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Abstract—The problem of saddle-points avoidance for non-convex
optimization is quite challenging in large scale distributed learning
frameworks. The celebrated cubic-regularized Newton method of
Nesterov and Polyak [1] is one of the most elegant algorithms to avoid
saddle-points in the standard centralized (non-distributed) setup. In
this paper, we analyze the cubic-regularized Newton method in the
distributed framework and simultaneously address several practical
challenges that naturally arises, such as communication bottleneck
and Byzantine attacks. To that end, we propose DISTributed CUbic
REgularized Newton’s method (DIST—-CURE), and obtain convergence
guarantees under several settings. We emphasize that the issue of
saddle-point avoidance becomes more crucial in the presence of
Byzantine machines since rogue machines may create fake local
minima near the saddle-points of the loss function (this is known as
the saddle-point attack).

Being a second order algorithm, the iteration complexity of DIST-
CURE is much lower than its first order counterparts, and furthermore
we can further compress to achieve communication efficiency. To
address the challenge of Byzantine resilience, we employ norm based
thresholding on the local solutions. We validate the performance of
DIST-CURE with experiments using standard datasets and several
types of Byzantine attacks, and obtain an improvement of 25% with
respect to first order methods in total iteration complexity.

Full Paper: Available at: http://tinyurl.com/3axkfy8w

1. INTRODUCTION

In real-world machine learning applications such as recommen-
dation systems, image recognition, and conversational Al, it has
become crucial to implement learning algorithms in a distributed
fashion. In many applications, like Federated Learning (FL) [2], [3],
data is stored in user devices such as mobile phones and personal
computers. In a standard distributed learning framework, several
local machines (aka user devices) perform local computations and
communicate to the center machine (a parameter server), and the
center machine aggregates and broadcasts the information iteratively.

In such a distributed framework, it is well-known that one of the
major challenges is to tackle the behavior of the Byzantine machines
[4]. This can happen owing to software or hardware crashes, poor
communication link between the local machines and the center
machine, stalled computations, and even coordinated or malicious at-
tacks by a third party. In this setup, we assume ( [5], [6]) that a subset
of local machines behave completely arbitrarily even in a way that
depends on the algorithm used and the data on the other machines.

Another critical challenge is the communication cost between
the local machines and the center machine. The gains we obtain
by parellelization often get bottle-necked by this cost. In case of
FL, this cost is directly linked with the (internet) bandwidth of the
users and thus resource constrained.

It is well known that in-terms of the number of iterations, second
order methods (like Newton and its variants) outperform their
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competitor; the first order gradient based methods. In this work,
we simultaneously handle the Byzantine and communication
cost aspects of distributed learning for non-convex functions. In
particular, we focus on optimizing a non-convex loss function
£ () [6]-[9]. We have m local machines, out of which « fraction
may behave in a Byzantine fashion, where o < % Most of the
current approaches either work when f(.) is convex, or provide
weak guarantees in the non-convex case (for example: zero gradient
points, maybe a saddle point).

In order to fit complex machine learning models, one often
requires to find local minima of a non-convex loss f(.), instead of
just critical points which may include several saddle points. Training
deep neural networks and other high-capacity learning architectures
[10], [11] are some of the examples where finding local minima
is crucial. The stationary points of these problems are in fact saddle
points and far away from any local minimum [11], [12], and hence
designing efficient algorithm that escapes saddle points is of interest.
Moreover, [13], [14] argue that saddle points can lead to highly sub-
optimal solutions in many problems of interest. This is amplified in
high dimension as shown in [15], and becomes the main bottleneck
in training deep neural nets. Furthermore, a line of recent work [14],
[16], [17], show that for many non-convex problems, it is sufficient
to find a local minimum. In fact, in many problems of interest,
all local minima are global minima (e.g., dictionary learning [17],
phase retrieval [14], matrix sensing and completion [11], [16], and
some of neural nets [12]). Also, in [18], it is argued that for more
general neural nets, the local minima are as good as global minima.

The issue of local minima convergence becomes non-trivial in the
presence of Byzantine machines. Since we do not assume anything
on the behavior of the Byzantine machines, it is certainly conceivable
that by appropriately modifying their messages to the center, they
can create fake local minima that are close to the saddle point of the
loss function f(.), and these are far away from the true local minima.
This is popularly known as the saddle-point attack (see [19]), and
it can arbitrarily destroy the performance of any non-robust learning
algorithm. Hence, our goal is to design an algorithm that escapes
saddle points of f(.) in an efficient manner as well as resists the
saddle-point attack simultaneously. The complexity of such an
algorithm emerges from the the interplay between non-convexity of
the loss function and the behavior of the Byzantine machines.

The problem of saddle point avoidance in the context of non-
convex optimization has received considerable attention in the past
few years. In [20], a (first order) gradient descent based approach is
proposed. A few papers [21], [22] following the above use various
modifications to obtain saddle point avoidance guarantees. A Byzan-
tine robust first order saddle point avoidance algorithm is proposed



in [19], and probably is the closest to this work. In [19], the authors
propose a repeated check-and-escape type of first order gradient
descent based algorithm. First of all, being a first order algorithm, the
convergence rate is quite slow (the rate for gradient decay is 1/ VT,
where T is the number of iterations). Moreover, implementation-
wise, the algorithm presented in [19] is computation heavy, and
takes potentially many iterations between the center and the local
machines (as we check in Section VI and Appendix). Hence, this
algorithm is not efficient in terms of the communication cost.

