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Abstract

Mixed linear regression is a well-studied problem
in parametric statistics and machine learning.
Given a set of samples, tuples of covariates and
labels, the task of mixed linear regression is to
find a small list of linear relationships that best fit
the samples. Usually it is assumed that the label
is generated stochastically by randomly selecting
one of two or more linear functions, applying this
chosen function to the covariates, and potentially
introducing noise to the result. In that situation,
the objective is to estimate the ground-truth
linear functions up to some parameter error. The
popular expectation maximization (EM) and
alternating minimization (AM) algorithms have
been previously analyzed for this.

In this paper, we consider the more general
problem of agnostic learning of mixed linear
regression from samples, without such generative
models. In particular, we show that the AM
and EM algorithms, under standard conditions
of separability and good initialization, lead to
agnostic learning in mixed linear regression by
converging to the population loss minimizers, for
suitably defined loss functions. In some sense,
this shows the strength of AM and EM algorithms
that converges to “optimal solutions” even in the
absence of realizable generative models.

1. Introduction

Suppose we obtain samples from a data distribution D on
R e, {x;,y;} ~D, x; €Ry; €ERi=1,...,n. We con-
sider the problem of learning a list of k£ R? — R linear func-

!Systems and Control Engg. and Centre for Machine In-
telligence for Data Sciences, Indian Institute of Technology,
Bombay, India. ?Halicioglu Data Science Institute, University
of California, San Diego. Correspondence to: Avishek Ghosh
<avishek.ghosh38 @gmail.com>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

tions y = 9?1‘,9]‘ €R? j=1,...,k, that best fits the samples.

This problem is well-studies as the mixed linear regression,
when there are ground-truth 6;,5 =1,...,k, that generate the
samples. For example, the setting where

xiNN(OaId)79NUnif{él7~~'79~k}7yi|9NN(xT9aU2)7 (1)

for i = 1,...,n has been analyzed thoroughly. Bounds on
sample complexity are provided in terms of d,o? and error
in estimating parameters 9} ,J=1,...,k ((Chaganty & Liang,
2013; Faria & Soromenho, 2010; Stiadler et al., 2010; Li &
Liang, 2018; Kwon & Caramanis, 2018; Viele & Tong, 2002;
Yietal., 2014; 2016; Balakrishnan et al., 2017; Klusowski
etal., 2019)).

In this paper, we consider an agnostic and general learning
theoretic setup to study the mixed linear regression problem
first studied in (Pal et al., 2022). In particular, we do not
assume a generative model on the samples. Instead we focus
on finding the optimal set of lines that minimize a certain loss.

Suppose, we denote a loss function £: R?** — R evaluated
on a sample as £(61,0,...,0k;z,y). The population loss is

[:((91 792,~-~79k) EE(Ly)NDE(Ol,92,...,9;€;m,y),
and the population loss minimizers

(07,....05) =argmin L(01,02,...,0).

Learning in this setting makes sense if we are allowed to
predict a list (of size k) of labels for an input, as pointed out in
(Pal et al., 2022). We may set some goodness criteria, such as
an weighted average of prediction error over all elements in
the list. In (Pal etal., 2022), it was called a ‘good’ prediction if
atleast one of the labels in the listis good, in particular, the fol-
lowing loss function was proposed, that we will call min-loss:

emin(elﬁz,...ﬁk;m,y)Zgg{(y—@ﬁﬁf} @)

The intuition behind min-loss is simple. Each sample is
assigned to a best-fit line, which define a partition of the
samples. This is analogous to the popular k-means clustering
objective. In addition to the min-loss function, we will also
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consider the following soft-min loss function:
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with 8 > 0 as the inverse temperature parameter. Note that, at
8 — o0, this loss function correspond to the min-loss defined
above. On the other hand, at 3 =0, this is simply an average
of the squared errors, if a label is uniformly chosen from the
list. Depending on how the prediction would occur, the loss
function, and therefore the best-fit lines 67 ,...,0;, will change.

As is the usual case in machine learning, a learner has
access to the distribution D only through the samples
{z;,y:},i=1,...,n. Therefore instead of the population loss,
one may attempt to minimize the empirical loss:

n

Zé(elaGQV'wek;mi)yi)'

i=1

1
L(61,....0k) = -
Usual learning theoretic generalization bounds on excess
risk should hold provided the loss function satisfies some
properties'. However, there are certain caveats in solving
the empirical loss minimization problem. For example, even
the presumably simple case of squared error (Eq.(2)), the
minimization problem is NP-hard, by reduction to the subset
sum problem (Yi et al., 2014).

An intuitive and generic iterative method that is widely-
applicable for problems with latent variables (in our case,
which line is best fit for a sample) is the alternating minimiza-
tion (AM) algorithm. At a very high level, starting from some
initial estimate of the parameters, the AM algorithm first tries
to find a partition of samples according to the current estimate,
and then finds the best fit lines within each part. Again under
the generative model of (1), AM can approach the original
parameters assuming suitable initialization (Yi et al., 2014).

Another popular method of solving mixed regression
problems (or in general mixture models) is the well-known
expectation maximization (EM) algorithm. EM is an iterative
algorithm that, starting from an initial estimate of parameters,
iteratively update the estimates based on data, by taking an
expectation-step and maximization-step repeatedly. For ex-
ample, it was shown in (Balakrishnan et al., 2017) that, under
the assumption of the generative model that was defined in
Eq. (1), one can give guarantees on recovering the ground-
truth parameters 0;,...,0% assuming a suitable initialization.

!Some discussions on generalization with soft-min loss can be
found in Section 5.

In this paper, we show that the AM and the EM algorithms
are in fact more powerful in the sense that even in the absence
of a generative model, they lead to agnostic learning of
parameters. It turns out, under standard assumptions on
data-samples and D, these iterative methods can output
the minimizers of the population loss 67, ... , 8} with
appropriately defined loss functions. In particular, starting
from reasonable initial points, the estimates of the AM
algorithm approach 67,...,6; under the min-loss (Eq. 2), and
the estimates of the EM algorithm approach the minimizers
of the population loss under the soft-min loss (Eq. 3).

Instead of the standard AM (or EM), a version that has been
referred to as gradient EM (and gradient AM) is also popular
and has been analyzed in (Balakrishnan et al., 2017; Zhu
etal.,2017; Wang et al., 2020; Pal et al., 2022) to name a few.
Here, in lieu of the maximization step involved in EM (min-
imization for AM), a gradient step with appropriately chosen
step size is taken. This version is amenable to analysis and is
strictly worse than the actual EM (or AM) in their generative
setting. In this paper as well, we analyze the gradient EM
algorithm, and the analogous gradient AM algorithm.

Recently (Pal et al., 2022) proposed a gradient AM algorithm
for the agnostic mixed linear regression problem. However,
they require a strong assumption on initialization of {6;}*_;
within a radius of O(%) of the corresponding {07 }F_,. As
we can see, in high dimension, the initialization condition
is prohibitive. The dimension dependence initialization
in (Pal et al., 2022) comes from a discretization (e-net)
argument, which was crucially used to remove inter-iteration
dependence of the gradient AM algorithm.

In this paper, we show that a dimension independent
initialization is sufficient for gradient AM. In particular, we
showed that the initialization needed for {6;}%_; is ©(1),
which is a significant improvement over the past work (Pal
et al., 2022). Instead of an e-net argument, we use fresh
samples every round. Moreover, we thoroughly analyze the
behavior of restricted covariates on a (problem defined) set,
in the agnostic setup, which turns out to be non-trivial. In
particular, we observe that the restricted covariates are sub
Gaussian with a shifted mean and variance, and we need to
control the minimum singular value of the covariance matrix
of such restricted covariates (which dictates the convergence
rate). We leverage some properties of restricted distributions
(Tallis, 1961), and were able to analyze such covariates
rigorously, obtain bounds and show convergence of AM.

