the proof of Claim 5.1, write J ′ ≜ supp(y) ∪ J . For convenience, this notation will be used
throughout the remainder of this manuscript. Note that |J ′| f 2k by design. Equation (5.23) of Claim 5.1
decomposes (with bounding) the random variable of interest, ∥(x− y)− hf ;A;J(x,y)∥2, into two terms which
are individually easier to control. The majority of the argument for Theorem 3.2 is towards a uniform
upper bound on the latter term of this decomposition, D2;J ′(x,x) ≜ ∥hf ;A;J′(x,x)∥2. This second term,
D2;J ′(x,x), requires new analysis, which takes up Section 5.1.1 and Appendices A-B. On the other hand, the

first term, D1;J(x,x) ≜ ∥(x− y)− hA;J(x,y)∥2, is immediately upper bounded with high probability for all
x,y ∈ Sn−1 ∩ Σn

k and for each J ¦ [n], |J | f k, via [28, Theorem 3.3], stated below.

Lemma 5.1. ([28, Theorem 3.3]) Fix ϵ′, Ä′ ∈ (0, 1), k,m, n ∈ Z+, such that

m g b

ϵ′
log

(

(

n

k

)2(
n

2k

)(

12b

ϵ′

)2k(
a

Ä′

)

)

.(5.24)

Then, uniformly with probability at least 1 − Ä′, the Gaussian measurement matrix A ∈ R
m×n satisfies the

(k, n, ϵ′, c1, c2)-RAIC:

∥

∥(x− y)− hA;J(x,y)
∥

∥

2
f c1

√

ϵ′dSn−1(x,y) + c2ϵ
′(5.25)

for all x,y ∈ Sn−1 ∩ Σn
k and all J ¦ [n], |J | f k.

Next, we turn our attention to the random variable D2;J ′(x,x).
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5.1.1 Discussion Regarding D2;J′(x,x) The derivation of an upper bound on the random variable,
D2;J ′(x,x) = ∥hf ;A;J′(x,x)∥2, will entirely ignore the specification of the vector x. Rather, by the definition of
hf ;A;J ′ ,

hf ;A;J ′(u,u) =

√
2Ã

m

m
∑

i=1

Tsupp(u)∪J ′(Ai) ·
1

2

(

f(u)i − sign(ïu,Aið)
)

=

√
2Ã

m

m
∑

i=1

Tsupp(u)∪J ′(Ai) ·
1

2

(

f(u)− sign(Au)
)

i

where u ∈ R
n. The only dependence of hf ;A;J ′(u,u) on the preimage, (u,u), is captured in the expression:

1
2 (f(u) − sign(Au)). In particular, taking f ∈ FA, note that 1

2 (f(u) − sign(Au)) ∈ {z ∈ {−1, 0, 1}m : 1 f
∥z∥0 f Äm} for all u ∈ R

n. All other terms in the definition of hf ;A;J′ are fixed across all u ∈ R
n. Thus, upon

fixing the set of Gaussian vectors, A1, . . . ,Am, for each J ′ ¦ [n], |J ′| f 2k, the image of the function hf ;A;J′ has
finite cardinality no more than:

∣

∣hf ;A;J′

[

{(w,w) : w ∈ Sn−1 ∩ Σn
k}
]∣

∣ f
Äm
∑

ℓ=1

(

m

ℓ

)

2ℓ.

Additionally, recall that earlier we took J ′ = supp(y) ∪ J , where in the case of D2;J′(x,x), the only way that y
comes into play is in regard to its support. Later on, we will union bound over all possible coordinate subsets
which can form supp(y) ∪ J—i.e., all J ′ ¦ [n], |J ′| f 2k. Hence, in effect, we can consider J ′ to be an arbitrary
coordinate subset of cardinality at most 2k, as we will proceed with throughout this discussion and in the formal
proof of the bound on D2;J ′(x,x) (i.e., Section 5.1.1 and Appendices A-C). It therefore suffices to enumerate each
of the up to

∑Äm
ℓ=1

(

m
ℓ

)

2ℓ-many vectors comprising hf ;A;J ′

[

{(w,w) : w ∈ Sn−1 ∩ Σn
k}
]

and bound their norms for
each choice of J ′ ¦ [n], |J ′| f 2k. With this motivation, construct a collection of sets, UJ ′ ¦ Sn−1 ∩ Σn

k , J
′ ¦ [n],

by inserting precisely one vector, u ∈ Sn−1 ∩ Σn
k , into UJ ′ for each vector z ∈ hf ;A;J ′

[

{(w,w) : w ∈ Sn−1 ∩ Σn
k}
]

such that hf ;A;J ′(u,u) = z. Note that |UJ ′ | =∑Äm
ℓ=1

(

m
ℓ

)

2ℓ by design. With this construction, the above discussion
is formalized and verified in the following claim and its proof.

Claim 5.2. Fix µ g 0. Suppose for all J ′ ¦ [n], |J ′| f 2k, and u ∈ UJ ′ , the norm of hf ;A;J ′(u,u) is bounded
from above by: ∥hf ;A;J′(u,u)∥2 f µ. Then, uniformly for all x ∈ Sn−1 ∩ Σn

k and for all J ′ ¦ [n], |J ′| f 2k, the
same bound holds at (x,x): ∥hf ;A;J ′(x,x)∥2 f µ.

Proof. (Claim 5.2). Suppose for the sake of contradiction that ∥hf ;A;J ′(u,u)∥2 f µ for each J ′ ¦ [n], |J ′| f 2k,
and u ∈ UJ′ , but there exists J0 ¦ [n], |J0| f 2k, and x ∈ Sn−1 ∩ Σn

k , for which ∥hf ;A;J0(x,x)∥2 > µ.
Denote the image of (x,x) under hf ;A;J0

by z = hf ;A;J0
(x,x), where by assumption, ∥z∥2 > µ, and let

W = {w ∈ Sn−1 ∩ Σn
k : hf ;A;J0

(w,w) = z}. Then, by the construction of the set UJ0
, it must be that

|UJ0
∩W| = 1, which implies that there exists u ∈ UJ0

for which ∥hf ;A;J′(u,u)∥2 = ∥z∥2 > µ—a contradiction.
By this contradiction, the claim holds.

Due Claim 5.2, the proof of Theorem 3.2 will seek to bound ∥hf ;A;J ′(u,u)∥2 from above for all J ′ ¦ [n],
|J ′| f 2k, and u ∈ UJ ′ . Specifically, Lemma 5.2 controls this random variable, D2;J′(u,u) = ∥hf ;A;J ′(u,u)∥2,
uniformly for every J ′ ¦ [n], |J ′| f 2k, and u ∈ UJ ′ .

Lemma 5.2. Let m ∈ Z+ satisfy

m g b

¶
log

(

(

n

k

)2(
n

2k

)(

12b

¶

)2k(
3a

Ä

)

)

= O

(

k

¶
log
( n

¶k

)

+
1

¶
log

(

1

Ä

))

.

With probability at least 1− 2Ä
3 , uniformly for all J ′ ¦ [n], |J ′| f 2k, and u ∈ UJ ′ ,

D2;J ′(u,u) f (12 +
√
3)

√

Ã¶Ä

b
+
(

2 + 4
√
Ã
)

Ä

√

log

(

2e

Ä

)

= c3
√
¶Ä + c4Ä

√

log

(

2e

Ä

)

.(5.26)
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The proof of the lemma is deferred to Appendices A-C. Next, Theorem 3.2 is proved, contingent on the proof
of Lemma 5.2.

Proof. (Theorem 3.2). Fix m = b
¶ log

(

(

n
k

)2( n
2k

)

( 12b¶ )2k( 3aÄ )
)

. Due to Claim 5.1, for every x,y ∈ R
n and every

J ¦ [n],

∥(x− y)− hf ;A;J(x,y)∥2 f ∥(x− y)− hA;J(x,y)∥2 +
∥

∥hf ;A;supp(y)∪J(x,x)
∥

∥

2

By Lemma 5.1 ([28, Theorem 3.3]), with probability at least 1− Ä
3 , uniformly for all x,y ∈ Sn−1 ∩ Σn

k and J ¦ [n],
|J | f k,

∥(x− y)− hA;J(x,y)∥2 f c1
√

¶dSn−1(x,y) + c2¶,

where c1, c2 > 0 are universal constants as defined in Equation (2.1). Additionally, by Lemma 5.2, with probability
at least 1− 2Ä

3 , uniformly for all J ¦ [n], |J | f k, and u ∈ UJ ,

∥

∥hf ;A;supp(y)∪J(u,u)
∥

∥

2
f (12 +

√
3)

√

Ã¶Ä

b
+
(

2 + 4
√
Ã
)

Ä

√

log

(

2e

Ä

)

= c3
√
¶Ä + c4Ä

√

log

(

2e

Ä

)

.

Recalling Claim 5.2, it follows that with the same probability, the same bound on
∥

∥hf ;A;supp(y)∪J(x,x)
∥

∥

2
holds

uniformly over all x,y ∈ Sn−1 ∩ Σn
k and all choices of J ¦ [n], such that |supp(y)∪J | f 2k. Combining the above

bounds on ∥(x− y)− hA;J(x,y)∥2 and
∥

∥hf ;A;supp(y)∪J(x,x)
∥

∥

2
via a union bound, and applying Claim 5.1, the

desired upper bound follows: with probability at least 1 − Ä
3 − 2Ä

3 = 1 − Ä, uniformly for all x,y ∈ Sn−1 ∩ Σn
k ,

J ¦ [n], |J | f k:

∥(x− y)− hf ;A;J(x,y)∥2 f ∥(x− y)− hA;J(x,y)∥2 +
∥

∥hf ;A;supp(y)∪J(x,x)
∥

∥

2

f c1
√

¶dSn−1(x,y) + c2¶ + (12 +
√
3)

√

Ã¶Ä

b
+
(

2 + 4
√
Ã
)

Ä

√

log

(

2e

Ä

)

= c1
√

¶dSn−1(x,y) + c2¶ + c3
√
¶Ä + c4Ä

√

log

(

2e

Ä

)

where c1, c2, c3, c4 > 0 are universal constants specified in Equation (2.1).
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A Analysis for D2;J ′(u,u)

Appendices A-C contain the analysis to bound the random variable D2;J ′(u,u) ≜ ∥hf ;A;J ′(u,u)∥2 from above,
as per Lemma 5.2. Appendix A orthogonally decomposes the random vector hf ;A;J ′(u,u) into two components
and upper bounds the norm of each. The derivations of these bounds largely rely on tailored concentration
inequalities, whose proofs constitute Appendix C. The lemma that we ultimately seek, Lemma 5.2, is established
in Appendix B by combining the results proved in Appendix A.