Our Approach: We consider a variant of the famous cubic-
regularized Newton algorithm of Nesterov and Polyak [1], which
efficiently escapes the saddle points of a non-convex function by
appropriately choosing a regularization and thus pushing the Hessian
towards a positive semi-definite matrix. The primary motivation
behind this choice is the faster convergence rate compared to first
order methods. Indeed, the rate of gradient decay is ﬁ

We apply the cubic regularized Newton algorithm in the
distributed setup and address several practical issues like
communication efficiency and robustness. We propose a novel
algorithm, namely DISTributed CUbic RFEgularized Newton
(DIST-CURE). In this scheme, the center machine asks the local
machines to solve an auxiliary problem and return the result. The
center machine aggregates the solution of the local machines and
takes a descent step. Note that, unlike gradient aggregation, the
aggregation of the solutions of the local optimization problems
is a highly non-linear operation. Furthermore, the local problems
lack any closed form expression, making this extension to be quite
non-trivial and technically challenging.

In addition to the above, DIST-CURE simultaneously use
(1) a d-approximate compressor (defined shortly) to compress
the message send from local machines to center to gain further
communication reduction and (ii) a simple norm-based thresholding
on the (compressed) solution sent by the local machines to defend
adversarial (Byzantine) attacks. Norm based thresholding is also
a standard trick for Byzantine resilience as featured in [23], [24].
However, since the local optimization problem lacks a closed form
solution, using norm-based trimming is also technical challenging
in this case. We now list our contributions.

A. Our Contributions

1) Technical Novelty: We propose a novel distributed, commu-
nication efficient and robust cubic regularized Newton algorithm,
namely DIST-CURE that escapes saddle point efficiently. We
prove that the algorithm convergence at a rate of ﬁ, which is
faster than the first order methods (which converge at 1/ VT rate, see
[19]). Also, the convergence rate matches to that of the centralized
scheme of [1] and hence, we do not lose in terms of convergence
rate while making the algorithm distributed. In DIST-CURE, the
center machine aggregates the solution of the local machines. We
emphasize that, unlike gradient aggregation, the aggregation of
the solutions of the local optimization problems is a highly non-
linear operation, as evidenced by even a much simpler second order
optimization algorithm like GIANT ( [25]). Hence, it is quite non-
trivial to extend the centralized cubic regularized algorithm to a
distributed one. The solution to the cubic regularization even lacks a
closed form solution unlike the second order Hessian based update or

the first order gradient based update. The analysis of DIST-CURE
is carried out by leveraging the first order and second order stationary
conditions of the auxiliary function solved in each local machines.
In [19], a perturbed gradient based algorithm to escape
the saddle point in non-convex optimization in the presence of
Byzantine local machines is provided. The Byzantine resilience
is achieved using techniques such as trimmed mean, median
and collaborative filtering. These methods require additional
assumptions (coordinate of the gradient being sub-exponential
etc.) for the purpose of analysis. In this work, we do not require
such assumptions. Moreover, we perform a simple norm based
thresholding that provides robustness. Also the perturbed gradient
descent (PGD) actually requires multiple rounds of communications
between the central machine and the local machines whenever the
norm of the gradient is small as this is an indication of either a local
minima or a saddle point. In contrast to that, our method does not
require any additional communication for escaping the saddle points.
Our method provides such ability by virtue of cubic regularization.
2) Experiments: In Section VI and in Appendix, we verify
our theoretical findings via experiments. We first show that
DIST-CURE indeed avoids saddle points via a simple example.
Moreover, we use benchmark LIBSVM ( [26]) datasets for logistic
regression and non-convex robust regression and show convergence
results for both non-Byzantine and several different Byzantine
attacks. Specifically, we characterize the total iteration complexity
(defined in Section VI) of our algorithm, and compare it with
several baselines. We observe that the algorithm of [19] requires
25% more total iterations than ours.
B. Preliminaries:

We denote the norm ||- || as 2 norm or spectral norm when the
argument is a vector or a matrix respectively. A point X is said to
satisfy the e-second order stationary condition of f(.) if,

IVFEI<e, Amin(V2F (%)) > = Ve,

where Vf(x) denotes the gradient of the function and
Amin(V2f(x)) denotes the minimum eigenvalue of the Hessian
of the function. Hence, under the assumption (which is standard
in the literature, see [19], [20]) that all saddle points are strict (i.e.,
Amin (V2 f(xs)) < 0 for any saddle point x,), all second order
stationary points (with e =0) are local minima, and hence converging
to a stationary point is equivalent to converging to a local minima.

II. PROBLEM FORMULATION
We minimize a loss function of the form: f(x)=-L15"" f;(x),

where the function f : RY — R is twice diffe?éntiable and
non-convex. We consider a standard learning framework with m
local machines and one center machine where the local machines
can only communicate to the center machine. Each local machine
is associated with a local loss function f;. We assume that the data
distribution is non-iid across local machines. In addition to this,
we also consider the case where « fraction of the local machines
are Byzantine for some o < % The Byzantine machines can send
arbitrary updates to the central machine which can disrupt the
learning. Furthermore, the Byzantine machines can collude with
each other, create fake local minima or attack maliciously by gaining
information about the learning algorithm and other local machines.