In this paper we also propose and analyze the soft variant
of gradient AM, namely gradient EM. As discussed above,
the associated loss function is the soft-min loss. We show
that gradient EM also requires dimension independent O(1)
initialization, and also converges in an exponential rate.

While the performance of both the gradient AM and gradient
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EM algorithms are similar, AM minimizes a min-loss
whereas EM minimizes the optimal soft-min loss (maximum
likelihood loss in the generative setup). As shown in the
subsequent sections, AM requires a separation condition
(appropriately defined in Theorem 2.1) whereas EM does not.
On the other hand, EM requires the initialization parameter
to satisfy certain condition, albeit mild (exact condition in
Theorem 3.1).

1.1. Setup and Geometric Parameters

Recall that the parameters 607,...,0; are the minimizers of
the population loss function, and we consider both min-loss
(Lmin(.)) as well as soft-min 1088 (Ysoftmin(.)) as defined in
the previous section. We define

S;={(zeR"yeR): (y—(2,07))* < (y—(x.0]))*,

foralll e [k]\ j} as the possible set of observations where
9; is a better (linear) predictor (in {3 norm) compared to

1s..-,0;. Furthermore, in order to avoid degeneracy, we
assume, for any j € [k]

%r(x: (z,y) €S5) 2 Tmin,

for some m,;, > 0. We are interested in the probability
measure corresponding to the random vector x only, and
we integrate (average-out) with respect to y to achieve this.
‘We emphasize that, in the realizable setup, the distribution
of y is governed by that of x (and possibly some noise
independent of z), and in that setting our definition of S and
Tmin becomes analogous to that of (Yi et al., 2014; 2016).

Since we are interested in recovering 0;, j=1,....k, afew
geometric quantities naturally arises in our setup. We define
the misspecification parameter A as a smallest non-negative
number satisfying

lyi—(@i6)[ <A forall (z;,y,) €] andj € [K].

Moreover, we also define the separation parameter A as the
largest non-negative number satisfying
min |y; —(z;,07 )| > A forall (z;,y;) € S}
Le[k\

Let us comment on these geometric quantities. Note that in
the case of arealizable setup, the parameter A =0 in the noise-
less case or proportional to the noise in the noisy case. In
words, A captures the level of misspecification from the linear
model. On the other hand, the parameter A denotes the sepa-
ration or margin in the problem. In classical mixture of linear
regression framework, with realizable structure, similar as-
sumptions are present in terms of the (generative) parameters.
Moreover, with the realizable setup, our assumption can be
shown to be exactly same as the usual separation assumption.

In (Yi et al., 2014; 2016), the authors denote {57 ,?:1 as set
of indices, but that can be thought of as an analogue to a subset of
R4+ as shown above.

1.2. Summary of Contributions

Let us now describe the main results of the paper. To simplify
exposition, we state the results here informally and the
rigorous statements may be found in Sections 3 and 2.

Our main contribution is analysis of the gradient AM and
gradient EM algorithms. The gradient AM algorithm works

in the following way. At iteration ¢, based on the current

k

parameter estimates {Hj(-t) }7_1, the gradient AM algorithm

: k Ok
constructs estimates of {Sj* =15 namely {S; . Yot .The
next iteration is then obtained by taking a gradient (with

as step size) over the quadratic loss over all such data points
{i:(x,y:) ESJ(.t)} forall j € [k].

On the other hand, in the ¢-th iteration, the gradient EM algo-
rithm uses the current estimate of {67 }_, , namely {0? kL
to compute the soft-min probabilities Po( .60 (4,yi ;9§t))
forall j € [k] and i € [n]. Then, using these probabilities, the
algorithm takes a gradient of the soft-min loss function with

step size y to obtain the next iteration.

‘We begin by assuming the covariates x; LN (0,14). Note
that this assumption serves as a natural starting point of
analyzing several EM and AM algorithms ((Balakrishnan
et al., 2017; Yi et al., 2014; 2016; Netrapalli et al., 2015;
Ghosh & Kannan, 2020)). Furthermore, as stated earlier,
we emphasize that in order to obtain convergence, we need
to understand the behavior of restricted covariates in the
agnostic setting. We require Gaussians, because the behavior
of restricted Gaussians are well studied in statistics (Tallis,
1961) and we use several such classical results.

We first consider the min-loss and employ the gradient AM
algorithm, similar to (Pal et al., 2022). In particular, we show
that the iterates returned by the gradient AM algorithm after
T iterations, {0§T) }h_, satisfy

(T) * T0(0) *
105" =051 <p" |10, =07 +0,

with high probability (where p < 1) provided n is large
enough and ||0§0) —0%[| <cini|07 ||. Here cin is the initializa-
tion parameter and ¢ is the error floor that stems from the
agnostic setting and the gradient AM update (see (Balakrish-
nan et al., 2017) where, even with generative setup, an error
floor is shown to be unavoidable). Here ¢ depends on the
step size of the gradient AM algorithm as well as the several
geometric properties of the problem like misspecification
and separation. However, the result of (Pal et al., 2022) in this
regard requires an initialization of {#; }¥_, within a radius of

(’)(%) of the corresponding {#; }¥_, which we improve on.

In this paper, we show that it suffices for the initial parameters
to be within a (constant) ©(1) radius for convergence,
provided the geometric parameter A — ) is large enough.
The ©(1) initialization matches the standard (non agnostic,
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generative) initialization for mixed linear regression (see
(Yi et al., 2014; 2016)). In order to analyze the gradient
AM algorithm we need to characterize the behavior of
covariates {; }7_, restricted to sets { S }¥_, . In particular
we need to control the norm of such restricted Gaussians
as well as control the minimum singular value of a random
matrix whose rows are made of such random variables.
Specifically, we require (i) a lower bound on the minimum
singular value of %Zziesxm?, where the set S is problem
dependent, (ii) an upper bound on ||z; || where x; € S and (iii)
a concentration on (z;,u) where u is some vector and z; € S.

In order to obtain the above, we leverage the properties of
restricted Gaussians ((Tallis, 1961; Ghosh et al., 2019)) on
a (generic) set with Gaussian volume bounded away from
zero and show that the resulting distribution of the covariates
is sub Gaussian with non-zero mean and constant parameter.
We obtain upper bounds on the shift and the sub Gaussian
parameter. We would like to emphasize that in the realizable
setup of mixed linear regressions, as shown in (Yi et al.,
2014; 2016) such a characterization may be obtained with
lesser complication. However, in the agnostic setup, it turns
out to be quite non-trivial.

Moreover, in gradient AM, the setup is complex since the sets
are formed by the current iterates of the algorithm (and hence
random), unlike { S 5?:1, which are fixed. In order to handle
this, we employ re-sampling in each iteration to remove the
inter-iteration dependency. We would like to emphasize that
sample splitting is a standard technique in the analysis of AM
type algorithms and several papers (e.g. (Yietal., 2014;2016;
Ghosh & Kannan, 2020) for mixed linear regression, (Netra-
palli et al., 2015) for phase retrieval and (Ghosh et al., 2020)
for distributed optimization) employ such a technique. While
this is not desirable, this is a way to remove the inter iteration
dependence that comes through data points. Finer techniques
like leave-one-out analysis (LOQO) is also used ((Chen et al.,
2019)) but for simpler problems (like phase retrieval) since
the LOO updates are quite non-trivial. This problem exag-
gerates further in the agnostic setup. Hence, as a first step, in
this paper we assume a simpler sample split based framework
and keep finer techniques like LOO as future direction.

