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Abstract—The problem of saddle-points avoidance for non-convex
optimization is quite challenging in large scale distributed learning
frameworks. The celebrated cubic-regularized Newton method of
Nesterov and Polyak [1] is one of the most elegant algorithms to avoid
saddle-points in the standard centralized (non-distributed) setup. In
this paper, we analyze the cubic-regularized Newton method in the
distributed framework and simultaneously address several practical
challenges that naturally arises, such as communication bottleneck
and Byzantine attacks. To that end, we propose DISTributed CUbic
REgularized Newton’s method (DIST-CURE), and obtain convergence
guarantees under several settings. We emphasize that the issue of
saddle-point avoidance becomes more crucial in the presence of
Byzantine machines since rogue machines may create fake local
minima near the saddle-points of the loss function (this is known as
the saddle-point attack).

Being a second order algorithm, the iteration complexity of DIST-

CURE is much lower than its first order counterparts, and furthermore
we can further compress to achieve communication efficiency. To
address the challenge of Byzantine resilience, we employ norm based
thresholding on the local solutions. We validate the performance of
DIST-CURE with experiments using standard datasets and several
types of Byzantine attacks, and obtain an improvement of 25% with
respect to first order methods in total iteration complexity.

Full Paper: Available at: http://tinyurl.com/3axkfy8w

I. INTRODUCTION

In real-world machine learning applications such as recommen-

dation systems, image recognition, and conversational AI, it has

become crucial to implement learning algorithms in a distributed

fashion. In many applications, like Federated Learning (FL) [2], [3],

data is stored in user devices such as mobile phones and personal

computers. In a standard distributed learning framework, several

local machines (aka user devices) perform local computations and

communicate to the center machine (a parameter server), and the

center machine aggregates and broadcasts the information iteratively.

In such a distributed framework, it is well-known that one of the

major challenges is to tackle the behavior of the Byzantine machines

[4]. This can happen owing to software or hardware crashes, poor

communication link between the local machines and the center

machine, stalled computations, and even coordinated or malicious at-

tacks by a third party. In this setup, we assume ( [5], [6]) that a subset

of local machines behave completely arbitrarily even in a way that

depends on the algorithm used and the data on the other machines.

Another critical challenge is the communication cost between

the local machines and the center machine. The gains we obtain

by parellelization often get bottle-necked by this cost. In case of

FL, this cost is directly linked with the (internet) bandwidth of the

users and thus resource constrained.

It is well known that in-terms of the number of iterations, second

order methods (like Newton and its variants) outperform their

competitor; the first order gradient based methods. In this work,

we simultaneously handle the Byzantine and communication

cost aspects of distributed learning for non-convex functions. In

particular, we focus on optimizing a non-convex loss function

f(.) [6]–[9]. We have m local machines, out of which ³ fraction

may behave in a Byzantine fashion, where ³ < 1
2 . Most of the

current approaches either work when f(.) is convex, or provide

weak guarantees in the non-convex case (for example: zero gradient

points, maybe a saddle point).

In order to fit complex machine learning models, one often

requires to find local minima of a non-convex loss f(.), instead of

just critical points which may include several saddle points. Training

deep neural networks and other high-capacity learning architectures

[10], [11] are some of the examples where finding local minima

is crucial. The stationary points of these problems are in fact saddle

points and far away from any local minimum [11], [12], and hence

designing efficient algorithm that escapes saddle points is of interest.

Moreover, [13], [14] argue that saddle points can lead to highly sub-

optimal solutions in many problems of interest. This is amplified in

high dimension as shown in [15], and becomes the main bottleneck

in training deep neural nets. Furthermore, a line of recent work [14],

[16], [17], show that for many non-convex problems, it is sufficient

to find a local minimum. In fact, in many problems of interest,

all local minima are global minima (e.g., dictionary learning [17],

phase retrieval [14], matrix sensing and completion [11], [16], and

some of neural nets [12]). Also, in [18], it is argued that for more

general neural nets, the local minima are as good as global minima.

The issue of local minima convergence becomes non-trivial in the

presence of Byzantine machines. Since we do not assume anything

on the behavior of the Byzantine machines, it is certainly conceivable

that by appropriately modifying their messages to the center, they

can create fake local minima that are close to the saddle point of the

loss function f(.), and these are far away from the true local minima.

This is popularly known as the saddle-point attack (see [19]), and

it can arbitrarily destroy the performance of any non-robust learning

algorithm. Hence, our goal is to design an algorithm that escapes

saddle points of f(.) in an efficient manner as well as resists the

saddle-point attack simultaneously. The complexity of such an

algorithm emerges from the the interplay between non-convexity of

the loss function and the behavior of the Byzantine machines.

The problem of saddle point avoidance in the context of non-

convex optimization has received considerable attention in the past

few years. In [20], a (first order) gradient descent based approach is

proposed. A few papers [21], [22] following the above use various

modifications to obtain saddle point avoidance guarantees. A Byzan-

tine robust first order saddle point avoidance algorithm is proposed



in [19], and probably is the closest to this work. In [19], the authors

propose a repeated check-and-escape type of first order gradient

descent based algorithm. First of all, being a first order algorithm, the

convergence rate is quite slow (the rate for gradient decay is 1/
√
T ,

where T is the number of iterations). Moreover, implementation-

wise, the algorithm presented in [19] is computation heavy, and

takes potentially many iterations between the center and the local

machines (as we check in Section VI and Appendix). Hence, this

algorithm is not efficient in terms of the communication cost.

Our Approach: We consider a variant of the famous cubic-

regularized Newton algorithm of Nesterov and Polyak [1], which

efficiently escapes the saddle points of a non-convex function by

appropriately choosing a regularization and thus pushing the Hessian

towards a positive semi-definite matrix. The primary motivation

behind this choice is the faster convergence rate compared to first

order methods. Indeed, the rate of gradient decay is 1
T2/3 .

We apply the cubic regularized Newton algorithm in the

distributed setup and address several practical issues like

communication efficiency and robustness. We propose a novel

algorithm, namely DISTributed CUbic REgularized Newton

(DIST-CURE). In this scheme, the center machine asks the local

machines to solve an auxiliary problem and return the result. The

center machine aggregates the solution of the local machines and

takes a descent step. Note that, unlike gradient aggregation, the

aggregation of the solutions of the local optimization problems

is a highly non-linear operation. Furthermore, the local problems

lack any closed form expression, making this extension to be quite

non-trivial and technically challenging.

In addition to the above, DIST-CURE simultaneously use

(i) a ¶-approximate compressor (defined shortly) to compress

the message send from local machines to center to gain further

communication reduction and (ii) a simple norm-based thresholding

on the (compressed) solution sent by the local machines to defend

adversarial (Byzantine) attacks. Norm based thresholding is also

a standard trick for Byzantine resilience as featured in [23], [24].

However, since the local optimization problem lacks a closed form

solution, using norm-based trimming is also technical challenging

in this case. We now list our contributions.

A. Our Contributions

1) Technical Novelty: We propose a novel distributed, commu-

nication efficient and robust cubic regularized Newton algorithm,

namely DIST-CURE that escapes saddle point efficiently. We

prove that the algorithm convergence at a rate of 1
T2/3 , which is

faster than the first order methods (which converge at 1/
√
T rate, see

[19]). Also, the convergence rate matches to that of the centralized

scheme of [1] and hence, we do not lose in terms of convergence

rate while making the algorithm distributed. In DIST-CURE, the

center machine aggregates the solution of the local machines. We

emphasize that, unlike gradient aggregation, the aggregation of

the solutions of the local optimization problems is a highly non-

linear operation, as evidenced by even a much simpler second order

optimization algorithm like GIANT ( [25]). Hence, it is quite non-

trivial to extend the centralized cubic regularized algorithm to a

distributed one. The solution to the cubic regularization even lacks a

closed form solution unlike the second order Hessian based update or

the first order gradient based update. The analysis of DIST-CURE

is carried out by leveraging the first order and second order stationary

conditions of the auxiliary function solved in each local machines.

In [19], a perturbed gradient based algorithm to escape

the saddle point in non-convex optimization in the presence of

Byzantine local machines is provided. The Byzantine resilience

is achieved using techniques such as trimmed mean, median

and collaborative filtering. These methods require additional

assumptions (coordinate of the gradient being sub-exponential

etc.) for the purpose of analysis. In this work, we do not require

such assumptions. Moreover, we perform a simple norm based

thresholding that provides robustness. Also the perturbed gradient

descent (PGD) actually requires multiple rounds of communications

between the central machine and the local machines whenever the

norm of the gradient is small as this is an indication of either a local

minima or a saddle point. In contrast to that, our method does not

require any additional communication for escaping the saddle points.

Our method provides such ability by virtue of cubic regularization.

2) Experiments: In Section VI and in Appendix, we verify

our theoretical findings via experiments. We first show that

DIST-CURE indeed avoids saddle points via a simple example.

