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Abstract—In this work, we show that if local datasets in
a distributed network are appropriately compressed and then
aggregated, it can result in a compressed version of the union of
the datasets, in terms of an />-subspace embedding. Specifically,
we show that sketching datasets which are locally generated or
stored at a node in a network; via oblivious embeddings, and
then aggregated, result in a valid sketch of the collective dataset.
The key idea is that by applying distinct random projections
on the “local” datasets, roughly gives each data point the same
importance in the “global” dataset. From this, uniform sampling
on the local transformed datasets is close to a uniform sampling
on the global dataset, after the local projections take place. Our
main arguments are also justified numerically.

I. INTRODUCTION AND RELATED WORK

Randomization in numerical linear algebra and data science
has been a key tool for dimensionality reduction over the
past 25 years for handling large datasets [1]-[4], and is
an interdisciplinary field of study which is referred to as
“sketching” and abbreviated to “RandNLA”. Sketching offers
an effective and cheaper randomized approach to tackling
problems such as matrix factorization [5], eigenvalue computa-
tion [6], k-means [7], [8], or solving linear systems [9], [10],
which are prohibitive in high dimensions and beyond reach
for deterministic methods. The core idea behind sketching
is to leverage randomization to create structured and well-
conditioned matrices that preserve important properties of
the original matrices, when compressing them. By applying
randomized algorithms to these structured matrices, one can
obtain approximate solutions that are statistically close to the
true solutions of the original problem.

More recently, with the increase in daily data generation
which is prevalent in many machine learning and statistical
inference models, resorting to distributed systems for storage
and computations is a necessity. A prime example is federated
learning, which is also concerned with the privacy and security
of data generated locally by users in such systems.

In this article, we show that it is possible to aggregate
sketches of local datasets from a distributed network, to obtain
a sketch of the collective dataset as a whole (sometimes
referred to as the “global dataset”). We work with “oblivious
subspace embeddings” (OSE); a special case of {2-subspace
embeddings (¢2-s.e.), which suit our objective. Specifically, by
first performing a random projection on the local datasets, we
show that in the resulting global dataset the transformation of
each data point is of approximately equal importance; which
is quantified by leverage scores. This then implies that local
uniform sampling suffices, as it is close to uniform sampling
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over the global dataset. Embeddings in such data-distributed
settings are useful in variety of data perprocessing/pretraining
and other unsupervised learning tasks such as clustering, or
PCA [11], [12].

To obtain the sketch of the global dataset, the nodes of
the distributed network send their sketches to a coordinator
who aggregates them. Depending on the choice of the ran-
dom projection performed by the nodes, there is a security
guarantee on their local information; which prohibits potential
eavesdroppers and the coordinator from recovering the data
points, which is of increasing importance in distributed ma-
chine learning. Ultimately, we obtain a summary of the global
dataset in a decentralized manner, without explicitly revealing
or aggregating the local data.

The paper is organized as follows. In Sec. II we review
notions from RandNLA which we need for our algorithm, as
well as introduce notation. In Sec. III we formally present
our algorithm and how it applies to distributed settings. The
Analysis of our results are then presented in Sec. III-A. Finally,
we present numerical experiments in Sec. IV; and concluding
remarks in V. All proofs can be found online in [13].

A. Related Work

The closest work to what we present, is a recent sketch-
ing technique coined “block-SRHT” [14], which considers
distributed architectures. This is the only sketching scheme
discussed in a recent monograph [15] in which local sketching
is performed. In [14], the authors assume that a partition of
the global dataset is sent to each of the nodes, who then apply
a Subsampled Randomized Hadamard Transformed (SRHT)
to their allocated partition; along with an additional global
permutation and a local signature matrix, before they send
back the sketch to the coordinator who sums the sketches.

The main technique used in the block-SRHT is that by ap-
plying the global permutation and additional signature matrix,
and performing what they call the “sum-reduce” operation,
there is resemblance with the standard SRHT [10], [16].
Their overall computational cost is a constant factor higher
than sketching with a standard SRHT for the same reduced
dimension. On the contrary, the overall computational cost of
our approach is a constant factor lower than standard sketches,
as we perform multiple smaller sketches and then aggregate
them, instead of summing them. To this extent, our objective is
also more general, as we assume the data is already distributed
across a network (such as in federated learning), and the global
dataset is never itself aggregated. Another drawback of the
block-SRHT, is that its overall communication load is a factor
of k higher than ours, for the same reduced dimension.