We would also like to take this opportunity to correct an
error in (Pal et al., 2022, Theorem 4.2). In particular, that
theorem should hold only for Gaussian covariates, not for
general bounded covariates as stated. It was incorrectly
assumed in that paper that the lower bound on the singular
value mentioned above holds for general covariates.

We then move on to analyze the soft-min loss and analyze the
gradient EM algorithm. Here, we show similar contraction
guarantees in the parameter space as in gradient EM. There
are several technical difficulties that arise in the analysis
of the gradient EM algorithm for agnostic mixed linear
regressions— (i) First, we show that if (z;,y;) € S, then the

soft-min probability pe; . e: (xi,y,;;e;) >1—m, where n
is small. (ii) Moreover, using the initialization condition,

and the properties of the soft-max function ((Gao & Pavel,
2017)) we argue that py«) (4, Ys 0§t)) is close to
1 Yy

pos....01 (7i,Y:;07 ), where {GJ(.t)}tT:1 are the updated of the
gradient EM algorithm.

Our results for agnostic gradient AM and EM consist some
extra challenge over the existing results in literature ((Balakr-
ishnan et al., 2017; Waldspurger, 2018)). Usually, the popula-
tion operator with Gaussian covariates are analyzed (mainly
in EM, see (Balakrishnan et al., 2017)), and then a finite
sample guarantee is obtained using concentration arguments.
However, in our setup, with the soft-min probabilities and the
min function, it is not immediately clear how to analyze the
population operator. Second, in the gradient EM algorithm,
we do not split the samples over iterations, and necessarily
handle the inter-iteration dependency of covariates.

Furthermore, to understand the soft-min and min loss better,
in Section 5, we obtain generalization guarantees that involve
computing the Rademacher complexity of such function
classes. Agreeing with intuition, the complexity of soft-min
and min loss class is at most k times the complexity of the
learning problem of simple linear regression with quadratic
loss.

1.3. Related works

As discussed earlier, most works on the mixture of linear
regressions are in the realizable setting, and aim to do
parameter estimation. Algorithms like EM and AM are
most popularly used to achieve this task. For instance, in
(Balakrishnan et al., 2017), it was proved that a suitable
initialized EM algorithm is able to find the correct parameters
of the mixed linear regressions. Although (Balakrishnan
et al., 2017) obtains the convergence results within an ¢
ball, it is then extended to an appropriately defined cone by
(Klusowski et al., 2019). On the AM side, (Yi et al., 2014)
introduced the AM algorithm for the mixture of 2 regressions,
where the initialization is done by the spectral methods.
Then, (Yi et al., 2016) extends that to a mixture of k linear
regressions. Perhaps surprisingly, for the case of 2 lines,
(Kwon & Caramanis, 2018) shows that any random initial-
ization suffices for EM algorithm to converge. In the above
mentioned works, the covariates are assumed to be standard
Gaussians, which was relaxed in (Li & Liang, 2018), allow-
ing Gaussian covariates to have different covariances. Here,
near optimal sample as well as computational complexities
were achieved albeit not via EM or AM type algorithm.

In another line of work, the convergence rates of AM or
its close variants are investigated. In particular, in (Ghosh
& Kannan, 2020; Shen & Sanghavi, 2019), it is shown
that AM (or its variants) converge at a double-exponential
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(super-linear) rate. Recent work, (Chandrasekher et al.,
2021) shows similar results for larger class of problems.

We emphasize that apart from mixture of linear regressions,
EM or AM type algorithms are used to address other prob-
lems as well. Classically parameter estimation in the mixture
of Gaussians is done by EM mixture of Gaussians (see
(Balakrishnan et al., 2017; Daskalakis & Kamath, 2014) and
the references therein). The seminal paper by (Balakrishnan
et al., 2017) addresses the problem of Gaussian mean esti-
mation as well as linear regression with missing covariates.
Moreover, AM type algorithms are used in phase retrieval
((Netrapalli et al., 2015; Waldspurger, 2018)), parameter
estimation in max-affine regression ((Ghosh et al., 2019)),
clustering in distributed optimization ((Ghosh et al., 2020)).

In all of the above mentioned works, the covariates are given
to the learner. However, there is another line of research that
focuses on analyzing AM type algorithms when the learner
has the freedom to design the covariates ((Yin et al., 2019;
Krishnamurthy et al., 2019; Mazumdar & Pal, 2020; 2022;
Pal et al., 2021)).

However, none of these works is directly comparable to our
setting. All these works assume a realizable model where the
parameters come with the problem setup. However, ours is
an agnostic setup, and here there are no optimal parameters
associated with the setup, rather solutions of (naturally
emerging) loss functions.

Our work is a direct follow up of (Pal et al., 2022), who intro-
duced the agnostic learning framework for mixed linear re-
gression, and also used the AM algorithm in lieu of empirical
risk minimization. Also, (Pal etal.,2022) only considered the
min-loss, and neither the soft-min loss nor the EM algorithm,
whereas we consider both EM and AM. Moreover, the AM
guarantees we obtain are sharper than that of (Pal et al., 2022).

1.4. Organization

We start with the soft-min loss function and the gradient EM
algorithm in Section 3. In Section 3.2, we obtain the theoreti-
cal results of gradient EM. We then move to min loss function
in Section 2, where we analyze the gradient AM algorithm,
with theoretical guarantees given in Section 2.2. We present a
rough overview of the proof techniques in Section 4. Finally,
in Section 5, we provide some generalization guarantees
using Rademacher complexity. We conclude in Section 6
with a few open problems and future direction. We collection
all the proofs (both EM and AM) in Appendix B and A.

1.5. Notation

Throughout this paper, we use ||. || to denote the ¢5 norm of a d
dimensional vector unless otherwise specified. Also for a pos-
itive integer r, we use [r] to denote the set {1,...,r}. We use
C,C1,Cs,....c,c1,c2... to denote positive universal constants,

the value of which may differ from instance to instance.

2. Agnostic Mixed Linear Regression-Min-Loss

In this section, we analyze the min-loss function and analyze
gradient AM algorithm. First, recall the definition of £y, (.)
from Eq. 2. Similar to the section above, we are given a set of
n data-points {x;,y; }™,, where z; € R and y; € R drawn
from an unknown distribution D. We want to obtain

(07,...,67) :argminE($7y)ND€min(91,...,Hk;a:,y).

With the given n datapoints, we aim to learn these k
hyperplanes via the AM algorithm (Algorithm 1), which
tries to minimize the empirical optimization version instead.

2.1. Gradient AM Algorithm

In this section we use the gradient AM algorithm for
minimizing L(01,...,0;). The details of our algorithm is
given in Algorithm 1.

First note that here, we split the n samples {z;, y;}1"
into 27" disjoint samples where we run Algorithm 1 for T'
iterations. We would like to remind that sample splitting
is a standard in AM type algorithms ((Yi et al., 2014; 2016;
Ghosh & Kannan, 2020; Netrapalli et al., 2015; Ghosh et al.,
2020)). While this is not desirable, this is a way to remove the
inter iteration dependence that comes through data points.