Furthermore, we use compression for communication efficiency
and consider a generic class of compressors from [23], [27]:

Definition 1 (§-Approximate Compressor): An operator
Q(.) : R — R is defined as J approximate compressor on a set
SCRYif, Yz eS8, ||Q(x)—=|? < (1-6)||lz|/?, where § € (0,1] is
the compression factor.
For randomized operator, the above holds on expectation. In this
paper, for clarity, we consider the deterministic form (as in Defini-
tion 1). However, the results can be easily extended for randomized
Q(.). Notice that §=1 implies Q(z) =2 (no compression).

III. RELATED WORK

A. Saddle Point avoidance algorithms

In the recent years, there are handful first order algorithms [28]—-
[30] that focus on the escaping saddle points and convergence to lo-
cal minima. The critical algorithmic aspect is running gradient based
algorithm and adding perturbation to the iterates when the gradient is
small. ByzantinePGD [19], PGD [20], Neon+GD [21], Neon2+GD
[22] are examples of such algorithms. The work of Nesterov
and Polyak [1] first proposes the cubic regularized second order
Newton method and provides analysis for the second order stationary
condition. An algorithm called Adaptive Regularization with Cubics
(ARC) was developed by [31], [32] where cubic regularized Newton
method with access to inexact Hessian was studied. Cubic regulariza-
tion with both the gradient and Hessian being inexact was studied in
[33]. In [34], a cubic regularized Newton with sub-sampled Hessian
and gradient was proposed and analyzed. Momentum based cubic
regularized algorithm was studied in [35]. A variance reduced cubic
regularized algorithm was proposed in [25], [36]. In terms of solving
the cubic sub-problem, [37] proposes a gradient based algorithm and
[38] provides a Hessian-vector product technique. [39] employs a a
negative curvature finding algorithm based on gradient descent and
accelerated gradient descent method to improve the PGD algorithm
[20]. [40] proposes perturbed compressed SGD with error feedback.

B. Compression and Robustness

In the recent years, several gradient quantization or sparsification
schemes have been studied in [41]-[44]. In [27], the authors intro-
duced the idea of d-approximate compressor. In [45], the authors use
d-approximate compressor to sparsify the second order update. In
the distributed learning context, [8] proposes one shot median based
robust learning. A median of mean based algorithm was proposed in
[9] where the local machines are grouped in batches and the Byzan-
tine resilience is achieved by computing the median of the grouped
machines. Later [5] proposes co-ordinate wise median, trimmed
mean and iterative filtering based approaches. Communication-
efficient and Byzantine robust algorithms were developed in [23],
[46]. A norm based thresholding approach for Byzantine resilience
for distributed Newton algorithm was also developed [24]. All
these works provide only first order convergence guarantee (small
gradient). The work [19] is the only one that provides second order
guarantee (Hessian positive semi-definite) under Byzantine attack.

IV. ALGORITHM-DIST-CURE
We describe a communication efficient and Byzantine robust

distributed cubic Newton algorithm, namely DIST-CURE that
can avoid saddle point and thus converge to a local minima for

Algorithm 1 DIST-CURE
1: Input: Step size n, parameter 0 < o < 3, > 0,M >0 and
d-approximate compressor ().

2: Initialize: Initial iterate xo € R?

3: for k=0,1,...,.7—1do

4:  Central machine: broadcasts x;,
for i € [m] do in parallel

5. i-th local machine:
Non-Byzantine: Compute local gradient g; ;, and Hessian
H, ; locally solve the problem equation (1). Use the
compressor () and send Q(s; x+1) to the center,
Byzantine: Generate « (arbitrary), and send it to the center
end for

6:  Center Machine:
(1) Sort local machines in a non decreasing order according
to norm of updates {Q(s; x+1)}7%,
(ii) Return indices of first 1 — /3 fraction of machines, 4},
(iii) Update: x5+ 1 =Xp +1 ﬁziem_ Q(Sik+1)

7: end for

non-convex loss function. Starting with initialization x, the center
machine broadcasts the parameter to the local machines. At k-th
iteration, the ¢-th local machine solves a cubic-regularized auxiliary
loss function based on its local data:

. M
Si,kﬂ:argmsmgzker%STHi,kerEszISH?E ¢))
where M >0,y >0 are parameter choose suitably and g; ;, H; ; are
the gradient and Hessian of the local loss function f; computed on
data (.S;) stored in the local machine.

sz l‘k Z vfl il?k,Zz
|S |z €S;

=V2fi(xy) Z V2 fi(xk,21)-
|S |z €Ss;

After solving the problem described in (1), each local machine
applies compression operator () as defined in Definition 1 on
update s; ;1. The application of the compression on the update
is to minimize the communication cost.

Moreover, we also consider that «/(< %) fraction of the local
machines are Byzantine in nature. We denote the set of Byzantine
local machines by I3 and the set of the rest of the good machines
as M. In each iteration, the good machines send the compressed
update of solution of the sub-cubic problem described in equation
(1) and the Byzantine machines can send any arbitrary values or
intentionally disrupt the learning algorithm with malicious updates.
Lack of any robust measure towards these type of intentional and
unintentional attacks can be catastrophic to the learning procedure
as the learning algorithm can get stuck in such sub-optimal point.
To tackle such Byzantine local machines, we employ a simple
process called norm based thresholding.