Moreover, we use benchmark LIBSVM ( [26]) datasets for logistic

regression and non-convex robust regression and show convergence

results for both non-Byzantine and several different Byzantine

attacks. Specifically, we characterize the total iteration complexity

(defined in Section VI) of our algorithm, and compare it with

several baselines. We observe that the algorithm of [19] requires

25% more total iterations than ours.

B. Preliminaries:

We denote the norm ∥·∥ as ℓ2 norm or spectral norm when the

argument is a vector or a matrix respectively. A point x is said to

satisfy the ϵ-second order stationary condition of f(.) if,

∥∇f(x)∥fϵ, ¼min(∇2f(x))g−
√
ϵ,

where ∇f(x) denotes the gradient of the function and

¼min(∇2f(x)) denotes the minimum eigenvalue of the Hessian

of the function. Hence, under the assumption (which is standard

in the literature, see [19], [20]) that all saddle points are strict (i.e.,

¼min(∇2f(xs)) < 0 for any saddle point xs), all second order

stationary points (with ϵ=0) are local minima, and hence converging

to a stationary point is equivalent to converging to a local minima.

II. PROBLEM FORMULATION

We minimize a loss function of the form: f(x)= 1
m

∑m
i=1fi(x),

where the function f : R
d → R is twice differentiable and

non-convex. We consider a standard learning framework with m
local machines and one center machine where the local machines

can only communicate to the center machine. Each local machine

is associated with a local loss function fi. We assume that the data

distribution is non-iid across local machines. In addition to this,

we also consider the case where ³ fraction of the local machines

are Byzantine for some ³< 1
2 . The Byzantine machines can send

arbitrary updates to the central machine which can disrupt the

learning. Furthermore, the Byzantine machines can collude with

each other, create fake local minima or attack maliciously by gaining

information about the learning algorithm and other local machines.



Furthermore, we use compression for communication efficiency

and consider a generic class of compressors from [23], [27]:

Definition 1 (¶-Approximate Compressor): An operator

Q(.) :Rd →R
d is defined as ¶ approximate compressor on a set

S¦R
d if, ∀x∈S, ∥Q(x)−x∥2f (1−¶)∥x∥2, where ¶∈ (0,1] is

the compression factor.

For randomized operator, the above holds on expectation. In this

paper, for clarity, we consider the deterministic form (as in Defini-

tion 1). However, the results can be easily extended for randomized

Q(.). Notice that ¶=1 impliesQ(x)=x (no compression).

III. RELATED WORK

A. Saddle Point avoidance algorithms

In the recent years, there are handful first order algorithms [28]–

[30] that focus on the escaping saddle points and convergence to lo-

cal minima. The critical algorithmic aspect is running gradient based

algorithm and adding perturbation to the iterates when the gradient is

small. ByzantinePGD [19], PGD [20], Neon+GD [21], Neon2+GD

[22] are examples of such algorithms. The work of Nesterov

and Polyak [1] first proposes the cubic regularized second order

Newton method and provides analysis for the second order stationary

condition. An algorithm called Adaptive Regularization with Cubics

(ARC) was developed by [31], [32] where cubic regularized Newton

method with access to inexact Hessian was studied. Cubic regulariza-

tion with both the gradient and Hessian being inexact was studied in

[33]. In [34], a cubic regularized Newton with sub-sampled Hessian

and gradient was proposed and analyzed. Momentum based cubic

regularized algorithm was studied in [35]. A variance reduced cubic

regularized algorithm was proposed in [25], [36]. In terms of solving

the cubic sub-problem, [37] proposes a gradient based algorithm and

[38] provides a Hessian-vector product technique. [39] employs a a

negative curvature finding algorithm based on gradient descent and

accelerated gradient descent method to improve the PGD algorithm

[20]. [40] proposes perturbed compressed SGD with error feedback.

B. Compression and Robustness

In the recent years, several gradient quantization or sparsification

schemes have been studied in [41]–[44]. In [27], the authors intro-

duced the idea of ¶-approximate compressor. In [45], the authors use

¶-approximate compressor to sparsify the second order update. In

the distributed learning context, [8] proposes one shot median based

robust learning. A median of mean based algorithm was proposed in

[9] where the local machines are grouped in batches and the Byzan-

tine resilience is achieved by computing the median of the grouped

machines. Later [5] proposes co-ordinate wise median, trimmed

mean and iterative filtering based approaches. Communication-

efficient and Byzantine robust algorithms were developed in [23],

[46]. A norm based thresholding approach for Byzantine resilience

for distributed Newton algorithm was also developed [24]. All

these works provide only first order convergence guarantee (small

gradient). The work [19] is the only one that provides second order

guarantee (Hessian positive semi-definite) under Byzantine attack.

IV. ALGORITHM–DIST-CURE
We describe a communication efficient and Byzantine robust

distributed cubic Newton algorithm, namely DIST-CURE that

can avoid saddle point and thus converge to a local minima for

Algorithm 1 DIST-CURE

1: Input: Step size ¸k, parameter 0f³f ´,µ > 0,M > 0 and

¶-approximate compressorQ.

2: Initialize: Initial iterate x0∈R
d

3: for k=0,1,...,T−1 do

4: Central machine: broadcasts xk

for i∈ [m] do in parallel

5: i-th local machine:

Non-Byzantine: Compute local gradient gi,k and Hessian

Hi,k; locally solve the problem equation (1). Use the

compressorQ and sendQ(si,k+1) to the center,

Byzantine: Generate ⋆ (arbitrary), and send it to the center

end for

6: Center Machine:

(i) Sort local machines in a non decreasing order according

to norm of updates {Q(si,k+1)}mi=1

(ii) Return indices of first 1−´ fraction of machines, Uk,

(iii) Update: xk+1=xk+¸k
1

|Uk|

∑

i∈Uk
Q(si,k+1)

7: end for

non-convex loss function. Starting with initialization x0, the center

machine broadcasts the parameter to the local machines. At k-th

iteration, the i-th local machine solves a cubic-regularized auxiliary

loss function based on its local data:

si,k+1=argmin
s

gT
i,ks+

µ

2
sTHi,ks+

M

6
µ2∥s∥3, (1)

whereM>0,µ>0 are parameter choose suitably and gi,t,Hi,t are

the gradient and Hessian of the local loss function fi computed on

data (Si) stored in the local machine.

gi,k=∇fi(xk)=
1

|Si|
∑

zi∈Si

∇fi(xk,zi)

Hi,k=∇2fi(xk)=
1

|Si|
∑

zi∈Si

∇2fi(xk,zi).

After solving the problem described in (1), each local machine

applies compression operator Q as defined in Definition 1 on

update si,k+1. The application of the compression on the update

is to minimize the communication cost.

Moreover, we also consider that ³(< 1
2) fraction of the local

machines are Byzantine in nature. We denote the set of Byzantine

local machines by B and the set of the rest of the good machines

as M. In each iteration, the good machines send the compressed

update of solution of the sub-cubic problem described in equation

(1) and the Byzantine machines can send any arbitrary values or

intentionally disrupt the learning algorithm with malicious updates.

Lack of any robust measure towards these type of intentional and

unintentional attacks can be catastrophic to the learning procedure

as the learning algorithm can get stuck in such sub-optimal point.

To tackle such Byzantine local machines, we employ a simple

process called norm based thresholding.

After receiving all the updates from the local machines, the

central machine outputs a set U which consists of the indexes of

the local machines with smallest norm. DIST-CURE chooses

the size of the set U to be (1−´)m. Hence, we ‘trim’ ´ fraction of



the local machine so that we can control the iterated update by not

letting the local machines with large norm participate and diverge

the learning process. We denote the set of trimmed machine as

T . We choose ´>³ so that at least one of the good machines gets

trimmed. In this way, the norm of the all the updates in the set U
is bounded by at least the largest norm of the good machines.

Remark 1 (Exact solution only for theory): We emphasize that

the exact solution of the sub-problem (which the original work

of [1] also needed) is only required for theoretical tractability. In

practice, it is not possible to obtain such solution. For that reason,

in experiments (Section VI) we run the gradient based first order

algorithm of [33] to achieve this. We expand on this in the Appendix.

Remark 2: We introduce the parameter µ in the cubic regularized

sub-problem, which was absent in the original formulation of [1].

The parameter µ emphasizes the effect of the second and third order

terms in the sub-problem. The choice of µ plays an important role in

our analysis in handling the updates from different local machines.

V. THEORETICAL GUARANTEES

We have the following standard assumptions:

Assumption 1: The non-convex loss f(.) is twice continuously-

differentiable and bounded below, i.e., f∗=inf
x∈Rdf(x)>−∞.

Assumption 2: The loss f(.) is L-Lipschitz continuous

(∀x,y, |f(x)−f(y)| f L∥x − y∥), has L1-Lipschitz gradients

(∥∇f(x)−∇f(y)∥ f L1∥x − y∥) and L2-Lipschitz Hessian

(
∥
∥∇2f(x)−∇2f(y)

∥
∥fL2∥x−y∥).