Hence, at each iteration of gradient AM we are given
n' =n /2T samples. Each iteration consists of 2 stages (see

Algorithm 1). In the first stage of the ¢-th iteration, we use n’

)

samples to construct the index sets [ j(-t in the following way

19 =fien/]: (11" — (@ 0))% < (5" — (21" 0))%}

V5’ €[k]\j. Here, we collect the data points for which the cur-
rent estimate of 9;, namely 9§-t) is a better (linear) estimator
than {Gj(f)} where j’ # j. Notw that { j(.t) %_, partitions [n/].
At the second stage of gradient AM, we use another set

of fresh n’ data points to run the gradient update on the
set {I j(-t) }¥_, with step size ~ to obtain the next iterate

{9§t+1)}§:1. The details is given in Algorithm 1.

2.2. Theoretical Guarantees

In this section, we obtain theoretical guarantees for Algo-
rithm 1. Similar to the previous section, we assume |y;| <b
for all 7 € [n]. In the following, we consider one iteration
of Algorithm 1, and show a contraction in parameter space.
Let the current parameter estimates are {6; }2‘?:1 and the
corresponding to the index {;}¥_, . Moreover, let the next
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Algorithm 1 Gradient AM for Mixture of Linear Regressions

1: Input: {z;y;} ,, Step size vy

2: Initialization: Initial iterate {9;0)}2?:1

3: Split all samples into 27" disjoint datasets {xz(.t) 7yl(t) |5
withn'=n/2T forallt=0,1,....T—1

4: fort=0,1,....T—1do

Partition:

6:  Forall j € [k], use n’ samples to construct index sets

{I](.t) k_, such that Vj’ € [k]\ j,
L9 =i (g = (@ 007)7 < (9" = (2,65)))%}

el

7:  Gradient Step:
8:  Use fresh set of n’ samples to run gradient update

ol , .
9§t+1) :9]@_5 > VFi(e;t))l{ZEI;t)},V] e [k]
i€[n’]
9:  where Fi(9§.t)) = (yl(t) _ <x5t) ﬁJ(_t)))z
10: end for
11: Output: {GJ(-T) A

iterates are {9;' };?:1. Unpacking, the next iterate is given by

2
a;r:oj—zg[xixf@j—ywi] “)

forall j € [k]. We now present our main results of this section.

Theorem 2.1 (Gradient AM). Suppose z; '~ N (0,14) and
thatn’ >C' %/ﬂ“) Furthermore,

165 =67 11 < cinil| 67

for all j € [k] where ci; is a small positive constant
(initialization parameter). Moreover; let the separation
parameter satisfy

A>A+Cq[Cini \/log(l/wmin)rg?ﬁ||0; I+ 1+log(1/mmin)]-
J

Then, running one iteration of Gradient AM with step size
~, yields {9;’ }?:1 satisfying

||9]+ 0| <pll0; =05 +e, with probability exceeding

1—Crexp(—Comd. n') —ciexp(—Pen’) — #'(d), where

p=(1—cyr3,,), and the error floor

£ <CyAy/dlogdlog(1/mmin) +Ciy(k—1)P.
x |diogdlog(1/Tin) 65|+ Cby/diogdiog (1w |

1 [A—A]Q)_

Cini2maxje[k]”0;”2 2

and P. <4exp (—

The proof of Theorem 2.1 is deferred to Appendix A. We
make a few remarks here.

Remark 2.2 (Contraction factor p). We observe thatif p<1,
the above result implies a contraction in parameter space
with a slack of ¢, which we call the error-floor. Note that
by choosing v < (177‘;#, where ¢ is a small constant, we
can always make p < .

Remark 2.3 (Error floor €). Observe that the error floor €
depends linearly on the step size -y, similar to any standard
stochastic optimization problem. The error floor also decays
linearly with the misspecification parameter A, which may be
thought as an agnostic bias. In previous works (Yietal., 2016;
2014), evenin the realizable setting, either the authors assume
A=0or very small. In arelated field of online learning (multi
armed bandits and reinforcement learning in linear frame-
work), this model misspecification also impacts the regret in
a linear fashion as seen by (Jin et al., 2020, Theorem 5). Even
in these realizable setting, is it unknown how to tackle large \.

Remark 2.4 (Re-sampling). Note that the gradient AM algo-
rithm of ours requires re-sampling fresh data points in every
iteration. Similar to the analysis of the gradient EM, here also
we need to control the lower spectrum of a random matrix con-
sisting Gaussians restricted to a set. From the structure of gra-
dient AM, this set here is given by S](t) ={(ziyi): i€ I](t) }.
Note that without re-sampling of data points, analyzing the
behavior of Gaussians on the sets {5 J(t) }le turns out to

be quite non-trivial since {5 ;t)}le depends on {950 };?:1
which depends on all the data point {x;,y; }7 ;.

Remark 2.5 (Probability of error P,). One major partin show-
ing the convergence guarantee is to show that provided good
initialization, the probability of a datapoint lying in an incor-
rectindex setis at most P,. With a closer look, it turns out that
if the problem is separated enough (A large) and the initial-
ization is suitable (c;,; is small), P, decays exponentially fast.
Hence, in such a setup, the second term in ¢ is quite small.

Remark 2.6 (Sample complexity). Note that we re-
quire the number of samples satisfying the following:
n > C %, where the dependence on k comes

min

through 7, (and from definition, we have myi, < 1/k).
Note that information theoretically, we only require Q(kd)
samples, since there are kd unknown parameters to learn.
Hence, our sample complexity is optimal in d. However, it
is sub-optimal in k compared to the standard (non-agnostic)
AM guarantees ((Yiet al., 2014; 2016)). The sub-optimality
comes from the proof techniques we use for the agnostic
setting. In particular, we use spectral properties of a restricted
Gaussian vectors on a set with (Gaussian) volume at least
Tmin- As shown in (Ghosh et al., 2019), this gives rise to a
dependence of 1 /73 . in sample complexity. Moreover, in
(Ghoshetal.,2019), itis argued (albeit in a different problem),
that when spectral properties of such restricted Gaussians are
employed, a 1/73; dependency is in general unavoidable.

min
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Algorithm 2 Gradient EM for Mixture of Linear Regressions

1: Input: {z;y;} ,, Step size vy
2: Initialization: Initial iterate {9;0)}2?:1
3: fort=0,1,....T—1do

4:  Compute Probabilities:
5

Compute p,)  po (mi,yi;eét)) for all j € [k] and
1l
i€n]
6:  Gradient Step: (for all j € [k])

1 v
o5 =65 - ;Zpew 0 (193305 ) VE(65),
=1

=~

where Fi(9§,t)) = (y;— <$179§~t)>)2
end for

: Output: {0§T) A

o x

3. EM algorithm for Soft-Min Loss

In this section we analyze the soft-min loss function and
propose gradient EM algorithm to address this. Recall the
definition of Lsofymin(.) from Eq. 3. Moreover, recall that we
are given a set of n data-points {z;,y; }"_,, where z; € R?
and y; € R drawn from an unknown distribution D. Our goal
here is to obtain

(9?,,9;) = argmin]E(;c,y)NDgsoftmin(01 a--~70k;x7y)'

We aim to learn these & hyperplanes through the given
data. The EM algorithm (Algorithm 2) tries to minimize the
empirical version of the problem.