Other related work include distributed sketching techniques
in which different sketches are performed on the global
dataset; to solve varying sketched versions of the global system
of linear equations, which are then averaged or aggregated to
determine a good approximate solution for linear regression
[17], [18]. The main drawback here compared to our approach,
is that each sketch is performed on the global dataset; and
therefore it is not suitable for systems in which local nodes
wish not to share their information with other nodes.

II. PRELIMINARIES
In this section, we set up our notation and further de-
scribe how our proposed method relates to standard sketching
techniques and approaches. One of the most representative
applications of RandNLA is the linear least squares approxi-
mation problem, in which we seek to approximately solve the
overdetermined linear system Ax = b by solving

x* = arg min {LZS(A, b;x) == [[Ax — bH%} (D)
xER

for A € RV*4 and b € RY, where N > d. A regularizer

AT(x) can also be added to L;s(A,b;x) if desired. In our

setting, we assume that A and b partitioned across their rows

are local datasets A; with corresponding labels b, i.e.

A:{AI.-.AHT and b:[bf.-.bgr 2)

where A; € R"*? and b; € R” for all i, and n = N/k; for
which n > d. We consider the reduced SVD of A = UXV T,
where U € RN¥%? and A is full rank. To simplify our presen-
tation, we assume that k|N; and {A,}*_, are equipotent. A
way to approximate (1) in a faster manner, is to instead solve
the modified least squares problem

X = arg min {LS(A, b;x) = ||S(Ax — b)||§} 3)

x€R2
for S € R¥*N an /,-s.e. sketching matrix, with R < N.

Definition 1 (Ch.2 [2]). A sketching matrix S € REXN js g
(y-subspace embedding of A € RN *? with a left orthonormal
basis U, and N > d; N > R > d, if for any y € im(U) we
have with high probability:

(L—e)-lyll<lSyll<(d+e) -yl
for € > 0. This is equivalent to satisfying the {s-s.e. property:
s — (SU) " (SU)|2 <€ . @)

In turn, Definition 1 characterizes the approximation’s error
of the solution x of (3), as

[Ax = b|l2 < (1 + O(¢))[[AX™ — bl| 5)

and ||A(x* —%)|2 < ¢||(Ix — UUT)b|| [19]. Furthermore,
desired properties of sketching matrices are that they are zero-
mean and normalized, i.e. E[S] = Orxx and E[STS] = Iy
[20], which are met by normalized random matrices with
i.i.d. standard Gaussian entries.

Notation: We denote N,,, = {1,2,...,m}, and Xy,,,; =
{X;}™,; where X can be replaced by any variable. We
consider random square projection matrices; which are rep-
resented by P. Sampling matrices are denoted by €2, where
each row has a single nonzero entry. The uniform sampling
distribution {1/N,...,1/N} is denoted by Uy, and by Uy
we represent U’s approximation through our approach. The
index set of A’s rows is denoted by Z, i.e. Z = Ny. The
index set of A; is denoted by Z; for each ¢ € Ny, ie.
T, = {(i—Vn+1,...,in} and T = ||, Z,. Similarly,
by S we denote the index multiset of A’s sampled rows, and
S; the index multiset of A;’s sampled rows for each i. By e;
we denote the i*" standard basis vector. The restriction of the
identity matrix Iy to the entries of Z, is represented by Iy 7
The ;" row of matrix M is represented by M;). We use the
“~” (over-script) to denote corresponding quantities of A in
the global sketch A; which we define in Sec. II-A, II-B.

A. Sketching through Leverage Scores

Many sampling algorithms select data points according to
the data’s leverage scores [21], [22]. The leverage scores of
A measure the extent to which the vectors of its orthonormal
basis U are correlated with the standard basis, and define
the key structural non-uniformity that must be dealt with
when developing fast randomized matrix algorithms; as they
characterize the importance of the data points. Leverage scores
are defined as /; == ||U ;) 2. and are agnostic to any particular
basis, as they are equal to the diagonal entries of the projection
matrix P = AAT = UUT. The normalized leverage scores
of A for each j € Ny are