The above assumption states that the loss and the gradient and Hes-

sian of the loss do not drastically change in the local neighborhood.

These assumptions are standard in the analysis of the saddle point

escape for cubic regularization (see [33], [34], [37]) and have also

appeared in the original work by Nesterov and Polyak ( [1]).

We assume the data distribution across local machines to be

non-iid. However, we assume that the local gradient and Hessian

computed at local machines (using local data) satisfies the following

gradient and Hessian dissimilarity conditions. Note that these

conditions are only applicable for non-Byzantine machines only.

Byzantine machines do not adhere to any assumptions.

Definition 2 (Heterogeneity): In the FL setup, the gradient and

Hessian heterogeneity are defined as the following: ϵg > 0 and

ϵH>0, we have, for all k,i,

∥∇f(xk)−gi,k∥fϵg ∥∇2f(xk)−Hi,k∥fϵH.

We emphasize that bounded gradient and hessian dissimilarity

are quite common in distributed learning (specially in Federated

Learning), and are one major way to characterize the degree of

heterogeneity. For example, see [47]–[53] and the references therein.

These papers use this bounded heterogeneity condition to analyze

convergence results. Although the above condition is written in terms

of all the good machines, with a slight modification, we can extend

our analysis to the case where bounded heterogeneity is required on

an average, that is not for all i but on average gradient and Hessian.

ϵg and ϵH in special cases: The gradient and Hessian bound

have been studied under more relaxed condition. In [33]–[35],

the authors consider gradient and Hessian with sub-sampled data

being drawn uniformly randomly from the data set. Due to the

data being drawn in iid manner, both the bound (ϵg,ϵH) parameters

value diminish at the rate ∝ 1/
√

|S| where |S| is the size of the

data sample in each local machine. In [24], the authors analyze the

deviation in case of data partitioning where each local machine

sample data uniformly without replacement from a given data set.

Remark 3 (Two rounds of communication ϵg = 0, ϵH = 0):

We can make ϵg = 0 one more round of communication in each

iteration. In the first iteration, all the local machines compute the

gradient based on the stored data and send it to the center machine.

The center machine averages them and then broadcast the global

gradient ∇f(xk)=
1
m

∑m
i=1gi,k at iteration k. In this manner, the

local machines solve the sub-problem (1) with the actual gradient.

Note that [25] does this exactly to avoid ϵg. Similarly, with more

communication cost, we can make ϵH = 0 by allowing local

machines to send local Hessians and the center to aggregate and

broadcast the aggregated Hessian. However, in standard FL, one

typically avoids this additional round of communication and deal

with gradient and Hessian dissimilarities.

We now present the main results of the paper. We first present

the convergence guarantees of DIST-CURE with simultaneous

compression and Byzantine resilience. Subsequently, we relax the

restrictions on communication efficiency and robustness.

Recall that DIST-CURE uses ¶ approximate compression

for communication efficiency and norm based thresholding for

Byzantine resilience. In the theoretical analysis, to avoid clutter and

for the clarity of exposition, we substitute ¶=1. However, as seen

in [23], [27], the analysis can be seamlessly extended to the setting

where ¶∈(0,1). We have the following result.

Theorem 1 (Convergence of DIST-CURE): Suppose 0f³<
´f 1

2 andmg2. Furthermore, we choose the problem parameters,

M=O(m(1−´)), and ¸k=
c

Tmν ;µ=
c

Tmν , for some constant c>
0,¿ >3. Then, after T iterations of DIST-CURE (Algorithm 1),

the sequence {xi}Ti=1 generated contains a point x̃ such that

∥∇f(x̃)∥f Ç1

T2/3
+ϵg+ÇG

¼min

(
∇2f(x̃)

)
g− Ç2

T
1

3

−ϵH−ÇH,

where, χ1=O(
(1−α)

(1−β)
+m(1−β)),χ2=O(

(1−α)

(1−β)
+m(1−β))

χG=O([
(1−α)

(1−β)
+m(1−β)](

1

m
)(

2ν
3

)+
α

(1−β)m2ν
+

α

(1−β)mν
)

χH=O([m(1−β)+
(1−α)

(1−β)
)](

1

m
)
ν
3 +

α

(1−β)mν
).

Corollary 1.1 (Recovering the results of [1]): Suppose

³=0,´=0. Moreover, we choose m=1 (centralized) and hence

ϵG = ϵH = 0. Moreover, as in [1], we choose ¸ = µ = 1. With

the above-mentioned choices of problem parameters, we show in

Appendix E that that ÇG=ÇH=0. Furthermore, we get

∥∇f(x̃)∥fO(
1

T2/3
) ¼min

(
∇2f(x̃)

)
g−O(

1

T1/3
),

which matches [1].

The proof of Theorem 1 and Corollary 1.1 is in the Appendix.

Discussion: Note that both the gradient and the minimum

eigenvalue of the Hessian in the Theorem 1 have three terms. The

first term decreases with the number iterations T . The rate of



decay for gradient and the minimum eigenvalue of the Hessian are

O(1/T
2

3 ) and O(1/T
1

3 ), respectively. We point out that both of

these rates match with that of the centralized version of the cubic

regularized Newton as shown in [1]. The quantities, Ç1 and Ç2

associated with these terms are independent of T and depends on

problem parameters like ³,´ andm, as shown.

The second term of the gradient bound and the minimum

eigenvalue of the Hessian depends on ϵg and ϵH . This term appears

owing to the non-iid nature of data in the local machines. Note

that the appearance of such terms (depicting the degree of non-iid

ness) is quite common in distributed optimization literature (ex,

see [47], [51]–[53]). Note that in the centralized setup of [1], this

aspect of heterogeneity was absent and hence these terms were

absent. Furthermore, as mentioned above, in the special cases, both

the terms ϵg and ϵH decrease at the rate of 1/
√

|S|, where |S| is

the number of data in each of the local machines.

The third term in the expression is an error floor that decays

with the number of machines, m, and can be made arbitrarily

small by choosing appropriate step-size. Note that as shown in

Corollary 1.1, this term vanishes whenm=1. This term originates

from several sources. First, note that the center machine simply

aggregates the solution of the local machines to obtain the next

update. Unlike gradient aggregation (in first order methods), this

simple averaging of local solutions yields a different solution from

the global one, and hence one incurs a bias by this simple averaging

strategy. This is the cost of going from centralized to a distributed

setup, and this is incurred even in the absence of compression and

Byzantine resilience. Second, we employ norm based thresholding,

and remove the contribution of ´ fraction of the local machines.

This naturally creates an error floor.

Remark 4: Since our algorithm is second order in nature, it

requires less number of iterations compared to the first order

gradient based algorithms. Our algorithm achieves a superior rate

of O(1/T
2

3 ) compared to the gradient based approach of rate

O(1/
√
T). Our algorithm dominates ByzantinePGD [19] in terms

of convergence, communication rounds and simplicity.
A. Special case of Theorem 1

Here, we choose the non-Byzantine setup with ³ = ´ = 0 in

addition to the uncompressed update. This is just the distributed

variant of the cubic regularized Newton method of [1].

Corollary 1.2 (Non Byzantine and no compression): Suppose

we choose M =O(m), ¸ = µ = c/Tm¿ for some c > 0,¿ > 3.

Then, after T iterations of DIST-CURE for uncompressed update

(¶=1), the sequence {xi}Ti=1 generated contains a point x̃ such that

∥∇f(x̃)∥f Ç1

T2/3
+ϵg+ÇG

¼min

(
∇2f(x̃)

)
g− Ç2

T
1

3

−ϵH−ÇH,

where, Ç1=Ç2=O(m) and

ÇG=O(
1

m
2ν
3
−1

),ÇH=O(
1

m
ν
3
−1

).

Note that the term Ç1,Ç2,ÇG and ÇH have reduced, thus improving

the performance. As ¿ > 3, the parameter ÇG,ÇH are decreasing

with the number of local machines. Note that even in the simple

distributed variant, the extra error terms (second and third terms)

are present. As explained earlier, these are owing to the non-iid

nature of data distribution and the simple (biased) aggregation of

local solutions at the center respectively.

B. Solution of the cubic sub-problem

The cubic regularized sub-problem (1) needs to be solved to

update the parameter. As this particular problem does not have a

closed form solution, a solver is usually employed which yields

a satisfactory solution. In previous works, different types of solvers

have been used. [31], [32] solve the sub-problem using Lanczos

based method in Krylov subspace. In [38], the authors propose a

solver based on Hessian-vector product and binary search. Gradient

descent based solver is proposed in [33], [37].

Previous works, [25], [35], [36], consider the exact solution of

the cubic sub-problem for theoretical analysis. Recently, inexact

solutions to the sub-problem is also proposed in the centralized

(non-distributed) framework. For instance, [34] analyzes the

cubic model with sub-sampled Hessian with approximate model

minimization technique developed in [31]. Moreover, [33] shows

improved analysis with gradient based minimization which is a

variant studied in [37]. Both exact and inexact solutions to the

sub-problem yields similar theoretical guarantees.