3.1. Gradient EM Algorithm

We propose EM based algorithm for minimizing the
empirical loss function L(61,..,0). In particular we propose
a variant of EM, popularly known as gradient EM for this.
The steps are given in Algorithm 2. Each iteration of gradient
EM consists of two steps. First, in the compute probability
step, based on the current estimates of {9;‘ ?:1, namely
{6®)} k_,. Algorithm 2 computes the soft-min probabilities
computed using the current iterates {G(t)}le, which is
Po(.... o0 (xi,yi;9§t)) for all j € [k] and i € [n]. In the
subsequent step, using these probabilities, the algorithm
takes a gradient step with step size . In particular, for
the j-th iterate 9§-t), gradient EM weights the standard
quadratic loss computed on the ¢-th data point, given by

(yi — (x4, 9§-t)>)2 and takes the gradient to obtain the next

iterate {Qj(-t“) }¥_ 1. We truncate Algorithm 2 after T steps.

We split the n samples {x;,y; }; into 2T disjoint samples
where we run Algorithm 2 for 7" iterations. Again sample
splitting is a standard in EM type algorithms ((Balakrishnan
et al., 2017; Kwon & Caramanis, 2018)). Hence, at each

iteration of gradient EM we are given n’ = n /2T samples.
Each iteration consists of 2 stages (see Algorithm 2). The
first n’ samples are used to compute the probabilities, and
the next set of samples are used to take the gradient step.

3.2. Theoretical Guarantees

We now look at the convergence guarantees of Algorithm 2.
In particular, here we consider one iterate of the gradient EM
algorithm with current estimate (61,...,0%). Also, assume
that the next iterate with these current estimates is given by
(07 ,....0;"). Unrolling the iterate, we have

2y o
05 =0,— %Zpel,...,ek (z,yi30;) (ziw] 0, —yiws). (5)
=1

for all j € [k]. Furthermore, we assume |y;| <b for all i € [n/]
for a non-negative b. With this, we are now ready to present
the main result of this section.

Theorem 3.1 (Gradient EM). Suppose that x; HRT A (0,14)
and that n' > € 480/ ™min) proreover,

min
165 =65 | < cini 165

Sor all j € [k], where cin; is a small positive constant (ini-

tialization parameter) satisfying cini < ca I —
log(1/mmin) |07l

Then running one iteration of gradient EM algorithm with

step size y yields {49;?}?:1 satisfying
105 =05 [1<pl|0;— 6]l +e,

with probability at least 1 — Cy exp(—cimt. n') —

min

Caexp(—ced) —n' /poly(d) —n'Csexp(— % ), where

£ <Cy\/dlogdlog(1/Tmin)
+C1y1y' (b+/dlogdlog(1/min))? (cini+1)) 165

—((A=CX)2=C2)?)

P = (1 - 2ryc(1 - n)ﬂ-?nin)’ 77/ =€ and

2 2
l—e=C222 | (p_1)e—(A—CN) )
d +(k—l)e , with C,C1,..,c,cq,.. as

= 1+ (k—1)e-(A—Cn)?2
universal positive constants.

We defer the proof of the theorem in Appendix B. The
remarks we made after the AM algorithm continues to hold
here as well.

Remark 3.2 (Error floor €). Observe that the error floor
depends linearly on the step size . The error floor also
decays linearly with the misspecification parameter A and
an exponentially decaying term dependent on the gap.

Discussion and Comparison between gradient EM
and AM: Note that both the algorithms require initial-
ization and provides exponential convergence with error
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floor. However, gradient AM minimizes an intuitive
min-loss while gradient EM minimizes optimal (maximum
likelihood in the generative setup) soft-min loss. More-
over, the gradient AM algorithm requires the separation
A = QX + VIogk(1l + cini)) (exact condition in Theo-
rem 2.1), whereas we do not have any such requirement for
gradient EM. On the flip side, the convergence of gradient
EM requires a condition on the initialization parameter c;p;
that depends on misspecification A, whereas for gradient
AM algorithm, no such restriction is imposed.

4. Proof Sketches

In this section, we present a rough sketch of the proof of
Theorems 2.1 and 3.1.

4.1. Gradient AM (Theorem 2.1)

For gradient AM algorithm, based on the current iterates
{0,}%_,, we first construct the index sets {I;}_, using n/
fresh samples, where I; consists of all such indices such
that §; is a better predictor compared to the other parameters.
Similarly, one can construct {I7}¥_, based on {67}%_,.
Unrolling gradient AM update (Eq. 4), using another set of
n/ samples we have

103 6511 = 101 —07 =2 3 (i 03 —iz) |
i€l

Similar to the gradient EM setup, it turns out that we need to
lower bound o i ni, D el z;xT). Note that since we use n’
fresh samples to construct f ;j» the set can be considered fixed
with respect to the samples used in the gradient step and we
can leverage Lemma B.2. We use amin(# Zieh rizl) >
Tmin(77 2oieryn: @i ). Thanks to the suitable initializa-
tion and Lemma A.1, we show that |I; N I{| is big enough,
yielding a singular value lower bound of ~ 72 ; . The control
of other terms are done similar to the gradient EM setup, and
upon combining, we get the final theorem.

4.2. Gradient EM (Theorem 3.1)

Recall that we consider one iteration of Algorithm 2
with current and next iterates as {6;}%_, and {OJJF -
respectively. Recall the update given by Eq. 5. Without loss
of generality, we focus on j =1 and use shorthand p(6;) to
denote pg, .. g, (z;,:;61). With this we have

] . 27
HQT =07 =161 —67— sz(el) (l’ﬂiT91 —yﬂi) I

i=1

We now break the sum to indices i : (x;,y;) € ST and
otherwise. When we look at indices such that (x;,y;) € ST,
after a few algebraic manipulation, it turns out we need
to lower bound Umin[% Zi:(mi?w)esf xzfﬂlT] Since

Pr(x; : (x4,y;) € ST) > Tmin by definition, leveraging
properties of restricted Gaussians (Lemma B.2), we
obtain amin[% Zi:(zi,yi)GSf (T =mziz]] > (1 —n)rds,.
Furthermore, leveraging the fact that if (z;,y;) € ST, we have
p(07) > 1—n (Lemma B.1), and using the norm upper bound
on restricted Gaussians (Lemma B.3) we control such indices.
Finally, combining all the terms and using the geometric
parameters succinctly, we obtain the desired result.

5. Generalization Guarantees

In this section, we obtain generalization guarantees for the
soft-min loss functions. Note that similar generalization
guarantee for the min loss function has appeared in (Pal et al.,
2022).

We learn a mixture of functions from X — ) for X C R¢
fitting data distribution D over (X,))). A learner has access
to samples {z;,y; }7,. There is a base class H : X — ).
Here, we work with the setup of list decoding where the
learner outputs a list while testing. In (Pal et al., 2022) the
list decodable function class has been defined. We rewrite
here for completeness.

Definition 5.1. Let H be the base function class H. We
construct a vector Valueq k—list—decodable function class,
namely H}, such that any h € Hy, is defined as

h= (), h ()

such that h; € H; for all j € [k]. Thus h’s map X — V* and

form the new function class Hy,.

To ease notation, we omit the % in H when clear from context.

In our setting, the base function class is linear, i.e., for all
JElk]

Hi=H={@,) VO eR? s.t 16]l, <R},
and the base loss function £: Y x Y —R™ is given by

U(hj(@) ) = (y—(2.0;))*.

In what follows, we obtain generalization guarantees for
bounded covariates and response, i.e., |y| <1and ||z] <1.

Claim 5.2. For bounded regression problem, the loss
function ¢(h,;(x),y)) is Lipschitz with parameter 2(1+ R)
with respect to the first argument.

