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Abstract—In this work, we show that if local datasets in
a distributed network are appropriately compressed and then
aggregated, it can result in a compressed version of the union of
the datasets, in terms of an ℓ2-subspace embedding. Specifically,
we show that sketching datasets which are locally generated or
stored at a node in a network; via oblivious embeddings, and
then aggregated, result in a valid sketch of the collective dataset.
The key idea is that by applying distinct random projections
on the “local” datasets, roughly gives each data point the same
importance in the “global” dataset. From this, uniform sampling
on the local transformed datasets is close to a uniform sampling
on the global dataset, after the local projections take place. Our
main arguments are also justified numerically.

I. INTRODUCTION AND RELATED WORK

Randomization in numerical linear algebra and data science

has been a key tool for dimensionality reduction over the

past 25 years for handling large datasets [1]–[4], and is

an interdisciplinary field of study which is referred to as

“sketching” and abbreviated to “RandNLA”. Sketching offers

an effective and cheaper randomized approach to tackling

problems such as matrix factorization [5], eigenvalue computa-

tion [6], k-means [7], [8], or solving linear systems [9], [10],

which are prohibitive in high dimensions and beyond reach

for deterministic methods. The core idea behind sketching

is to leverage randomization to create structured and well-

conditioned matrices that preserve important properties of

the original matrices, when compressing them. By applying

randomized algorithms to these structured matrices, one can

obtain approximate solutions that are statistically close to the

true solutions of the original problem.

More recently, with the increase in daily data generation

which is prevalent in many machine learning and statistical

inference models, resorting to distributed systems for storage

and computations is a necessity. A prime example is federated

learning, which is also concerned with the privacy and security

of data generated locally by users in such systems.

In this article, we show that it is possible to aggregate

sketches of local datasets from a distributed network, to obtain

a sketch of the collective dataset as a whole (sometimes

referred to as the “global dataset”). We work with “oblivious

subspace embeddings” (OSE); a special case of ℓ2-subspace

embeddings (ℓ2-s.e.), which suit our objective. Specifically, by

first performing a random projection on the local datasets, we

show that in the resulting global dataset the transformation of

each data point is of approximately equal importance; which

is quantified by leverage scores. This then implies that local

uniform sampling suffices, as it is close to uniform sampling
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over the global dataset. Embeddings in such data-distributed

settings are useful in variety of data perprocessing/pretraining

and other unsupervised learning tasks such as clustering, or

PCA [11], [12].

To obtain the sketch of the global dataset, the nodes of

the distributed network send their sketches to a coordinator

who aggregates them. Depending on the choice of the ran-

dom projection performed by the nodes, there is a security

guarantee on their local information; which prohibits potential

eavesdroppers and the coordinator from recovering the data

points, which is of increasing importance in distributed ma-

chine learning. Ultimately, we obtain a summary of the global

dataset in a decentralized manner, without explicitly revealing

or aggregating the local data.

The paper is organized as follows. In Sec. II we review

notions from RandNLA which we need for our algorithm, as

well as introduce notation. In Sec. III we formally present

our algorithm and how it applies to distributed settings. The

Analysis of our results are then presented in Sec. III-A. Finally,

we present numerical experiments in Sec. IV; and concluding

remarks in V. All proofs can be found online in [13].

A. Related Work

The closest work to what we present, is a recent sketch-

ing technique coined “block-SRHT” [14], which considers

distributed architectures. This is the only sketching scheme

discussed in a recent monograph [15] in which local sketching

is performed. In [14], the authors assume that a partition of

the global dataset is sent to each of the nodes, who then apply

a Subsampled Randomized Hadamard Transformed (SRHT)

to their allocated partition; along with an additional global

permutation and a local signature matrix, before they send

back the sketch to the coordinator who sums the sketches.

The main technique used in the block-SRHT is that by ap-

plying the global permutation and additional signature matrix,

and performing what they call the “sum-reduce” operation,

there is resemblance with the standard SRHT [10], [16].