In our framework, each local machine is tasked with solving the

sub-problem. For the purpose of theoretical convergence analysis,

we consider that local machines obtain the exact solution in each

round. However, in experiments (Section VI), we apply the gradient

based solver of [33] to solve the sub-problem. Here, we let each

local machines run the gradient based solver for 10 iterations and

send the update to the center machine in each iteration.

VI. EXPERIMENTAL RESULTS

We defer the experimental section in Appendix owing to space

limitation, but provide the gist here. We first validate the saddle

point avaidance capability of DIST-CURE via a simple example.

Then we use standard benchmark LIBSVM ( [26]) datasets for

logistic regression and non-convex robust regression examples

and show convergence results for both non-Byzantine and several

different Byzantine attacks. We characterize the total iteration

complexity (defined in Section VI) of DIST-CURE, and compare

it with several baselines. We observe that DIST-CURE beats its

competitor, [19] (which requires 25% more total iterations).

VII. CONCLUSION

We propose, analyze and experimentally validate DIST-CURE,

that uses cubic regularized Newton [1] for saddle point avoidance

and norm based thresholding for robustness. We compare the

performance of DIST-CURE with existing state of the art

algorithms. One immediate future direction is to theoretically

understand DIST-CURE where the local machines approximately

solve the local sub-problem. This is indeed non-trivial as seen in

[33]. Another interesting direction is to analyze trust region based

methods. We keep this as future endeavors.

VIII. ACKNOWLEDGMENT

The work is supported in part by NSF awards 2133484, 2112665,

and 2217058.



REFERENCES

[1] Y. Nesterov and B. T. Polyak, “Cubic regularization of newton method and
its global performance,” Mathematical Programming, vol. 108, no. 1, pp.
177–205, 2006.
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(a) (b) (c) (d)

Fig. 1. Comparison of the DIST-CURE with (a) FedGLOMO and FedAvg (b) for Gaussian attack. (c) Comparison of DIST-CURE with robust PGD. (d) Plot of
the gradient norm for ’a9a‘ data-set with Gaussian attack for robust linear regression.

(a) (b) (c) (d)

Fig. 2. (a) Plot of the function value with different initialization to show that the algorithm escapes the saddle point with functional value 0. (b,c,d) Comparison of our
algorithm with ByzantinePGD [19] in terms of the total number of iterations.

APPENDIX

A. Experimental results

First we show that DIST-CURE indeed escapes saddle point with a toy example. We choose a d=2: minw∈R2[f1(w)+f2(w)] where

f1(w)=w
2
1−w2

2 and f2(w)=2w2
1−2w2

2 (Here wi denotes the i-th coordinate of w. This problem is the sum of two non-convex function

and has a saddle point at (0,0). In Figure 2 (a) we observe that our algorithm escapes the saddle point (0,0), with random initialization.

Note that, checking whether a point is a local minima or a saddle point is an NP-hard problem for non-convex losses (see [54], Sec.

2.2). So, for a simple toy problem, we may brute-force our way through to show saddle points escape, but this becomes intractable for

real data examples.

We now validate on benchmark LIBSVM ( [26]) data-set in both convex and non-convex problems. We choose the following loss

functions:

• Logistic loss:

min
w∈Rd

1

n

∑

i

log
(
1+exp(−yixT

i w)
)
+
¼

2n
∥w∥2,

• Non-convex robust linear regression:

min
w∈Rd

1

n

∑

i

log(
(yi−wTxi)

2

2
+1),

where w∈R
d is the parameter, {xi}ni=1∈R

d are the feature vectors and {yi}ni=1∈{0,1} are the corresponding labels. We choose

‘a9a’(d=123,n≈32K, and split the data into 70/30 and use as training/testing purpose) and ‘w8a’(training data d=300,n≈50K and

testing data d=300,n≈15K ) classification datasets and partition the data in 20 machines.

We demonstrate DIST-CURE in the presence of Byzantine machines and compressed update. For compression, each local machine

applies compression operator of QSGD [44]. For a given vector x∈R
d, we have

[Q(x)]i=∥x∥2sign(xi)×Ber(|xi|/∥x∥2)
for all i∈ [d]. We consider the following four Byzantine attacks:



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Non convex robust linear regression with ‘a9a’ (a,b,c,d) and ‘w8a’ (e,f,g,h) with 10%,15%,20% Byzantine local machines for (a,e). Flipped label attack.(b,f).
Negative Update attack. (c,g) Gaussian attack. (d,h) Random attack.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Classification accuracy of the testing data ‘a9a’ dataset (first row) and ‘w8a’ dataset (second row) with 10%,15%,20% Byzantine local machines for (a,e). Flipped
label.(b,f). Negative Update (c,g). Gaussian noise and (d,h). Random label attack for logistic regression problem.

1) ‘Gaussian Noise attack’: where the Byzantine local machines add Gaussian noise to the update.

2) ‘Random label attack’: where the Byzantine local machines train and learn based on random labels instead of the proper labels.

3) ‘Flipped label attack’: where (for Binary classification) the Byzantine local machines flip the labels of the data and learn based



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Function training loss for the training data ‘a9a’ (first row) and ‘w8a’ (second row) with 10%,15%,20% Byzantine local machines. for (a,e). Gaussian
attack.(b,f).Random attack (c,g) Flipped Attack and (d,h) Negative update attack for non-convex robust linear regression problem.

on wrong labels.

4) ‘Negative update attack’: where the Byzantine local machines computes the update s (here solves the sub-problem in Eq. (1)) and

communicates −c∗s with c∈(0,1) making the direction of the update opposite of the actual one.

a) Comparison with ByzantinePGD: We compare our uncompressed version of DIST-CURE (¶=1) with ByzantinePGD of

[19] here. We take the total number of iterations as a comparison metric. One outer iteration of Algorithm 1 corresponds to one round

of communication between the center and the local machines (and hence one parameter update). Note that in our algorithm the local

machines use 10 steps of gradient solver (see [33]) for the local sub problem per iteration. So, the total number of iterations is given by 10
times the number of outer iterations. For both the algorithms, we choose ℓ2 norm of the gradient as a stopping criteria. For ByzantinePGD,

we choose R=10,r=5,Q=10,Tth =10 and ‘co-ordinate wise Trimmed mean. In the Figure 2 (b-d), we plot the total number of

iterations in all four types of attacks with different fraction of Byzantine machines. It is evident from the plot that our method requires

less number of over all iterations (at least 48.4%, 29% and 25% less for 10%, 15% and 20% of Byzantine machines respectively).

Although DIST-CURE uses Hessian (second order) information, the sub-problem actually uses gradient based first order algorithm,

and hence we compare the total iteration complexity mentioned above. To the best of our knowledge, there is no saddle point avoidance

second order algorithm in FL framework, and so we adhere to the comparison with first order methods.

b) Comparison with standard FL algorithms: We have implemented and compared the performance of standard FL algorithm like

FedGLOMO [55] (Federated Learning via Global and Local Momentum) and FedAvg [3] with DIST-CURE. The results are shown in

Figure 1(a,b). Our method outperforms these standard baselines since they can tolerate Byzantine attacks (Gaussian attack in the experiment).

c) Training loss for compressed update: In Figure 3, we plot the function value of the robust linear regression problem for ’flipped

labels‘, ’negative update‘, ’Gaussian‘ and ’Random label‘ attacks with compressed update for both ‘w8a’ and ‘a9a’ datasets. We choose the

parameters ¼=1,M=10, learning rate ¸k=1, ³={.1,.15,.2} and ´=³+ 2
m , where number of local machinesm=20. In Figure 1(d),

we plot the gradient norm (∥g∥) for Gaussian attack with 10%,15% and 20% of machines being Byzantine.

d) Classification accuracy: We show the classification accuracy on testing data of ‘a9a’ and ‘w8a’ dataset for logistic regression

problem in Figure 4 and training function loss of ‘a9a’ and ‘w8a’ dataset for robust linear regression problem in the Figure 4. It is evident

from the plots that a simple norm based thresholding makes the learning algorithm robust.

e) Training loss for uncompressed update: In Figure 5, we plot the function value of the robust linear regression with the similar

attacks for the uncompressed update (¶=1) for both ‘w8a’ and ‘a9a’ dataset.



B. Proofs of main results

In this part, we establish some useful facts and lemmas. Next, we provide analysis of Theorems 1.

a) Proof Sketch: We now provide a proof sketch of Theorem 1. In Theorem 1, we provide the convergence guarantee of DIST-CURE

in terms of the norm of the gradient and minimum eigenvalue for some point x̃ in the iteration sequence {x0,...,xT−1} satisfying

k0=arg min
0fkfT−1

∥xk+1−xk∥.