A.1 An Orthogonal Decomposition To control the random variable D2;J ′(u,u) ≜ ∥hf ;A;J ′(u,u)∥2,
we begin by orthogonally decomposing the random vector hf ;A;J ′(u,u) into two components: ïu, hf ;A;J ′(u,u)ðu
and hf ;A;J ′(u,u)− ïu, hf ;A;J′(u,u)ðu, where

hf ;A;J ′(u,u) = ïu, hf ;A;J ′(u,u)ðu+
(

hf ;A;J′(u,u)− ïu, hf ;A;J ′(u,u)ðu
)

.(A.1)

As such, define the random variables, D′
1;J ′(u,u) and D′

2;J ′(u,u), by

D′
1;J′(u,u) = |ïu, hf ;A;J ′(u,u)ð|,(A.2)
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D′
2;J′(u,u) = ∥hf ;A;J ′(u,u)− ïu, hf ;A;J ′(u,u)ðu∥2.(A.3)

We make use of this decomposition and these random variables in the following claim.

Claim A.1. For any J ′ ¦ [n] and u ∈ R
n,

D2;J ′(u,u) f D′
1;J ′(u,u) +D′

2;J ′(u,u).(A.4)

Proof. (Claim A.1). The claim directly follows from the orthogonal decomposition discussed above and the
triangle inequality:

D2;J ′(u,u) = ∥hf ;A;J ′(u,u)∥2
▶ by the definition of the random variable D2;J ′(u,u)

=
∥

∥ïu, hf ;A;J ′(u,u)ðu+
(

hf ;A;J ′(u,u)− ïu, hf ;A;J′(u,u)ðu
)
∥

∥

2

▶ by Equation (A.1)

f ∥ïu, hf ;A;J ′(u,u)ðu∥2 + ∥hf ;A;J ′(u,u)− ïu, hf ;A;J ′(u,u)ðu∥2
▶ by the triangle inequality

f |ïu, hf ;A;J ′(u,u)ð|∥u∥2 + ∥hf ;A;J ′(u,u)− ïu, hf ;A;J ′(u,u)ðu∥2
▶ due to the homogeneity of norms

f |ïu, hf ;A;J ′(u,u)ð|+ ∥hf ;A;J ′(u,u)− ïu, hf ;A;J ′(u,u)ðu∥2
▶ 7 ∥u∥2 = 1

= D′
1;J ′(u,u) +D′

2;J ′(u,u)

▶ by the definitions of the random variables D′
1;J ′(u,u), D′

2;J ′(u,u)

Therefore, D2;J ′(u,u) f D′
1;J ′(u,u) +D′

2;J ′(u,u), completing the proof of the claim.

Due to Claim A.1, above, D2;J′(u,u) can be upper bounded by individually bounding D′
1;J ′(u,u) and

D′
2;J ′(u,u), which are simpler to handle than directly characterizing D2;J ′(u,u). Such bounds are obtained

in Appendices A.3 and A.4, respectively. These results will lead to the proof of Lemma 5.2 in Appendix B, which
formally upper bounds D2;J ′(u,u).

A.2 Concentration Inequalities for the Orthogonal Decomposition Before the random variables,
D′

1;J ′(u,u) and D′
2;J′(u,u), are bounded, two concentration inequalities are stated below as Lemmas A.1 and A.2

to facilitate the analysis. The proofs of these lemmas are deferred to Appendix C.

Lemma A.1. Fix t > 0, ℓ ∈ Z+. Let Z = {Z1, . . . ,Zℓ ∼ N (0, In)} be a collection of ℓ i.i.d. Gaussian vectors,
and fix a k-sparse, real-valued unit vector, u ∈ Sn−1 ∩ Σn

k , and a coordinate subset, J ′′ ¦ [n], Define the random
variables

Xi ≜
〈

u, Tsupp(u)∪J ′′(Zi sign(ïu,Zið))
〉

,

for i ∈ [ℓ], and write their sum as

X̄ ≜

ℓ
∑

i=1

Xi =

〈

u,

ℓ
∑

i=1

Tsupp(u)∪J′′(Zi sign(ïu,Zið))
〉

.

The concentration and mean of the random variable X̄ are such that

Pr

(

X̄ >

(

√

2

Ã
+ t

)

ℓ

)

f e−
1
2 ℓt

2

.(A.5)

Additionally, for each i ∈ [ℓ], there is an equivalence: |Xi| = Xi.
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Lemma A.2. Fix t > 0, ℓ ∈ Z+. Let Z = {Z1, . . . ,Zℓ ∼ N (0, In)} be a collection of ℓ i.i.d. Gaussian vectors, and
fix a k-sparse, real-valued unit vector, u ∈ Sn−1 ∩ Σn

k , and a coordinate subset, J ′′ ¦ [n]. Write k′ ≜ |supp(u)∪J ′′|.
Define the random vector

Ȳu =

ℓ
∑

i=1

(

Tsupp(u)∪J ′′(Zi sign(ïu,Zið))− ïu, Tsupp(u)∪J ′′(Zi sign(ïu,Zið))ðu
)

.

The concentration and mean of the random variable representing its norm, ∥Ȳu∥2, are such that

Pr

(

∥

∥Ȳu

∥

∥

2
>

√

(k′ − 1)ℓ

2
+ ℓt

)

f e−
1
2 ℓt

2

.(A.6)

A.3 Bounding D′
1;J′(u,u) ≜ |ïu, hf ;A;J ′(u,u)ð| Having introduced the concentration inequalities in

Appendix A.2, we are ready to bound the random variables D′
1;J ′(u,u) ≜ |ïu, hf ;A;J ′(u,u)ð| and D′

2;J ′(u,u) ≜
∥hf ;A;J ′(u,u) − ïu, hf ;A;J ′(u,u)ðu∥2. To start off, the random variable D′

1;J ′(u,u) is bounded from above per
the following lemma.

Lemma A.3. Let a, b > 0 be the universal constants specified in Equation (2.1), and fix Ä ∈ (0, 1]. Suppose

m g b

¶
log

(

(

n

k

)2(
n

2k

)(

12b

¶

)2k(
3a

Ä

)

)

= O

(

k

¶
log
( n

¶k

)

+
1

¶
log

(

1

Ä

))

.

Then, with probability at least 1− Ä
3 , uniformly for all J ′ ¦ [n], |J ′| f 2k, and u ∈ UJ ′ ,

D′
1;J ′(u,u) f 2ℓ

m
+

√
2Ãℓt

m
(A.7)

where

ℓ f Äm,(A.8)

t =

√

2

ℓ
log

(

2 · 2ℓ
(

m

ℓ

)(

n

2k

)

3Äm

Ä

)

.(A.9)

Proof. (Lemma A.3). First, expanding out and rewriting the expression for hf ;A;J ′ yields:

hf ;A;J ′(u,u) = −
√
2Ã

m

m
∑

i=1

Tsupp(u)∪J ′(Ai sign(ïu,Aið)) · I(f(u)i ̸= sign(ïu,Aið))

▶ by Equation (3.9a) in Section 3.1

= −
√
2Ã

m

∑

i∈I

Tsupp(u)∪J ′(Ai sign(ïu,Aið))

▶ per the remark below

where I ¦ [m] indexes the sign-mismatches:

I ≜ {i ∈ [m] : f(u)i ̸= sign(ïu,Aið)} ≡ {i ∈ [m] : I(f(u)i ̸= sign(ïu,Aið)) ̸= 0}.

Note that the assumption on f stated at the beginning of Appendix 5—that the number of corrupted responses
is bounded—ensures that |I| f Äm. Fix ℓ = |I| f Äm, and without loss of generality, assume I = [ℓ]. Under this
assumption, the above derivation implies:

hf ;A;J ′(u,u) = −
√
2Ã

m

ℓ
∑

i=1

Tsupp(u)∪J ′(Ai sign(ïu,Aið)),
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or equivalently,

−hf ;A;J ′(u,u) =

√
2Ã

m

ℓ
∑

i=1

Tsupp(u)∪J ′(Ai sign(ïu,Aið)).

Now, define the random variables

Xi ≜
〈

u, Tsupp(u)∪J ′(Ai sign(ïu,Aið))
〉

, i ∈ [ℓ],

and let X̄ ≜
∑ℓ

i=1 Xi. Note that by Lemma A.1, |Xi| = Xi for each i ∈ [ℓ], and thus, |X̄| = X̄, as shown in the
following brief derivation:

|X̄| =
∣

∣

∣

∣

∣

ℓ
∑

i=1

Xi

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

ℓ
∑

i=1

|Xi|
∣

∣

∣

∣

∣

=

ℓ
∑

i=1

|Xi| =
ℓ
∑

i=1

Xi = X̄.

Since |X̄| = X̄, any bound that holds for X̄ must also hold for |X̄|. Hence, this proof will focus on upper
bounding the value taken by X̄, rather that directly characterizing |X̄|. Using the notation of these random
variables, observe:

ïu,−hf ;A;J ′(u,u)ð =
〈

u,

√
2Ã

m

ℓ
∑

i=1

Tsupp(u)∪J ′(Ai sign(ïu,Aið))
〉

=

√
2Ã

m

ℓ
∑

i=1

〈

u, Tsupp(u)∪J ′(Ai sign(ïu,Aið))
〉

=

√
2Ã

m

ℓ
∑

i=1

Xi

=

√
2Ã

m
X̄.

Note that by the above observations,

ïu,−hf ;A;J ′(u,u)ð =
√
2Ã

m
X̄ =

√
2Ã

m

∣

∣X̄
∣

∣ =

∣

∣

∣

∣

∣

√
2Ã

m
X̄

∣

∣

∣

∣

∣

g 0,

and therefore, |ïu,−hf ;A;J ′(u,u)ð| = ïu,−hf ;A;J ′(u,u)ð. Due to Lemma A.1, the random variable X̄ is bounded
from above by

X̄ f E[X̄] + ℓt f
√

2

Ã
ℓ+ ℓt =

(

√

2

Ã
+ t

)

ℓ

with probability at least 1− e−
1
2 ℓt

2

. Take

t =

√

2

ℓ
log

(

2 · 2ℓ
(

m

ℓ

)(

n

2k

)

3Äm

Ä

)

.

Then, the desired bound follows:

|ïu, hf ;A;J ′(u,u)ð| = |−ïu, hf ;A;J ′(u,u)ð|
= |ïu,−hf ;A;J ′(u,u)ð|
= ïu,−hf ;A;J ′(u,u)ð

=

√
2Ã

m
X̄
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f
√
2Ã

m

(

√

2

Ã
+ t

)

ℓ

=
2ℓ

m
+

√
2Ãℓt

m
.