Their overall computational cost is a constant factor higher

than sketching with a standard SRHT for the same reduced

dimension. On the contrary, the overall computational cost of

our approach is a constant factor lower than standard sketches,

as we perform multiple smaller sketches and then aggregate

them, instead of summing them. To this extent, our objective is

also more general, as we assume the data is already distributed

across a network (such as in federated learning), and the global

dataset is never itself aggregated. Another drawback of the

block-SRHT, is that its overall communication load is a factor

of k higher than ours, for the same reduced dimension.



Other related work include distributed sketching techniques

in which different sketches are performed on the global

dataset; to solve varying sketched versions of the global system

of linear equations, which are then averaged or aggregated to

determine a good approximate solution for linear regression

[17], [18]. The main drawback here compared to our approach,

is that each sketch is performed on the global dataset; and

therefore it is not suitable for systems in which local nodes

wish not to share their information with other nodes.

II. PRELIMINARIES

In this section, we set up our notation and further de-

scribe how our proposed method relates to standard sketching

techniques and approaches. One of the most representative

applications of RandNLA is the linear least squares approxi-

mation problem, in which we seek to approximately solve the

overdetermined linear system Ax = b by solving

x⋆ = arg min
x∈Rd

{
Lls(A,b;x) := ∥Ax− b∥22

}
(1)

for A ∈ R
N×d and b ∈ R

N , where N k d. A regularizer

¼T (x) can also be added to Lls(A,b;x) if desired. In our

setting, we assume that A and b partitioned across their rows

are local datasets Ai with corresponding labels bi, i.e.

A =
[
A¦

1 · · · A¦
k

]¦
and b =

[
b¦
1 · · · b¦

k

]¦
(2)

where Ai ∈ R
n×d and bi ∈ R

n for all i, and n = N/k; for

which n > d. We consider the reduced SVD of A = UΣV¦,

where U ∈ R
N×d and A is full rank. To simplify our presen-

tation, we assume that k|N ; and {Aº}kº=1 are equipotent. A

way to approximate (1) in a faster manner, is to instead solve

the modified least squares problem

x̂ = arg min
x∈Rd

{
LS(A,b;x) := ∥S(Ax− b)∥22

}
(3)

for S ∈ R
R×N an ℓ2-s.e. sketching matrix, with R < N .

Definition 1 (Ch.2 [2]). A sketching matrix S ∈ R
R×N is a

ℓ2-subspace embedding of A ∈ R
N×d with a left orthonormal

basis U, and N k d; N > R > d, if for any y ∈ im(U) we

have with high probability:

(1− ϵ) · ∥y∥ ⩽ ∥Sy∥ ⩽ (1 + ϵ) · ∥y∥
for ϵ > 0. This is equivalent to satisfying the ℓ2-s.e. property:

∥Id − (SU)¦(SU)∥2 ⩽ ϵ . (4)

In turn, Definition 1 characterizes the approximation’s error

of the solution x̂ of (3), as

∥Ax̂− b∥2 ⩽ (1 +O(ϵ))∥Ax⋆ − b∥2 (5)

and ∥A(x⋆ − x̂)∥2 ⩽ ϵ∥(IN −UU¦)b∥2 [19]. Furthermore,

desired properties of sketching matrices are that they are zero-

mean and normalized, i.e. E[S] = 0R×N and E[S¦S] = IN
[20], which are met by normalized random matrices with

i.i.d. standard Gaussian entries.

Notation: We denote Nm := {1, 2, . . . ,m}, and X{m} =
{Xi}mi=1; where X can be replaced by any variable. We

consider random square projection matrices; which are rep-

resented by P. Sampling matrices are denoted by Ω, where

each row has a single nonzero entry. The uniform sampling

distribution {1/N, . . . , 1/N} is denoted by UN , and by ŨN

we represent UN ’s approximation through our approach. The

index set of A’s rows is denoted by I, i.e. I = NN . The

index set of Ai is denoted by Ii for each i ∈ Nk, i.e.

Ii = {(i − 1)n + 1, . . . , in} and I =
⊔k

º=1 Iº. Similarly,

by S we denote the index multiset of A’s sampled rows, and

Si the index multiset of Ai’s sampled rows for each i. By ei
we denote the ith standard basis vector. The restriction of the

identity matrix IN to the entries of Iº is represented by IN
∣∣
Iι

.