After receiving all the updates from the local machines, the
central machine outputs a set &/ which consists of the indexes of
the local machines with smallest norm. DIST-CURE chooses
the size of the set U/ to be (1—3)m. Hence, we ‘trim’ 3 fraction of



the local machine so that we can control the iterated update by not
letting the local machines with large norm participate and diverge
the learning process. We denote the set of trimmed machine as
T. We choose 5> « so that at least one of the good machines gets
trimmed. In this way, the norm of the all the updates in the set I/
is bounded by at least the largest norm of the good machines.
Remark 1 (Exact solution only for theory): We emphasize that
the exact solution of the sub-problem (which the original work
of [1] also needed) is only required for theoretical tractability. In
practice, it is not possible to obtain such solution. For that reason,
in experiments (Section VI) we run the gradient based first order
algorithm of [33] to achieve this. We expand on this in the Appendix.
Remark 2: We introduce the parameter -y in the cubic regularized
sub-problem, which was absent in the original formulation of [1].
The parameter v emphasizes the effect of the second and third order
terms in the sub-problem. The choice of v plays an important role in
our analysis in handling the updates from different local machines.

V. THEORETICAL GUARANTEES

We have the following standard assumptions:

Assumption 1: The non-convex loss f(.) is twice continuously-
differentiable and bounded below, i.e., f* =infycpa f(2) > —occ.

Assumption 2: The loss f(.) is L-Lipschitz continuous

vVx,y, |f(x)—f(y)| < L||x — y|), has L;-Lipschitz gradients
(IVf(x) =V iyl < Li||x — yl||) and Lo-Lipschitz Hessian
(|72 = V2 ()| < Lallx—y]).
The above assumption states that the loss and the gradient and Hes-
sian of the loss do not drastically change in the local neighborhood.
These assumptions are standard in the analysis of the saddle point
escape for cubic regularization (see [33], [34], [37]) and have also
appeared in the original work by Nesterov and Polyak ( [1]).

We assume the data distribution across local machines to be
non-iid. However, we assume that the local gradient and Hessian
computed at local machines (using local data) satisfies the following
gradient and Hessian dissimilarity conditions. Note that these
conditions are only applicable for non-Byzantine machines only.
Byzantine machines do not adhere to any assumptions.

Definition 2 (Heterogeneity): In the FL setup, the gradient and
Hessian heterogeneity are defined as the following: ¢, > 0 and
em >0, we have, for all £,7,

IV f(xn)—gikll <eg

We emphasize that bounded gradient and hessian dissimilarity
are quite common in distributed learning (specially in Federated
Learning), and are one major way to characterize the degree of
heterogeneity. For example, see [47]-[53] and the references therein.
These papers use this bounded heterogeneity condition to analyze
convergence results. Although the above condition is written in terms
of all the good machines, with a slight modification, we can extend
our analysis to the case where bounded heterogeneity is required on
an average, that is not for all 7 but on average gradient and Hessian.

€4 and egy in special cases: The gradient and Hessian bound
have been studied under more relaxed condition. In [33]-[35],
the authors consider gradient and Hessian with sub-sampled data
being drawn uniformly randomly from the data set. Due to the
data being drawn in iid manner, both the bound (e4,€7) parameters

||V2f(xk)_Hi,k” <e€H.

value diminish at the rate oc 1/1/]S| where |S| is the size of the
data sample in each local machine. In [24], the authors analyze the
deviation in case of data partitioning where each local machine
sample data uniformly without replacement from a given data set.

Remark 3 (Two rounds of communication e¢; = 0, e = 0):

We can make €, = 0 one more round of communication in each
iteration. In the first iteration, all the local machines compute the
gradient based on the stored data and send it to the center machine.
The center machine averages them and then broadcast the global
gradient V f(x;) = 2 >"" | @; 1 at iteration k. In this manner, the
local machines solve the sub-problem (1) with the actual gradient.
Note that [25] does this exactly to avoid ¢,. Similarly, with more
communication cost, we can make ey = 0 by allowing local
machines to send local Hessians and the center to aggregate and
broadcast the aggregated Hessian. However, in standard FL, one
typically avoids this additional round of communication and deal
with gradient and Hessian dissimilarities.
We now present the main results of the paper. We first present
the convergence guarantees of DIST—-CURE with simultaneous
compression and Byzantine resilience. Subsequently, we relax the
restrictions on communication efficiency and robustness.

Recall that DIST-CURE uses § approximate compression
for communication efficiency and norm based thresholding for
Byzantine resilience. In the theoretical analysis, to avoid clutter and
for the clarity of exposition, we substitute § = 1. However, as seen
in [23], [27], the analysis can be seamlessly extended to the setting
where § € (0,1). We have the following result.

Theorem I (Convergence of DIST—CURE): Suppose 0 <a <
B< % and m > 2. Furthermore, we choose the problem parameters,
M=0O(m(1—p)), and N = 7 ;Y = 77, for some constant ¢>
0,v > 3. Then, after T iterations of DIST-CURE (Algorithm 1),
the sequence {x;}~ ; generated contains a point Z such that

IV /(@) < o= +eg+xa

T2/3
Amln(v2f(§j))2_%_6H_XT{5
A (1-a) A (1=a)
where, 1 _O((l—b’) +m(1-0)),x2=0( ) +m(1-8))
An(1=a) (1 1 (2 @ e
_Oo(m(1—pgy =Dy e @
xa =O0(m(1 =)+ =g NG + gy )

Corollary 1.1 (Recovering the results of [1]): Suppose
a=0,8=0. Moreover, we choose m =1 (centralized) and hence
eg = eg = 0. Moreover, as in [1], we choose n = v = 1. With
the above-mentioned choices of problem parameters, we show in
Appendix E that that x ¢ =z =0. Furthermore, we get

IVSEN<O(marg) Anin(V1(E) 2 ~Orrp),

which matches [1].