;= [UG 5 /I01E = U5 /d
and myyy form a sampling probability distribution; as
Zfil 7w, = 1 and w, > 0O for all +. This induced distribution
has been proven useful in linear regression [2], [19], [22], [23],
as well as a plethora of other applications [3], [7], [24], [25].
The coherence of A is defined as v = max,en, {(.}.
Similar to (2), we partition

U= [UI UHT

and define the “local coherence” of each data block as
Vi = maXjer, {éj}. We denote the sum of each block’s
corresponding leverage scores by .Z; = > jerz, 45 Itis worth
noting that in our setting, the closer .%; and ~; are to d/k and
d/N respectively, the more homogeneous the local data blocks
are; when they considered as a global dataset. If v; = d/N,
U, is aligned with the standard basis.

Next, we recall the leverage score sampling ¢5-s.e. sketch;
which is used to obtain A := SA. Given A, we sample R > d
rows with replacement (w.r.) from A according to 7yyy. If at
trial j the row 4; was sampled; we rescale it 1 /\/ Rm-j, and
set A(j) = A,)/\/Rm,. It is clear that here S € REXN jg
simply a sampling and rescaling matrix, i.e. Sj = e;-'; / B,

In many cases, estimating the leverage scores is preferred,
as computing them exactly requires O(Nd?) time which is



excessive. We can instead use accurate approximate scores
é{ N} Which can be computed in O(Ndlog N) time [22]. The
estimates are “close” in the following sense: lz > B¢, for all 1,
where 8 € (0, 1] is a misestimation factor. The only difference
in sampling according to f{ N} is that we need to oversample
by a factor of 1/f to get the same theoretical guarantee. The
f5-s.e. result of S is presented next [2], [19], [26].

Theorem 2. The leverage score sketching matrix Sisaly-se
of A. Specifically, for § > 0 and R = © (dlog (2d/d)/(B¢€%)),
the identity of (4) is satisfied with probability at least 1 — 6.

B. Oblivious Subspace Embeddings

A drawback of directly applying leverage score sampling
locally in hope of obtaining a global sketch by aggregating
the local sketches, is that the local datasets may be highly
heterogeneous, and the sampling performed locally may not
be representative of the global leverage score sampling dis-
tribution. To alleviate this issue, we resort to OSEs, which
exploit random projections and/or uniform sampling. Two
prime examples of OSEs, are the Gaussian sketch and the
SRHT. It is also worth noting that utilizing random Gaussian
and Rademacher random matrices in data compression has
close ties to the Johnson-Lindenstrauss lemma [27]-[29],
which predates the study of RandNLA.

The Gaussian sketch is defined through a random projection
G € RN where G;; ~ N(0,1), which is then rescaled to
get S = ﬁG. To unify our techniques, we note that directly
applying ﬁ(} € R*N g equivalent to uniformly sampling
(without replacement) R rows from a N x N Gaussian matrix.
This is also true for the Rademacher sketch, where @;; ~
Unif(—1,+1) and S = ﬁ@. For further speedups with these
unstructured projections, one could therefore directly apply
Rx N rescaled projections and not consider uniform sampling.
A benefit of considering the uniform sampling matrix €2 being
generated separately to the random projection, is that other
sampling matrices may be utilized instead [30], [31].

The SRHT is comprised of three matrices: £ € REXN 3
uniform sampling w.r. and rescaling matrix of R rows, Hy
the normalized Hadamard matrix of order /V:

1 1 ®105’2(N) _ 1

and D € {0, £1}¥*¥ with i.i.d. diagonal Rademacher random
entries; i.e. it is a signature matrix. If /V is not a power of 2, we
can pad A with zeros to meet this requirement. The SRHT
sketching matrix is then S = &/E . QHyD, where HyD
is unitary matrix that rotates U. The main intuition of the
projection is that it expresses the original signal or feature-
row in the Walsh-Hadamard basis. Furthermore, Hy can be
applied in O(Ndlog N) time, by using Fourier based methods.

In the new left orthonormal basis of A after the aforemen-
tioned projections are applied, the resulting leverage scores are
close to uniform. Hence, uniform sampling is applied through
© to reduce the effective dimension N, whilst the information
of A is maintained. An appropriate rescaling according to the

number of sampling trials also takes place, in order to reduce
the variance of the resulting estimator.