The jth row of matrix M is represented by M(j). We use the

“∼” (over-script) to denote corresponding quantities of A in

the global sketch Â; which we define in Sec. II-A, II-B.

A. Sketching through Leverage Scores

Many sampling algorithms select data points according to

the data’s leverage scores [21], [22]. The leverage scores of

A measure the extent to which the vectors of its orthonormal

basis U are correlated with the standard basis, and define

the key structural non-uniformity that must be dealt with

when developing fast randomized matrix algorithms; as they

characterize the importance of the data points. Leverage scores

are defined as ℓj := ∥U(j)∥22; and are agnostic to any particular

basis, as they are equal to the diagonal entries of the projection

matrix PA = AA = UU¦. The normalized leverage scores

of A for each j ∈ NN are

Ãj :=
∥∥U(j)

∥∥2
2

/
∥U∥2F =

∥∥U(j)

∥∥2
2

/
d ,

and Ã{N} form a sampling probability distribution; as∑N
º=1 Ãº = 1 and Ãº ⩾ 0 for all º. This induced distribution

has been proven useful in linear regression [2], [19], [22], [23],

as well as a plethora of other applications [3], [7], [24], [25].

The coherence of A is defined as µ := maxº∈NN

{
ℓº
}

.

Similar to (2), we partition

U =
[
U¦

1 · · · U¦
k

]¦

and define the “local coherence” of each data block as

µi := maxj∈Ii

{
ℓj
}

. We denote the sum of each block’s

corresponding leverage scores by Li :=
∑

j∈Ii
ℓj . It is worth

noting that in our setting, the closer Li and µi are to d/k and

d/N respectively, the more homogeneous the local data blocks

are; when they considered as a global dataset. If µi = d/N ,

Ui is aligned with the standard basis.

Next, we recall the leverage score sampling ℓ2-s.e. sketch;

which is used to obtain À := S̀A. Given A, we sample R > d
rows with replacement (w.r.) from A according to Ã{N}. If at

trial j the row ij was sampled; we rescale it 1/
√

RÃij , and

set À(j) = A(ij)

/√
RÃij . It is clear that here S̀ ∈ R

R×N is

simply a sampling and rescaling matrix, i.e. S̀j = e¦ij
/√

RÃij .

In many cases, estimating the leverage scores is preferred,

as computing them exactly requires O(Nd2) time which is



excessive. We can instead use accurate approximate scores

ℓ̂{N} which can be computed in O(Nd logN) time [22]. The

estimates are “close” in the following sense: ℓ̂i ⩾ ´ℓi for all i,
where ´ ∈ (0, 1] is a misestimation factor. The only difference

in sampling according to ℓ̂{N}, is that we need to oversample

by a factor of 1/´ to get the same theoretical guarantee. The

ℓ2-s.e. result of S̀ is presented next [2], [19], [26].

Theorem 2. The leverage score sketching matrix S̀ is a ℓ2-s.e

of A. Specifically, for ¶ > 0 and R = Θ
(
d log (2d/¶)/(´ϵ2)

)
,

the identity of (4) is satisfied with probability at least 1− ¶.

B. Oblivious Subspace Embeddings

A drawback of directly applying leverage score sampling

locally in hope of obtaining a global sketch by aggregating

the local sketches, is that the local datasets may be highly

heterogeneous, and the sampling performed locally may not

be representative of the global leverage score sampling dis-

tribution. To alleviate this issue, we resort to OSEs, which

exploit random projections and/or uniform sampling. Two

prime examples of OSEs, are the Gaussian sketch and the

SRHT. It is also worth noting that utilizing random Gaussian

and Rademacher random matrices in data compression has

close ties to the Johnson-Lindenstrauss lemma [27]–[29],

which predates the study of RandNLA.

The Gaussian sketch is defined through a random projection

G ∈ R
R×N where Gij ∼ N (0, 1), which is then rescaled to

get S = 1√
R
G. To unify our techniques, we note that directly

applying 1√
R
G ∈ R

R×N is equivalent to uniformly sampling

(without replacement) R rows from a N×N Gaussian matrix.