The proof of Theorem 1 and Corollary 1.1 is in the Appendix.
Discussion: Note that both the gradient and the minimum

eigenvalue of the Hessian in the Theorem 1 have three terms. The

first term decreases with the number iterations 7. The rate of



decay for gradient and the minimum eigenvalue of the Hessian are
O(1/T3) and O(1/T'%), respectively. We point out that both of
these rates match with that of the centralized version of the cubic
regularized Newton as shown in [1]. The quantities, x; and x»
associated with these terms are independent of 7" and depends on
problem parameters like «v,3 and m, as shown.

The second term of the gradient bound and the minimum
eigenvalue of the Hessian depends on €4 and €z7. This term appears
owing to the non-iid nature of data in the local machines. Note
that the appearance of such terms (depicting the degree of non-iid
ness) is quite common in distributed optimization literature (ex,
see [47], [51]-{53]). Note that in the centralized setup of [1], this
aspect of heterogeneity was absent and hence these terms were
absent. Furthermore, as mentioned above, in the special cases, both
the terms €, and € decrease at the rate of 1/+/]S], where |S| is
the number of data in each of the local machines.

The third term in the expression is an error floor that decays
with the number of machines, m, and can be made arbitrarily
small by choosing appropriate step-size. Note that as shown in
Corollary 1.1, this term vanishes when m = 1. This term originates
from several sources. First, note that the center machine simply
aggregates the solution of the local machines to obtain the next
update. Unlike gradient aggregation (in first order methods), this
simple averaging of local solutions yields a different solution from
the global one, and hence one incurs a bias by this simple averaging
strategy. This is the cost of going from centralized to a distributed
setup, and this is incurred even in the absence of compression and
Byzantine resilience. Second, we employ norm based thresholding,
and remove the contribution of /3 fraction of the local machines.
This naturally creates an error floor.

Remark 4: Since our algorithm is second order in nature, it
requires less number of iterations compared to the first order
gradient based algorithms. Our algorithm achieves a superior rate
of O(1/T3) compared to the gradient based approach of rate
O(1/+/T). Our algorithm dominates ByzantinePGD [19] in terms
of convergence, communication rounds and simplicity.

A. Special case of Theorem 1

Here, we choose the non-Byzantine setup with « = 8 = 0 in
addition to the uncompressed update. This is just the distributed
variant of the cubic regularized Newton method of [1].

Corollary 1.2 (Non Byzantine and no compression): Suppose
we choose M = O(m), n =~ = c¢/Tm" for some ¢ > 0,v > 3.
Then, after T iterations of DIST—CURE for uncompressed update
(§=1), the sequence {x; }7_, generated contains a point 7 such that

- X1
IVFGEI< Ak e
Amin (V2f(§;)) > _% —€H —XH,
3

where, x1 =x2=0(m) and

1 1
XG ZO(ﬁ),XH :O(ﬁ)'
m 3 ms3
Note that the term x1,Xx2,xc and x g have reduced, thus improving
the performance. As v > 3, the parameter x,xm are decreasing
with the number of local machines. Note that even in the simple

distributed variant, the extra error terms (second and third terms)

are present. As explained earlier, these are owing to the non-iid
nature of data distribution and the simple (biased) aggregation of
local solutions at the center respectively.

B. Solution of the cubic sub-problem

The cubic regularized sub-problem (1) needs to be solved to
update the parameter. As this particular problem does not have a
closed form solution, a solver is usually employed which yields
a satisfactory solution. In previous works, different types of solvers
have been used. [31], [32] solve the sub-problem using Lanczos
based method in Krylov subspace. In [38], the authors propose a
solver based on Hessian-vector product and binary search. Gradient
descent based solver is proposed in [33], [37].

Previous works, [25], [35], [36], consider the exact solution of
the cubic sub-problem for theoretical analysis. Recently, inexact
solutions to the sub-problem is also proposed in the centralized
(non-distributed) framework. For instance, [34] analyzes the
cubic model with sub-sampled Hessian with approximate model
minimization technique developed in [31]. Moreover, [33] shows
improved analysis with gradient based minimization which is a
variant studied in [37]. Both exact and inexact solutions to the
sub-problem yields similar theoretical guarantees.

In our framework, each local machine is tasked with solving the
sub-problem. For the purpose of theoretical convergence analysis,
we consider that local machines obtain the exact solution in each
round. However, in experiments (Section VI), we apply the gradient
based solver of [33] to solve the sub-problem. Here, we let each
local machines run the gradient based solver for 10 iterations and
send the update to the center machine in each iteration.

VI. EXPERIMENTAL RESULTS

We defer the experimental section in Appendix owing to space
limitation, but provide the gist here. We first validate the saddle
point avaidance capability of DIST-CURE via a simple example.
Then we use standard benchmark LIBSVM ( [26]) datasets for
logistic regression and non-convex robust regression examples
and show convergence results for both non-Byzantine and several
different Byzantine attacks. We characterize the total iteration
complexity (defined in Section VI) of DIST-CURE, and compare
it with several baselines. We observe that DIST-CURE beats its
competitor, [19] (which requires 25% more total iterations).