The idea behind our approach is that the local projections
will “flatten” the leverage scores in A of their local blocks;
ie. mj = .%;/(nd) for each j € Z; and every i € Ny. By then
locally performing uniform row sampling on P;A;; we get a
close to uniform sampling across all the projected blocks.

III. DISTRIBUTED LOCAL SKETCHING

In this section, we discuss the details of our distributed
sketching scheme. The ‘" node applies a random projection
matrix P; € R™™ which is generated locally; in order to
flatten the corresponding leverage scores. As we will see, the
flattening here is with respect to U;; i.e. w.h.p. {; =~ Z;/(nd)
for each 7 € Z;. This is the cost we pay for performing
local sketches. Nonetheless, we show in Figure 2 that the
flattening degrades gracefully as k increases; even for global
datasets with highly non-uniform leverage scores. To partially
circumvent this concern if our approach is to be performed by
a single user or centrally administered by the coordinator, a
random permutation can be applied on the rows of A before
the partitioning takes place.

After locally applying P;, the nodes randomly sample r =
R/k rows from P;A; which they rescale by \/n/r = \/N/R
and aggregate through €2;; in order to obtain the local sketches

S;A; € Rer, for S; = \/n/r ) (Qz Pl) e R"™™,
Then, each node communicates the resulting sketch to the

coordinator; who aggregates them. The scheme is described
algorithmically in 1, and depicted pictorially in Figure 1.

Algorithm 1: Distributed Local Sketching

Input: Effective local dimension r >R >dand R=rk
Output: Sketch A € REX4 of the collective dataset A
for i =1 to k do

it" node:

1) Generate a random P; € R**" > E[P/P;] =1,

2) Uniformly sample  rows from P;A;, through €;

3) Deliver /2 (2,;P;) A; = S;A,; to the coordinator

note: 1) and 2) can be performed simultaneously by

generating S; € R™*™, to reduce the local computations
end

Coordinator: Aggregates A = [(S1A1)T - (SkAk)T]

T

~ _ [Si1A4
§ (s
- :
A :
/ 1/ \‘\ SkAk
Sk Ak

:

SiAj]
&

Fig. 1. Schematic of distributed aggregated sketching.

A. Analysis of our approach

For the analysis of our approach, we note that the final
sketch A of A can be summarized by the “global sketching”



matrix S € RE*N| comprised of the
matrices Sy across its diagonal:

“local sketching”

SerR*N Qefo,1} N PeRVXN

—_——
S1 N Ql Pl

Sk Qp Py

where the sampled index multisets Sy correspond to the
sampling matrices 2, and Ule S;i to €.

It is noteworthy that S can also be interpreted as a sparse
sketching matrix, when carried out locally by a single server.
By the block diagonal structure of S, the resulting global
sketch recovered by the coordinator is:

—~ - T
A:=SA= [(SlAl)T (skAk)T} € REXd,

Note that \/R/N and € commute. Since \/R/N - P is
a block diagonal matrix, the corresponding blocks of U are
rotated/transformed by their respective projections, i.e.:

U= (VN/R-B)-u=[0] - Of]

where le = (\/n/r . Pi) - U; for each i € Ni. We denote
the leverage scores of P A by [7{ N}-

Next, we show that the leverage scores of each fji are
flattened with respect to .Z; by the local projection. For our
analysis, we assume that P; is a random unitary matrix,
drawn from an arbitrary large finite subset O, (R) of the
set orthonormal matrices O,,(R) of size n X n. In practice,
normalized Gaussian and Rademacher matrices are used; as
they satisfy E [GTG] = Iy. The other option which is
widely used is the unitary Randomized Hadamard Transform.
Analogous results can also be derived for these options of P;.

It is important to note that O,,(R) is a regular submanifold
of the general linear group GL, (R). Hence, we can define a
distribution on any subset of O,,(R). For simplicity, we con-
sider the uniform distribution. A simple method of generating
a random matrix that follows the uniform distribution on the
Stiefel manifold V,,,(R™) can be found in [32, Theorem 2.2.1].
Alternatively, one could generate a random Gaussian matrix
and then perform Gram—Schmidt to orthonormalize it.

Lemma 3. Consider a fixed © € Ng. Assume that P; is
arbitrarily drawn from O,,(R). Then, for any j € T;, we have
E[f;] = 2 /n.