This is also true for the Rademacher sketch, where Θij ∼
Unif(−1,+1) and S = 1√

R
Θ. For further speedups with these

unstructured projections, one could therefore directly apply

R×N rescaled projections and not consider uniform sampling.

A benefit of considering the uniform sampling matrix Ω being

generated separately to the random projection, is that other

sampling matrices may be utilized instead [30], [31].

The SRHT is comprised of three matrices: Ω ∈ R
R×N a

uniform sampling w.r. and rescaling matrix of R rows, H̄N

the normalized Hadamard matrix of order N :

HN =

(
1 1
1 −1

)¹ log
2
(N)

H̄N =
1√
N

·HN

and D ∈ {0,±1}N×N with i.i.d. diagonal Rademacher random

entries; i.e. it is a signature matrix. If N is not a power of 2, we

can pad A with zeros to meet this requirement. The SRHT

sketching matrix is then S =
√

N
R · ΩH̄ND, where H̄ND

is unitary matrix that rotates U. The main intuition of the

projection is that it expresses the original signal or feature-

row in the Walsh-Hadamard basis. Furthermore, H̄N can be

applied in O(Nd logN) time, by using Fourier based methods.

In the new left orthonormal basis of A after the aforemen-

tioned projections are applied, the resulting leverage scores are

close to uniform. Hence, uniform sampling is applied through

Ω to reduce the effective dimension N , whilst the information

of A is maintained. An appropriate rescaling according to the

number of sampling trials also takes place, in order to reduce

the variance of the resulting estimator.

The idea behind our approach is that the local projections

will “flatten” the leverage scores in A of their local blocks;

i.e. Ãj ≈ Li/(nd) for each j ∈ Ii and every i ∈ Nk. By then

locally performing uniform row sampling on PiAi; we get a

close to uniform sampling across all the projected blocks.

III. DISTRIBUTED LOCAL SKETCHING

In this section, we discuss the details of our distributed

sketching scheme. The ith node applies a random projection

matrix Pi ∈ R
n×n which is generated locally; in order to

flatten the corresponding leverage scores. As we will see, the

flattening here is with respect to Ui; i.e. w.h.p. ℓj ≈ Li/(nd)
for each j ∈ Ii. This is the cost we pay for performing

local sketches. Nonetheless, we show in Figure 2 that the

flattening degrades gracefully as k increases; even for global

datasets with highly non-uniform leverage scores. To partially

circumvent this concern if our approach is to be performed by

a single user or centrally administered by the coordinator, a

random permutation can be applied on the rows of A before

the partitioning takes place.

After locally applying Pi, the nodes randomly sample r =
R/k rows from PiAi which they rescale by

√
n/r =

√
N/R

and aggregate through Ωi; in order to obtain the local sketches

SiAi ∈ R
r×d, for Si =

√
n/r · (Ωi ·Pi) ∈ R

r×n.

Then, each node communicates the resulting sketch to the

coordinator; who aggregates them. The scheme is described

algorithmically in 1, and depicted pictorially in Figure 1.

Algorithm 1: Distributed Local Sketching

Input: Effective local dimension r ▷ R > d and R = rk

Output: Sketch Â ∈ R
R×d, of the collective dataset A

for i = 1 to k do

i
th node:
1) Generate a random Pi ∈ R

n×n
▷ E

[
P

¦

i Pi

]
= In

2) Uniformly sample r rows from PiAi, through Ωi

3) Deliver
√

n

r
(ΩiPi)Ai =: SiAi to the coordinator

note: 1) and 2) can be performed simultaneously by
generating Si ∈ R

r×n, to reduce the local computations
end

Coordinator: Aggregates Â =
[
(S1A1)

¦
· · · (SkAk)

¦

]¦

Fig. 1. Schematic of distributed aggregated sketching.

A. Analysis of our approach

For the analysis of our approach, we note that the final

sketch Â of A can be summarized by the “global sketching”



matrix S̃ ∈ R
R×N , comprised of the “local sketching”

matrices S{k} across its diagonal:

S̃∈R
R×N

︷ ︸︸ ︷


S1

. . .