First we bound the term

∥xk0+1−xk0
∥=∥¸k0

1

|Uk0
|
∑

i∈Uk0

si,k0+1∥,

which is the aggregated update at iteration k0. The sum is over Uk0
which is set of updates with smallest norm but the set may contain

Byzantine update. Now, we choose ´ >³ such that there is at least one good machine in the trimmed set. With this, in any iteration

k, for Byzantine machine in the untrimmed set, i∈Uk∩Bk, we have

∥si,k+1∥f max
i∈Mk

∥si,k+1∥,

where Mk is the set of good machines. Next, we use the results of Lemma 1 and Lemma 2 (shown next) and the Assumptions 1-2

to establish the bound
1

|Mk0
|
∑

i∈Mk0

∥¸k0
si,k0+1∥3fO(

1

T
)+O(

1

m
),

with the choice of ¸k=
1

Tmν , for some ¿>3. Next, we use these facts to bound the norm of the gradient and minimum eigenvalue of

the Hessian and establish the results.

C. Some useful facts

For the purpose of analysis we use the following sets of inequalities.

Fact 1: For a1,...,an we have the following inequality

∥
(

n∑

i=1

ai

)

∥3f
(

n∑

i=1

∥ai∥
)3

fn2
n∑

i=1

∥ai∥3 (2)

∥
(

n∑

i=1

ai

)

∥2f
(

n∑

i=1

∥ai∥
)2

fn
n∑

i=1

∥ai∥2 (3)

Fact 2: For a1,...,an>0 and r<s
(

1

n

n∑

i=1

ari

)1/r

f
(

1

n

n∑

i=1

asi

)1/s

(4)

Lemma 1 ( [1]): Under Assumption 2, i.e., the Hessian of the function is L2-Lipschitz continuous, for any x,y∈R
d, we have

∥∇f(x)−∇f(y)−∇2f(x)(y−x)∥f L2

2
∥y−x∥2 (5)

∣
∣
∣
∣
f(y)−f(x)−∇f(x)T (y−x)− 1

2
(y−x)T∇2f(x)(y−x)

∣
∣
∣
∣
f L2

6
∥y−x∥2 (6)

Next, we establish the following Lemma that provides some nice properties of the cubic sub-problem.

Lemma 2: LetM>0,µ>0,g∈R
d,H∈R

d×d, and

s=argmin
x

gTx+
µ

2
xTHx+

Mµ2

6
∥x∥3. (7)

The following holds

g+µHs+
Mµ2

2
∥s∥s=0, (8)

H+
Mµ

2
∥s∥I°0, (9)

gTs+
µ

2
sTHsf−M

4
µ2∥s∥3. (10)



Proof 1: The equations (8) and (9) are from the first and second order optimal condition. We proof (10), by using the conditions

of (8) and (9).

gTs+
µ

2
µsTHs=−

(

µHs+
M

2
µ2∥s∥s

)T

s+
µ

2
µsTHs (11)

=−µsTHs−M
2
µ2∥s∥3+µ

2
µsTHs

fM

4
µ2∥s∥3−M

2
µ2∥s∥3 (12)

=−M
4
µ2∥s∥3.

In (11), we substitute the expression g from the equation (8). In (12), we use the fact that sTHs+Mµ
2 ∥s∥3>0 from the equation (9).

D. Proof of Theorem 1 (Main Theorem)

First we state the results of Lemma 2 for each local machine in iteration k,

gi,k+µHi,ksi,k+1+
M

2
µ2∥si,k+1∥si,k+1=0 (13)

µHi,k+
M

2
µ2∥si,k+1∥I°0 (14)

gT
i,ksi,k+1+

µ

2
sTi,k+1Hi,ksi,k+1f−M

4
µ2∥si,k+1∥3 (15)

We also use the following fact form the setup and trimming set

|U|= |U∩M|+|U∩B| (16)

|M|= |U∩M|+|T ∩M| (17)

Combining both the equations (16) and (17), we have

|U|= |M|−|T ∩M|+|U∩B| (18)

Now we state the following fact from the trimming set. as mentioned in the Algorithm 1, the norm of the update from any local

machines from the set U is less than the norm of the update from any local machines in the set T . Now as ´ >³, at least one good

machine (the largest norm) is in the set T . So, we can claim the following,

For all i∈U∩B, ∥si∥fmax
i∈M

∥si∥

Summing over all the Byzantine machines in the untrimmed set which is U∩B, we get

∑

i∈U∩B

∥.∥f³mmax
i∈M

∥.∥

as |U∩B|f³m. Also,

∑

i∈M∩T

∥.∥f
∑

i∈M

∥.∥

Combining the above two equations, we get

∑

i∈U∩B

∥.∥+
∑

i∈M∩T

∥.∥f
∑

i∈M

∥.∥+³mmax
i∈M

∥.∥ (19)

For the rest of the calculation, we use the following notation

Γ= max
i∈M,k

∥si,k∥. (20)

If the optimization sub-problem domain is bounded, Γ can be upper-bounded by the diameter of the parameter space. Note that in the

definition of Γ, the maximum is taken over good machines only.



Characterization of Γ :: For any good local machine i∈M, we have the following

si,k+1=argmin
s

gT
i,ks+

µ

2
sTHi,ks+µ

2M

6
∥s∥3

for someM>0 and µ= c
T . Next, we consider ui,k+1=µsi,k+1 and we get the following expression

ui,k+1=argmin
u

gT
i,ku+

1

2
uTHi,ku+

M

6
∥u∥3

Following the similar results of the 2, we have the following result from the second order condition,

gT
i,kui,k+1+

1

2
uT
i,k+1Hi,kui,k+1f−M

4
∥ui,k+1∥3.

Therefore,

M

4
∥ui,k+1∥3

f∥gi,k∥ui,k+1∥+
1

2
∥Hi,k∥∥ui,k+1∥2

=∥gi,k−∇f(si,k+1)+∇f(si,k+1)∥ui,k+1∥+
1

2
∥Hi,k−∇2f(si,k+1)+∇2f(si,k+1)∥∥ui,k+1∥2

f(∥gi,k−∇f(si,k+1)∥+∥∇f(si,k+1)∥ui,k+1∥+
1

2
(∥Hi,k−∇2f(si,k+1)∥+∥∇2f(si,k+1)∥)∥ui,k+1∥2

f(ϵg+L)∥ui,k+1∥+(ϵH+L1)∥ui,k+1∥2

In the above expression, we have ϵg,ϵH are gradient and Hessian dissimilarity respectively and ∥∇f(si,k+1∥fL,∥∇2f(si,k+1∥fL1

which are constants. This shows that ∥ui,k+1∥ to be bounded and hence maxi∈M∥ui,k+1∥ to be bounded. For µ= c
T , we have

∥si,k+1∥=∥ui,k+1/µ∥=O(T)
⇒Γ=O(T) (21)

At any iteration k, we have (with Taylor’s expansion)

f(xk+1)−f(xk)

f∇f(xk)
T (xk+1−xk)+

1

2
(xk+1−xk)

T∇2f(xk)(xk+1−xk)+
L2

6
∥xk+1−xk∥3

=
¸k
|U|∇f(xk)

T
∑

i∈U

si,k+1

︸ ︷︷ ︸

Term1

+
¸2k

2|U|2

(
∑

i∈U

si,k+1

)T

∇2f(xk)

(
∑

i∈U

si,k+1

)

︸ ︷︷ ︸

Term2

+
L2

6

∥
∥
∥
∥
∥

¸k
|U|
∑

i∈U

si,k+1

∥
∥
∥
∥
∥

3

︸ ︷︷ ︸

Term3

(22)

In 22, we use the update of the parameter in the center machine xk+1−xk=
¸k
|U|

∑

i∈Usi,k+1, as expressed in the Algorithm 1. Here

Q(si,k+1)=si,k+1 as ¶=1.

First we choose the Term 1 in (22) and expand it using (18)

¸k
|U|∇f(xk)

T
∑

i∈U

si,k+1

=
¸k

(1−´)m∇f(xk)
T

[
∑

i∈M

si,k+1−
∑

i∈M∩T

si,k+1+
∑

i∈U∩B

si,k+1

]

=
¸k

(1−´)m
∑

i∈M

[
gT
i,ksi,k+1+∇f(xk)

Tsi,k+1−gT
i,ksi,k+1

]

︸ ︷︷ ︸

Term1.1

+
¸k

(1−´)m∇f(xk)
T

[

−
∑

i∈M∩T

si,k+1+
∑

i∈U∩B

si,k+1

]

︸ ︷︷ ︸

Term1.2

(23)



First we consider Term 1.1 in (23) ( notice that the sum is over only good machines),

¸k
(1−´)m

∑

i∈M

[
gT
i,ksi,k+1+∇f(xk)

Tsi,k+1−gT
i,ksi,k+1

]

=
¸k

(1−´)m
∑

i∈M

gT
i,ksi,k+1+

¸k
(1−´)m

∑

i∈M

[
(∇f(xk)−gi,k)

Tsi,k+1

]

f ¸k
(1−´)m

∑

i∈M

gT
i,ksi,k+1+

¸k
(1−´)m

∑

i∈M

[∥∇f(xk)−gi,k∥∥si,k+1∥]

f ¸k
(1−´)m

∑

i∈M

gT
i,ksi,k+1+

¸k
(1−´)m

∑

i∈M

[ϵg∥si,k+1∥] (24)

f ¸k
(1−´)m

∑

i∈M

gT
i,ksi,k+1+

¸k(1−³)
(1−´) ϵgΓ (25)

In (24), we use the following facts: 1. ∥∇f(xk)∥fL as the function f is L- Lipschitz. 2. ∥∇f(xk)−gi,k∥fϵg (gradient dissimilarity).