This inequality holds for any single choice of J ′ ¦ [n], |J ′| f 2k, and u ∈ UJ ′ with probability at least

1− e−
1
2 ℓt

2

= 1−
Ä

3Äm

2 · 2ℓ
(

m
ℓ

)(

n
2k

) ,

and by a union bound, the above inequality holds uniformly for every J ′ ¦ [n], |J ′| f 2k, u ∈ UJ ′ , and ℓ ∈ [Äm]
with probability at least

1−
Äm
∑

ℓ=1

2 · 2ℓ
(

m

ℓ

)(

n

2k

)

e−
1
2 ℓt

2

= 1−
Äm
∑

ℓ=1

2 · 2ℓ
(

m

ℓ

)(

n

2k

) Ä
3Äm

2 · 2ℓ
(

m
ℓ

)(

n
2k

)

= 1−
Äm
∑

ℓ=1

Ä

3Äm

= 1− Äm · Ä

3Äm

= 1− Ä

3
.

Thus, Lemma A.3 is proved.

A.4 Bounding D′
2;J ′(u,u) ≜ ∥hf ;A;J ′(u,u)−ïu, hf ;A;J ′(u,u)ðu∥2 Next, the second random variable in the

orthogonal decomposition, D′
2;J ′(u,u) ≜ ∥hf ;A;J ′(u,u)− ïu, hf ;A;J ′(u,u)ðu∥2, is upper bounded in Lemma A.4,

laid out below.

Lemma A.4. Fix Ä ∈ (0, 1]. Suppose

m g b

¶
log

(

(

n

k

)2(
n

2k

)(

12b

¶

)2k(
3a

Ä

)

)

= O

(

k

¶
log
( n

¶k

)

+
1

¶
log

(

1

Ä

))

.

Then, with probability at least 1− Ä
3 , uniformly for all J ′ ¦ [n], |J ′| f 2k, and u ∈ UJ ′ ,

D′
2;J ′(u,u) f

√

2Ã(3k − 1)ℓ

m
+

√
2Ãℓt

m
(A.10)

where

ℓ f Äm,(A.11)

t =

√

2

ℓ
log

(

2 · 2ℓ
(

m

ℓ

)(

n

2k

)

3Äm

Ä

)

.(A.12)

Proof. (Lemma A.4). Define the random variables Xi, i ∈ [ℓ], and X̄ =
∑ℓ

i=1 Xi as in the proof of Lemma A.3.

As before, write I ¦ [m], I ≜ {i ∈ [m] : f(u)i ̸= sign(ïu,Aið)}, and let ℓ ≜ |I|, where ℓ = |I| f Äm. Without loss
of generality, once again take I = [ℓ]. As in the proof of Lemma A.3, we have:

hf ;A;J ′(u,u) = −
√
2Ã

m

∑

i∈I

Tsupp(u)∪J ′(Ai sign(ïu,Aið))

= −
√
2Ã

m

ℓ
∑

i=1

Tsupp(u)∪J ′(Ai sign(ïu,Aið))(A.13)
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where the second equality uses the assumption that I = [ℓ]. Recall that due to the linearity of inner products,

ïu, hf ;A;J ′(u,u)ð =
〈

u,−
√
2Ã

m

ℓ
∑

i=1

Tsupp(u)∪J ′(Ai sign(ïu,Aið))
〉

= −
√
2Ã

m

ℓ
∑

i=1

〈

u, Tsupp(u)∪J ′(Ai sign(ïu,Aið))
〉

.(A.14)

Thus, the difference of Equations (A.13) and (A.14) is given by:

hf ;A;J ′(u,u)− ïu, hf ;A;J ′(u,u)ðu

= −
√
2Ã

m

ℓ
∑

i=1

Tsupp(u)∪J ′(Ai sign(ïu,Aið)) +
√
2Ã

m

ℓ
∑

i=1

〈

u, Tsupp(u)∪J ′(Ai sign(ïu,Aið))
〉

u

▶ by expanding the terms via Equations (A.13) and (A.14)

= −
√
2Ã

m

ℓ
∑

i=1

(

Tsupp(u)∪J ′(Ai sign(ïu,Aið))−
〈

u, Tsupp(u)∪J ′(Ai sign(ïu,Aið))
〉

u
)

(A.15)

▶ by combining the summations and factoring out the
√
2Ã
m term.

Taking the norm of the above expression, Equation (A.15), yields the following:

∥hf ;A;J ′(u,u)− ïu, hf ;A;J ′(u,u)ðu∥2

=

∥

∥

∥

∥

∥

−
√
2Ã

m

ℓ
∑

i=1

(

Tsupp(u)∪J ′(Ai sign(ïu,Aið))−
〈

u, Tsupp(u)∪J′(Ai sign(ïu,Aið))
〉

u
)

∥

∥

∥

∥

∥

2

▶ by Equation (A.15)

=

√
2Ã

m

∥

∥

∥

∥

∥

ℓ
∑

i=1

(

Tsupp(u)∪J ′(Ai sign(ïu,Aið))−
〈

u, Tsupp(u)∪J ′(Ai sign(ïu,Aið))
〉

u
)

∥

∥

∥

∥

∥

2

▶ due to the homogeneity of norms

f
√
2Ã

m

(
√

(3k − 1)ℓ

2
+ ℓt

)

▶ by Lemma A.2, setting k′ = |supp(u) ∪ J ′| f 3k

=

√

Ã(3k − 1)ℓ

m
+

√
2Ãℓt

m

▶ by distributing the
√
2Ã
m term

where the second to last expression (the inequality) holds with probability at least 1− e−
1
2 ℓt

2 g 1− Ä
3 .

B Controlling D2;J ′(u,u) ≜ ∥hf ;A;J ′(u,u)∥2
The analysis in Appendices A.3 and A.4 makes possible a straightforward derivation of the upper bound on
D2;J ′(u,u) ≜ ∥hf ;A;J ′(u,u)∥2 as stated in Lemma 5.2, which is proved next.

Proof. (Lemma 5.2). Due to Lemmas A.3 and A.4 and by a union bound over their results, the following
inequalities hold simultaneously for all J ′ ¦ [n], |J ′| f 2k, and u ∈ UJ ′ with probability at least 1 − 2Ä

3 when

m g b
¶ log

(

(

n
k

)2( n
2k

)(

12b
¶

)2k
(

3a
Ä

))

:

D′
1;J ′(u,u) f 2ℓ

m
+

√
2Ãℓt

m
,
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D′
2;J ′(u,u) f

√
2Ãℓt

m
+

√

Ã(3k − 1)ℓ

m
,

where

ℓ f Äm,

t =

√

2

ℓ
log

(

2 · 2ℓ
(

m

ℓ

)(

n

2k

)

3Äm

Ä

)

.

Observe:

ℓt = ℓ

√

2

ℓ
log

(

2 · 2ℓ
(

m

ℓ

)(

n

2k

)

3Äm

Ä

)

=

√

2ℓlog

(

2 · 2ℓ
(

m

ℓ

)(

n

2k

)

3Äm

Ä

)

f
√

2Ämlog

(

2 · 2Äm
(

m

Äm

)(

n

2k

)

3Äm

Ä

)

▶ 7 ℓ f Äm

=

√

2Ämlog

(

2Äm
(

m

Äm

))

+ 2Ämlog

(

n

2k

)

+ 2Ämlog

(

3Äm

Ä

)

+ 2Ämlog(2)

f
√

2(Äm)2log

(

2e

Ä

)

+ 2Ämlog

(

n

2k

)

+ 2Ämlog

(

3Äm

Ä

)

+ 2Ämlog(2)

▶ 7 2Äm
(

m

Äm

)

f 2Äm
( em

Äm

)Äm

= 2Äm
( e

Ä

)Äm

=

(

2e

Ä

)Äm

f
√

2(Äm)2log

(

2e

Ä

)

+

√

2Ämlog

(

n

2k

)

+

√

2Ämlog

(

3Äm

Ä

)

+
√

2Ämlog(2)

▶ by the triangle inequality

=

√

2(Äm)2log

(

2e

Ä

)

+

√

2Äm2log
(

n
2k

)

m
+

√

2Äm2log( 3ÄmÄ )

m
+

√

2Äm2log(2)

m

▶ by multiplying each of the last three terms by

√

m

m

= Äm

√

2log

(

2e

Ä

)

+m

√

2Ä log
(

n
2k

)

m
+m

√

2Ä log( 3ÄmÄ )

m
+m

√

2Ä log(2)

m

= Äm

√

2log

(

2e

Ä

)

+m

√

2¶Ä log
(

n
2k

)

¶m
+m

√

2¶Ä log( 3ÄmÄ )

¶m
+m

√

2¶Ä log(2)

¶m

▶ by multiplying each of the last three terms by

√

¶

¶

f Äm

√

2log

(

2e

Ä

)

+m

√

2¶Ä

b
+m

√

2¶Ä

b
+m

√

2¶Ä

b

▶ 7 ¶m g bmax

{

log

(

n

2k

)

, log

(

3Äm

Ä

)

, log(2)

}

,

where b > 0 is a universal constant specified in Equation (2.1)
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= Äm

√

2log

(

2e

Ä

)

+ 3m

√

2¶Ä

b

= m

(

Ä

√

2log

(

2e

Ä

)

+ 3

√

2¶Ä

b

)

.

Then, dividing the above expressions by m, it follows that

ℓt

m
f Ä

√

2log

(

2e

Ä

)

+ 3

√

2¶Ä

b
.(B.16)

Additionally, note that

ℓ

m
f Äm

m
= Ä,(B.17)

√

Ã(3k − 1)ℓ

m
f
√

Ã(3k − 1)Äm

m
=

√

Ã(3k − 1)Ä

m
f
√

Ã(3k − 1)¶Ä

bk
f
√

3Ã¶Ä

b
.(B.18)

Combining the above results yields the following upper bound:

2ℓ

m
+

2
√
2Ãℓt

m
+

√

Ã(3k − 1)ℓ

m
f 2Ä + 2

√
2Ã · Ä

√

2log

(

2e

Ä

)

+ 2
√
2Ã · 3

√

2¶Ä

b
+

√

3Ã¶Ä

b

▶ due to Equations (B.16)-(B.18)

= 2Ä + 4
√
Ã · Ä

√

log

(

2e

Ä

)

+ 12

√

Ã¶Ä

b
+
√
3 ·
√

Ã¶Ä

b

= 2Ä + 4
√
Ã · Ä

√

log

(

2e

Ä

)

+ 13

√

Ã¶Ä

b

f 2Ä

√

log

(

2e

Ä

)

+ 4
√
Ã · Ä

√

log

(

2e

Ä

)

+ (12 +
√
3)

√

Ã¶Ä

b

▶ 7 Ä f Ä

√

log

(

2e

Ä

)

for Ä ∈ (0, 1]

=
(

2 + 4
√
Ã
)

Ä

√

log

(

2e

Ä

)

+ (12 +
√
3)

√

Ã¶Ä

b

= (12 +
√
3)

√

Ã¶Ä

b
+
(

2 + 4
√
Ã
)

Ä

√

log

(

2e

Ä

)

.(B.19)

Therefore, by Claim A.1 and an earlier remark, with probability at least 1− 2Ä
3 , uniformly for all J ′ ¦ [n], |J ′| f k,

and u ∈ UJ ′ , D2;J ′(u,u) is bounded from above as follows:

D2;J′(u,u) f D′
1;J ′(u,u) +D′

2;J′(u,u)

▶ by Claim A.1

f
(

2ℓ

m
+

√
2Ãℓt

m

)

+

(√
2Ãℓt

m
+

√

Ã(3k − 1)ℓ

m

)

▶ by Lemmas A.3 and A.4

=
2ℓ

m
+

2
√
2Ãℓt

m
+

√

Ã(3k − 1)ℓ

m
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f (12 +
√
3)

√

Ã¶Ä

b
+
(

2 + 4
√
Ã
)

Ä

√

log

(

2e

Ä

)

▶ by Equation (B.19)

= c3
√
¶Ä + c4Ä

√

log

(

2e

Ä

)

▶ due to an appropriate choice of the universal constants,

c3, c4 > 0, as defined in Equation (2.1)

which completes the proof.