The proof is deferred to Appendix C. We are interested in
the soft loss function, which is a function of the k-base loss
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functions:

,C(FL(I'), ):’C( vy;alv 79)

_Zpeh -0 a:y&)[
—Zpel

—(2.,6;)]”

(z,y;0;)(h;(x)y),

where
e~ (y—(@,0;))°
Zz ye= (=00 '

Do,,..,0, (Ivyﬁ])

We have n datapoints {z;,y; }7—; drawn from D and we want
to understand how well this soft-min loss generalizes. In
order to do that, a standard metric one studies in statistical
learning theory is (emprirical) Rademacher Complexity
((Mohri etal., 2018)). In our setup, the loss class is defined by

zy)— Zpel

Let us define this class as ®. The Rademacher complexity
of the loss class is given by
)Yi) ]

: Tlliaiﬁ(h(:c
ZazZpel,.., 30

ff{n(CD):IEG sup
heH

:]Eo.
{0;:116;5 H<R}k

where o is a set of Rademacher RV’s {o; }" ;
following result:

z,y;0;)E(h

)E(hj(2).y)

. We have the

Lemma 5.3. The Rademacher complexity of ® satisfies

4kR(1+R)

R(@) AR+ RRH) <

We observe that the (empirical) Rademacher complexity
of the soft-min loss class does not blow-up provided the

complexity of the base class H is controlled. Moreover,

since the base class is a linear hypothesis class (with bounded

{3 norm), the Rademacher complexity scales as O(1/4/n),

resulting in the above bound. The proof is deferred in
Appendix C. In a nutshell, we consider a bigger class of all
possible convex combination of the base losses, and connect
® to that bigger function class.

6. Conclusion and Open Problems

In this work, we have studied the agnostic setup for mixed
linear regression, and show that EM and AM algorithms

i(@))i{0;: 110 < RYj_y ).

|

are strong enough to provide provable guarantees even in
this setup. However we believe such algorithms may be used
in a broader context of agnostic learning. We conclude the
paper with a few interesting problems. Beyond mixture of
linear regressions, can this agnostic setup be used for other
problems such as mixture of classifiers, mixture of experts, to
name a few? What is the role of Gaussian covariates in such
an agnostic setting? Can we relax this to some extent? In
(Ghosh et al., 2019) it is explained how restricted Gaussian
analysis can be extended to sub-Gaussians satisfying a
small ball condition for the particular problem of max-affine
regression. Another interesting direction is to analyze the
AM based algorithms without resampling in the agnostic
setup, leveraging techniques like Leave One Out (LOO) as
an example. We keep these as our future endevors.
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A. Proof of Theorem 2.1

Without loss of generality, let us focus on ;. We have

* * vy
6 —0;1=ll02—01 - L SV Ei(6y)]

ieh
* * ,y *
=01 =07) =5 > (VFi(01) = VFi(67) ZVF 07)
i€l 1611
<1161 —67)— VZ VE(0,)—VE;(67) H+—||ZVF @)
i€l i€l

Tl T2

Let us first consider 77 . Substituting the gradients, we obtain

. 2y .
I—— > wix] )(61—67)] = H(I—n— > mx])(01-67)].
zeh i:(wq,y: ) €ESL

We require a lower bound on

1
T
Umln § ;T >o—mln n, E le'z)

2611 i:(x4,y: ) €S1NST

Similar to the EM framework, in order to bound the above, we need to look at the behavior of the covariates (which are
standard Gaussian) over the restricted set given by 57 N.S7. Note that since we are resampling at each step, and using fresh
set of samples to construct S; and another fresh set of samples to run the Gradient AM algorithm, we can directly use
Lemma B.2 here. Moreover, we use the fact that |i : (z;,y;) € S1NST| > Cli: (24,y:) € ST| > C'Tminn with probability at
least 1 — C'exp(—mminn) where we use the initialization Lemma A.1. Thus, we have

1
Omin ( ; Z ;T ) > C71'

i:(xi,yi) €St

with probability at least 1 —Cyexp(—Cart . n')—Csexp(—mminn’) provided n' > C %. As aresult,

T1 (1 C,yﬂ-mm)Hel_eﬂL

with probability at least 1 —C4exp(—Coml

mll’l ) *

Let us now consider the term 75. We have

=LY VEG)

i:(x4,y:) €S

g *
<— > IVEEDI
i(24,y:) €51
k
'7 * i *
:E Z ||VF1(61)||+£Z Z IVE(07)]
i:(mi,yi)eslﬂS;‘ j:2i:(mi,yi)€51r‘|5‘;

When {i:(x;,y;) € ST}, we have

IVE(07)]| =2[y: — (x4,07) ||| il
<2z || < CAy/dlogdlog(1/Tmin )

12
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with probability at least 1 —n'/poly(d), where in the first inequality, we have used the misspecification assumption, and in
the second inequality, we use Lemma B.3. Let us now compute an upper bound on ||V F; (67 )|, which we use to bound the
second part. We have

IVE; O < Nl 1?1165 |+ i |
< Cydlogdlog(1/mmin)||07F]| +Cby/dlogdlog(1/ Tmin )

with probability at least 1—1/poly(d).
With this, we have

k
Ty < %|Imlf |CX/dlogdlog(1 /wmin)+%2|lml;| <C’1dlogdlog(1 i) 162

Jj=2

+Cby/dlogdlog(1 /wmin)>

<A CA/dlogdlog(1/Tmm) +Ciy(k—1)P, [dlogdlog(l Jmin)|16%]| +Cby/dlogdlog (1 /wmin)] ,

with probability at least 1 — exp(—cP.n) — #l(d) - #&), where P, is defined in Lemma A.1. In this case, we use
|1y NI | <n' (trivially holds) as well as the standard binomial concentration on | I; N1 5 | with mean at most n’ P, with probability

atleast 1 —exp(—cP.n’). Moreover we take the union bound. Here, we use Lemma B.3 along with the fact that |y;| <b.

Combining 77 and 75, we have

165 =07 < (1= cymin) 161 — 05|+ CyAy/dlogdlog (1 /Tmin )
+C1y(k—1)P, |dlogdlog(1/mmin) |65 ||+ Cb\/dlogdlog (1 /Tumin) |,

’
n

poly(d) *

with probability at least 1 —Cyexp(—Cami . n')—exp(—cP.n')—

A.1. Good Initialization

We stick to analyzing 6. In the following lemma, we only consider . In general, the same argument holds for {03, ...,0x }.
Lemma A.1. We have

P€:P<Fi(91) >Fi(92)|i61i‘>

it 1 A-21?
X —
- P Cini2 mane[k] ||9;K H2 2

Let us consider the event
F;(01)> F;(02),
which is equivalent to
|y —(i,01) > |yi — (i,02)].
Let us look at the left hand side of the above inequality. We have

yi —(4,07) + (2i,01 —07)]
<|yi—(z:,07) |+ [{zi,01 —07)|
<A+ [(@i,01—07)],

where we have used the fact that if 7 € I7, the first term is at most \.

13
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Similarly, for the right hand side, we have

[yi — (2:,05) — (2i,02—05)]
> |yi—(@i,03)|— [(z:,62—03)|
> A—[(zi,02—03)]

where we use the fact that if ¢ € I, the first term is lower bounded by A.