Sk



 =

√
N

R
·

Ω̃∈{0,1}R×N

︷ ︸︸ ︷


Ω1

. . .

Ωk



 ·

P̃∈R
N×N

︷ ︸︸ ︷


P1

. . .

Pk





where the sampled index multisets S{k} correspond to the

sampling matrices Ω{k}, and
⋃k

i=1 Si to Ω̃.

It is noteworthy that S̃ can also be interpreted as a sparse

sketching matrix, when carried out locally by a single server.

By the block diagonal structure of S̃, the resulting global

sketch recovered by the coordinator is:

Â := S̃A =
[
(S1A1)

¦ · · · (SkAk)
¦
]¦

∈ R
R×d.

Note that
√
R/N and Ω̃ commute. Since

√
R/N · P̃ is

a block diagonal matrix, the corresponding blocks of U are

rotated/transformed by their respective projections, i.e.:

Ũ :=
(√

N/R · P̃
)
·U =

[
Ũ¦

1 · · · Ũ¦
k

]¦

where Ũi =
(√

n/r · Pi

)
· Ui for each i ∈ Nk. We denote

the leverage scores of P̃ ·A by ℓ̃{N}.

Next, we show that the leverage scores of each Ũi are

flattened with respect to Li by the local projection. For our

analysis, we assume that Pi is a random unitary matrix,

drawn from an arbitrary large finite subset Õn(R) of the

set orthonormal matrices On(R) of size n × n. In practice,

normalized Gaussian and Rademacher matrices are used; as

they satisfy E
[
G¦G

]
= IN . The other option which is

widely used is the unitary Randomized Hadamard Transform.

Analogous results can also be derived for these options of Pi.

It is important to note that On(R) is a regular submanifold

of the general linear group GLn(R). Hence, we can define a

distribution on any subset of On(R). For simplicity, we con-

sider the uniform distribution. A simple method of generating

a random matrix that follows the uniform distribution on the

Stiefel manifold Vm(Rm) can be found in [32, Theorem 2.2.1].

Alternatively, one could generate a random Gaussian matrix

and then perform Gram–Schmidt to orthonormalize it.

Lemma 3. Consider a fixed i ∈ Nk. Assume that Pi is

arbitrarily drawn from Õn(R). Then, for any j ∈ Ii, we have

E[ℓ̃j ] = Li/n.

Proposition 4. For a fixed i ∈ Nk and À > 0, the normalized

(w.r.t. Ũ) leverage scores {ℓ̄j}j∈Ii
corresponding to Ũi satisfy

Pr
[
|ℓ̄j − Li/(nd)| < ·

]
⩾ 1− À

for any · ⩾ · ′ := Li

d

√
log(2/À)/2.

In Figure 2, we show numerically the flattening of the nor-

malized leverage scores of a random A ∈ R
2000×40 following

a t-distribution, which scores were highly non-uniform. In this

experiments, P{k} were random Gaussian matrices. As noted

previously, random Gaussian matrices are good surrogates for

unitary random matrices, and are widely used in practice as

they are approximately orthogonal. Furthermore, we observe

that the flattening degrades gracefully as k increases, and if a

random permutation on A’s rows is applied before P̃, we have

slightly better results for each k. Analogous simulation results

were observed when the Pi’s were randomized Hadamard

transforms, random unitary, and Rademacher random matrices.
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Fig. 2. Flattening of leverage scores distribution, for A ∼ t-distribution.

By Proposition 4, the quality of the flattening approxima-

tions of the local blocks depends on the sum of the local

leverage scores Li. To give better theoretical guarantees for

our approach and analysis, we could make the assumption

that Li ≈ d/k for each i. Such an assumption is weaker

to analogous assumptions in distributed sketching algorithms

which assume that A has a low coherence, e.g. [33]. This

is akin to assuming that µi ≈ d/N for each i ∈ Nk. We

believe that it is not possible to improve on the local flattening

algorithmically without exchanging information or aggregating

the data a priori, as the objective is to flatten the scores of the

collective A. Further investigating this is worthwhile future

work. We alleviate this concern by oversampling according to

an appropriate misestimation factor ˜́.