C Proofs of the Concentration Inequalities – Lemmas A.1 and A.2

Before tackling Lemmas A.1 and A.2, the following four intermediate results—Lemmas C.1-C.4—are stated and
derived to facilitate their proofs.

Lemma C.1. Fix a k-sparse, real-valued unit vector, u ∈ Sn−1 ∩ Σn
k , and let J ′′ ¦ [n]. Let Z ∼ N (0, In) be a

Gaussian vector with i.i.d. entries. Define the random variable Xu by

Xu = ïu, Tsupp(u)∪J ′′(Z sign(ïu,Zð))ð.

Then, Xu = |ïu,Zð| = |Xu|, and E[Xu] =
√

2
Ã .

Lemma C.2. Fix u,v ∈ Sn−1 ∩ Σn
k and J ′′ ¦ [n], where supp(v) ¦ supp(u) ∪ J ′′. Let

Yu,v =
〈

v, Tsupp(u)∪J ′′(Z sign(ïu,Zð))− ïu, Tsupp(u)∪J ′′(Z sign(ïu,Zð))ðu
〉

.

Then, Yu,v ∼ N (0, 1).

Lemma C.3. Fix ℓ ∈ Z+, u ∈ Sn−1 ∩ Σn
k , and J ′′ ¦ [n], and write k′ ≜ |supp(u) ∪ J ′′|. Let

Ȳu =

ℓ
∑

i=1

(

Tsupp(u)∪J ′′(Z sign(ïu,Zð))− ïu, Tsupp(u)∪J ′′(Z sign(ïu,Zð))ðu
)

and let W ∼ N (0, ℓIk′−1). Then, ∥Yu∥2 ∼ ∥W∥2.

Lemma C.4. Fix d ∈ Z+, and let W ∼ N (0, Ã2Id) be a Gaussian random vector with i.i.d. entries. Then,

Pr

(

∥W∥2 > Ã

√

d

2
+ Ã2t

)

f e−
1
2Ã

2t2 .(C.20)

Proof. (Lemma C.1). Fix ℓ ∈ Z+, u ∈ Sn−1 ∩ Σn
k , and J ′′ ¦ [n] arbitrarily, and taking Z ∼ N (0, In), let

Xu = ïu, Tsupp(u)∪J′′(Z sign(ïu,Zð))ð. To start off, the relation, supp(u) ¦ supp(u) ∪ J ′′, motivates the following
claim.

Claim C.1. Let u,v ∈ Sn−1 ∩ Σn
k (not necessarily distinct) and J ′′ ¦ [n], such that supp(v) ¦ supp(u) ∪ J ′′.

Then, for any z ∈ R
n and J ′′ ¦ [n], there is an equality:

ïv, zð = ïv, Tsupp(u)∪J ′′(z)ð = ïTsupp(u)∪J′′(v), Tsupp(u)∪J ′′(z)ð.

Proof. (Claim C.1). The first equality in this claim is simple to verify:

ïv, Tsupp(u)∪J ′′(z)ð

=

n
∑

j=1

vjTsupp(u)∪J ′′(z)j
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=
∑

j∈supp(v)∩supp(Tsupp(u)∪J′′ (z))

vjTsupp(u)∪J′′(z)j +
∑

j∈[n]\(supp(v)∩supp(Tsupp(u)∪J′′ (z)))

vjTsupp(u)∪J ′′(z)j

=
∑

j∈supp(v)∩(supp(u)∪J ′′)

vjTsupp(u)∪J ′′(z)j +
∑

j∈[n]\(supp(v)∩(supp(u)∪J ′′))

vjTsupp(u)∪J ′′(z)j

=
∑

j∈supp(v)

vjTsupp(u)∪J′′(z)j +
∑

j∈[n]\supp(v)
vjTsupp(u)∪J ′′(z)j

=
∑

j∈supp(v)

vjTsupp(u)∪J ′′(z)j +
∑

j∈[n]\supp(v)
0 · Tsupp(u)∪J ′′(z)j

=
∑

j∈supp(v)

vjzj +
∑

j∈[n]\supp(v)
0 · Tsupp(u)∪J ′′(z)j

=
∑

j∈supp(v)

vjzj +
∑

j∈[n]\supp(v)
0 · zj

=
∑

j∈supp(v)

vjzj +
∑

j∈[n]\supp(v)
vjzj

=

n
∑

j=1

vjzj

= ïv, zð.

Thus, the claim’s first equality holds: ïv, zð = ïv, Tsupp(u)∪J ′′(z)ð. For the second equality of the claim,
note that supp(v) ¦ supp(u) ∪ J ′′ implies that Tsupp(u)∪J ′′(v) = v, and therefore, ïv, Tsupp(u)∪J ′′(z)ð =
ïTsupp(u)∪J′′(v), Tsupp(u)∪J ′′(z)ð,

Thus, the random variable Xu is equivalently given by

Xu = ïu, Tsupp(u)∪J ′′(Z sign(ïu,Zð))ð
= ïu,Z sign(ïu,Zð)ð
= ïu,Zð sign(ïu,Zð)

Note that for any a ∈ R,

a sign(a) = |a|.

Therefore, Xu = ïu,Zð sign(ïu,Zð) = |ïu,Zð| = |Xu|, as claimed. By a well-known property of Gaussians,
ïu,Zð ∼ N (0, 1), and hence, Xu = |ïu,Zð| ∼ |U |, where U ∼ N (0, 1) is a half-normal random variable. Since

Xu ∼ |U |, these two random variables are equal in expectation: E[Xu] = E
[

|U |
]

=
√

2
Ã .

Proof. (Lemma C.2). Fix a pair of orthonormal vectors, u,v ∈ Sn−1 ∩ Σn
k , arbitrarily, and let

Yu,v =
〈

v, Tsupp(u)∪J ′′(Z sign(ïu,Zð))− ïu, Tsupp(u)∪J ′′(Z sign(ïu,Zð))ðu
〉

Observe:

Yu,v =
〈

v, Tsupp(u)∪J ′′(Z sign(ïu,Zð))− ïu, Tsupp(u)∪J ′′(Z sign(ïu,Zð))ðu
〉

=
〈

v, Tsupp(u)∪J ′′(Z sign(ïu,Zð))
〉

−
〈

v, ïu, Tsupp(u)∪J′′(Z sign(ïu,Zð))ðu
〉

▶ by the linearity of inner products

=
〈

v, Tsupp(u)∪J′′(Z sign(ïu,Zð))
〉

− ïu, Tsupp(u)∪J ′′(Z sign(ïu,Zð))ð
〈

v,u
〉

▶ by the linearity of inner products
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=
〈

v, Tsupp(u)∪J ′′(Z sign(ïu,Zð))
〉

− 0

▶ due to the orthogonality of u and v

=
〈

v, Tsupp(u)∪J ′′(Z sign(ïu,Zð))
〉

=
〈

v,Z sign(ïu,Zð)
〉

▶ due to Claim C.1, wherein z = Z sign(ïu,Zð), and since supp(v) ¦ supp(u) ∪ J ′′

= ïv,Zð sign(ïu,Zð)
▶ by the linearity of inner products

The remaining step is to show that ïv,Zð sign(ïu,Zð) ∼ N (0, 1). This can be achieved by a two-step argument:
(a) First, we will argue that ïv,Zð and sign(ïu,Zð) are independent. (b) Then, by standard facts about Gaussians
and due to the independence shown in Step (a), the claim will follow. Starting with Step (a), note that if ïu,Zð
and ïv,Zð are independent, so are sign(ïu,Zð) and ïv,Zð. Therefore, it suffices to establish the independence of
ïu,Zð and ïv,Zð. Write U1 = ïu,Zð and U2 = ïv,Zð. By a well-known fact about Gaussians, U1, U2 ∼ N (0, 1).
Now, consider the joint distribution of

(

U1

U2

)

∼ N
((

0
0

)

,Σ

)

which is a 0-mean bivariate Gaussian with covariance matrix Σ ∈ R
2×2. The goal is to show that Σ = I2. Each

ith diagonal entry, i ∈ {1, 2}, is given by:

Σi,i = Cov(Ui, Ui)

= Var(Ui)

= 1

where the last line follows from the earlier observation that U1, U2 ∼ N (0, 1). On the other hand, each off-diagonal
(i, j)-entry, i, j ∈ {1, 2}, i ̸= j, is obtained as follows. Assuming without loss of generality that i = 1 and j = 2,
the corresponding covariance is 0-valued due to the next derivation:

Σj,i = Σi,j = Cov(Ui, Uj)

= E[UiUj ]− E[Ui]E[Uj ]

= E[UiUj ]

= E[U1U2]

= E[uTZZTv]

= uT
E[ZZT]v

= uT Cov(Z,Z)v

= uTI2v = uTv = cos(¹u,v) = cos
(Ã

2

)

= 0

as said. From the above work, it follows that Σ = I2 and (U1, U2) ∼ N (0, I2). This therefore establishes the
desired independence of U1 = ïu,Zð and U2 = ïv,Zð. The independence of ïv,Zð and sign(ïu,Zð) follows,
completing Step (a).