VII. CONCLUSION

We propose, analyze and experimentally validate DIST—-CURE,
that uses cubic regularized Newton [1] for saddle point avoidance
and norm based thresholding for robustness. We compare the
performance of DIST-CURE with existing state of the art
algorithms. One immediate future direction is to theoretically
understand DIST—-CURE where the local machines approximately
solve the local sub-problem. This is indeed non-trivial as seen in
[33]. Another interesting direction is to analyze trust region based
methods. We keep this as future endeavors.
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the gradient norm for *a9a‘ data-set with Gaussian attack for robust linear regression.
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Fig. 2. (a) Plot of the function value with different initialization to show that the algorithm escapes the saddle point with functional value 0. (b,c,d) Comparison of our
algorithm with ByzantinePGD [19] in terms of the total number of iterations.

APPENDIX
A. Experimental results

First we show that DIST-CURE indeed escapes saddle point with a toy example. We choose a d =2: min,,cgz[f1 (w)+ f2(w)] where
fi(w)=w?—w3 and fo(w)=2w? —2w3 (Here w; denotes the i-th coordinate of w. This problem is the sum of two non-convex function
and has a saddle point at (0,0). In Figure 2 (a) we observe that our algorithm escapes the saddle point (0,0), with random initialization.

Note that, checking whether a point is a local minima or a saddle point is an NP-hard problem for non-convex losses (see [54], Sec.
2.2). So, for a simple toy problem, we may brute-force our way through to show saddle points escape, but this becomes intractable for
real data examples.

We now validate on benchmark LIBSVM ( [26]) data-set in both convex and non-convex problems. We choose the following loss
functions:

o Logistic loss:

1
min —
weRd N

D log(1+exp(—y:x; w)) + % lwl?,

« Non-convex robust linear regression:

where w € R? is the parameter, {x;}?_; € R? are the feature vectors and {y;}" ; € {0,1} are the corresponding labels. We choose
‘a9a’(d=123,n~ 32K, and split the data into 70/30 and use as training/testing purpose) and ‘w8a’(training data d =300,n~ 50K and
testing data d=300,n~ 15K ) classification datasets and partition the data in 20 machines.

We demonstrate DIST-CURE in the presence of Byzantine machines and compressed update. For compression, each local machine
applies compression operator of QSGD [44]. For a given vector x € R%, we have

[QE)]i= [[xll2sign(xi) x Ber (|l /[|z]|2)

for all 7 € [d]. We consider the following four Byzantine attacks:
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Fig. 4. Classification accuracy of the testing data ‘a9a’ dataset (first row) and ‘w8a’ dataset (second row) with 10%,15%,20% Byzantine local machines for (a,e). Flipped

label.(b,f). Negative Update (c,g). Gaussian noise and (d,h). Random label attack for logistic regression problem.

1) ‘Gaussian Noise attack’: where the Byzantine local machines add Gaussian noise to the update.

2) ‘Random label attack’: where the Byzantine local machines train and learn based on random labels instead of the proper labels.
3) ‘Flipped label attack’: where (for Binary classification) the Byzantine local machines flip the labels of the data and learn based
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on wrong labels.
4) ‘Negative update attack’: where the Byzantine local machines computes the update s (here solves the sub-problem in Eq. (1)) and
communicates —c*s with ¢€ (0,1) making the direction of the update opposite of the actual one.

a) Comparison with ByzantinePGD: We compare our uncompressed version of DIST-CURE (0 = 1) with ByzantinePGD of
[19] here. We take the total number of iterations as a comparison metric. One outer iteration of Algorithm 1 corresponds to one round
of communication between the center and the local machines (and hence one parameter update). Note that in our algorithm the local
machines use 10 steps of gradient solver (see [33]) for the local sub problem per iteration. So, the total number of iterations is given by 10
times the number of outer iterations. For both the algorithms, we choose /5 norm of the gradient as a stopping criteria. For ByzantinePGD,
we choose R =10, =5,Q = 10,73, = 10 and ‘co-ordinate wise Trimmed mean. In the Figure 2 (b-d), we plot the fotal number of
iterations in all four types of attacks with different fraction of Byzantine machines. It is evident from the plot that our method requires
less number of over all iterations (at least 48.4%, 29% and 25% less for 10%, 15% and 20% of Byzantine machines respectively).
Although DIST-CURE uses Hessian (second order) information, the sub-problem actually uses gradient based first order algorithm,
and hence we compare the total iteration complexity mentioned above. To the best of our knowledge, there is no saddle point avoidance
second order algorithm in FL framework, and so we adhere to the comparison with first order methods.

b) Comparison with standard FL algorithms: We have implemented and compared the performance of standard FL algorithm like
FedGLOMO [55] (Federated Learning via Global and Local Momentum) and FedAvg [3] with DIST-CURE. The results are shown in
Figure 1(a,b). Our method outperforms these standard baselines since they can tolerate Byzantine attacks (Gaussian attack in the experiment).

¢) Training loss for compressed update: In Figure 3, we plot the function value of the robust linear regression problem for ’flipped
labels*, 'negative update®, *Gaussian‘ and "Random label‘ attacks with compressed update for both ‘w8a’ and ‘a9a’ datasets. We choose the
parameters A=1,M =10, learning rate n,, =1, «={.1,.15,.2} and S=a+ %, where number of local machines m = 20. In Figure 1(d),
we plot the gradient norm (||g||) for Gaussian attack with 10%,15% and 20% of machines being Byzantine.

d) Classification accuracy: We show the classification accuracy on testing data of ‘a9a’ and ‘w8a’ dataset for logistic regression
problem in Figure 4 and training function loss of ‘a9a’ and ‘w8a’ dataset for robust linear regression problem in the Figure 4. It is evident
from the plots that a simple norm based thresholding makes the learning algorithm robust.

e) Training loss for uncompressed update: In Figure 5, we plot the function value of the robust linear regression with the similar
attacks for the uncompressed update (6 =1) for both ‘w8a’ and ‘a9a’ dataset.