Before we present our main result, we need to show that

Ω is close to being a uniform sampling (w.r.) matrix of R
out of N rows. In Proposition 5, we show this by applying

Chebyshev’s inequality to the balls into bins problem. Specif-

ically, it shows that w.h.p. the sampling of S in I is close to

a sampling of
⋃k

i=1 Si, i.e. the cardinality of sampled indices

of S that lie in any Ii is not far from #Si = r. The important

factors to note are that all sampling trials in both scenarios

are uniform, identical, independent and with replacement.

Proposition 5. Partition the sampled index set S into ordered

partitions Si of I; according to I{k}, i.e. Si = S⋂
(⋃R

l=1 Ii
)
.

Then, for any i ∈ Nk: Pr
[
|#Si − r| ⩾ 10

]
⩽ 1/100.

Remark 6. In order to get an exact global sampling index

set for I, the coordinator could determine S locally and then

request the nodes to send their respective projected rows, or a

subset of corresponding cardinality. In essence, this is similar

to the “unique sampling matrix R” of the block-SRHT [14].

Next, we provide our main result regarding the ℓ2-s.e. of

the aggregated dataset A, through local sketching.



Theorem 7. Let P{k} of Algorithm 1 be random unitary

matrices, and ˜́ = k
d · mini∈Nk

{Li}. Then, for ¶ > 0 and

R = Θ
(
d log (2d/¶)/( ˜́ϵ2)

)
, the sketching matrix S̃ of the

global A, satisfies (4) with high probability.

Corollary 8. Consider 1√
r
G{k} rescaled random Gaussian

matrices, and perform Gram-Schmidt to each projection to ob-

tain P̂{k}. Then, for ¶ > 0 and R = Θ
(
d log (2d/¶)/( ˜́ϵ2)

)
,

the sketching matrix S̃ of the global A, w.h.p. satisfies (4).

We point out that the failure probability of Theorem 7 is

higher than that of Theorem 2, as there is also a source of error

from Proposition 5 and the flattening of the leverage scores.

Therefore, the higher k is, the greater the failure probability is.

Experimentally though, we observe that the increase in error is

not drastic. Furthermore, if we were to assume that Li ≈ d/k,

i.e. the local datasets are homogeneous with respect to U, then

the misestimation factor ˜́ would be close to 1. In the general

setting we are considering, it is best to avoid such assumptions

in practice.

It would be interesting to investigate whether one can

estimate L{k}, without directly aggregating or sharing the

data. If so, the flattening of the scores through the local

sketches could potentially be improved.

Furthermore, the approach of Corollary 8 suggests that

each node performs a Gram-Schmidt process on its generated

random matrix. The benefits of this is for the analysis of our

technique, and can be avoided in practice, as these matrices

satisfy E[S¦S] = IN .

Another major benefit of considering random Gaussian

matrices is their security aspect. Under the assumption that Ai

is randomly sampled from a distribution with finite variance,

then the mutual information per symbol between SiAi (sketch

of Ai observed by the coordinator) and Ai, has a logarithmic

upper bound in terms of the variance; which approaches zero

as n increases or if r is selected appropriately, e.g. [18], [34]–

[36]. This implies information-theoretic security and privacy

of the local data blocks. Similar results were obtained in [37],

[38] for P{k} random unitary matrices, which made different

assumptions on Ai and the distribution of Ui.

Proposition 9. Assume that Ai is drawn from a distribution

with finite variance. Then, the rate at which information about

Ai is revealed by the compressed data SiAi for Si ∈ R
r×n

a Gaussian sketch, satisfies sup I(Ai;SiAi)
nd = O(r/n) → 0.

Specifically, the original Ai and the observed SiAi are sta-

tistically independent, which means we obtain perfect secrecy

for a small enough sketch dimension r.