Proceeding to Step (b), recall that the goal of this step is to show that ïv,Zð sign(ïu,Zð) ∼ N (0, 1).
Note that because ïu,Zð ∼ N (0, 1), the symmetry of the distribution N (0, 1) around its mean (0) leads to
Pr(ïu,Zð < 0) = Pr(ïu,Zð g 0) = 1

2 , and hence Pr(sign(ïu,Zð) = −1) = Pr(sign(ïu,Zð) = 1) = 1
2 . This in

turn implies that ïv,Zð sign(ïu,Zð) ∼ WS, where W ∼ N (0, 1) and S ∼ {−1, 1} are independent. The density

function of W (a univariate Gaussian) is given at w ∈ R by fW (w) = 1√
2Ã

e−
w

2

2 , while the mass function of S

is given at s ∈ {−1, 1} by fS(s) = 1
2 and is otherwise 0-valued. Additionally, f−W (w) = 1√

2Ã
e−

(−w)2

2 . Due to
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the independence of W and S, their joint density function is simply the product of their individual densities:
fW,S(w, s) = fW (w)fS(s). Notice that

(WS |S = s) = (sW |S = s) = sW

where the last equality uses the independence discussed above. The density of WS is then given at z ∈ R by:

fWS(z) = fWS|S=−1(z| − 1)fS(−1) + fWS|S=1(z|1)fS(1)
▶ by the law of total probability

=
1

2
fWS|S=−1(z| − 1) +

1

2
fWS|S=1(z|1)

▶ by the definition of fS

=
1

2
f−W (z) +

1

2
fW (z)

▶ by an earlier remark

=
1

2
· 1√

2Ã
e−

(−z)2

2 +
1

2

1√
2Ã

e−
z
2

2

▶ by the definitions of f−W , fW

=
1

2
· 1√

2Ã
e−

z
2

2 +
1

2
· 1√

2Ã
e−

z
2

2

▶ by squaring the negative term in the first exponent

=
1√
2Ã

e−
z
2

2

▶ by simplification

In short, fWS(z) = 1√
2Ã

e−
z
2

2 , which is precisely the density function of a standard normal random variable,

N (0, 1). Therefore, ïv,Zð sign(ïu,Zð) ∼ WS ∼ N (0, 1). This completes Step (b). Moreover, combined with an
earlier argument, it follows that Yu,v = ïv,Zð sign(ïu,Zð) ∼ N (0, 1), as the lemma claimed.

Proof. (Lemma C.3). Fix u ∈ Sn−1 ∩ Σn
k and J ′′ ¦ [n] arbitrarily, where k′ = |supp(u) ∪ J ′′|, and let

W ∼ N (0, ℓIk′−1). Define

Ȳu =

ℓ
∑

i=1

(

Tsupp(u)∪J ′′(Zi sign(ïu,Zið))− ïu, Tsupp(u)∪J ′′(Zi sign(ïu,Zið))ðu
)

and note that since sign(ïu,Zið) ∈ {−1, 1} is a scalar,

Ȳu =

ℓ
∑

i=1

(

Tsupp(u)∪J ′′(Zi sign(ïu,Zið))− ïu, Tsupp(u)∪J ′′(Zi sign(ïu,Zið))ðu
)

=
ℓ
∑

i=1

(

Tsupp(u)∪J ′′(Zi) sign(ïu,Zið)− ïu, Tsupp(u)∪J′′(Zi) sign(ïu,Zið)ðu
)

=

ℓ
∑

i=1

(

Tsupp(u)∪J ′′(Zi) sign(ïu,Zið)− ïu, Tsupp(u)∪J ′′(Zi)ð sign(ïu,Zið)u
)

Notice that Tsupp(u)∪J ′′(u) = u since supp(u) ¦ supp(u) ∪ J ′′. Additionally, taking v = u = Tsupp(u)∪J′′(u) and
z = Zi in Claim C.1 (see, the proof of Lemma C.1), it follows that

ïu,Zið = ïTsupp(u)∪J ′′(u), Tsupp(u)∪J ′′(Zi sign(ïu,Zið))ð,

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2965

D
o
w

n
lo

ad
ed

 0
7
/2

0
/2

4
 t

o
 2

2
3
.1

7
7
.1

2
3
.1

0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



and thus,

sign(ïu,Zið) = sign
(

ïTsupp(u)∪J′′(u), Tsupp(u)∪J ′′(Zi)ð
)

.

Combining the above arguments now yields:

Ȳu =

ℓ
∑

i=1

(

Tsupp(u)∪J ′′(Zi) sign(ïu,Zið)− ïu, Tsupp(u)∪J ′′(Zi)ð sign(ïu,Zið)u
)

=

ℓ
∑

i=1

(

Tsupp(u)∪J ′′(Zi) sign
(

ïTsupp(u)∪J ′′(u), Tsupp(u)∪J ′′(Zi)ð
)

− ïTsupp(u)∪J ′′(u), Tsupp(u)∪J′′(Zi)ð sign
(

ïTsupp(u)∪J ′′(u), Tsupp(u)∪J ′′(Zi)ð
)

Tsupp(u)∪J ′′(u)
)

=

ℓ
∑

i=1

(

Tsupp(u)∪J ′′(Zi) sign
(

ïu|supp(u)∪J ′′ , Zi|supp(u)∪J′′ð
)

− ïu|supp(u)∪J ′′ , Zi|supp(u)∪J′′ð sign
(

ïu|supp(u)∪J ′′ , Zi|supp(u)∪J ′′ð
)

Tsupp(u)∪J ′′(u)
)

=

ℓ
∑

i=1

Tsupp(u)∪J ′′

(

Zi sign
(

ïu|supp(u)∪J ′′ , Zi|supp(u)∪J ′′ð
)

− ïu|supp(u)∪J ′′ , Zi|supp(u)∪J ′′ð sign
(

ïu|supp(u)∪J ′′ , Zi|supp(u)∪J ′′ð
)

u

)

= Tsupp(u)∪J ′′

(

ℓ
∑

i=1

Zi sign
(

ïu|supp(u)∪J′′ , Zi|supp(u)∪J ′′ð
)

− ïu|supp(u)∪J ′′ , Zi|supp(u)∪J ′′ð sign
(

ïu|supp(u)∪J ′′ , Zi|supp(u)∪J′′ð
)

u

)

The random variable of interest is ∥Ȳu∥2, where, as can be seen from the last expression above,

∥

∥Ȳu

∥

∥

2
=

√

√

√

√

n
∑

j=1

Ȳ 2
u;j

=

√

∑

j∈supp(u)∪J ′′

Ȳ 2
u;j

=
∥

∥

∥
Ȳu

∣

∣

supp(u)∪J ′′

∥

∥

∥

2

=

∥

∥

∥

∥

∥

ℓ
∑

i=1

Zi|supp(u)∪J ′′ sign
(

ïu|supp(u)∪J ′′ , Zi|supp(u)∪J ′′ð
)

− ïu|supp(u)∪J ′′ , Zi|supp(u)∪J ′′ð sign
(

ïu|supp(u)∪J ′′ , Zi|supp(u)∪J ′′ð
)

u|supp(u)∪J ′′

∥

∥

∥

∥

∥

2

Writing k′ ≜ |supp(u)∪J ′′|, note that u|supp(u)∪J′′ ,Zi|supp(u)∪J ′′ ∈ R
k′

are the restriction of the vectors u,Zi ∈ R
n,

respectively, onto the coordinates indexed by supp(u) ∪ J ′′. As a result, the last line above does not depend on
the choice of n, subject to n g k′. Hence, in order to simplify notations in this proof, assume without loss of
generality that n = k′ = |supp(u) ∪ J ′′|. Then, u, Zi, i ∈ [ℓ], and Ȳu are all k′-dimensional, and the definition of
Ȳu can be written as

Ȳu =

ℓ
∑

i=1

(

Zi sign(ïu,Zið)− ïu,Zið sign(ïu,Zið)u
)

.
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Let V = {v1, . . . ,vk′} ¢ R
k′

be an orthonormal basis for Rk′

, where vk′ = u. Then,

Ȳu =

ℓ
∑

i=1

(

Zi sign(ïu,Zið)− ïu,Zið sign(ïu,Zið)u
)

=

ℓ
∑

i=1

(

Zi − ïu,Ziðu
)

sign(ïu,Zið)

▶ by distributivity

=

ℓ
∑

i=1

k′

∑

j=1

〈

vj ,
(

Zi − ïu,Ziðu
)

sign(ïu,Zið)
〉

vj

▶ orthogonal decomposition via the basis V

=

ℓ
∑

i=1

k′

∑

j=1

〈

vj ,Zi − ïu,Ziðu
〉

vj sign(ïu,Zið)

▶ by the linearity of inner products

=
ℓ
∑

i=1

k′

∑

j=1

(

ïvj ,Zið − ïvj , ïu,Ziðuð
)

vj sign(ïu,Zið)

▶ by the linearity of inner products

=

ℓ
∑

i=1

k′−1
∑

j=1

(

ïvj ,Zið − ïvj , ïu,Ziðuð
)

vj sign(ïu,Zið) +
(

ïu,Zið − ïu, ïu,Ziðuð
)

vj sign(ïu,Zið)

▶ by distributivity

=

ℓ
∑

i=1

k′−1
∑

j=1

(

ïvj ,Zið − ïvj , ïu,Ziðuð
)

vj sign(ïu,Zið) +
(

ïu,Zið − ïu,uðïu,Zið
)

vj sign(ïu,Zið)

▶ by the linearity of inner products

=

ℓ
∑

i=1

k′−1
∑

j=1

(

ïvj ,Zið − ïvj , ïu,Ziðuð
)

vj sign(ïu,Zið) +
(

ïu, aZið − ïu,Zið
)

vj sign(ïu,Zið)

▶ 7 ïu,uð = ∥u∥22 = 1

=
ℓ
∑

i=1

k′−1
∑

j=1

(

ïvj ,Zið − ïvj , ïu,Ziðuð
)

vj sign(ïu,Zið) + 0 · vj sign(ïu,Zið)

▶ 7 ïu,Zið − ïu,Zið = 0

=

ℓ
∑

i=1

k′−1
∑

j=1

(

ïvj ,Zið − ïvj , ïu,Ziðuð
)

vj sign(ïu,Zið)

▶ via simplification

=
ℓ
∑

i=1

k′−1
∑

j=1

(

ïvj ,Zið − ïvj ,uðïu,Zið
)

vj sign(ïu,Zið)

▶ by the linearity of inner products

=

ℓ
∑

i=1

k′−1
∑

j=1

ïvj ,Ziðvj sign(ïu,Zið)

▶ 7 vj § vk′ = u when j ̸= k′
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=

k′−1
∑

j=1

ℓ
∑

i=1

ïvj ,Ziðvj sign(ïu,Zið)

▶ the summations can be reordered since they do not have dependencies

=
k′−1
∑

j=1

ℓ
∑

i=1

ïvj ,Zi sign(ïu,Zið)ðvj

▶ by the linearity of inner products

=

k′−1
∑

j=1

vj

〈

vj ,
ℓ
∑

i=1

Zi sign(ïu,Zið)
〉

▶ by the linearity of inner products

Let S1, . . . , Sℓ ∼ {−1, 1} be i.i.d. Rademacher random variables which are also independent of Z1, . . . ,Zℓ. Due to
an argument in the proof of Lemma C.2, Zi sign(ïu,Zið) ∼ ZiSi ∼ Zi ∼ N (0, Ik′), and additionally, the random
vectors, {Zi sign(ïu,Zið)}i∈[ℓ], are mutually independent. Hence,

ℓ
∑

i=1

Zi sign(ïu,Zið) ∼ N (0, ℓIk′−1).