Combining these, we have

P(FL(Hl) >Fz(02)|261f) SP(|<$1,91—9T>|+|<$1,92—9;>| ZA—A)

A—) A=)\
SP(|<-’EH91_9T>| > 2) +P(|<$1,92—9§> > 2)

Let us look at the first term. Lemma B.2 shows that if ¢ € I (accordingly (x;,y;) € S7), the distribution of x; — p is
subGaussian with (squared) parameter at most C(1 + log(1/mmin)), Where i, is the mean of x; (under the restriction
(x4,y:) € ST). With this we have

A=)\

P(Iestu-012 252 ) < (1Gos- e 6100} 10712 252

<2 (1o 1 00) |2 25 (1 i) 1]

where we use the initialization condition || — 07 || < cini||07 |, and from Lemma B.2, we have ||z, ||* < Clog(1/mmin)-

Now, provided A —X> C/(ciniv/10g(1/Tmin) |07 ||) +C1 v/1+10g(1/Tmin ), using sub-Gaussian concentration, we obtain

A-) LAY
('(%91 )= —5 >_ eXp( Cni2 07117 [ 2 )

ni

Similarly, for the second term, similar calculation yields

A—)\ 1 TA—)]2
. —09X\I>— | < R |l T
P(lm% b2)12 = )—26xp< o 037 |2 )
and hence
1 A-)\12
P Fi(61)>Fi(62)[i€ 1T ) <dexp| —
( ()= Fi(ea)lie 1) eXP( Cini2maxj€[k]||9;”2[ 2 } )

which proves the lemma.

B. Proof of Theorem 3.1

Let us look at the iterate of gradient EM after one step and without loss of generality, we focus on recovering 67. We have

i=1
Let us use the shorthand p(6,) to denote py, ... 9, (xi,y:;61) and p(07) to denote p= . o= (2i,y:;07) respectively. We have

5
k

2 2
165 =61l =16 —6i == > pO)(wlbi—yw) == D p(O) (wial G-y |

i:(x4,y:)€ST ii(wi,yi)EST
2 2T0 i) — 2Y 2 T0
<61 —67 — n Z p(el)(xlxi el_ylxz)_ ' Z p(el)(xlxi 01_y1x1>”
ix(@i,y:) €SY i:(wi,yi) EST
T:
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First we argue from the separability and the closeness condition that, if (x;,y;) € ST, the probability p(6; ) is bounded away
from 0. Lemma B.1 shows that conditioned on (z;,y;) € SJ’»“, we have pg, . g, (2i,y:;0;) >1—n, where

1—e—C2N? +(k— 1)6—(A—C>\)2
= 1+ (k—1)e—(A=CN? '

with probability at least 1 —C'3exp (— 4 02’|\Z|2> . With this, let us look at 7. We have
ini 1

« 2y 2y
T1§||91—91—g Z p(91)(w?91—ym)ll+gll Z p(91)($i9€iT—yifUi)H-
i:(wi,y;)€SY i:(zi,y: )¢ ST

Ty T2

We continue to upper bound 77;:

2
Ti1 < |61 —9’1#—7% > p(O) (@] 01 —yixs)||

i:(x,yi) EST
* 27 T T n* 27 T n*
§H91—91—W Z p(el)(ﬂfixi91—961'931‘91)”"'?” Z p(01) (i 07 —yizi) |
i:(aji,yi)esf i:(wi,yi)esf
2y iy 2Y .
<I[r-2 S ponead [ 0001+ S 0l )l
z(wl,yl)ESf 1(3:7,y,)€Sf

2
<I[r-2 ST pon)eia | 60D+ o ToRdoR )

i:(xi,y:)EST

with probability at least 1 — C3n/ exp ( - C.m2/|\21|2> — n//poly(d), where we use the misspecification condition,

ly; — (x:,07)] < Aforall (z;,y;) € S;, along with the fact that the number of such indices is trivially upper bounded by the
total number of observations, n. Moreover, we also use Lemma B.3 to bound ||z ||.

Note that since (z;,y;) € S7, we have p(61) > 1 — 7. We need to look at Umin(%Zi:(:ﬁi,yi)esfp(&)mixf), where
p(61) > 1—n. We use the fact that

T

1 1
Tmin | — Z p(01)ziz! | > omin 7 Z (1—n)xx;

i:(x,yi) EST i:(w;,y:) EST

Note that we need to analyze the behavior of the data restricted on the set S7. In particular we are interested in the second
moment estimation of such restricted Gaussian random variable. We show that, conditioned on 57, the distribution of
x; changes to a sub-Gaussian with a shifted mean. Lemma B.2 characterizes the behavior as well as the second moment
estimation for such variables.

We invoke the Lemma B.2 and use the standard binomial concentration to obtain |i : (z;,y;) € ST| > Cmminn with probability
atleast 1 —exp(—cmminn). With this, we obtain

1
Omin ? Z (1_U)IZI1T Zc(l_n)ﬂ'f’nin
i:(x,yi) EST
with probability at least 1 —Cexp(—Conl. n’), provided n' > C dlog(1/Munin)

min K
min

Using this, we obtain

Ty < (1=2yc(1—n)ml;,) 101 =05 |+ CyAy/dlogdlog(1/ mmin).-

15
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with high probability. Let us now look at 772. We have

2y T
To="0 D p0)(ziaf 0—yias)|
i:(zi,y: )¢ ST

2
<L ST ()il 0 —yiai

i:(xi,y:)EST

(1) 2yn/
<= D el
i:(x,yi ) €57

2vn
<— Z (sl + Nl [ 102 []) ||l
ii(wi,yi)EST

(@) 2y’ . ]
BT S (b O ogon (L)) [161 65 4163 ) v/ AloBdlog (1 /m)
i:(wq,y: ) EST

<291 (b+C/dlogdlog(1/mmin))* (cini+1)) |67 -

with probability at least 1 —n’/poly(d) — Csn'exp ( - C(z’l\ZﬂQ> (using union bound). Here (7) follows from the fact

that p(07) <1’ where ij/ =~ (A=CN*=C2X*) (gince (z,;) ¢ S7, which follows from Lemma B.1), (i7) follows from the
fact that |y;| <b for all i. Moreover, since {S} }4_, partitions R?, (;,y;) ¢ S7 implies that (z;,y;) € S; where £ € [k]\ {1},
and we can invoke Lemma B.3.

Collecting all the terms: We now collect the terms and combine them to obtain
167 =67 <11+ T
< (1-27e(L =), 1161 — 07 |+ Cy A/ dlogdlog (1 Toun)
+297 (b+C/dlogdlog(1/mmin))* (cini +1)) 65 ]

with probability at least 1 —Cyexp(—cy 2. n')—Caexp(—cad) —n'/poly(d) —n'Csexp < Cz’l\z*lz> .
“ini 1
Let p=(1—2yc(1—n)7w3 ;) and we choose 7 such that p < 1. We obtain
165 — 0711 < pll61 — 07 [+,

where

e <CyAy/dlogdlog(1/Tmin) +2y1 (b+C'/dlogdlog(1/Tmin) ) (cini+1)) (|67 |,
with probability at least 1 —Crexp(—cy 2. n')—Caexp(—cad) —n' /poly(d) —n'Csexp < (‘2T\291‘|2> .

B.1. Proofs of Auxiliary Lemmas:

Lemma B.1. Forany (z;,y;) € S7, we have py, ... 6, (2:,9:;0;) > 1—n, where

.....