In (25), we use the bound stated in (20).

Next we consider Term1.2 in (23),

¸k
(1−´)m∇f(xk)

T

[

−
∑

i∈M∩T

si,k+1+
∑

i∈U∩B

si,k+1

]

f ¸k
(1−´)m

[
∑

i∈M∩T

∥∇f(xk)∥∥si,k+1∥+
∑

i∈U∩B

∥∇f(xk)∥∥si,k+1∥
]

f ¸kL

(1−´)m

[
∑

i∈M∩T

∥si,k+1∥+
∑

i∈U∩B

∥si,k+1∥
]

(26)

f ¸kL

(1−´)m

[
∑

i∈T

max
i∈M

∥si,k+1∥+
∑

i∈B

max
i∈M

∥si,k+1∥
]

(27)

f ¸kL

(1−´)m

[

´mmax
i∈M

∥si,k+1∥+³mmax
i∈M

∥si,k+1∥
]

(28)

f¸k(³+´)L
(1−´)

[

max
i∈M

∥si,k+1∥)
]

(29)

f¸k(³+´)L
Γ

(30)

We use the fact ∥∇f(xk)∥fL in (26), ,the fact stated in (19), in (27). We use the bound of update as described in (20) in (30).

We apply the bound derived for Term1.1 in (25) and for Term1.2 in (30) in the bound for Term1 in (23) and derive the following,

Term1

f ¸k
(1−´)m

∑

i∈M

gT
i,ksi,k+1+

¸k
(1−´)ϵgΓ+

¸k(³+´)L

(1−´) Γ

=
¸k

(1−´)m
∑

i∈M

[

gT
i,ksi,k+1+

µ

2
sTi,k+1Hi,ksi,k+1

]

− ¸k
(1−´)m

∑

i∈M

µ

2
sTi,k+1Hi,ksi,k+1+

¸k(1−³)
(1−´) ϵgΓ+

¸k(³+´)L

(1−´) Γ

f− µ2M¸k
4(1−´)m

∑

i∈M

∥si,k+1∥3−
¸k

(1−´)m
∑

i∈M

µ

2
sTi,k+1Hi,ksi,k+1+

¸k(1−³)
(1−´) ϵgΓ+

¸k(³+´)L

(1−´) Γ (31)

In line (31), we use the bound stated in (15).

Now we consider the Term 3 in equation (22),

L2

6

∥
∥
∥
∥
∥

¸k
|U|
∑

i∈U

si,k+1

∥
∥
∥
∥
∥

3

fL2¸
3
k

6|U|
∑

i∈U

∥si,k+1∥3 (32)



fL2¸
3
k

6|U|

[
∑

i∈M

∥si,k+1∥3−
∑

i∈M∩T

∥si,k+1∥3+
∑

i∈U∩B

∥si,k+1∥3
]

(33)

fL2¸
3
k

6|U|

[
∑

i∈M

∥si,k+1∥3+
∑

i∈U∩B

∥si,k+1∥3
]

(34)

f L2¸
3
k

6(1−´)m

[
∑

i∈M

∥si,k+1∥3+³mmax
i∈M

∥si,k+1∥3
]

(35)

f L2¸
3
k

6(1−´)m

[
∑

i∈M

∥si,k+1∥3+³mmax
i∈M

∥si,k+1∥3
]

(36)

f L2¸
3
k

6(1−´)m

[
∑

i∈M

∥si,k+1∥3+³mΓ3

]

(37)

In (32), we use the fact stated in (2). Next in (33), we expand the trimmed set U using (18) and in (35), we use the bound of (19).

Finally, in (36), we use the definition of the ¶-compressor and the bound stated in (20) in (37).

Now we consider the Term 2 in (22)

¸2k
2|U|2

(
∑

i∈U

si,k+1

)T

∇2f(xk)

(
∑

i∈U

si,k+1

)

=
¸2k

2(1−´)2m2

∑

i∈U

sTi,k+1∇2f(xk)si,k+1

︸ ︷︷ ︸

Term2.1

+
¸2k

2(1−´)2m2

∑

i̸=j∈U

sTi,k+1∇2f(xk)Q(sj,k+1)

︸ ︷︷ ︸

Term2.2

(38)

Now we consider Term2.1 in (38) and expand it using (18)
∑

i∈U

sTi,k+1∇2f(xk)si,k+1

=
∑

i∈M

sTi,k+1∇2f(xk)si,k+1

︸ ︷︷ ︸

Term2.1.1

−
∑

i∈M∩T

sTi,k+1∇2f(xk)si,k+1+
∑

i∈B∩U

sTi,k+1∇2f(xk)si,k+1

︸ ︷︷ ︸

Term2.1.2

We consider Term2.1.1
∑

i∈M

sTi,k+1∇2f(xk)si,k+1

=
∑

i∈M

sTi,k+1Hi,ksi,k+1−
∑

i∈M

sTi,k+1Hi,ksi,k+1+
∑

i∈M

sTi,k+1∇2f(xk)si,k+1

=
∑

i∈M

sTi,k+1Hi,ksi,k+1−
∑

i∈M

sTi,k+1(Hi,k−∇2f(xk)si,k+1

f
∑

i∈M

sTi,k+1Hi,ksi,k+1+(1−³)mϵHΓ2 (39)

In 39, we use the Hessian dissimilarity bound of ∥(∇2f(xk)−Hi,k)∥fϵH .

Next, we consider the Term2.1.2,
∑

i∈M∩T

sTi,k+1∇2f(xk)si,k+1+
∑

i∈B∩U

sTi,k+1∇2f(xk)si,k+1

f
∑

i∈M∩T

L1∥si,k+1∥2+
∑

i∈B∩U

L1∥si,k+1∥2 (40)

f
∑

i∈B

max
i∈T

L1∥si,k+1∥2+
∑

i∈B

max
i∈M

L1∥si,k+1∥2 (41)



f´mL1Γ
2+³mL1Γ

2

=(³+´)mL1Γ
2 (42)

Combining (39) and (42), we bound the Term2.1,

Term2.1

f
∑

i∈M

sTi,k+1Hi,ksi,k+1+(1−³)mϵHΓ2+(³+´)mL1Γ
2 (43)

Now we consider the Term 2.2 in equation (38)
∑

i̸=j∈U

sTi,k+1∇2f(xk)sj,k+1

f
∑

i̸=j∈U

L1∥si,k+1∥∥sj,k+1∥ (44)

=L1

[

∥
∑

i∈U

si,k+1∥2−
∑

i∈U

∥si,k+1∥2
]

fL1

[

|U|
∑

i∈U

∥si,k+1∥2−
∑

i∈U

∥si,k+1∥2
]

=L1((1−´)m−1)

[
∑

i∈M

∥si,k+1∥2−
∑

i∈M∩T

∥si,k+1∥2+
∑

i∈B∩U

∥si,k+1∥2
]

(45)

fL1((1−´)m−1)

[
∑

i∈U

∥si,k+1∥2
]

(46)

=L1((1−´)m−1)(1−´)mΓ2 (47)

We use the expansion described in (18) in (45).