By an argument analogous to that which appeared in the proof of Lemma C.2, the random variables,
{ïvj ,

∑ℓ
i=1 Zi sign(ïu,Zið)ð}j∈[k′−1], are mutually independent, and therefore,

〈

vj ,
ℓ
∑

i=1

Zi sign(ïu,Zið)
〉

∼ Wj ∼ N (0, Ã2 = ℓ),

where the random variables, {Wj}j∈[k′−1], are likewise mutually independent. Using these random variables, the
lemma’s result is obtained as follows:

∥

∥Ȳu

∥

∥

2
=

∥

∥

∥

∥

∥

∥

k′−1
∑

j=1

vj

〈

vj ,

ℓ
∑

i=1

Zi sign(ïu,Zið)
〉

∥

∥

∥

∥

∥

∥

2

=

√

√

√

√

√

k′−1
∑

j=1

〈

vj ,

ℓ
∑

i=1

Zi sign(ïu,Zið)
〉2

∼

√

√

√

√

k′−1
∑

j=1

W 2
j

= ∥W∥2
To summarize, we have now shown that ∥Ȳu∥2 ∼ ∥W∥2, where W ∼ N (0, ℓIk′−1), thus completing the proof of
Lemma C.3.

Proof. (Lemma C.4). Let U ∼ N (0, Id) and W ∼ N (0, Ã2Id). Note that W ∼ ÃU and ∥W∥2 ∼ Ã∥U∥2, and
hence,

E
[

∥W∥2
]

= E
[

∥ÃU∥2
]

= E
[

Ã∥U∥2
]

= Ã E
[

∥U∥2
]

.

It is well-known that ∥U∥2 ∼ Çd, and therefore,

E
[

∥U∥2
]

=
Γ
(

d+1
2

)

Γ
(

d
2

) f
√

d

2
,
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where the inequality on the right-hand-side can be derived from the Legendre duplication formula and Stirling’s
approximation. Plugging this into the expression for the expectation of ∥W∥2 yields

E
[

∥W∥2
]

= Ã E
[

∥U∥2
]

f Ã

√

d

2
=

√

Ã2d

2
.

By a standard concentration inequality for L-Lipschitz functions on Gaussian vectors, where here, ∥·∥2 is (L = 1)-
Lipschitz (see, e.g., [35]),

Pr

(

∥U∥2 >

√

d

2
+ t′

)

f Pr
(

∥U∥2 > E
[

∥U∥2
]

+ t′
)

f e−
t
′2

2L2 = e−
t
′2

2 .

Setting t′ = Ãt,

Pr

(

∥U∥2 >

√

d

2
+ Ãt

)

f e−
Ã
2
t
2

2 .

Finally, by the earlier observation thatW ∼ ÃU and ∥W∥2 ∼ Ã∥U∥2 the lemma’s concentration inequality follows:

Pr

(

∥W∥2 > Ã

√

d

2
+ Ã2t

)

= Pr

(

Ã∥U∥2 > Ã

√

d

2
+ Ã2t

)

= Pr

(

∥U∥2 >

√

d

2
+ Ãt

)

f e−
Ã
2
t
2

2 .

Having proved Lemmas C.1-C.4, we are ready to apply their concentration inequalities in order to establish
Lemmas A.1 and A.2. Let us begin with the former, Lemma A.1.

Proof. (Lemma A.1). Fix u ∈ Sn−1 ∩ Σn
k and J ′ ¦ [n], |J ′| f 2k, arbitrarily. Taking Z1, . . . ,Zℓ ∼ N (0, In), let

Xu;i = ïu, Tsupp(u)∪J ′(Zi)ð sign(ïu, Tsupp(u)∪J ′(Zi)ð), i ∈ [ℓ], and write X̄u =
∑ℓ

i=1 Xu;i. Let U1, . . . , Uℓ ∼ N (0, 1)

be independent standard normal random variables, and let Ū =
∑ℓ

i=1 |Ui|. By Lemma C.1, Xu;i ∼ |Ui| for each
i ∈ [ℓ], and therefore, X̄u ∼ Ū . Hence, since X̄u and Ū follow the same distribution, it suffices to bound the
concentration the random variable Ū . Define the random vector, U = (U1, . . . , Uℓ), and note that

Ū =

ℓ
∑

i=1

|Ui| = ∥U∥1.

Recall that for any w ∈ R
ℓ, ∥w∥1 f

√
ℓ∥w∥2 since

∥w∥1 =
ℓ
∑

i=1

|wi|

= ï1, (|w1|, . . . , |wℓ|)ð
f ∥1∥2∥(|w1|, . . . , |wℓ|)∥2

▶ by the Cauchy-Schwarz inequality

= ∥1∥2

√

√

√

√

ℓ
∑

j=1

|wj |2

= ∥1∥2

√

√

√

√

ℓ
∑

j=1

w2
j

= ∥1∥2∥(w1, . . . , wℓ)∥2
= ∥1∥2∥w∥2
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=
√
ℓ∥w∥2

Additionally, observe:

∥v∥1 = ∥(v −w) +w∥1
f ∥v −w∥1 + ∥w∥1

▶ by the triangle inequality

−→ ∥v∥1 f ∥v −w∥1 + ∥w∥1
−→ ∥v∥1 − ∥w∥1 f ∥v −w∥1

▶ rearrangement of terms

−→ ∥v∥1 − ∥w∥1 f
√
ℓ∥v −w∥2

▶ as argued earlier

and thus, ∥ · ∥1 is L-Lipschitz, where L =
√
ℓ. By a standard concentration for Gaussian random vectors under

L-Lipschitz functions (see, e.g., [35]),

Pr
(

∥U∥1 g E
[

∥U∥1
]

+ ℓt
)

f e−
ℓ
2
t
2

2L2 = e−
ℓ
2
t
2

2ℓ = e−
1
2 ℓt

2

,

where

E
[

∥U∥1
]

= E

[

ℓ
∑

i=1

|Ui|
]

=

ℓ
∑

i=1

E
[

|Ui|
]

▶ by the linearity of expectation

=

ℓ
∑

i=1

√

2

Ã

▶ the mean of a half-normal random variable (well-known)

=

√

2

Ã
ℓ

Combining the last two derivations yields:

Pr

(

∥U∥1 g
(

√

2

Ã
+ t

)

ℓ

)

f e−
1
2 ℓt

2

.

From this and the earlier discussion, since X̄u ∼ Ū = ∥U∥1, it follows that

Pr

(

X̄u g
(

√

2

Ã
+ t

)

ℓ

)

f e−
1
2 ℓt

2

as desired. This completes the proof of Lemma A.1.

Next, we will proceed to the proof of Lemma A.2.

Proof. (Lemma A.2). Let u ∈ Sn−1 ∩ Σn
k and J ′ ¦ [n], |J ′| f 2k, and let Z1, . . . ,Zℓ ∼ N (0, In) and

W ∼ N (0, ℓI2k−1) be independent Gaussian vectors, each with i.i.d. entries. Define the random variable

Ȳu =

ℓ
∑

i=1

(

Tsupp(u)∪J ′(Zi)− ïu, Tsupp(u)∪J ′(Zi)ð sign
(

ïu, Tsupp(u)∪J ′(Zi)ð
)

u
)
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where the random variable of interest is ∥Ȳu∥2. The majority of the necessary work has already been achieved
in Lemmas C.2 and C.4. By Lemma C.2, ∥Ȳu∥2 ∼ ∥W∥2, and thus, by Lemma C.4,

Pr
(

∥Ȳu∥2 >
√

(2k − 1)ℓ+ ℓt
)

f e−
1
2 ℓt

2

as claimed.

D Proof of the Deterministic Results, Lemmas 4.1 and 4.2

D.1 Proof of Lemma 4.1

Proof. (Lemma 4.1). The proof will focus on verifying a slight generalization of Lemma 4.1, which is formally
stated as the following claim.

Claim D.1. Let u,v, z ∈ Sn−1 ∩ Σn
k , and w ∈ R

n, where

u =
Tk(v +w)

∥Tk(v +w)∥2
,(D.21)

and where ∥v +w∥0 g k. Then,

∥z− u∥2 f 4
∥

∥(z− v)− Tsupp(z)∪supp(u)∪supp(v)(w)
∥

∥

2
.(D.22)

Note that ∥x̂(t−1)∥0 f 2k, by design, and since the random vector hf ;A;supp(x̂(t))(x, x̂
(t−1)) follows a

continuous distribution, ∥hf ;A;supp(x̂(t))(x, x̂
(t−1))∥0 = n. Moreover, due to the condition that n g 2k,

∥x̂(t−1) + hf ;A;supp(x̂(t))(x, x̂
(t−1))∥0 g n − k g 2k − k = k. Hence, by taking z = x, u = x̂(t), v = x̂(t−1),

and w = hf ;A;supp(x̂(t))(x, x̂
(t−1)), where ∥v + w∥0 g k due to the above discussion, Claim D.1 bounds the

approximation error, dSn−1(x, x̂(t)), as follows:

dSn−1(x, x̂(t)) = ∥x− x̂(t)∥2 f 4∥(x− x̂(t−1))− hf ;A;supp(x̂(t))(x, x̂
(t−1))∥2.

Hence, the proof of Lemma 4.1 amounts to verifying Claim D.1, as accomplished next.

Proof. (Claim D.1). The following work is nearly identical to the arguments in [28, proof of Lemma 4.1]. First,
note that

u =
Tk(v +w)

∥Tk(v +w)∥2
=

Tsupp(Tk(v+w))(v +w)

∥Tsupp(Tk(v+w))(v +w)∥2
=

Tsupp(u)(v +w)

∥Tsupp(u)(v +w)∥2
.

This will be useful later on. Next, observe:

z− u

= z− Tsupp(u)(v +w)

∥Tsupp(u)(v +w)∥2

=
(

z− Tsupp(z)∪supp(u)(v +w)
)

+
(

Tsupp(z)∪supp(u)(v +w)− Tsupp(u)(v +w)
)

+

(

Tsupp(u)(v +w)− Tsupp(u)(v +w)

∥Tsupp(u)(v +w)∥2

)

Then,

∥z− u∥2

=

∥

∥

∥

∥

(

z− Tsupp(z)∪supp(u)(v +w)
)

+
(

Tsupp(z)∪supp(u)(v +w)− Tsupp(u)(v +w)
)

+

(

Tsupp(u)(v +w)− Tsupp(u)(v +w)

∥Tsupp(u)(v +w)∥2

)
∥

∥

∥

∥

2

f
∥

∥z− Tsupp(z)∪supp(u)(v +w)
∥

∥

2
+
∥

∥Tsupp(z)∪supp(u)(v +w)− Tsupp(u)(v +w)
∥

∥

2
+

∥

∥

∥

∥

Tsupp(u)(v +w)− Tsupp(u)(v +w)

∥Tsupp(u)(v +w)∥2

∥

∥

∥

∥

2

(D.23)
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where the last inequality applies the triangle inequality. For clarity, denote the three terms in the last line by
³1, ³2, ³3 g 0, where

³1 ≜
∥

∥z− Tsupp(z)∪supp(u)(v +w)
∥

∥

2
,

³2 ≜
∥

∥Tsupp(z)∪supp(u)(v +w)− Tsupp(u)(v +w)
∥

∥

2
,

³3 ≜

∥

∥

∥

∥

Tsupp(u)(v +w)− Tsupp(u)(v +w)

∥Tsupp(u)(v +w)∥2

∥

∥

∥

∥

2

.