IV. EXPERIMENTS

In the following experiments we considered the errors

according to the ℓ2-s.e. error (4) and relative regression error

(5), for A ∈ R
18000×40 following a t-distribution, similar to

the experiment of Figure 2. We considered R varying from

30% to 90% of N , for different values of k, and Pi rescaled

Gaussian matrices. Through these experiments, we convey that

the difference in error is small, while we save on computing

on the transformed blocks {PiAi}ki=1 by a factor of (k1/k2)
2

on the overall computation when we move from k = k1 to a

smaller k = k2. By combining steps 1) and 2) of Algorithm 1,

we require only O(rndk) operations by each server. Moreover,

more accurate approximations were observed with higher N .
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Fig. 3. Normalized ℓ2-s.e. error (4), for varying k and R.
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Fig. 4. Regression error (5), for varying k and R.

V. FUTURE DIRECTIONS AND CONCLUDING REMARKS

In this work, we showed how we can obtain a global sketch

of data distributed across a network in terms of a spectral

guarantee, by performing local sketches and not aggregating

until after the sketchings have taken place. We also discussed

the privacy aspect of this approach, as the local sketchings can

provide security guarantees. A potential future direction was

mentioned in Sec. III-A, in terms of improving the flattening of

the leverage scores distributively. Another interesting avenue

is investigating the ideas presented in this paper; when used

for sparser/distributed Johnson-Lindenstrauss transforms, with

partitions across the features of the data points. Finally, there

are potential methods which can tie this approach to that of

[14], while still considering our decentralized setting, which

can lead to further insights in distributed sketching.

Moreover, our approach was motivated by federated learn-

ing, where data is only available to local servers who may

wish not to reveal their information. Our proposed approach

can be utilized in first order federated algorithms to further

accelerate them. It also permits exchange of local sketches for

better approximations by correlating the sketches, while also

providing a global summary of the data if desired. Moreover,

by obtaining a compressed summary of the global dataset,

one can administer global updates of mainstream federated

approaches through distributed or centralized first and second

order methods, while still meeting the objective of keeping the

local data secret. Specific applications include PCA and low-

rank recovery [39], [40], and subspace tracking [41]. Further

investigation of these connections is worthwhile future work.
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APPENDIX A

PROOFS AND FURTHER REMARKS

In this Appendix, we include the missing proofs of the main

manuscript.

Proof. [Lemma 3] Recall that for any j ∈ Ii:
ℓ̃j = ∥Ũ(j)∥22 = ∥e¦i Ũ∥22 = e¦j ŨŨ¦ej .

It then follows that

E[ℓ̃j ] = E

[
tr(e¦j ŨŨ¦ej)

]

= E

[
tr(eje

¦
j · ŨŨ¦)

]

q
=
∑

l∈Ii

1

|Ii|
· tr
(
ele

¦
l · ŨŨ¦)

=
1

n
· tr
(
∑

l∈Ii

ele
¦
l · ŨŨ¦

)

o
=

1

n
· tr
(
IN
∣∣
Ii

· ŨŨ¦
)

=
1

n
· tr
(
ŨiŨ

¦
i

)

=
Li

n
.

In q we invoked the definition of expectation, to express E[ℓ̃j ]
in terms of the leverage scores of the transformed block Ũi.

Further note that in o, the matrix IN
∣∣
Ii

acts similar to a

sampling matrix on the rows of ŨŨ¦, as when we multiply

with IN
∣∣
Ii

we only retain the rows indexed by Ii of ŨŨ¦;

while the remaining rows are set to zero.

What we did not present in this work, is that when we con-

sider other random projection matrices P{k}; e.g. normalized

Gaussian or Rademacher random matrices, similar results to

Lemma 3 hold. This was observed experimentally, and has

been justified for some cases in [38]. Showing this for other

random projections is worthwhile future work.

Proof. [Proposition 4] We know that ℓ̃j ∈ [0,Li], and the

normalized scores are ℓ̄j = ℓ̃j/d for each j ∈ Ii. By Lemma

3, it follows that

E[ℓ̄j ] = E[ℓ̃j/d] =
1

d
· E[ℓ̃i] =

Li

nd
.