Now combining the results in (47) and (38) we get,

Term2

f ¸2k
2(1−´)2m2

[
∑

i∈M

sTi,k+1Hi,ksi,k+1+(1−³)mϵHΓ2+(³+´)mL1Γ
2

]

+
¸2k

2(1−´)2m2
L1((1−´)m−1)(1−´)mΓ2

Now we combine all the upper bound of the Term 1, Term 2 and Term 3

f(xk+1)−f(xk)

f− µ2M¸k
4(1−´)m

∑

i∈M

∥si,k+1∥3−
¸k

(1−´)m
∑

i∈M

µ

2
sTi,k+1Hi,ksi,k+1+

¸k(1−³)
(1−´) ϵgΓ+

¸k(³+´)L

(1−´) Γ

+
¸2k

2(1−´)2m2

[
∑

i∈M

sTi,k+1Hi,ksi,k+1+(1−³)mϵHΓ2+(³+´)mL1Γ
2

]

+
¸2k
2
L1(

1+¶

¶
)Γ2+

L2¸
3
k

6(1−´)m

[
∑

i∈M

∥si,k+1∥3+³mΓ3

]

=

(

− µ2M¸k
4(1−´)m+

L2¸
3
k

6(1−´)m

)
∑

i∈M

∥si,k+1∥3−
¸k

2(1−´)m

(

µ− ¸k
(1−´)m

)

sTi,k+1Hi,ksi,k+1

+

(
¸k(1−³)
(1−´) ϵg+

¸k(³+´)L

(1−´)

)

Γ+
L2¸

3
k

6(1−´)³Γ
3

+
¸2k

2(1−´)2m((1−³)ϵH+(³+´)L1+L1((1−´)m−1)(1−´)m)Γ2

Also we assume that µg ¸k
(1−´)m and use the fact −si,k+1Hi,ksi,k+1fMµ

2 ∥si,k+1∥3. We also choose that

¼Γ=

(
¸k(1−³)
(1−´) ϵg+

¸k(³+´)L

(1−´)

)

Γ+
L2¸

3
k

6(1−´)³Γ
3+

¸2k
2(1−´)2m((1−³)ϵH+(³+´)L1+L1((1−´)m−1)(1−´)m)Γ2 (48)



Using the fact step-size ¸k=
c

mνT for some ¿g3 and the bound of Γ as described in (21), we have ¼Γ to be upper bounded by O( 1
mν )

Using the fact step-size ¸k=
c

mνT for some ¿g3 and the bound of Γ as described in (21), we have ¼Γ to be upper bounded by O( 1
mν )

Now we have,

f(xk+1)−f(xk) (49)

f
(

− µ2M¸k
4(1−´)m+

L2¸
3
k

6(1−´)m

)
∑

i∈M

∥si,k+1∥3+
¸k

2(1−´)m

(

µ− ¸k
(1−´)m

)
∑

i∈M

Mµ

2
∥si,k+1∥3+¼Γ

=

(

− µM¸2k
4(1−´)2m2

+
L2¸

3
k

6(1−´)m

)
∑

i∈M

∥si,k+1∥3+¼Γ

=−¼comp
1

(1−³)m
∑

i∈M

∥¸ksi,k+1∥3+¼Γ (50)

where

¼comp=[
µM

4(1−´)2¸km2
− L2

6(1−´)m ](1−³)m

To ensure ¼comp>0, we need

M>
4¸km(1−´)

µ

L2

6
(51)

Now for the choice of ¸k = c
Tmν and µ = c1

Tmν for some constant c1 > 0. We have M =O(m(1−´)(1+¶
¶ )3/2). Thus we have

¼comp=O(1) and ¼Γ=O( 1
mν ). Now we have

1

(1−³)m
∑

i∈M

∥¸ksi,k+1∥3f
1

¼comp
[f(xk)−f(xk+1)+¼Γ]

At any iteration k, we have

∥xk+1−xk∥3=∥¸k sk+1∥3

f 1

(1−´)m
∑

i∈U

∥¸k0
si,k+1∥3

f 1

(1−´)m
∑

i∈U

∥¸ksi,k+1∥3

=
1

(1−´)m

[
∑

i∈M

∥¸ksi,k+1∥3−
∑

i∈M∩T

∥¸ksi,k+1∥3+
∑

i∈U∩B

∥¸ksi,k+1∥3
]

f 1

(1−´)m

[
∑

i∈M

∥¸ksi,k+1∥3+³m¸3kΓ3

]

Now we consider the step k0, where k0=argmin0fkfT−1∥xk+1−xk∥.

min
0fkfT

∥xk+1−xk∥3

f min
0fkfT

1

(1−´)m

[
∑

i∈M

∥¸ksi,k+1∥3+³m¸3kΓ3

]

f 1

T

T−1∑

k=0

(1−³)
(1−´)

[

1

(1−³)m
∑

i∈M

∥¸ksi,k+1∥3+
³

1−³¸
3
k0
Γ3

]

f 1

T

T−1∑

k=0

(1−³)
(1−´)

[

f(xk)−f(xk+1)

¼comp
+

¼Γ
¼comp

+
³

1−³
¸3k0

Γ3

¼comp

]

f 1

T

(1−³)
(1−´)

[

f(x0)−f∗
¼comp

+

T−1∑

k=0

¼Γ
¼comp

+

T−1∑

k=0

³

1−³
¸3k0

Γ3

¼comp

]

f (1−³)
(1−´)

[

f(x0)−f∗
T¼comp

+
¼Γ

¼comp
+

³

1−³
¸3k0

Γ3

¼comp

]



With the choice of ¸k,µ we have the terms ¼Γ

¼comp
and ³

1−³

¸3

k0
Γ3

¼comp
are upper bounded by O( 1

mν ) and higher order of O( 1
mν ).

We have

1

(1−´)m

[
∑

i∈M

∥¸k0
si,k0+1∥3+³m¸3k0

Γ3

]

f (1−³)
(1−´)

[

f(x0)−f∗
T¼comp

+
¼Γ

¼comp
+

³

1−³
¸3k0

Γ3

¼comp

]

⇒ 1

(1−³)m

[
∑

i∈M

∥¸k0
si,k0+1∥3+³m¸3k0

Γ3

]

f
[

f(x0)−f∗
T¼comp

+
¼Γ

¼comp
+

³

1−³
¸3k0

Γ3

¼comp

]

⇒ 1

(1−³)m
∑

i∈M

∥¸k0
si,k0+1∥3f

[
f(x0)−f∗
T¼comp

]

=
Ècomp

T
+CΓ

where Ècomp=
f(x0)−f∗

¼comp
where CΓ is O(1/m).

So, we have the term Ècomp is of the order O(1).
The gradient condition is (using (13) )

∥∇f(xk+1)∥

=

∥
∥
∥
∥
∥
∇f(xk+1)−

1

|M|
∑

i∈M

gi,k−
1

|M|
∑

i∈M

µHi,k+1si,k+1−
1

|M|
∑

i∈M

Mµ2

2
∥si,k+1∥si,k+1

∥
∥
∥
∥
∥

f
∥
∥∇f(xk+1)−∇f(xk)−∇2f(xk)(xk+1−xk)

∥
∥+

∥
∥
∥
∥
∥

1

|M|
∑

i∈M

(gi,k−∇f(xk))

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥
∇2f(xk)(xk+1−xk)−µ

1

|M|
∑

i∈M

Hi,ksi,k+1

∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥

1

|M|
∑

i∈M

Mµ2

2
∥si,k+1∥si,k+1

∥
∥
∥
∥
∥

fL2¸
2
k

2

∥
∥
∥
∥
∥

1

|U|
∑

i∈U

si,k+1

∥
∥
∥
∥
∥

2

+ϵg+
Mµ2

2

1

|M|
∑

i∈M

∥si,k+1∥2+
∥
∥
∥
∥
∥

¸k
|U|
∑

i∈U

∇2f(xk)si,k+1−
µ

|M|
∑

i∈M

Hi,ksi,k+1

∥
∥
∥
∥
∥

(52)

Now consider the term in (52)
∥
∥
∥
∥
∥

¸k
|U|
∑

i∈U

∇2f(xk)si,k+1−
µ

|M|
∑

i∈M

Hi,ksi,k+1

∥
∥
∥
∥
∥

f
∥
∥
∥
∥
∥

¸k
|U|

[
∑

i∈M

∇2f(xk)si,k+1−
∑

i∈M∩T

∇2f(xk)si,k+1+
∑

i∈B∩U

∇2f(xk)si,k+1

]

− µ

|M|
∑

i∈M

Hi,ksi,k+1

∥
∥
∥
∥
∥

f
∥
∥
∥
∥
∥

¸k
|U|
∑

i∈M

∇2f(xk)si,k+1−
µ

|M|
∑

i∈M

Hi,ksi,k+1

∥
∥
∥
∥
∥
+
¸k
|U|

∑

i∈M∩T

∥∇2f(xk)si,k+1∥

+
¸k
|U|

∑

i∈B∩U

∥∇2f(xk)si,k+1∥

f
∥
∥
∥
∥
∥

¸k
|U|
∑

i∈M

∇2f(xk)si,k+1−
µ

|M|
∑

i∈M

∇2f(xk)si,k+1

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

µ

|M|
∑

i∈M

∇2f(xk)si,k+1−
µ

|M|
∑

i∈M

Hi,ksi,k+1

∥
∥
∥
∥
∥
+

¸k
(1−´)mL1[

∑

i∈M

∥si,k+1∥+³mΓ]

f(
¸k

(1−´)m− µ

(1−³)m)L1

∑

i∈M

∥si,k+1∥

+
µϵH

(1−³)m
∑

i∈M

∥si,k+1∥+
¸k

(1−´)mL1[
∑

i∈M

∥si,k+1∥+³mΓ]

f
(

¸k
(1−´)mL1(2+³m)− µL1

(1−³)m

)
∑

i∈M

∥si,k+1∥+
µϵH

(1−³)m
∑

i∈M

∥si,k+1∥

=

(
(1−³)
(1−´)2L1−

µ

¸k
(L1−ϵH)

)
1

(1−³)m
∑

i∈M

∥¸ksi,k+1∥+
¸k³

(1−´)Γ



Next we consider the term

L2¸
2
k

2

∥
∥
∥
∥
∥

1

|U|
∑

i∈U

si,k+1

∥
∥
∥
∥
∥

2

f L2¸
2
k

2(1−´)m
∑

i∈U

∥si,k+1∥2

f L2¸
2
k

2(1−´)m

[
∑

i∈M

∥si,k+1∥2+
∑

i∈U∩B

∥si,k+1∥2
]

=
L2¸

2
k

2(1−´)m
∑

i∈M

∥si,k+1∥2+
L2³¸

2
k

2(1−´)Γ
2 (53)

So finally we have

∥∇f(xk+1)∥

f L2¸
2
k

2(1−´)m
∑

i∈M

∥si,k+1∥2+ϵg+
Mµ2

2(1−³)m
∑

i∈M

∥si,k+1∥2+
(
(1−³)
(1−´)2L1−

µ

¸k
(L1−ϵH)

)
1

(1−³)m
∑

i∈M

∥¸ksi,k+1∥

+
L2³¸

2
k

2(1−´)Γ
2+

¸k³

(1−´)Γ

Now we choose µ> (1−³)
(1−´)2L1

¸k
L1−ϵH

.