The remainder of the proof is carried out in the following three steps. (a) First, (D.23) will be upper bounded
by

∥

∥z− Tsupp(z)∪supp(u)(v +w)
∥

∥

2
+
∥

∥Tsupp(z)∪supp(u)(v +w)− Tsupp(u)(v +w)
∥

∥

2
+

∥

∥

∥

∥

Tsupp(u)(v +w)− Tsupp(u)(v +w)

∥Tsupp(u)(v +w)∥2

∥

∥

∥

∥

2

f 2³1 + 2³2.

(b) Then, simple arguments yield upper bounds on ³1 and ³2. (c) Lastly, combining the preceding work will
provide the desired upper bound on ∥z− u∥2.

Step (a). First, the following derivation establishes the bound: ³3 f ³1 + ³2.

³3 =

∥

∥

∥

∥

Tsupp(u)(v +w)− Tsupp(u)(v +w)

∥Tsupp(u)(v +w)∥2

∥

∥

∥

∥

2

▶ by the definition of ³3

=

∥

∥

∥

∥

(

∥Tsupp(u)(v +w)∥2 − 1
) Tsupp(u)(v +w)

∥Tsupp(u)(v +w)∥2

∥

∥

∥

∥

2

▶ by distributivity

=
∣

∣∥Tsupp(u)(v +w)∥2 − 1
∣

∣

∥

∥

∥

∥

Tsupp(u)(v +w)

∥Tsupp(u)(v +w)∥2

∥

∥

∥

∥

2

▶ by an axiom for metrics

=
∣

∣∥Tsupp(u)(v +w)∥2 − 1
∣

∣

▶ 7

∥

∥

∥

∥

Tsupp(u)(v +w)

∥Tsupp(u)(v +w)∥2

∥

∥

∥

∥

2

= 1

=
∣

∣

∥

∥Tsupp(u)(v +w)
∥

∥

2
− ∥z∥2

∣

∣

▶ 7 ∥z∥2 = 1

f
∥

∥Tsupp(u)(v +w)− z
∥

∥

2

▶ by the (reverse) triangle inequality (see, Remark D.1, below)

=
∥

∥

(

Tsupp(u)(v +w)− Tsupp(z)∪supp(u)(v +w)
)

+
(

Tsupp(z)∪supp(u)(v +w)− z
)∥

∥

2

▶ the inserted ±Tsupp(z)∪supp(u)(v +w) terms cancel out each other

f
∥

∥Tsupp(u)(v +w)− Tsupp(z)∪supp(u)(v +w)
∥

∥

2
+
∥

∥Tsupp(z)∪supp(u)(v +w)− z
∥

∥

2

▶ by the triangle inequality

=
∥

∥z− Tsupp(z)∪supp(u)(v +w)
∥

∥

2
+
∥

∥Tsupp(z)∪supp(u)(v +w)− Tsupp(u)(v +w)
∥

∥

2

▶ by rearrangement

= ³1 + ³2

▶ by the definitions of ³1, ³2

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2972

D
o
w

n
lo

ad
ed

 0
7
/2

0
/2

4
 t

o
 2

2
3
.1

7
7
.1

2
3
.1

0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



Remark D.1. The reverse triangle inequality applied in the above derivation can be established from the triangle
inequality. To formalize this, fix a,b ∈ R

n arbitrarily. The reverse triangle inequality claims that
∣

∣∥a∥2−∥b∥2
∣

∣ f
∥a− b∥2. To verify this, note that the triangle inequality implies that ∥a∥2 = ∥(a− b) + b∥2 f ∥a− b∥2 + ∥b∥2.
Thus, by rearrangement, ∥a∥2 − ∥b∥2 f ∥a − b∥2. Likewise, by swapping the roles of a and b in the above
arguments, it follows that ∥b∥2 − ∥a∥2 f ∥a − b∥2. Combining the two bounds then yields the reverse triangle
inequality:

∣

∣∥a∥2 − ∥b∥2
∣

∣ f ∥a− b∥2.
Now, we have that

∥z− u∥2 f ³1 + ³2 + ³3 f ³1 + ³2 + ³1 + ³2 = 2³1 + 2³2

which completes Step (a).
Step (b). Write

³′
1 ≜

∥

∥z− Tsupp(z)∪supp(u)∪supp(v)(v +w)
∥

∥

2
,

³′
2 ≜

∥

∥Tsupp(u)\supp(z)(v +w)
∥

∥

2
.

The goal in this step will be to show that ³2 f ³1 f ³′
1. To bound ³2, observe:

³2 =
∥

∥Tsupp(z)∪supp(u)(v +w)− Tsupp(u)(v +w)
∥

∥

2

=

√

√

√

√

n
∑

j=1

(Tsupp(z)∪supp(u)(v +w))2j −
n
∑

j=1

(Tsupp(u)(v +w))2j

▶ by expanding out the definition of the ℓ2-norm

=

√

∑

j∈supp(z)∪supp(u)

(v +w)2j −
∑

j∈supp(u)

(v +w)2j

▶ due to the definition of the thresholding operation, T

=

√

∑

j∈supp(z)\supp(u)
(v +w)2j +

∑

j∈supp(u)

(v +w)2j −
∑

j∈supp(u)

(v +w)2j

▶ 7 (supp(z) \ supp(u)) ⊔ supp(u) = supp(z) ∪ supp(u) is a disjoint partition

=

√

∑

j∈supp(z)\supp(u)
(v +w)2j

▶ the leftmost pair of summations in the preceding line cancel out each other

=

√

√

√

√

n
∑

j=1

Tsupp(z)\supp(u)(v +w)
2
j

▶ due to the definition of the thresholding operation, T

=
∥

∥Tsupp(z)\supp(u)(v +w)
∥

∥

2

▶ by condensing notation via the definition of the ℓ2-norm

f
∥

∥Tsupp(u)\supp(z)(v +w)
∥

∥

2

▶ see, Remark D.2 below

= ³′
2

▶ by the definition of ³′
2

Remark D.2. The above derivation uses, where noted, the inequality:
∥

∥Tsupp(z)\supp(u)(v +w)
∥

∥

2
f
∥

∥Tsupp(u)\supp(z)(v +w)
∥

∥

2
.
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This inequality is verified as follows. Recall that

u =
Tk(v +w)

∥Tk(v +w)∥2
=

Tsupp(Tk(v+w))(v +w)

∥Tsupp(Tk(v+w))(v +w)∥2
,

and hence, supp(u) = supp(Tk(v +w)). For any j /∈ supp(u), the definition of the top-k hard thresholding
operation, Tk, enforces: |vj + wj | f minj′∈supp(u) |vj′ + wj′ |. Additionally, ∥u∥0 = k since ∥v + w∥0 g k
ensures the top-k entries in v + w are all nonzero. On the other hand, recall that ∥z∥0 f k. As a
result, |supp(z) \ supp(u)| f |supp(u) \ supp(z)|, and at the same time, for any j ∈ supp(z) \ supp(u) and
j′ ∈ supp(u) \ supp(z), |vj + wj | f |vj′ + wj′ |. Write ℓ ≜ |supp(z) \ supp(u)| and ℓ′ ≜ |supp(u) \ supp(z)|, and let
{j1, . . . , jℓ} = supp(z) \ supp(u) and {j′1, . . . , j′ℓ′} = supp(u) \ supp(z). Note that by the above discussion, ℓ f ℓ′,
and |vjs + wjs | f |vj′

s
+ wj′

s
| for each s ∈ [ℓ]. Taken together, the desired inequality follows:

∥

∥Tsupp(z)\supp(u)(v +w)
∥

∥

2
=

n
∑

j=1

Tsupp(z)\supp(u)(v +w)
2
j

▶ by expanding out the definition of the ℓ2-norm

=
∑

j∈supp(z)\supp(u)
(vj + wj)

2

▶ due to the definition of the hard thresholding operation, T

=

ℓ
∑

s=1

(vjs + wjs)
2

▶ by reindexing with {j1, . . . , jℓ} = supp(z) \ supp(u)

f
ℓ

∑

s=1

(vj′
s
+ wj′

s
)2

▶ by the earlier observation that |vjs + wjs | f |vj′
s
+ wj′

s
|

f
ℓ′
∑

s=1

(vj′
s
+ wj′

s
)2

▶ since all summands are nonnegative, and ℓ f ℓ′

=
∑

j∈supp(u)\supp(z)
(vj + wj)

2

▶ by reindexing with {j′1, . . . , j′ℓ′} = supp(u) \ supp(z)

=

n
∑

j=1

Tsupp(u)\supp(z)(v +w)
2
j

▶ due to the definition of the hard thresholding operation, T

=
∥

∥Tsupp(u)\supp(z)(v +w)
∥

∥

2

▶ by condensing notation via the definition of the ℓ2-norm

Thus, the desired inequality, ∥Tsupp(z)\supp(u)(v +w)∥2 f ∥Tsupp(u)\supp(z)(v +w)∥2, has been verified.

The above work has shown that ³2 f ³′
2. Next, to bound ³′

2, observe:

³2
1 =

∥

∥z− Tsupp(z)∪supp(u)(v +w)
∥

∥

2

2

▶ by the definition of ³1

=

n
∑

j=1

(

zj − Tsupp(z)∪supp(u)(v +w)j

)2
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▶ by expanding out the definition of the ℓ2-norm

=
∑

j∈supp(z)∪supp(u)

(zj − vj − wj)
2

▶ since supp(z− Tsupp(z)∪supp(u)(v +w)) ¦ supp(z) ∪ supp(u)

=
∑

j∈supp(u)\supp(z)
(zj − vj − wj)

2
+

∑

j∈supp(z)

(zj − vj − wj)
2

▶ 7 (supp(u) \ supp(z)) ⊔ supp(z) = supp(z) ∪ supp(u) is a disjoint partition

=
∑

j∈supp(u)\supp(z)
(−vj − wj)

2
+

∑

j∈supp(z)

(zj − vj − wj)
2

▶ 7 zj = 0 for any j ∈ [n] \ supp(z)
=

∑

j∈supp(u)\supp(z)
(vj + wj)

2
+

∑

j∈supp(z)

(zj − vj − wj)
2

▶ by squaring the −1 factor

=

n
∑

j=1

Tsupp(u)\supp(z)(v +w)
2
j +

n
∑

j=1

Tsupp(z)(z− (v +w))
2
j

▶ due to the definition of the hard thresholding operation, T

=
∥

∥Tsupp(u)\supp(z)(v +w)
∥

∥

2

2
+

∥

∥Tsupp(z)(z− (v +w))
∥

∥

2

2

▶ by condensing notation via the definition of the ℓ2-norm

In short,

³2
1 =

∥

∥z− Tsupp(z)∪supp(u)(v +w)
∥

∥

2

2
=

∥

∥Tsupp(u)\supp(z)(v +w)
∥

∥

2

2
+
∥

∥Tsupp(z)(z− (v +w))
∥

∥

2

2
.