Proposition 4. For a fixed i € Ny, and £ > 0, the normalized
(w.r.t. U) leverage scores {{;} jcz, corresponding to U; satisfy

Pr(|t; - Z/(nd)| < (] > 1-¢

forany ¢ > (' = %\/log(Q/f)/Z.

In Figure 2, we show numerically the flattening of the nor-
malized leverage scores of a random A € R2000%40 following
a t-distribution, which scores were highly non-uniform. In this
experiments, Py were random Gaussian matrices. As noted
previously, random Gaussian matrices are good surrogates for

unitary random matrices, and are widely used in practice as
they are approximately orthogonal. Furthermore, we observe
that the flattening degrades gracefully as k increases, and if a
random permutation on A’s rows is applied before P, we have
slightly better results for each k. Analogous simulation results
were observed when the P;’s were randomized Hadamard
transforms, random unitary, and Rademacher random matrices.

Normalized leverage scores — A ~ t-distr.

o
= +e+ uniform distribution
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Fig. 2. Flattening of leverage scores distribution, for A ~ t-distribution.

By Proposition 4, the quality of the flattening approxima-
tions of the local blocks depends on the sum of the local
leverage scores .Z;. To give better theoretical guarantees for
our approach and analysis, we could make the assumption
that ., ~ d/k for each i. Such an assumption is weaker
to analogous assumptions in distributed sketching algorithms
which assume that A has a low coherence, e.g. [33]. This
is akin to assuming that ; ~ d/N for each i € N;. We
believe that it is not possible to improve on the local flattening
algorithmically without exchanging information or aggregating
the data a priori, as the objective is to flatten the scores of the
collective A. Further investigating this is worthwhile future
work. We alleviate this concern by oversampling according to
an appropriate misestimation factor 3.

Before we present our main result, we need to show that
2 is close to being a uniform sampling (w.r.) matrix of R
out of N rows. In Proposition 5, we show this by applying
Chebyshev’s inequality to the balls into bins problem. Specif-
ically, it shows that w.h.p. the sampling of S in Z is close to
a sampling of Ule Si, i.e. the cardinality of sampled indices
of S that lie in any Z; is not far from #S; = r. The important
factors to note are that all sampling trials in both scenarios
are uniform, identical, independent and with replacement.

Proposition 5. Partition the sampled index set S into ordered
partitions S; of L; according to Ty, i.e. S; = S() (Uf;l Ii).
Then, for any i € Ni: Pr [|#S; —r| > 10] < 1/100.

Remark 6. In order to get an exact global sampling index
set for I, the coordinator could determine S locally and then
request the nodes to send their respective projected rows, or a
subset of corresponding cardinality. In essence, this is similar
to the “unique sampling matrix R” of the block-SRHT [14].

Next, we provide our main result regarding the /5-s.e. of
the aggregated dataset A, through local sketching.



Theorem 7. Let Pyyy of Algorithm 1 be random unitary
matrices, and 3 = % . I}linieNk {%;}. Then, for § % 0 and
R=0 (dlog (Zd/é)/(562)>, the sketching matrix S of the
global A, satisfies (4) with high probability.

Corollary 8. Consider %G{ x}y rescaled random Gaussian
matrices, and perform Gram-Schmidt to each projection to ob-

tain f’{k}. Then, for 6 >0 and R=© (dlog (2d/5)/(362)>,
the sketching matrix S of the global A, w.h.p. satisfies (4).

We point out that the failure probability of Theorem 7 is
higher than that of Theorem 2, as there is also a source of error
from Proposition 5 and the flattening of the leverage scores.
Therefore, the higher k is, the greater the failure probability is.
Experimentally though, we observe that the increase in error is
not drastic. Furthermore, if we were to assume that .%; ~ d/k,
i.e. the local datasets are homogeneous with respect to U, then
the misestimation factor S would be close to 1. In the general
setting we are considering, it is best to avoid such assumptions
in practice.

It would be interesting to investigate whether one can
estimate £y, without directly aggregating or sharing the
data. If so, the flattening of the scores through the local
sketches could potentially be improved.

Furthermore, the approach of Corollary 8 suggests that
each node performs a Gram-Schmidt process on its generated
random matrix. The benefits of this is for the analysis of our
technique, and can be avoided in practice, as these matrices
satisfy E[STS] = Iy.