∥∇f(xk+1)∥

f
[
L2(1−³)
2(1−´) +

Mµ2

2¸2k

]
1

(1−³)m
∑

i∈M

∥¸ksi,k+1∥2+
L2³¸

2
k

2(1−´)Γ
2+

¸k³

(1−´)Γ+ϵg

f
[
L2(1−³)
2(1−´) +

Mµ2

2¸2k

][

1

(1−³)m
∑

i∈M

∥¸ksi,k+1∥3
]2/3

+
L2³¸

2
k

2(1−´)Γ
2+

¸k³

(1−´)Γ+ϵg

At step k=k0,

∥∇f(xk0+1)∥

f
[
L2(1−³)
2(1−´) +

Mµ2

2¸2k

](
Ècomp

T
+CΓ

)2/3

+ϵg+
L2³¸

2
k

2(1−´)Γ
2+

¸k³

(1−´)Γ

f
[
L2(1−³)
2(1−´) +

Mµ2

2¸2k

](
Ècomp

T

)2/3

+ϵg

f
[
L2(1−³)
2(1−´) +

Mµ2

2¸2k

]

C
2/3
Γ +

L2³¸
2
k

2(1−´)Γ
2+

¸k³

(1−´)Γ

f Ç1

T2/3
+ϵg+ÇG

where Ç1 =
[
L2(1−³)
2(1−´) +Mµ2

2¸2

k

]

(Ècomp)
2/3. And as CΓ =O( 1

mν ), we have ÇG =O( 1
m2ν/3−1

)+O( ³
mν ). As ¿ g 3, ÇG is always

decreasing withm.

The Hessian bound is

¼min(∇2f(xk+1))

=
1

(1−³)m
∑

i∈M

¼min

[
∇2f(xk+1)

]

=
1

(1−³)m
∑

i∈M

¼min

[
Hi,k−(Hi,k−∇2f(xk+1))

]

g 1

(1−³)m
∑

i∈M

[
¼min(Hi,k)−∥Hi,k−∇2f(xk+1)∥

]



g 1

(1−³)m
∑

i∈M

¼min(Hi,k)−
1

(1−³)m
∑

i∈M

∥Hi,k−∇2f(xk+1)∥

g 1

(1−³)m
∑

i∈M

−Mµ

2
∥si,k+1∥−

1

(1−³)m
∑

i∈M

∥Hi,k−∇2f(xk)∥

− 1

(1−³)m
∑

i∈M

∥∇2f(xk)−∇2f(xk+1)∥

g 1

(1−³)m
∑

i∈M

−Mµ

2¸k
∥¸ksi,k+1∥−ϵH− 1

(1−³)m
∑

i∈M

L2∥xk−xk+1∥

g−Mµ

2¸k

[

1

(1−³)m
∑

i∈M

∥¸ksi,k+1∥3
]1/3

−L2∥xk−xk+1∥−ϵH

g−Mµ

2¸k

[

1

(1−³)m
∑

i∈M

∥¸ksi,k+1∥3
]1/3

−L2

[

1

(1−´)m
∑

i∈U

∥¸ksi,k+1∥
]

−ϵH

g−Mµ

2¸k

[

1

(1−³)m
∑

i∈M

∥¸ksi,k+1∥3
]1/3

−L2
1

(1−´)m

[
∑

i∈M

∥¸ksi,k+1∥+
∑

i∈B∩U

∥¸ksi,k+1∥
]

−ϵH

g−Mµ

2¸k

[

1

(1−³)m
∑

i∈M

∥¸ksi,k+1∥3
]1/3

−L2
(1−³)
(1−´)

[

1

(1−³)m
∑

i∈M

∥¸ksi,k+1∥
]

−ϵH−L2
³

(1−´)¸kΓ (54)

At k=k0 we have

¼min(∇2f(xk0+1)) (55)

g−Mµ

2¸k

[
Ècomp

T
+CΓ

]1/3

−L2
(1−³)
(1−´)

[
Ècomp

T
+CΓ

]1/3

−ϵH−L2
³

(1−´)¸kΓ

g−
[
Mµ

2¸k
+L2

(1−³)
(1−´)

]

È1/3
comp

(
1

T

)1/3

−ϵH−
(
Mµ

2¸k
C

1/3
Γ +L2

(1−³)
(1−´)C

1/3
Γ

)

−L2
³

(1−´)¸kΓ

g− Ç2

T1/3
−ϵH−ÇH (56)

where Ç2=
[
Mµ
2¸k

+L2
(1−³)
(1−´)

]

È
1/3
comp . And , we have ÇH=O( 1

mν/3−1
)+O( 1

mν ). As ¿g3, we ÇH to be strictly decreasing withm.

Finally, we restate the Theorem 1,

Theorem 1 (Convergence of DIST-CURE): Suppose 0 f ³ < ´ f 1
2 . Furthermore, we choose the problem parameters,

M=O(m(1−´), and ¸=µ= c
Tmν for some constant c>0,¿>3. Then, after T iterations of DIST-CURE (Algorithm 1), the sequence

{xi}Ti=1 generated contains a point x̃ such that

∥∇f(x̃)∥f Ç1

T2/3
+ϵg+ÇG, ¼min

(
∇2f(x̃)

)
g− Ç2

T
1

3

−ϵH−ÇH, where,

Ç1=

[
L2(1−³)
2(1−´) +

Mµ2

2¸2k

]

(Ècomp)
2/3

Ç2=

[
Mµ

2¸k
+L2

1(1−³)
(1−´)

]

È1/3
comp

ÇG=

[
L2(1−³)
2(1−´) +

Mµ2

2¸2k

]

C
2/3
Γ +

L2¸
2
k

2(1−´)Γ
2+

¸k³

(1−´)Γ

ÇH=

(
Mµ

2¸k
+L2

(1−³)
(1−´)

)

C
1/3
Γ +L2

³

(1−´)¸kΓ

Ècomp=
f(x0)−f∗
¼comp

and CΓ=
¼Γ

¼comp



¼comp=[
µM

4(1−´)¸km2
− L2

6(1−´)m ](1−³)m

¼Γ=

(
¸k(1−³)
(1−´) ϵg+

¸k(³+´)L

(1−´)

)

Γ+
L2¸

3
k

6(1−´)³Γ
3+

¸2k
2(1−´)2m((1−³)ϵH+(³+´)L1+L1((1−´)m−1)(1−´)m)Γ2.

For the choice of ¸= c
Tmν and µ= c

Tmν andM=O(m(1−´), we have ¼Γ=O( 1
mν ) and ¼comp to be O(1).

E. Proof of Corollary 1.1

In this Corollary statement we consider centralized (m=1), uncompressed (¶=1) and non-Byzantine setup (³=´=0). With these

parameters, we have the value of ¼Γ from equation (48) to be 0. Consequently, we have CΓ=0. With µ=1, we have

¼comp=
M

4¸k
−L2

6

So in order for ¼comp> 0, for constant step-size (¸k =1), we need M > 2L2

3 . With CΓ=0,³=0, we have ÇG=ÇH =0. Moreover

we have Ç1 =
[
L2+M

2

]
(Ècomp)

2/3 and Ç2 =
[
2M+L2

2

]
(Ècomp)

1/3. As it is a centralized setup, there are no gradient and Hessian

dissimilarities ϵg=ϵH=0. So we have

∥∇f(x̃)∥f
[
L2+M

2

]

(Ècomp)
2/3 1

T2/3
, ¼min

(
∇2f(x̃)

)
g−

[
2M+L2

2

]

(Ècomp)
1/3 1

T1/3
,

whereM> 2L2

3 . Thus, the convergence rate of DIST-CURE reduces to that of [1].
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