Rearranging the terms obtains:

∥

∥Tsupp(u)\supp(z)(v +w)
∥

∥

2

2
=

∥

∥z− Tsupp(z)∪supp(u)(v +w)
∥

∥

2

2
−
∥

∥Tsupp(z)(z− (v +w))
∥

∥

2

2

f
∥

∥z− Tsupp(z)∪supp(u)(v +w)
∥

∥

2

2
.

Hence, after taking a square root:

³′
2 =

∥

∥Tsupp(u)\supp(z)(v +w)
∥

∥

2
f

∥

∥z− Tsupp(z)∪supp(u)(v +w)
∥

∥

2
= ³1

The final task for Step (b) is bounding ³1. For this purpose, observe the following. (Note that the comments
throughout the derivation below take J ¦ [n], a,b ∈ R

n.)

∥

∥z− Tsupp(z)∪supp(u)∪supp(v)(v +w)
∥

∥

2

2

=
∥

∥Tsupp(z)∪supp(u)∪supp(v)(z)− Tsupp(z)∪supp(u)∪supp(v)(v +w)
∥

∥

2

2

▶ 7 TJ(a) = a if J § supp(a)

=
∥

∥Tsupp(z)∪supp(u)∪supp(v)(z− v −w)
∥

∥

2

2

▶ 7 TJ(a) + TJ(b) = TJ(a+ b)

=
∥

∥Tsupp(z)∪supp(u)(z− v −w) + Tsupp(v)\(supp(z)∪supp(u))(z− v −w)
∥

∥

2

2

▶ (supp(z) ∪ supp(u)) ⊔ (supp(v) \ (supp(z) ∪ supp(u))) = supp(z) ∪ supp(u) ∪ supp(v)

is a (disjoint) partition

=
∥

∥Tsupp(z)∪supp(u)(z− v −w)
∥

∥

2

2
+
∥

∥Tsupp(v)\(supp(z)∪supp(u))(z− v −w)
∥

∥

2

2

▶ by the Pythagorean theorem
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▶ note that Tsupp(z)∪supp(u)(z− v −w) and Tsupp(v)\(supp(z)∪supp(u))(z− v −w)

are orthogonal since their support sets are disjoint

g
∥

∥Tsupp(z)∪supp(u)(z− v −w)
∥

∥

2

2

▶ since both terms in the preceding line are nonnegative,

deleting one cannot increase the value of the expression

=
∥

∥Tsupp(z)∪supp(u)(z)− Tsupp(z)∪supp(u)(v +w)
∥

∥

2

2

▶ 7 TJ(a) + TJ(b) = TJ(a+ b)

=
∥

∥z− Tsupp(z)∪supp(u)(v +w)
∥

∥

2

2

▶ 7 TJ(a) = a if J § supp(a)

= ³2
1

▶ by the definition of ³1

Thus,

³1 =
∥

∥z− Tsupp(z)∪supp(u)(v +w)
∥

∥

2
f

∥

∥z− Tsupp(z)∪supp(u)∪supp(v)(v +w)
∥

∥

2
= ³′

1

as claimed. To summarize, this step has shown:

³2 f ³′
2 f ³1 f ³′

1,

Step (c). By combining the arguments of Steps (a) and (b), Equation (D.22) follows:

∥z− u∥2 f 2³1 + 2³2 f 4³1 f 4³′
1 f 4

∥

∥z− Tsupp(z)∪supp(u)∪supp(v)(v +w)
∥

∥

2

= 4
∥

∥(z− v)− Tsupp(z)∪supp(u)∪supp(v)(w)
∥

∥

2
.

This completes the proof of Claim D.1.

By the discussion at the beginning of this proof, due to the proof of Claim D.1, Lemma 4.1 also holds.

D.2 Proof of Lemma 4.2 Before the proof of Lemma 4.2 is laid out, the following fact is stated to
facilitate this. The proof of this fact can be found in [28].

Fact D.1. ([28, Fact 4.1]) Let u, v, w,w0 ∈ R+, where u = 1
2 (1 +

√
1 + 4w) and u ∈ [1,

√

2
v ]. Let f1, f2 :

Zg0 → R be the functions given by

f1(0) = 2,(D.24a)

f1(t) = vw +
√

vf1(t− 1), t ∈ Z+,(D.24b)

f2(t) = 22
−t

(u2v)1−2−t

, t ∈ Zg0.(D.25)

The functions, f1 and f2, are strictly decreasing and satisfy

f1(t) f f2(t), ∀t ∈ Zg0,(D.26)

lim
t→∞

f2(t) = lim
t→∞

f1(t) = u2v.(D.27)

Proof. (Lemma 4.2). The lemma’s results follow from an argument nearly identical to the proofs of [28,
Lemmas 4.2 and 4.3] with just a couple changes in constants. The (combined) proofs are reproduced below
with the appropriate adjustments to constants. The results are derived simply via Fact D.1. Recall the definition
of the function, ε : Zg0 → R, by the recurrence relation:

ε(0) = 2(D.28a)
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ε(t) = 4c1

√

µ

c
ε(t− 1) +

4c2µ

c
, t ∈ Z+.(D.28b)

The first task is writing Equations (D.28) in the form of Equations (D.24). When t = 0, then trivially,
Equation (D.28a) matches Equation (D.24a), whereas for t ∈ Z+, Equation (D.28b) can match the form of
Equation (D.24b) by simply writing:

ε(t) = 4c1

√

µ

c
ε(t− 1) +

4c2µ

c

=

√

16c21µ

c
ε(t− 1) +

4c2µ

c

=

√

16c21µ

c
ε(t− 1) +

4c2
16c21

16c21µ

c

=

√

16c21µ

c
ε(t− 1) +

c2
4c21

16c21µ

c

=
16c21µ

c

c2
4c21

+

√

16c21µ

c
ε(t− 1)

= vw +
√

vf1(t− 1)

where in the last line,

f1 = ε,(D.29a)

v =
16c21µ

c
,(D.29b)

w =
c2
4c21

.(D.29c)

Now we have that Equation (D.28b),

ε(t) = 4c1

√

µ

c
ε(t− 1) +

4c2µ

c
,

is equivalent to

f1(t) = vw +
√

vf1(t− 1),

the latter of which is precisely the form of Equation (D.24b).
Before Fact D.1 can be applied, it is necessary to verify that the fact’s conditions are satisfied when the

parameters v, w are chosen as in (D.29). Specifically, writing u = 1
2 (1 +

√
1 + 4w), Fact D.1 requires that

1 f u f
√

2
v . Clearly, u g 1 since 1

2 (1 +
√
1 + z) g 1

2 (1 + 1) = 1 for z g 0. Towards verifying the other side of

the bound, u f
√

2
v , expand out u and 1√

v
as follows. For u, observe:

u =
1

2

(

1 +
√
1 + 4w

)

=
1

2

(

1 +

√

1 + 4 · c2
4c21

)

=
1

2

(

1 +

√

1 +
c2
c21

)

=
1

2

(

1 +
1

c1

√

c21 + c2

)

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2977

D
o
w

n
lo

ad
ed

 0
7
/2

0
/2

4
 t

o
 2

2
3
.1

7
7
.1

2
3
.1

0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



=
1

2

(

1

c1
c1 +

1

c1

√

c21 + c2

)

=
1

2c1

(

c1 +
√

c21 + c2

)

=
c1 +

√

c21 + c2
2c1

Next, 1√
v
is rewritten as:

1√
v
=

√

c

16c21µ

=

√

c

4c21 · 4µ

=
1

2c1

√

c

4µ

=
1√
µ
·
√

c/4

2c1

Taking

c = 4

(

c1 +
√

c21 + c2

)2

,

it follows that u f
√

2
v , as required, since:

√

2

v
g

√

2

µ
·
√

c/4

2c1

=

√

2

µ
·

√

1
4 · 4

(

c1 +
√

c21 + c2

)2

2c1

=

√

2

µ
·

√

(

c1 +
√

c21 + c2

)2

2c1

=

√

2

µ
· c1 +

√

c21 + c2
2c1

=

√

2

µ
u

g u

Hence, the fact applies since 1 f u f
√

2
v .

The lemma’s results can now be obtained via Fact D.1. Note that
√

2
v g

√

2
µ ·

√
c/4

2c1
implies

√

µ
v g

√
c/4

2c1
.

Then, observe:
√

µ

v
g

√
µ

√
µ
·
√

c/4

2c1
=

√

c/4

2c1
=

c1 +
√

c21 + c2
2c1

= u

To state the result briefly, we have established that u f
√

µ
v . Thus,

u2v f
(
√

µ

v

)2

v =
µ

v
· v = µ.
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Lastly, applying Fact D.1 yields

ε(t) f 22
−t

(u2v)1−2−t f 22
−t

µ1−2−t

,

lim
t→∞

ε(t) = u2v f µ,

as desired.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited2979

D
o
w

n
lo

ad
ed

 0
7
/2

0
/2

4
 t

o
 2

2
3
.1

7
7
.1

2
3
.1

0
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y


	Introduction
	Our Contributions
	Other Related Works

	Preliminaries
	Notations
	Hard Thresholding and the BIHT Algorithm
	Some Universal Constants

	Main Result and Technical Overview
	The Restricted Approximate Invertibility Condition (RAIC ) under Adversarial Noise
	Technical Overview

	Proof of Theorem 3.1
	Intermediate Results
	Proof of Theorem 3.1

	Proof of the Main Technical Theorem (Theorem 3.2)
	Discussion and Preliminaries
	Discussion Regarding D2;J(x,x)


	Analysis for D2;J(u,u)
	An Orthogonal Decomposition
	Concentration Inequalities for the Orthogonal Decomposition
	Bounding D'1;J(u,u) = |<u,hf;A;J(u,u)>|
	Bounding D'2;J(u,u) = ||hf;A;J(u,u) - <u,hf;A;J(u,u)>u||2 

	Controlling D2;J(u,u) = ||hf;A;J(u,u)||2
	Proofs of the Concentration Inequalities – Lemmas A.1 and A.2
	Proof of the Deterministic Results, Lemmas 4.1 and 4.2
	Proof of Lemma 4.1
	Proof of Lemma 4.2