B. Proofs of main results

In this part, we establish some useful facts and lemmas. Next, we provide analysis of Theorems 1.
a) Proof Sketch: We now provide a proof sketch of Theorem 1. In Theorem 1, we provide the convergence guarantee of DIST-CURE
in terms of the norm of the gradient and minimum eigenvalue for some point X in the iteration sequence {xo,...,x7—1} satisfying

k = i - .
0 argog%¥71||xk+1 ||

First we bound the term

||X/€0+1 XkoH ano Uy ‘ Z Si k0+1||
Zeuk

which is the aggregated update at iteration k. The sum is over Uy, which is set of updates with smallest norm but the set may contain
Byzantine update. Now, we choose 5 > « such that there is at least one good machine in the trimmed set. With this, in any iteration
k, for Byzantine machine in the untrimmed set, i € Uy N By, we have

i k1l Siglﬂa/ﬁllsi,kﬂll,

where M, is the set of good machines. Next, we use the results of Lemma 1 and Lemma 2 (shown next) and the Assumptions 1-2
to establish the bound

1
E < il
||77kosl ko+1|| O( )+O(m)7

|M O‘ZEM

with the choice of 7, = ﬁ, for some v > 3. Next, we use these facts to bound the norm of the gradient and minimum eigenvalue of
the Hessian and establish the results.

C. Some useful facts

For the purpose of analysis we use the following sets of inequalities.
Fact 1: For ay,...,a,, we have the following inequality

n n 3 n

||<Zai)ll3< (ZII%II) <n?) il @)
i=1 i=1 i=1
n n 2 n

II(Z%)IIQS (ZII%‘II) <ny_lail® 3)
i=1 i=1 i=1

1 n 1/r 1 n 1/s
l r <[z s
(120) =(1x)
i=1 =1
Lemma 1 ( [1]): Under Assumption 2, i.e., the Hessian of the function is Ls-Lipschitz continuous, for any x,y € R4, we have

V76~V ()~ V) y ) < 2y~ ®
F) = F )=V F (y =)~ 5y =) V2 f =)y )

Fact 2: For aq,....,a, >0and r<s

L
<2 |ly—x| ®

Next, we establish the following Lemma that provides some nice properties of the cubic sub-problem.
Lemma 2: Let M >0,7>0,gcR* He R4, and

s= a:rgmmg Tx+2 xTHer || 3. 7

The following holds
g st 0 s =0, ®)
H+@Hs||150, ©

M ,
gTer%sTHsng'yQHst. (10



Proof 1: The equations (8) and (9) are from the first and second order optimal condition. We proof (10), by using the conditions

of (8)and (9).

M T
gls+ l'ysTHS: — ('st—i— 272|s||s) s+ %’}/STHS

2

M, . 7
= s Hs— ?’yQHSH&Jri’YSTHS

M M
<M 2pg3_ 2248
<= IsIP -5l
M 4

_ 3
=P lsl

11

(12)

In (11), we substitute the expression g from the equation (8). In (12), we use the fact that s” Hs+ % [|s||> > 0 from the equation (9).

D. Proof of Theorem 1 (Main Theorem)

First we state the results of Lemma 2 for each local machine in iteration &,
M
&k*ﬂlﬁk&k+1+7;7ﬂbnmuH&k+1:0

M
’YHi,k+7’Y2||Si,k+1||Ii0
v

M
gl isikr1 o8 Hinsikn <= Isipsa |

2

We also use the following fact form the setup and trimming set

4

[U|=UNM|+|UNB]
IM|=UNM|+|TNM|

Combining both the equations (16) and (17), we have

[U|=|M|—|TOM|+UNB|

13
(14

15)

(16)
amn

(18)

Now we state the following fact from the trimming set. as mentioned in the Algorithm 1, the norm of the update from any local
machines from the set ¢/ is less than the norm of the update from any local machines in the set 7. Now as 3 > a, at least one good

machine (the largest norm) is in the set 7. So, we can claim the following,

ForallieUNB, |s;|| <max||s;||
ieM

Summing over all the Byzantine machines in the untrimmed set which is /N3, we get

> 1 < omma] |
ieUnB )

as [UNB| <am. Also,
DR AED N
1IEMNT €M
Combining the above two equations, we get
E:NW%E:HMSEZMHﬂmg%MI
i€UnB iEeEMNT iEM

For the rest of the calculation, we use the following notation

I'= el
zren/\%thHSZkH

19)

(20)

If the optimization sub-problem domain is bounded, I" can be upper-bounded by the diameter of the parameter space. Note that in the

definition of I, the maximum is taken over good machines only.