1—e—C2A? +(k—1)e’(A*C>‘)2
= 1+ (k—1)e (A=W '

Moreover, for (z;,y;) ¢ S; we have

Do,....0 ($i7yi;9j) S 6_((A_C>\)2_Cz)\2).
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Proof. Consider any (x;,y;) € S and use the definition of py, , g, (x:,yi;0;). We obtain

Doy .00 (TisYis05) = =

Note that
[yi — (xi,05) | = lyi — (2,07 ) + (23,07 = 0;)]
<lys—(2a,05) |+ (2,05 —05)]
Furthermore, using reverse triangle inequality, we also have
yi—(@i,05)| > lyi — (23,07 )| — (21,05 —0;)].

Since we are re-sampling at every step, and from the initialization condition, we handle the random variable (z; 05—, ).

Using Lemma B.2 shows that if (z;,y;) € ST, the distribution of ; — i is subGaussian with (squared) parameter at most
C(1+41log(1/mmin)), Where . is the mean of ; (under the restriction (x;,y;) € S7). With this we have

P(|<xi,el—et>| >0A) <P(|<xi—uﬂel—er>+urnnel—e;ﬂn >0A)

gP(|<xiuT,eler> > OA el wog(l/wmm)orn)

where we use the initialization condition || — 07 || < cini||07 ||, and from Lemma B.2, we have ||, ||* < Clog(1/mmin)-

Now, provided ¢;n; < Co ﬁ, using sub-Gaussian concentration, we obtain
og Tmin 1

(Hes0n-012 0 ) <2emp (-0 ).
Cini2||91”

Using the assumption, i,.e., the separability and the misspecification condition, we obtain

(rc*z,\2
. .-0,)>
Pon,..., 9k(xmyza J _6_(yi_<mi’0.7'>)2—|—Z£¢je*(yi*<$i70e>)2
- 6—02A2
= e~ (yi—(z:,05))? +(k;_1)e—(A—C)\)2

e—czv
> 3
1+ (k—1)e B0

. 1—e 2N 4 (k—1)e~ (A-CN7
T 1+ (k—1)e—(A=CN)? '

Let us look at the condition (x;,y;) ¢ S;. Since { S5 }¥_, partitions RY, (;,y;) € S} for j € [k]. With this,

e—(A—CA)2
c00.) <
Por....00 (i:9i05) < P O S e
_ _ 2
e (a-cxN) _ - (A—ON? 0N
T e 40

The above events occur with probability at least 1 —Csexp ( Ch n:z)iZP) .
ini 1
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Lemma B.2. Suppose x ~ N (0,1;) and a fixed set S such that P(x € S) > v. Let T denote the restriction of = onto S.
Moreover, suppose we have n draws from a standard Gaussian and m of them falls in S. Provided n > %d, we have

1 & C
Omin (mZITiTiT> Z§V2a
i=

with probability at least 1 —2exp(—civn).

Proof. Consider a random vector 7 drawn from such restricted Gaussian distribution, and let .- and X be the first and second
moment respectively. Using (Ghosh et al., 2019, Equation 38 (a-c)), we have

i ||* < Clog(1/v),

Cv’I;<%,,

Moreover (Yi et al., 2016, Lemma 15 (a)) shows that 7 is subGaussian with 3 norm at most ¢? < C(1 + log(1/mmin)-
Coupled with the definition of ¥ norm, (Vershynin, 2018), we obtain that the centered random variable 7 — i, admits a
19 norm squared of at most C'; (1+1log(1/mmin)-

With m draws of such random variables, from (Ghosh et al., 2019, Equation 39), we have

1<~ o s of d d
. _ o > _ _ _
omlr,(m;:lnn >_CV ¢ <m+\/m+5 ,

with probability at least 1 —2exp(—cymmin{d,5%})

If there are n samples from the unrestricted Gaussian distribution, the number of samples, m that fall in S'is given by m > %I/TL
with high proibability. This can be seen directly from the binomial tail bounds. We have

P(m< %) <exp(—cvn)

Combining the above, with v > ¢ where c is a constant as well as n > %ﬁ/”)d, we have

1« C
Omin (mz;TiTzT> Z;VQa
1=

with probability at least 1 —2exp(—c;mmin{4,6%}). Substituting § = C'v? yields the result. O

Lemma B.3. Suppose (v;,y;) € S} for some j € [k]. We have

Il || < C’(\/dlogdlog(l/wmin)—f— \/log(l/wmm)) <C; \/dlogdlog(l/wmin),

with probability at least 1—1/poly(d), where the degree of the polynomial depends on the constant C.

Proof. Note that Lemma B.2 shows that under (;,y;) € S for some j € [k], the centered random variable 7; — ji is
sub-Gaussian with 13 norm squared of at most C'(1+1og(1/mmin)). Note that since, 7; — 11, is centered, the 13 norm is
(orderwise) same as the sub-Gaussian parameter.

‘We now use the standard norm concentration for sub-Gaussian random variables (Jin et al., 2019). We have, for a sub-Gaussian
random vector with parameter at most C'(1+1og(1/mmin)), we have

]P’<||X—IEX|\ Zt\/g\/(l—klog(l/ﬂmm)) <2exp(—c1t?).
Using this with ¢ = C'y/logd along with the fact that |z |2 < Clog(1 /7 min ), We obtain the lemma. O
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C. Proof of Generalization

C.1. Proof of Claim 5.2

In order to see this, suppose h§-1) € H; and h§-2) € H;, and so we have h;l)(x) = <x,9§1)> and h§-2) (x) = <x,9§-2)> with
HHJ(U || <R aswell as ||9](.2) | < R. With this, we have

(b (@).) — 60 (2).y)| = | (1.6

<$i,6(2) —9;1) > [2y— <x,9§2) +9§1) >} ‘
< | (@) = b @)1 20yl Il (1657 1+ 16571
<2(1+R) 1S (2)—h? ()],

which proves the claim.

C.2. Proof of Lemma 5.3

Proof. Note that the soft-min loss is a convex combination of the base losses, and the probabilities are computed by
Poy,...0, (2, y;0;). Instead, if we consider the loss class with all possible convex combinations of the base losses, the
corresponding loss class will be a superset of the current loss class. From the definition of Rademacher complexity, if F; C Fo
for any two sets F; and Fy, we have R, (F) < R, (Fy). We define the following loss class

{ Y HZ% Xj: }

y);0, €RY|10,]| < R,a; >0Vj €[k

and hence from the definition of Rademacher complexity, we have Si(®) < R(®). Continuing we have

n k
#(3)=E, sup %Z Zajahj(x),y)’
i=1 j=1

{0;:010;11<R,a; >0}k, 555

sup

=1

{9 10;11<R, aJ>O}k 1:27 1o=1

k

n

1
ZnZJlaﬂ

j=1

. -
<3 E, ij )’
= Lelles \|<R aJ>o lajl<1| T
k B 1 n
<» E, sup o Zaiﬁ(hj(a?),y)’
105:110; | <R,0;>0,]a;]<1 ni=1

< Zk:]E,, _ Zaz H

e \|<R aJ>o laj|<1| T

n

sup 1Zaie(hj(x),y)ﬂ

|05:110; I<SRIT 7
=kR(LoH)
<4k(1+R)R(H)
< 4kR(1+R)
T Vn
where in the third line, we have used the sub-additivity property of the supremum function as well as the triangle inequality.

We also used the above claim regarding the Lipschitz constant of the loss function ¢(.,.) and invoked the contraction result
for Rademacher averages by (Bartlett & Mendelson, 2002). Finally, for linear hypothesis class, we use (Mobhri et al., 2018)

19



Agnostic Mixed Linear Regression with EM and AM

to obtain the final result. Hence, we obtain

. _4kR(1+R)
R(®)< = =

which proves the result.
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