Another major benefit of considering random Gaussian
matrices is their security aspect. Under the assumption that A;
is randomly sampled from a distribution with finite variance,
then the mutual information per symbol between S; A; (sketch
of A; observed by the coordinator) and A;, has a logarithmic
upper bound in terms of the variance; which approaches zero
as n increases or if r is selected appropriately, e.g. [18], [34]-
[36]. This implies information-theoretic security and privacy
of the local data blocks. Similar results were obtained in [37],
[38] for Py random unitary matrices, which made different
assumptions on A; and the distribution of Uj.

Proposition 9. Assume that A; is drawn from a distribution
with finite variance. Then, the rate at which information about
A; is revealed by the compressed data S;A; for S; € R™*™
a Gaussian sketch, satisfies sup I(A%%A"’) = O(r/n) — 0.
Specifically, the original A; and the observed S;A; are sta-
tistically independent, which means we obtain perfect secrecy

for a small enough sketch dimension r.

IV. EXPERIMENTS

In the following experiments we considered the errors
according to the /5-s.e. error (4) and relative regression error
(5), for A € R18000x40 fo]lowing a t-distribution, similar to
the experiment of Figure 2. We considered R varying from
30% to 90% of N, for different values of k, and P; rescaled
Gaussian matrices. Through these experiments, we convey that
the difference in error is small, while we save on computing

on the transformed blocks {P;A;}%_, by a factor of (k1 /k2)?
on the overall computation when we move from k& = k7 to a
smaller & = k5. By combining steps 1) and 2) of Algorithm 1,
we require only O(rndk) operations by each server. Moreover,
more accurate approximations were observed with higher N.

Normalized ¢5-s.e. € error, N = 18000

1 L I I I I I |
0.4 0.6 0.8 2 14 1.6 1.8

1 1
reduced dimension R %10

Fig. 3. Normalized ¢2-s.e. error (4), for varying k and R.

4 Regression € error, N = 18000

Fig. 4. Regression error (5), for varying k£ and R.

V. FUTURE DIRECTIONS AND CONCLUDING REMARKS

In this work, we showed how we can obtain a global sketch
of data distributed across a network in terms of a spectral
guarantee, by performing local sketches and not aggregating
until after the sketchings have taken place. We also discussed
the privacy aspect of this approach, as the local sketchings can
provide security guarantees. A potential future direction was
mentioned in Sec. III-A, in terms of improving the flattening of
the leverage scores distributively. Another interesting avenue
is investigating the ideas presented in this paper; when used
for sparser/distributed Johnson-Lindenstrauss transforms, with
partitions across the features of the data points. Finally, there
are potential methods which can tie this approach to that of
[14], while still considering our decentralized setting, which
can lead to further insights in distributed sketching.

Moreover, our approach was motivated by federated learn-
ing, where data is only available to local servers who may
wish not to reveal their information. Our proposed approach
can be utilized in first order federated algorithms to further
accelerate them. It also permits exchange of local sketches for
better approximations by correlating the sketches, while also
providing a global summary of the data if desired. Moreover,
by obtaining a compressed summary of the global dataset,
one can administer global updates of mainstream federated
approaches through distributed or centralized first and second
order methods, while still meeting the objective of keeping the
local data secret. Specific applications include PCA and low-
rank recovery [39], [40], and subspace tracking [41]. Further
investigation of these connections is worthwhile future work.
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APPENDIX A
PROOFS AND FURTHER REMARKS

In this Appendix, we include the missing proofs of the main
manuscript.

Proof. [Lemma 3] Recall that for any j € Z;:
;=05 =e/Ul3=¢/UU e; .
It then follows that
E[f;] = E [tr(e}fjfﬂej)]
=E [‘cr(ejeT . fJfJT)]

J
}:éﬁmqqdfﬁﬁﬂ

I€Z;

- tr (Z elel—r : ﬁﬁT>

leTZ;

[J==

- tr (IN

m%mﬁn

Lﬁﬁﬂ

SI=3Im 3

In  we invoked the definition of expectation, to express E[/;]
in terms of the leverage scores of the transformed block U;.
Further note that in b, the matrix Iy 7, acts similar to a

sampling matrix on the rows of UU", as when we multiply
with Iy|, we only retain the rows indexed by Z; of uu’;
while the remaining rows are set to zero. O

What we did not present in this work, is that when we con-
sider other random projection matrices Pzy; e.g. normalized
Gaussian or Rademacher random matrices, similar results to
Lemma 3 hold. This was observed experimentally, and has
been justified for some cases in [38]. Showing this for other
random projections is worthwhile future work.