Characterization of " :: For any good local machine ¢ € M, we have the following
M
Si k1= arglrlsingfk5+ %STHiJcS-i-’YQ 3 [s|f®

for some M >0 and y= % Next, we consider u; ;1 ="ys; 1+1 and we get the following expression

. 1 M
W g1 :argm&nggku—&— ~u"H; ju+ 3 [|ul|®

2
Following the similar results of the 2, we have the following result from the second order condition,

1 M :
uly H g <—7Hui,k+1H3~

T
8 kWik+115 5

Therefore,

M
Z||ui,k+1||3

1
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In the above expression, we have ¢,,ep are gradient and Hessian dissimilarity respectively and ||V f(s; g1/l < L, || V2 f(si k41 || < La
which are constants. This shows that ||u; x1]| to be bounded and hence max;e a¢[|u; k41| to be bounded. For v = %, we have
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At any iteration k, we have (with Taylor’s expansion)
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In 22, we use the update of the parameter in the center machine x4 —xj, = ﬁ > scuSi,k+1, as expressed in the Algorithm 1. Here
Q(Si,k—i-l) =8j,k+1 aS o=1.
First we choose the Term 1 in (22) and expand it using (18)
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First we consider Term 1.1 in (23) ( notice that the sum is over only good machines),
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In (24), we use the following facts: 1. |V f(xy)|| <L as the function f is L- Lipschitz. 2. ||V f(xx) —&; x|l <€, (gradient dissimilarity).
In (25), we use the bound stated in (20).

Next we consider Term1.2 in (23),
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We use the fact ||V f (xx )| < L in (26), ,the fact stated in (19), in (27). We use the bound of update as described in (20) in (30).
We apply the bound derived for Term1.1 in (25) and for Term1.2 in (30) in the bound for Term1 in (23) and derive the following,
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In line (31), we use the bound stated in (15).
Now we consider the Term 3 in equation (22),
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In (32), we use the fact stated in (2). Nextin (33), we expand the trimmed set / using (18) and in (35), we use the bound of (19).
Finally, in (36), we use the definition of the d-compressor and the bound stated in (20) in (37).
Now we consider the Term 2 in (22)
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Now we consider Term?2.1 in (38) and expand it using (18)
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In 39, we use the Hessian dissimilarity bound of ||(V2 f(x) —H, 1 )|| < €.
Next, we consider the Term2.1.2,
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Combining (39) and (42), we bound the Term2.1,
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Now we consider the Term 2.2 in equation (38)
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We use the expansion described in (18) in (45).
Now combining the results in (47) and (38) we get,
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Now we combine all the upper bound of the Term 1, Term 2 and Term 3
f(Xp1) — f(xx)

2

v My 3 Mk Y7 nk(1—a) n(a+B)L

< E Sik+1]]"— E =85 1 Hi 1S k1 + e, '+ r
4(1_ﬁ)mZ€MH + || (1_ﬂ)mZ€M2 k41 +1 (1_5) g

2
Ui T 2
+ 0= B LEMSMHHMS@/@H +(1—a)mepI™+ (a+5)mL1FQ]

2
Nk 140, L277k 3
=T I E I
+ 9 1( S ) +6(1 6) ||Sq, ]4;+]_H +am.

2M L

:( T B’;km o 277k )ZSZkHH —( ) (7_(1_17;)m>52k+1Hi,kSi,k+1
mk(l-a) k(aJrﬁ) Lotip

+< -5 " 1-p) >F 61-5)""

2
+m((l—a)6H+(a+B)L1 + L1 ((1—B)m—1)(1—B)ym)I?

Also we assume that v > (1_"% and use the fact —s; ;1 H; 1S; k41 < @ l|si &-+1]>. We also choose that

_(m=a) | mlat+BL Lot 13 U —a)eg+(a —B)m—1)(1—B)m)I?
AF‘( 1-p) “" (-9 >” 615 L oy (L ent @ B)Lit Li(1-Bm=)(1-Hm)L*  @8)



Using the fact step-size 7, = m,,T for some v >3 and the bound of I" as described in (21), we have Ar to be upper bounded by (9( =)
Using the fact step-size 1), = —= for some >3 and the bound of I" as described in (21), we have Ar to be upper bounded by O( i)
Now we have,
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and —& o are upper bounded by O(-) and higher order of O(-1).
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where Ycomp = (/\ Oo)m I~ where Cr is O(1/m).
So, we have the term comy is of the order O(1).
The gradient condition is (using (13) )
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Next we consider the term
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where 1 = {L;((ll:/;) + 1\24%2} (Yeomp)?/®. And as Cr = O(73), we have o = O(——) + O(;%). As v > 3, x¢ is always

decreasing with m.
The Hessian bound is
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where x2 = { T+ Ly El (ﬂ 3({7?;,, - And , we have x g = O(—75=)+O(;). As v>3, we x g to be strictly decreasing with m.

Finally, we restate the Theorem 1,
Theorem 1 (Convergence of DIST—-CURE): Suppose 0 < a < < % Furthermore, we choose the problem parameters,
M =0(m(1—p3), and n="= - for some constant ¢ >0,v > 3. Then, after 7" iterations of DIST-CURE (Algorithm 1), the sequence
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For the choice of 1= =%+ and v (m(1—p3), we have Ap =O(-1 ) and Aoy t0 be O(1).
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E. Proof of Corollary 1.1
In this Corollary statement we consider centralized (m =1), uncompressed (6 =1) and non-Byzantine setup («=5=0). With these
parameters, we have the value of Ar from equation (48) to be 0. Consequently, we have Cr =0. With y=1, we have

M L2
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So in order for Acomp > 0, for constant step-size (), = 1), we need M > % With Cr =0,a=0, we have xg = xg = 0. Moreover
we have y; = [%} (?ﬁcomp)w 3and yo = [%] (wcomp)l/ 3. As it is a centralized setup, there are no gradient and Hessian
dissimilarities €, =€z =0. So we have
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where M > % Thus, the convergence rate of DIST-CURE reduces to that of [1].
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