By applying Hoeffding’s Inequality [23] for a fixed · ⩾ · ′:

Pr
[
|ℓ̄j − Li/(nd)| < ·

]
> 1− 2e−2(·d/Li)

2

⩾ 1− À .

Proof. [Proposition 5] We first note that
⋃R

l=1 Ii is the multi-

set union of R copies of the index set Ii, as we are considering

sampling with replacement. In our context, I{k} represent

the bins, and the allocation of the R balls into the bins are

represented by S . The sub-multiset Si indicates which balls

fell into the ith bin. Let Bji be the indicator random variable

Bji =

{
1 if ball j falls into bin i

0 otherwise

for which Pr[Bji] = 1/k and E[Bji] = 1/k, as Bji follows a

Bernoulli distribution. Further define Y i :=
∑R

j=1 Bji; which

follows a Binomial distribution, hence

E
[
Y i
]
= R/k = r and Var

[
Y i
]
= (R− 1)/R .

It is clear that Y i = #Si, so by Chebyshev’s inequality the

proof is complete.

Proof. [Theorem 7] For each i ∈ Nk and every j ∈ Ii, by

Proposition 4 we can assume that ℓ̄j ≈ Li/(nd) (w.h.p.),

where ℓ̄j is the sampling probability Ã̃j that row j is sampled

at each independent trial. Hence, Algorithm 1 is now per-

forming approximate leverage score sampling with distribution

ŨN =
⋃k

º=1

(⋃
j∈Iι

{
Lº/(nd)

})
. The misestimation factor

for sampling according to UN instead of ŨN , is

˜́ = min
º∈Nk

{
Lº/(nd)

1/N

}
= min

º∈Nk

{
Lº · (k/d)

}
.

By Proposition 5, the resulting Ω̃ through the local sampling

matrices Ω{k}, is close to a uniform sampling matrix (w.r.) of

R out of N elements. By applying the above conclusions to

Theorem 2, the proof is complete.

Proof. [Corollary 8] Fix an i ∈ Nk. By the Gram-Schmidt

procedure on 1√
r
Gi, the resulting P̂i is a random unitary

matrix drawn from On(R). This holds true for all i ∈ Nk.

The claim then follows directly from Theorem 7.

Proof. [Proposition 9] This follows directly from Theorems

5.1 and 5.2 of [34] when applied to our setting, and the

definition of perfect secrecy [36].

One thing that was not discussed in the main body of

this paper, is the security guaranteed by applying a random

projection drawn from On(R). To give information-theoretic

security guarantees, one needs to make some mild but neces-

sary assumptions regarding the sketching on algorithm which

applies a random projection and then samples to construct

Si, and the data matrix Ai [38]. For a fixed i ∈ Nk, the

message space Mi needs to be finite, which Mi in our

case corresponds to the set of possible orthonormal bases of

the column-space of Ai. This is something we do not have

control over, and it depends on the application and distribution

from which we assume the data is gathered. Therefore, we

assume that Mi is finite. For this reason, we consider a finite

multiplicative subgroup (ÕAi
, ·) of On(R) (thus In ∈ ÕAi

,

and if Q ∈ ÕAi
then Q¦ ∈ ÕA), which contains all potential

orthonormal bases of Ai.

Recall that ON (R) is a regular submanifold of GLN (R).
Hence, we can define a distribution on any subset of ON (R).
We then let Mi = ÕAi

, and assume UAi
the n × n

orthonormal basis of Ai is drawn from Mi with respect to a

distribution D. For simplicity, consider D to be the uniform

distribution. A simple method of generating a random matrix

that follows the uniform distribution on the Stiefel manifold

Vn(R
n) can be found in [32, Theorem 2.2.1]. Alternatively,



one could generate a random Gaussian matrix and then per-

form Gram–Schmidt to orthonormalize it.

Furthermore, this approach resembles the one-time pad,

which is one of the few encryption schemes known to provide

perfect secrecy. The main difference between the two ap-

proaches, is that the spaces we work over are the multiplicative

group (ÕAi
, ·) whose identity is In in, and the additive group(

(Z2)
m,+

)
in the one-time pad; whose identity is the zero

vector of length m.
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