Proof. [Proposition 4] We know that le € [0,.%4], and the
normalized scores are ¢; = {;/d for each j € ;. By Lemma
3, it follows that
_ _ 1 _ %
B[{,] = Elf;/d) = 5 Elf] = —.
By applying Hoeffding’s Inequality [23] for a fixed ¢ > ¢":

Pr[|l; — %/(nd)] < ¢] >1—2e 220" > 1 _ ¢
O

Proof. [Proposition 5] We first note that Ufil Z; is the multi-
set union of R copies of the index set Z;, as we are considering
sampling with replacement. In our context, Zy;; represent
the bins, and the allocation of the R balls into the bins are
represented by S. The sub-multiset S; indicates which balls
fell into the i*" bin. Let Bj; be the indicator random variable

B — 1 if ball j falls into bin ¢
710 otherwise

for which Pr[Bj;] = 1/k and E[Bj;] = 1/k, as Bj; follows a
Bernoulli distribution. Further define Y* := Zf:l Bj;; which
follows a Binomial distribution, hence

E[Y]=R/k=r and Var[Y']=(R-1)/R.

It is clear that Y* = #S;, so by Chebyshev’s inequality the
proof is complete. O

Proof. [Theorem 7] For each ¢ € Ny and every j € Z;, by
Proposition 4 we can assume that ¢; ~ %;/(nd) (w.h.p.),
where Zj is the sampling probability 7; that row j is sampled
at each independent trial. Hence, Algorithm 1 is now per-
forming approximate leverage score sampling with distribution
Uy = Ule (UjeL {Z/(nd)}) The misestimation factor

for sampling according to Uy instead of Uy, is

= . [Z/(nd) :
= — = Z, - (k/d)} .
P i N7 ) = pin (2 00

By Proposition 5, the resulting Q through the local sampling
matrices Q{k}, is close to a uniform sampling matrix (w.r.) of
R out of N elements. By applying the above conclusions to
Theorem 2, the proof is complete. O

Proof. [Corollary 8] Fix an ¢ € Nj. By the Gram-Schmidt
procedure on %Gi, the resulting P; is a random unitary
matrix drawn from O,,(R). This holds true for all i € Ny,.
The claim then follows directly from Theorem 7. O

Proof. [Proposition 9] This follows directly from Theorems
5.1 and 5.2 of [34] when applied to our setting, and the
definition of perfect secrecy [36]. O

One thing that was not discussed in the main body of
this paper, is the security guaranteed by applying a random
projection drawn from O,,(R). To give information-theoretic
security guarantees, one needs to make some mild but neces-
sary assumptions regarding the sketching on algorithm which
applies a random projection and then samples to construct
S,, and the data matrix A; [38]. For a fixed i € Ny, the
message space M; needs to be finite, which M; in our
case corresponds to the set of possible orthonormal bases of
the column-space of A;. This is something we do not have
control over, and it depends on the application and distribution
from which we assume the data is gathered. Therefore, we
assume that M, is finite. For this reason, we consider a finite
multiplicative subgroup (Oa,,-) of O, (R) (thus I, € Oa.,
and if Q € OAi then QT € OA), which contains all potential
orthonormal bases of A;.

Recall that Oy (R) is a regular submanifold of GLy (R).
Hence, we can define a distribution on any subset of On (R).
We then let M; = OAi, and assume Ujx, the n x n
orthonormal basis of A; is drawn from M; with respect to a
distribution D. For simplicity, consider D to be the uniform
distribution. A simple method of generating a random matrix
that follows the uniform distribution on the Stiefel manifold
V,.(R™) can be found in [32, Theorem 2.2.1]. Alternatively,



one could generate a random Gaussian matrix and then per- proaches, is that the spaces we work over are the multiplicative

form Gram—Schmidt to orthonormalize it. group (O A, ) whose identity is I,, in, and the additive group
Furthermore, this approach resembles the one-time pad, ((Z2)m, +) in the one-time pad; whose identity is the zero

which is one of the few encryption schemes known to provide vector of length m.

perfect secrecy. The main difference between the two ap-
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